1b8e80941Smrg/*
2b8e80941Smrg * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
3b8e80941Smrg *
4b8e80941Smrg * Permission is hereby granted, free of charge, to any person obtaining a
5b8e80941Smrg * copy of this software and associated documentation files (the "Software"),
6b8e80941Smrg * to deal in the Software without restriction, including without limitation
7b8e80941Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8b8e80941Smrg * and/or sell copies of the Software, and to permit persons to whom the
9b8e80941Smrg * Software is furnished to do so, subject to the following conditions:
10b8e80941Smrg *
11b8e80941Smrg * The above copyright notice and this permission notice (including the next
12b8e80941Smrg * paragraph) shall be included in all copies or substantial portions of the
13b8e80941Smrg * Software.
14b8e80941Smrg *
15b8e80941Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16b8e80941Smrg * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17b8e80941Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18b8e80941Smrg * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19b8e80941Smrg * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20b8e80941Smrg * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21b8e80941Smrg * SOFTWARE.
22b8e80941Smrg *
23b8e80941Smrg * Authors:
24b8e80941Smrg *    Rob Clark <robclark@freedesktop.org>
25b8e80941Smrg */
26b8e80941Smrg
27b8e80941Smrg#include "util/ralloc.h"
28b8e80941Smrg#include "util/u_math.h"
29b8e80941Smrg
30b8e80941Smrg#include "ir3.h"
31b8e80941Smrg#include "ir3_compiler.h"
32b8e80941Smrg
33b8e80941Smrg/*
34b8e80941Smrg * Legalize:
35b8e80941Smrg *
36b8e80941Smrg * We currently require that scheduling ensures that we have enough nop's
37b8e80941Smrg * in all the right places.  The legalize step mostly handles fixing up
38b8e80941Smrg * instruction flags ((ss)/(sy)/(ei)), and collapses sequences of nop's
39b8e80941Smrg * into fewer nop's w/ rpt flag.
40b8e80941Smrg */
41b8e80941Smrg
42b8e80941Smrgstruct ir3_legalize_ctx {
43b8e80941Smrg	struct ir3_compiler *compiler;
44b8e80941Smrg	gl_shader_stage type;
45b8e80941Smrg	bool has_ssbo;
46b8e80941Smrg	bool need_pixlod;
47b8e80941Smrg	int max_bary;
48b8e80941Smrg};
49b8e80941Smrg
50b8e80941Smrgstruct ir3_legalize_state {
51b8e80941Smrg	regmask_t needs_ss;
52b8e80941Smrg	regmask_t needs_ss_war;       /* write after read */
53b8e80941Smrg	regmask_t needs_sy;
54b8e80941Smrg};
55b8e80941Smrg
56b8e80941Smrgstruct ir3_legalize_block_data {
57b8e80941Smrg	bool valid;
58b8e80941Smrg	struct ir3_legalize_state state;
59b8e80941Smrg};
60b8e80941Smrg
61b8e80941Smrg/* We want to evaluate each block from the position of any other
62b8e80941Smrg * predecessor block, in order that the flags set are the union of
63b8e80941Smrg * all possible program paths.
64b8e80941Smrg *
65b8e80941Smrg * To do this, we need to know the output state (needs_ss/ss_war/sy)
66b8e80941Smrg * of all predecessor blocks.  The tricky thing is loops, which mean
67b8e80941Smrg * that we can't simply recursively process each predecessor block
68b8e80941Smrg * before legalizing the current block.
69b8e80941Smrg *
70b8e80941Smrg * How we handle that is by looping over all the blocks until the
71b8e80941Smrg * results converge.  If the output state of a given block changes
72b8e80941Smrg * in a given pass, this means that all successor blocks are not
73b8e80941Smrg * yet fully legalized.
74b8e80941Smrg */
75b8e80941Smrg
76b8e80941Smrgstatic bool
77b8e80941Smrglegalize_block(struct ir3_legalize_ctx *ctx, struct ir3_block *block)
78b8e80941Smrg{
79b8e80941Smrg	struct ir3_legalize_block_data *bd = block->data;
80b8e80941Smrg
81b8e80941Smrg	if (bd->valid)
82b8e80941Smrg		return false;
83b8e80941Smrg
84b8e80941Smrg	struct ir3_instruction *last_input = NULL;
85b8e80941Smrg	struct ir3_instruction *last_rel = NULL;
86b8e80941Smrg	struct ir3_instruction *last_n = NULL;
87b8e80941Smrg	struct list_head instr_list;
88b8e80941Smrg	struct ir3_legalize_state prev_state = bd->state;
89b8e80941Smrg	struct ir3_legalize_state *state = &bd->state;
90b8e80941Smrg
91b8e80941Smrg	/* our input state is the OR of all predecessor blocks' state: */
92b8e80941Smrg	for (unsigned i = 0; i < block->predecessors_count; i++) {
93b8e80941Smrg		struct ir3_legalize_block_data *pbd = block->predecessors[i]->data;
94b8e80941Smrg		struct ir3_legalize_state *pstate = &pbd->state;
95b8e80941Smrg
96b8e80941Smrg		/* Our input (ss)/(sy) state is based on OR'ing the output
97b8e80941Smrg		 * state of all our predecessor blocks
98b8e80941Smrg		 */
99b8e80941Smrg		regmask_or(&state->needs_ss,
100b8e80941Smrg				&state->needs_ss, &pstate->needs_ss);
101b8e80941Smrg		regmask_or(&state->needs_ss_war,
102b8e80941Smrg				&state->needs_ss_war, &pstate->needs_ss_war);
103b8e80941Smrg		regmask_or(&state->needs_sy,
104b8e80941Smrg				&state->needs_sy, &pstate->needs_sy);
105b8e80941Smrg	}
106b8e80941Smrg
107b8e80941Smrg	/* remove all the instructions from the list, we'll be adding
108b8e80941Smrg	 * them back in as we go
109b8e80941Smrg	 */
110b8e80941Smrg	list_replace(&block->instr_list, &instr_list);
111b8e80941Smrg	list_inithead(&block->instr_list);
112b8e80941Smrg
113b8e80941Smrg	list_for_each_entry_safe (struct ir3_instruction, n, &instr_list, node) {
114b8e80941Smrg		struct ir3_register *reg;
115b8e80941Smrg		unsigned i;
116b8e80941Smrg
117b8e80941Smrg		n->flags &= ~(IR3_INSTR_SS | IR3_INSTR_SY);
118b8e80941Smrg
119b8e80941Smrg		if (is_meta(n))
120b8e80941Smrg			continue;
121b8e80941Smrg
122b8e80941Smrg		if (is_input(n)) {
123b8e80941Smrg			struct ir3_register *inloc = n->regs[1];
124b8e80941Smrg			assert(inloc->flags & IR3_REG_IMMED);
125b8e80941Smrg			ctx->max_bary = MAX2(ctx->max_bary, inloc->iim_val);
126b8e80941Smrg		}
127b8e80941Smrg
128b8e80941Smrg		if (last_n && is_barrier(last_n))
129b8e80941Smrg			n->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
130b8e80941Smrg
131b8e80941Smrg		/* NOTE: consider dst register too.. it could happen that
132b8e80941Smrg		 * texture sample instruction (for example) writes some
133b8e80941Smrg		 * components which are unused.  A subsequent instruction
134b8e80941Smrg		 * that writes the same register can race w/ the sam instr
135b8e80941Smrg		 * resulting in undefined results:
136b8e80941Smrg		 */
137b8e80941Smrg		for (i = 0; i < n->regs_count; i++) {
138b8e80941Smrg			reg = n->regs[i];
139b8e80941Smrg
140b8e80941Smrg			if (reg_gpr(reg)) {
141b8e80941Smrg
142b8e80941Smrg				/* TODO: we probably only need (ss) for alu
143b8e80941Smrg				 * instr consuming sfu result.. need to make
144b8e80941Smrg				 * some tests for both this and (sy)..
145b8e80941Smrg				 */
146b8e80941Smrg				if (regmask_get(&state->needs_ss, reg)) {
147b8e80941Smrg					n->flags |= IR3_INSTR_SS;
148b8e80941Smrg					regmask_init(&state->needs_ss_war);
149b8e80941Smrg					regmask_init(&state->needs_ss);
150b8e80941Smrg				}
151b8e80941Smrg
152b8e80941Smrg				if (regmask_get(&state->needs_sy, reg)) {
153b8e80941Smrg					n->flags |= IR3_INSTR_SY;
154b8e80941Smrg					regmask_init(&state->needs_sy);
155b8e80941Smrg				}
156b8e80941Smrg			}
157b8e80941Smrg
158b8e80941Smrg			/* TODO: is it valid to have address reg loaded from a
159b8e80941Smrg			 * relative src (ie. mova a0, c<a0.x+4>)?  If so, the
160b8e80941Smrg			 * last_rel check below should be moved ahead of this:
161b8e80941Smrg			 */
162b8e80941Smrg			if (reg->flags & IR3_REG_RELATIV)
163b8e80941Smrg				last_rel = n;
164b8e80941Smrg		}
165b8e80941Smrg
166b8e80941Smrg		if (n->regs_count > 0) {
167b8e80941Smrg			reg = n->regs[0];
168b8e80941Smrg			if (regmask_get(&state->needs_ss_war, reg)) {
169b8e80941Smrg				n->flags |= IR3_INSTR_SS;
170b8e80941Smrg				regmask_init(&state->needs_ss_war);
171b8e80941Smrg				regmask_init(&state->needs_ss);
172b8e80941Smrg			}
173b8e80941Smrg
174b8e80941Smrg			if (last_rel && (reg->num == regid(REG_A0, 0))) {
175b8e80941Smrg				last_rel->flags |= IR3_INSTR_UL;
176b8e80941Smrg				last_rel = NULL;
177b8e80941Smrg			}
178b8e80941Smrg		}
179b8e80941Smrg
180b8e80941Smrg		/* cat5+ does not have an (ss) bit, if needed we need to
181b8e80941Smrg		 * insert a nop to carry the sync flag.  Would be kinda
182b8e80941Smrg		 * clever if we were aware of this during scheduling, but
183b8e80941Smrg		 * this should be a pretty rare case:
184b8e80941Smrg		 */
185b8e80941Smrg		if ((n->flags & IR3_INSTR_SS) && (opc_cat(n->opc) >= 5)) {
186b8e80941Smrg			struct ir3_instruction *nop;
187b8e80941Smrg			nop = ir3_NOP(block);
188b8e80941Smrg			nop->flags |= IR3_INSTR_SS;
189b8e80941Smrg			n->flags &= ~IR3_INSTR_SS;
190b8e80941Smrg		}
191b8e80941Smrg
192b8e80941Smrg		/* need to be able to set (ss) on first instruction: */
193b8e80941Smrg		if (list_empty(&block->instr_list) && (opc_cat(n->opc) >= 5))
194b8e80941Smrg			ir3_NOP(block);
195b8e80941Smrg
196b8e80941Smrg		if (is_nop(n) && !list_empty(&block->instr_list)) {
197b8e80941Smrg			struct ir3_instruction *last = list_last_entry(&block->instr_list,
198b8e80941Smrg					struct ir3_instruction, node);
199b8e80941Smrg			if (is_nop(last) && (last->repeat < 5)) {
200b8e80941Smrg				last->repeat++;
201b8e80941Smrg				last->flags |= n->flags;
202b8e80941Smrg				continue;
203b8e80941Smrg			}
204b8e80941Smrg
205b8e80941Smrg			/* NOTE: I think the nopN encoding works for a5xx and
206b8e80941Smrg			 * probably a4xx, but not a3xx.  So far only tested on
207b8e80941Smrg			 * a6xx.
208b8e80941Smrg			 */
209b8e80941Smrg			if ((ctx->compiler->gpu_id >= 600) && !n->flags && (last->nop < 3) &&
210b8e80941Smrg					((opc_cat(last->opc) == 2) || (opc_cat(last->opc) == 3))) {
211b8e80941Smrg				last->nop++;
212b8e80941Smrg				continue;
213b8e80941Smrg			}
214b8e80941Smrg		}
215b8e80941Smrg
216b8e80941Smrg		if (ctx->compiler->samgq_workaround &&
217b8e80941Smrg			ctx->type == MESA_SHADER_VERTEX && n->opc == OPC_SAMGQ) {
218b8e80941Smrg			struct ir3_instruction *samgp;
219b8e80941Smrg
220b8e80941Smrg			for (i = 0; i < 4; i++) {
221b8e80941Smrg				samgp = ir3_instr_clone(n);
222b8e80941Smrg				samgp->opc = OPC_SAMGP0 + i;
223b8e80941Smrg				if (i > 1)
224b8e80941Smrg					samgp->flags |= IR3_INSTR_SY;
225b8e80941Smrg			}
226b8e80941Smrg			list_delinit(&n->node);
227b8e80941Smrg		} else {
228b8e80941Smrg			list_addtail(&n->node, &block->instr_list);
229b8e80941Smrg		}
230b8e80941Smrg
231b8e80941Smrg		if (is_sfu(n))
232b8e80941Smrg			regmask_set(&state->needs_ss, n->regs[0]);
233b8e80941Smrg
234b8e80941Smrg		if (is_tex(n)) {
235b8e80941Smrg			regmask_set(&state->needs_sy, n->regs[0]);
236b8e80941Smrg			ctx->need_pixlod = true;
237b8e80941Smrg		} else if (n->opc == OPC_RESINFO) {
238b8e80941Smrg			regmask_set(&state->needs_ss, n->regs[0]);
239b8e80941Smrg			ir3_NOP(block)->flags |= IR3_INSTR_SS;
240b8e80941Smrg		} else if (is_load(n)) {
241b8e80941Smrg			/* seems like ldlv needs (ss) bit instead??  which is odd but
242b8e80941Smrg			 * makes a bunch of flat-varying tests start working on a4xx.
243b8e80941Smrg			 */
244b8e80941Smrg			if ((n->opc == OPC_LDLV) || (n->opc == OPC_LDL))
245b8e80941Smrg				regmask_set(&state->needs_ss, n->regs[0]);
246b8e80941Smrg			else
247b8e80941Smrg				regmask_set(&state->needs_sy, n->regs[0]);
248b8e80941Smrg		} else if (is_atomic(n->opc)) {
249b8e80941Smrg			if (n->flags & IR3_INSTR_G) {
250b8e80941Smrg				if (ctx->compiler->gpu_id >= 600) {
251b8e80941Smrg					/* New encoding, returns  result via second src: */
252b8e80941Smrg					regmask_set(&state->needs_sy, n->regs[3]);
253b8e80941Smrg				} else {
254b8e80941Smrg					regmask_set(&state->needs_sy, n->regs[0]);
255b8e80941Smrg				}
256b8e80941Smrg			} else {
257b8e80941Smrg				regmask_set(&state->needs_ss, n->regs[0]);
258b8e80941Smrg			}
259b8e80941Smrg		}
260b8e80941Smrg
261b8e80941Smrg		if (is_ssbo(n->opc) || (is_atomic(n->opc) && (n->flags & IR3_INSTR_G)))
262b8e80941Smrg			ctx->has_ssbo = true;
263b8e80941Smrg
264b8e80941Smrg		/* both tex/sfu appear to not always immediately consume
265b8e80941Smrg		 * their src register(s):
266b8e80941Smrg		 */
267b8e80941Smrg		if (is_tex(n) || is_sfu(n) || is_mem(n)) {
268b8e80941Smrg			foreach_src(reg, n) {
269b8e80941Smrg				if (reg_gpr(reg))
270b8e80941Smrg					regmask_set(&state->needs_ss_war, reg);
271b8e80941Smrg			}
272b8e80941Smrg		}
273b8e80941Smrg
274b8e80941Smrg		if (is_input(n))
275b8e80941Smrg			last_input = n;
276b8e80941Smrg
277b8e80941Smrg		last_n = n;
278b8e80941Smrg	}
279b8e80941Smrg
280b8e80941Smrg	if (last_input) {
281b8e80941Smrg		/* special hack.. if using ldlv to bypass interpolation,
282b8e80941Smrg		 * we need to insert a dummy bary.f on which we can set
283b8e80941Smrg		 * the (ei) flag:
284b8e80941Smrg		 */
285b8e80941Smrg		if (is_mem(last_input) && (last_input->opc == OPC_LDLV)) {
286b8e80941Smrg			struct ir3_instruction *baryf;
287b8e80941Smrg
288b8e80941Smrg			/* (ss)bary.f (ei)r63.x, 0, r0.x */
289b8e80941Smrg			baryf = ir3_instr_create(block, OPC_BARY_F);
290b8e80941Smrg			baryf->flags |= IR3_INSTR_SS;
291b8e80941Smrg			ir3_reg_create(baryf, regid(63, 0), 0);
292b8e80941Smrg			ir3_reg_create(baryf, 0, IR3_REG_IMMED)->iim_val = 0;
293b8e80941Smrg			ir3_reg_create(baryf, regid(0, 0), 0);
294b8e80941Smrg
295b8e80941Smrg			/* insert the dummy bary.f after last_input: */
296b8e80941Smrg			list_delinit(&baryf->node);
297b8e80941Smrg			list_add(&baryf->node, &last_input->node);
298b8e80941Smrg
299b8e80941Smrg			last_input = baryf;
300b8e80941Smrg		}
301b8e80941Smrg		last_input->regs[0]->flags |= IR3_REG_EI;
302b8e80941Smrg	}
303b8e80941Smrg
304b8e80941Smrg	if (last_rel)
305b8e80941Smrg		last_rel->flags |= IR3_INSTR_UL;
306b8e80941Smrg
307b8e80941Smrg	bd->valid = true;
308b8e80941Smrg
309b8e80941Smrg	if (memcmp(&prev_state, state, sizeof(*state))) {
310b8e80941Smrg		/* our output state changed, this invalidates all of our
311b8e80941Smrg		 * successors:
312b8e80941Smrg		 */
313b8e80941Smrg		for (unsigned i = 0; i < ARRAY_SIZE(block->successors); i++) {
314b8e80941Smrg			if (!block->successors[i])
315b8e80941Smrg				break;
316b8e80941Smrg			struct ir3_legalize_block_data *pbd = block->successors[i]->data;
317b8e80941Smrg			pbd->valid = false;
318b8e80941Smrg		}
319b8e80941Smrg	}
320b8e80941Smrg
321b8e80941Smrg	return true;
322b8e80941Smrg}
323b8e80941Smrg
324b8e80941Smrg/* NOTE: branch instructions are always the last instruction(s)
325b8e80941Smrg * in the block.  We take advantage of this as we resolve the
326b8e80941Smrg * branches, since "if (foo) break;" constructs turn into
327b8e80941Smrg * something like:
328b8e80941Smrg *
329b8e80941Smrg *   block3 {
330b8e80941Smrg *   	...
331b8e80941Smrg *   	0029:021: mov.s32s32 r62.x, r1.y
332b8e80941Smrg *   	0082:022: br !p0.x, target=block5
333b8e80941Smrg *   	0083:023: br p0.x, target=block4
334b8e80941Smrg *   	// succs: if _[0029:021: mov.s32s32] block4; else block5;
335b8e80941Smrg *   }
336b8e80941Smrg *   block4 {
337b8e80941Smrg *   	0084:024: jump, target=block6
338b8e80941Smrg *   	// succs: block6;
339b8e80941Smrg *   }
340b8e80941Smrg *   block5 {
341b8e80941Smrg *   	0085:025: jump, target=block7
342b8e80941Smrg *   	// succs: block7;
343b8e80941Smrg *   }
344b8e80941Smrg *
345b8e80941Smrg * ie. only instruction in block4/block5 is a jump, so when
346b8e80941Smrg * resolving branches we can easily detect this by checking
347b8e80941Smrg * that the first instruction in the target block is itself
348b8e80941Smrg * a jump, and setup the br directly to the jump's target
349b8e80941Smrg * (and strip back out the now unreached jump)
350b8e80941Smrg *
351b8e80941Smrg * TODO sometimes we end up with things like:
352b8e80941Smrg *
353b8e80941Smrg *    br !p0.x, #2
354b8e80941Smrg *    br p0.x, #12
355b8e80941Smrg *    add.u r0.y, r0.y, 1
356b8e80941Smrg *
357b8e80941Smrg * If we swapped the order of the branches, we could drop one.
358b8e80941Smrg */
359b8e80941Smrgstatic struct ir3_block *
360b8e80941Smrgresolve_dest_block(struct ir3_block *block)
361b8e80941Smrg{
362b8e80941Smrg	/* special case for last block: */
363b8e80941Smrg	if (!block->successors[0])
364b8e80941Smrg		return block;
365b8e80941Smrg
366b8e80941Smrg	/* NOTE that we may or may not have inserted the jump
367b8e80941Smrg	 * in the target block yet, so conditions to resolve
368b8e80941Smrg	 * the dest to the dest block's successor are:
369b8e80941Smrg	 *
370b8e80941Smrg	 *   (1) successor[1] == NULL &&
371b8e80941Smrg	 *   (2) (block-is-empty || only-instr-is-jump)
372b8e80941Smrg	 */
373b8e80941Smrg	if (block->successors[1] == NULL) {
374b8e80941Smrg		if (list_empty(&block->instr_list)) {
375b8e80941Smrg			return block->successors[0];
376b8e80941Smrg		} else if (list_length(&block->instr_list) == 1) {
377b8e80941Smrg			struct ir3_instruction *instr = list_first_entry(
378b8e80941Smrg					&block->instr_list, struct ir3_instruction, node);
379b8e80941Smrg			if (instr->opc == OPC_JUMP)
380b8e80941Smrg				return block->successors[0];
381b8e80941Smrg		}
382b8e80941Smrg	}
383b8e80941Smrg	return block;
384b8e80941Smrg}
385b8e80941Smrg
386b8e80941Smrgstatic bool
387b8e80941Smrgresolve_jump(struct ir3_instruction *instr)
388b8e80941Smrg{
389b8e80941Smrg	struct ir3_block *tblock =
390b8e80941Smrg		resolve_dest_block(instr->cat0.target);
391b8e80941Smrg	struct ir3_instruction *target;
392b8e80941Smrg
393b8e80941Smrg	if (tblock != instr->cat0.target) {
394b8e80941Smrg		list_delinit(&instr->cat0.target->node);
395b8e80941Smrg		instr->cat0.target = tblock;
396b8e80941Smrg		return true;
397b8e80941Smrg	}
398b8e80941Smrg
399b8e80941Smrg	target = list_first_entry(&tblock->instr_list,
400b8e80941Smrg				struct ir3_instruction, node);
401b8e80941Smrg
402b8e80941Smrg	/* TODO maybe a less fragile way to do this.  But we are expecting
403b8e80941Smrg	 * a pattern from sched_block() that looks like:
404b8e80941Smrg	 *
405b8e80941Smrg	 *   br !p0.x, #else-block
406b8e80941Smrg	 *   br p0.x, #if-block
407b8e80941Smrg	 *
408b8e80941Smrg	 * if the first branch target is +2, or if 2nd branch target is +1
409b8e80941Smrg	 * then we can just drop the jump.
410b8e80941Smrg	 */
411b8e80941Smrg	unsigned next_block;
412b8e80941Smrg	if (instr->cat0.inv == true)
413b8e80941Smrg		next_block = 2;
414b8e80941Smrg	else
415b8e80941Smrg		next_block = 1;
416b8e80941Smrg
417b8e80941Smrg	if ((!target) || (target->ip == (instr->ip + next_block))) {
418b8e80941Smrg		list_delinit(&instr->node);
419b8e80941Smrg		return true;
420b8e80941Smrg	} else {
421b8e80941Smrg		instr->cat0.immed =
422b8e80941Smrg			(int)target->ip - (int)instr->ip;
423b8e80941Smrg	}
424b8e80941Smrg	return false;
425b8e80941Smrg}
426b8e80941Smrg
427b8e80941Smrg/* resolve jumps, removing jumps/branches to immediately following
428b8e80941Smrg * instruction which we end up with from earlier stages.  Since
429b8e80941Smrg * removing an instruction can invalidate earlier instruction's
430b8e80941Smrg * branch offsets, we need to do this iteratively until no more
431b8e80941Smrg * branches are removed.
432b8e80941Smrg */
433b8e80941Smrgstatic bool
434b8e80941Smrgresolve_jumps(struct ir3 *ir)
435b8e80941Smrg{
436b8e80941Smrg	list_for_each_entry (struct ir3_block, block, &ir->block_list, node)
437b8e80941Smrg		list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node)
438b8e80941Smrg			if (is_flow(instr) && instr->cat0.target)
439b8e80941Smrg				if (resolve_jump(instr))
440b8e80941Smrg					return true;
441b8e80941Smrg
442b8e80941Smrg	return false;
443b8e80941Smrg}
444b8e80941Smrg
445b8e80941Smrg/* we want to mark points where divergent flow control re-converges
446b8e80941Smrg * with (jp) flags.  For now, since we don't do any optimization for
447b8e80941Smrg * things that start out as a 'do {} while()', re-convergence points
448b8e80941Smrg * will always be a branch or jump target.  Note that this is overly
449b8e80941Smrg * conservative, since unconditional jump targets are not convergence
450b8e80941Smrg * points, we are just assuming that the other path to reach the jump
451b8e80941Smrg * target was divergent.  If we were clever enough to optimize the
452b8e80941Smrg * jump at end of a loop back to a conditional branch into a single
453b8e80941Smrg * conditional branch, ie. like:
454b8e80941Smrg *
455b8e80941Smrg *    add.f r1.w, r0.x, (neg)(r)c2.x   <= loop start
456b8e80941Smrg *    mul.f r1.z, r1.z, r0.x
457b8e80941Smrg *    mul.f r1.y, r1.y, r0.x
458b8e80941Smrg *    mul.f r0.z, r1.x, r0.x
459b8e80941Smrg *    mul.f r0.w, r0.y, r0.x
460b8e80941Smrg *    cmps.f.ge r0.x, (r)c2.y, (r)r1.w
461b8e80941Smrg *    add.s r0.x, (r)r0.x, (r)-1
462b8e80941Smrg *    sel.f32 r0.x, (r)c3.y, (r)r0.x, c3.x
463b8e80941Smrg *    cmps.f.eq p0.x, r0.x, c3.y
464b8e80941Smrg *    mov.f32f32 r0.x, r1.w
465b8e80941Smrg *    mov.f32f32 r0.y, r0.w
466b8e80941Smrg *    mov.f32f32 r1.x, r0.z
467b8e80941Smrg *    (rpt2)nop
468b8e80941Smrg *    br !p0.x, #-13
469b8e80941Smrg *    (jp)mul.f r0.x, c263.y, r1.y
470b8e80941Smrg *
471b8e80941Smrg * Then we'd have to be more clever, as the convergence point is no
472b8e80941Smrg * longer a branch or jump target.
473b8e80941Smrg */
474b8e80941Smrgstatic void
475b8e80941Smrgmark_convergence_points(struct ir3 *ir)
476b8e80941Smrg{
477b8e80941Smrg	list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
478b8e80941Smrg		list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
479b8e80941Smrg			if (is_flow(instr) && instr->cat0.target) {
480b8e80941Smrg				struct ir3_instruction *target =
481b8e80941Smrg					list_first_entry(&instr->cat0.target->instr_list,
482b8e80941Smrg							struct ir3_instruction, node);
483b8e80941Smrg				target->flags |= IR3_INSTR_JP;
484b8e80941Smrg			}
485b8e80941Smrg		}
486b8e80941Smrg	}
487b8e80941Smrg}
488b8e80941Smrg
489b8e80941Smrgvoid
490b8e80941Smrgir3_legalize(struct ir3 *ir, bool *has_ssbo, bool *need_pixlod, int *max_bary)
491b8e80941Smrg{
492b8e80941Smrg	struct ir3_legalize_ctx *ctx = rzalloc(ir, struct ir3_legalize_ctx);
493b8e80941Smrg	bool progress;
494b8e80941Smrg
495b8e80941Smrg	ctx->max_bary = -1;
496b8e80941Smrg	ctx->compiler = ir->compiler;
497b8e80941Smrg	ctx->type = ir->type;
498b8e80941Smrg
499b8e80941Smrg	/* allocate per-block data: */
500b8e80941Smrg	list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
501b8e80941Smrg		block->data = rzalloc(ctx, struct ir3_legalize_block_data);
502b8e80941Smrg	}
503b8e80941Smrg
504b8e80941Smrg	/* process each block: */
505b8e80941Smrg	do {
506b8e80941Smrg		progress = false;
507b8e80941Smrg		list_for_each_entry (struct ir3_block, block, &ir->block_list, node) {
508b8e80941Smrg			progress |= legalize_block(ctx, block);
509b8e80941Smrg		}
510b8e80941Smrg	} while (progress);
511b8e80941Smrg
512b8e80941Smrg	*has_ssbo = ctx->has_ssbo;
513b8e80941Smrg	*need_pixlod = ctx->need_pixlod;
514b8e80941Smrg	*max_bary = ctx->max_bary;
515b8e80941Smrg
516b8e80941Smrg	do {
517b8e80941Smrg		ir3_count_instructions(ir);
518b8e80941Smrg	} while(resolve_jumps(ir));
519b8e80941Smrg
520b8e80941Smrg	mark_convergence_points(ir);
521b8e80941Smrg
522b8e80941Smrg	ralloc_free(ctx);
523b8e80941Smrg}
524