1b8e80941Smrg/* 2b8e80941Smrg * Copyright 2013-2017 Advanced Micro Devices, Inc. 3b8e80941Smrg * All Rights Reserved. 4b8e80941Smrg * 5b8e80941Smrg * Permission is hereby granted, free of charge, to any person obtaining a 6b8e80941Smrg * copy of this software and associated documentation files (the "Software"), 7b8e80941Smrg * to deal in the Software without restriction, including without limitation 8b8e80941Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9b8e80941Smrg * and/or sell copies of the Software, and to permit persons to whom the 10b8e80941Smrg * Software is furnished to do so, subject to the following conditions: 11b8e80941Smrg * 12b8e80941Smrg * The above copyright notice and this permission notice (including the next 13b8e80941Smrg * paragraph) shall be included in all copies or substantial portions of the 14b8e80941Smrg * Software. 15b8e80941Smrg * 16b8e80941Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17b8e80941Smrg * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18b8e80941Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19b8e80941Smrg * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20b8e80941Smrg * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21b8e80941Smrg * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22b8e80941Smrg * SOFTWARE. 23b8e80941Smrg * 24b8e80941Smrg */ 25b8e80941Smrg 26b8e80941Smrg#include <libsync.h> 27b8e80941Smrg 28b8e80941Smrg#include "util/os_time.h" 29b8e80941Smrg#include "util/u_memory.h" 30b8e80941Smrg#include "util/u_queue.h" 31b8e80941Smrg#include "util/u_upload_mgr.h" 32b8e80941Smrg 33b8e80941Smrg#include "si_build_pm4.h" 34b8e80941Smrg 35b8e80941Smrgstruct si_fine_fence { 36b8e80941Smrg struct si_resource *buf; 37b8e80941Smrg unsigned offset; 38b8e80941Smrg}; 39b8e80941Smrg 40b8e80941Smrgstruct si_multi_fence { 41b8e80941Smrg struct pipe_reference reference; 42b8e80941Smrg struct pipe_fence_handle *gfx; 43b8e80941Smrg struct pipe_fence_handle *sdma; 44b8e80941Smrg struct tc_unflushed_batch_token *tc_token; 45b8e80941Smrg struct util_queue_fence ready; 46b8e80941Smrg 47b8e80941Smrg /* If the context wasn't flushed at fence creation, this is non-NULL. */ 48b8e80941Smrg struct { 49b8e80941Smrg struct si_context *ctx; 50b8e80941Smrg unsigned ib_index; 51b8e80941Smrg } gfx_unflushed; 52b8e80941Smrg 53b8e80941Smrg struct si_fine_fence fine; 54b8e80941Smrg}; 55b8e80941Smrg 56b8e80941Smrg/** 57b8e80941Smrg * Write an EOP event. 58b8e80941Smrg * 59b8e80941Smrg * \param event EVENT_TYPE_* 60b8e80941Smrg * \param event_flags Optional cache flush flags (TC) 61b8e80941Smrg * \param dst_sel MEM or TC_L2 62b8e80941Smrg * \param int_sel NONE or SEND_DATA_AFTER_WR_CONFIRM 63b8e80941Smrg * \param data_sel DISCARD, VALUE_32BIT, TIMESTAMP, or GDS 64b8e80941Smrg * \param buf Buffer 65b8e80941Smrg * \param va GPU address 66b8e80941Smrg * \param old_value Previous fence value (for a bug workaround) 67b8e80941Smrg * \param new_value Fence value to write for this event. 68b8e80941Smrg */ 69b8e80941Smrgvoid si_cp_release_mem(struct si_context *ctx, 70b8e80941Smrg unsigned event, unsigned event_flags, 71b8e80941Smrg unsigned dst_sel, unsigned int_sel, unsigned data_sel, 72b8e80941Smrg struct si_resource *buf, uint64_t va, 73b8e80941Smrg uint32_t new_fence, unsigned query_type) 74b8e80941Smrg{ 75b8e80941Smrg struct radeon_cmdbuf *cs = ctx->gfx_cs; 76b8e80941Smrg unsigned op = EVENT_TYPE(event) | 77b8e80941Smrg EVENT_INDEX(event == V_028A90_CS_DONE || 78b8e80941Smrg event == V_028A90_PS_DONE ? 6 : 5) | 79b8e80941Smrg event_flags; 80b8e80941Smrg unsigned sel = EOP_DST_SEL(dst_sel) | 81b8e80941Smrg EOP_INT_SEL(int_sel) | 82b8e80941Smrg EOP_DATA_SEL(data_sel); 83b8e80941Smrg 84b8e80941Smrg if (ctx->chip_class >= GFX9) { 85b8e80941Smrg /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion 86b8e80941Smrg * counters) must immediately precede every timestamp event to 87b8e80941Smrg * prevent a GPU hang on GFX9. 88b8e80941Smrg * 89b8e80941Smrg * Occlusion queries don't need to do it here, because they 90b8e80941Smrg * always do ZPASS_DONE before the timestamp. 91b8e80941Smrg */ 92b8e80941Smrg if (ctx->chip_class == GFX9 && 93b8e80941Smrg query_type != PIPE_QUERY_OCCLUSION_COUNTER && 94b8e80941Smrg query_type != PIPE_QUERY_OCCLUSION_PREDICATE && 95b8e80941Smrg query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) { 96b8e80941Smrg struct si_resource *scratch = ctx->eop_bug_scratch; 97b8e80941Smrg 98b8e80941Smrg assert(16 * ctx->screen->info.num_render_backends <= 99b8e80941Smrg scratch->b.b.width0); 100b8e80941Smrg radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0)); 101b8e80941Smrg radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1)); 102b8e80941Smrg radeon_emit(cs, scratch->gpu_address); 103b8e80941Smrg radeon_emit(cs, scratch->gpu_address >> 32); 104b8e80941Smrg 105b8e80941Smrg radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, 106b8e80941Smrg RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); 107b8e80941Smrg } 108b8e80941Smrg 109b8e80941Smrg radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, 6, 0)); 110b8e80941Smrg radeon_emit(cs, op); 111b8e80941Smrg radeon_emit(cs, sel); 112b8e80941Smrg radeon_emit(cs, va); /* address lo */ 113b8e80941Smrg radeon_emit(cs, va >> 32); /* address hi */ 114b8e80941Smrg radeon_emit(cs, new_fence); /* immediate data lo */ 115b8e80941Smrg radeon_emit(cs, 0); /* immediate data hi */ 116b8e80941Smrg radeon_emit(cs, 0); /* unused */ 117b8e80941Smrg } else { 118b8e80941Smrg if (ctx->chip_class == CIK || 119b8e80941Smrg ctx->chip_class == VI) { 120b8e80941Smrg struct si_resource *scratch = ctx->eop_bug_scratch; 121b8e80941Smrg uint64_t va = scratch->gpu_address; 122b8e80941Smrg 123b8e80941Smrg /* Two EOP events are required to make all engines go idle 124b8e80941Smrg * (and optional cache flushes executed) before the timestamp 125b8e80941Smrg * is written. 126b8e80941Smrg */ 127b8e80941Smrg radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); 128b8e80941Smrg radeon_emit(cs, op); 129b8e80941Smrg radeon_emit(cs, va); 130b8e80941Smrg radeon_emit(cs, ((va >> 32) & 0xffff) | sel); 131b8e80941Smrg radeon_emit(cs, 0); /* immediate data */ 132b8e80941Smrg radeon_emit(cs, 0); /* unused */ 133b8e80941Smrg 134b8e80941Smrg radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch, 135b8e80941Smrg RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); 136b8e80941Smrg } 137b8e80941Smrg 138b8e80941Smrg radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); 139b8e80941Smrg radeon_emit(cs, op); 140b8e80941Smrg radeon_emit(cs, va); 141b8e80941Smrg radeon_emit(cs, ((va >> 32) & 0xffff) | sel); 142b8e80941Smrg radeon_emit(cs, new_fence); /* immediate data */ 143b8e80941Smrg radeon_emit(cs, 0); /* unused */ 144b8e80941Smrg } 145b8e80941Smrg 146b8e80941Smrg if (buf) { 147b8e80941Smrg radeon_add_to_buffer_list(ctx, ctx->gfx_cs, buf, RADEON_USAGE_WRITE, 148b8e80941Smrg RADEON_PRIO_QUERY); 149b8e80941Smrg } 150b8e80941Smrg} 151b8e80941Smrg 152b8e80941Smrgunsigned si_cp_write_fence_dwords(struct si_screen *screen) 153b8e80941Smrg{ 154b8e80941Smrg unsigned dwords = 6; 155b8e80941Smrg 156b8e80941Smrg if (screen->info.chip_class == CIK || 157b8e80941Smrg screen->info.chip_class == VI) 158b8e80941Smrg dwords *= 2; 159b8e80941Smrg 160b8e80941Smrg return dwords; 161b8e80941Smrg} 162b8e80941Smrg 163b8e80941Smrgvoid si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, 164b8e80941Smrg uint64_t va, uint32_t ref, uint32_t mask, unsigned flags) 165b8e80941Smrg{ 166b8e80941Smrg radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0)); 167b8e80941Smrg radeon_emit(cs, WAIT_REG_MEM_MEM_SPACE(1) | flags); 168b8e80941Smrg radeon_emit(cs, va); 169b8e80941Smrg radeon_emit(cs, va >> 32); 170b8e80941Smrg radeon_emit(cs, ref); /* reference value */ 171b8e80941Smrg radeon_emit(cs, mask); /* mask */ 172b8e80941Smrg radeon_emit(cs, 4); /* poll interval */ 173b8e80941Smrg} 174b8e80941Smrg 175b8e80941Smrgstatic void si_add_fence_dependency(struct si_context *sctx, 176b8e80941Smrg struct pipe_fence_handle *fence) 177b8e80941Smrg{ 178b8e80941Smrg struct radeon_winsys *ws = sctx->ws; 179b8e80941Smrg 180b8e80941Smrg if (sctx->dma_cs) 181b8e80941Smrg ws->cs_add_fence_dependency(sctx->dma_cs, fence); 182b8e80941Smrg ws->cs_add_fence_dependency(sctx->gfx_cs, fence); 183b8e80941Smrg} 184b8e80941Smrg 185b8e80941Smrgstatic void si_add_syncobj_signal(struct si_context *sctx, 186b8e80941Smrg struct pipe_fence_handle *fence) 187b8e80941Smrg{ 188b8e80941Smrg sctx->ws->cs_add_syncobj_signal(sctx->gfx_cs, fence); 189b8e80941Smrg} 190b8e80941Smrg 191b8e80941Smrgstatic void si_fence_reference(struct pipe_screen *screen, 192b8e80941Smrg struct pipe_fence_handle **dst, 193b8e80941Smrg struct pipe_fence_handle *src) 194b8e80941Smrg{ 195b8e80941Smrg struct radeon_winsys *ws = ((struct si_screen*)screen)->ws; 196b8e80941Smrg struct si_multi_fence **sdst = (struct si_multi_fence **)dst; 197b8e80941Smrg struct si_multi_fence *ssrc = (struct si_multi_fence *)src; 198b8e80941Smrg 199b8e80941Smrg if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) { 200b8e80941Smrg ws->fence_reference(&(*sdst)->gfx, NULL); 201b8e80941Smrg ws->fence_reference(&(*sdst)->sdma, NULL); 202b8e80941Smrg tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL); 203b8e80941Smrg si_resource_reference(&(*sdst)->fine.buf, NULL); 204b8e80941Smrg FREE(*sdst); 205b8e80941Smrg } 206b8e80941Smrg *sdst = ssrc; 207b8e80941Smrg} 208b8e80941Smrg 209b8e80941Smrgstatic struct si_multi_fence *si_create_multi_fence() 210b8e80941Smrg{ 211b8e80941Smrg struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence); 212b8e80941Smrg if (!fence) 213b8e80941Smrg return NULL; 214b8e80941Smrg 215b8e80941Smrg pipe_reference_init(&fence->reference, 1); 216b8e80941Smrg util_queue_fence_init(&fence->ready); 217b8e80941Smrg 218b8e80941Smrg return fence; 219b8e80941Smrg} 220b8e80941Smrg 221b8e80941Smrgstruct pipe_fence_handle *si_create_fence(struct pipe_context *ctx, 222b8e80941Smrg struct tc_unflushed_batch_token *tc_token) 223b8e80941Smrg{ 224b8e80941Smrg struct si_multi_fence *fence = si_create_multi_fence(); 225b8e80941Smrg if (!fence) 226b8e80941Smrg return NULL; 227b8e80941Smrg 228b8e80941Smrg util_queue_fence_reset(&fence->ready); 229b8e80941Smrg tc_unflushed_batch_token_reference(&fence->tc_token, tc_token); 230b8e80941Smrg 231b8e80941Smrg return (struct pipe_fence_handle *)fence; 232b8e80941Smrg} 233b8e80941Smrg 234b8e80941Smrgstatic bool si_fine_fence_signaled(struct radeon_winsys *rws, 235b8e80941Smrg const struct si_fine_fence *fine) 236b8e80941Smrg{ 237b8e80941Smrg char *map = rws->buffer_map(fine->buf->buf, NULL, PIPE_TRANSFER_READ | 238b8e80941Smrg PIPE_TRANSFER_UNSYNCHRONIZED); 239b8e80941Smrg if (!map) 240b8e80941Smrg return false; 241b8e80941Smrg 242b8e80941Smrg uint32_t *fence = (uint32_t*)(map + fine->offset); 243b8e80941Smrg return *fence != 0; 244b8e80941Smrg} 245b8e80941Smrg 246b8e80941Smrgstatic void si_fine_fence_set(struct si_context *ctx, 247b8e80941Smrg struct si_fine_fence *fine, 248b8e80941Smrg unsigned flags) 249b8e80941Smrg{ 250b8e80941Smrg uint32_t *fence_ptr; 251b8e80941Smrg 252b8e80941Smrg assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1); 253b8e80941Smrg 254b8e80941Smrg /* Use cached system memory for the fence. */ 255b8e80941Smrg u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, 256b8e80941Smrg &fine->offset, (struct pipe_resource **)&fine->buf, (void **)&fence_ptr); 257b8e80941Smrg if (!fine->buf) 258b8e80941Smrg return; 259b8e80941Smrg 260b8e80941Smrg *fence_ptr = 0; 261b8e80941Smrg 262b8e80941Smrg if (flags & PIPE_FLUSH_TOP_OF_PIPE) { 263b8e80941Smrg uint32_t value = 0x80000000; 264b8e80941Smrg 265b8e80941Smrg si_cp_write_data(ctx, fine->buf, fine->offset, 4, 266b8e80941Smrg V_370_MEM, V_370_PFP, &value); 267b8e80941Smrg } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) { 268b8e80941Smrg uint64_t fence_va = fine->buf->gpu_address + fine->offset; 269b8e80941Smrg 270b8e80941Smrg radeon_add_to_buffer_list(ctx, ctx->gfx_cs, fine->buf, 271b8e80941Smrg RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); 272b8e80941Smrg si_cp_release_mem(ctx, 273b8e80941Smrg V_028A90_BOTTOM_OF_PIPE_TS, 0, 274b8e80941Smrg EOP_DST_SEL_MEM, EOP_INT_SEL_NONE, 275b8e80941Smrg EOP_DATA_SEL_VALUE_32BIT, 276b8e80941Smrg NULL, fence_va, 0x80000000, 277b8e80941Smrg PIPE_QUERY_GPU_FINISHED); 278b8e80941Smrg } else { 279b8e80941Smrg assert(false); 280b8e80941Smrg } 281b8e80941Smrg} 282b8e80941Smrg 283b8e80941Smrgstatic boolean si_fence_finish(struct pipe_screen *screen, 284b8e80941Smrg struct pipe_context *ctx, 285b8e80941Smrg struct pipe_fence_handle *fence, 286b8e80941Smrg uint64_t timeout) 287b8e80941Smrg{ 288b8e80941Smrg struct radeon_winsys *rws = ((struct si_screen*)screen)->ws; 289b8e80941Smrg struct si_multi_fence *sfence = (struct si_multi_fence *)fence; 290b8e80941Smrg struct si_context *sctx; 291b8e80941Smrg int64_t abs_timeout = os_time_get_absolute_timeout(timeout); 292b8e80941Smrg 293b8e80941Smrg ctx = threaded_context_unwrap_sync(ctx); 294b8e80941Smrg sctx = (struct si_context*)(ctx ? ctx : NULL); 295b8e80941Smrg 296b8e80941Smrg if (!util_queue_fence_is_signalled(&sfence->ready)) { 297b8e80941Smrg if (sfence->tc_token) { 298b8e80941Smrg /* Ensure that si_flush_from_st will be called for 299b8e80941Smrg * this fence, but only if we're in the API thread 300b8e80941Smrg * where the context is current. 301b8e80941Smrg * 302b8e80941Smrg * Note that the batch containing the flush may already 303b8e80941Smrg * be in flight in the driver thread, so the fence 304b8e80941Smrg * may not be ready yet when this call returns. 305b8e80941Smrg */ 306b8e80941Smrg threaded_context_flush(ctx, sfence->tc_token, 307b8e80941Smrg timeout == 0); 308b8e80941Smrg } 309b8e80941Smrg 310b8e80941Smrg if (!timeout) 311b8e80941Smrg return false; 312b8e80941Smrg 313b8e80941Smrg if (timeout == PIPE_TIMEOUT_INFINITE) { 314b8e80941Smrg util_queue_fence_wait(&sfence->ready); 315b8e80941Smrg } else { 316b8e80941Smrg if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout)) 317b8e80941Smrg return false; 318b8e80941Smrg } 319b8e80941Smrg 320b8e80941Smrg if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { 321b8e80941Smrg int64_t time = os_time_get_nano(); 322b8e80941Smrg timeout = abs_timeout > time ? abs_timeout - time : 0; 323b8e80941Smrg } 324b8e80941Smrg } 325b8e80941Smrg 326b8e80941Smrg if (sfence->sdma) { 327b8e80941Smrg if (!rws->fence_wait(rws, sfence->sdma, timeout)) 328b8e80941Smrg return false; 329b8e80941Smrg 330b8e80941Smrg /* Recompute the timeout after waiting. */ 331b8e80941Smrg if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { 332b8e80941Smrg int64_t time = os_time_get_nano(); 333b8e80941Smrg timeout = abs_timeout > time ? abs_timeout - time : 0; 334b8e80941Smrg } 335b8e80941Smrg } 336b8e80941Smrg 337b8e80941Smrg if (!sfence->gfx) 338b8e80941Smrg return true; 339b8e80941Smrg 340b8e80941Smrg if (sfence->fine.buf && 341b8e80941Smrg si_fine_fence_signaled(rws, &sfence->fine)) { 342b8e80941Smrg rws->fence_reference(&sfence->gfx, NULL); 343b8e80941Smrg si_resource_reference(&sfence->fine.buf, NULL); 344b8e80941Smrg return true; 345b8e80941Smrg } 346b8e80941Smrg 347b8e80941Smrg /* Flush the gfx IB if it hasn't been flushed yet. */ 348b8e80941Smrg if (sctx && sfence->gfx_unflushed.ctx == sctx && 349b8e80941Smrg sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) { 350b8e80941Smrg /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile) 351b8e80941Smrg * spec says: 352b8e80941Smrg * 353b8e80941Smrg * "If the sync object being blocked upon will not be 354b8e80941Smrg * signaled in finite time (for example, by an associated 355b8e80941Smrg * fence command issued previously, but not yet flushed to 356b8e80941Smrg * the graphics pipeline), then ClientWaitSync may hang 357b8e80941Smrg * forever. To help prevent this behavior, if 358b8e80941Smrg * ClientWaitSync is called and all of the following are 359b8e80941Smrg * true: 360b8e80941Smrg * 361b8e80941Smrg * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags, 362b8e80941Smrg * * sync is unsignaled when ClientWaitSync is called, 363b8e80941Smrg * * and the calls to ClientWaitSync and FenceSync were 364b8e80941Smrg * issued from the same context, 365b8e80941Smrg * 366b8e80941Smrg * then the GL will behave as if the equivalent of Flush 367b8e80941Smrg * were inserted immediately after the creation of sync." 368b8e80941Smrg * 369b8e80941Smrg * This means we need to flush for such fences even when we're 370b8e80941Smrg * not going to wait. 371b8e80941Smrg */ 372b8e80941Smrg si_flush_gfx_cs(sctx, 373b8e80941Smrg (timeout ? 0 : PIPE_FLUSH_ASYNC) | 374b8e80941Smrg RADEON_FLUSH_START_NEXT_GFX_IB_NOW, 375b8e80941Smrg NULL); 376b8e80941Smrg sfence->gfx_unflushed.ctx = NULL; 377b8e80941Smrg 378b8e80941Smrg if (!timeout) 379b8e80941Smrg return false; 380b8e80941Smrg 381b8e80941Smrg /* Recompute the timeout after all that. */ 382b8e80941Smrg if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { 383b8e80941Smrg int64_t time = os_time_get_nano(); 384b8e80941Smrg timeout = abs_timeout > time ? abs_timeout - time : 0; 385b8e80941Smrg } 386b8e80941Smrg } 387b8e80941Smrg 388b8e80941Smrg if (rws->fence_wait(rws, sfence->gfx, timeout)) 389b8e80941Smrg return true; 390b8e80941Smrg 391b8e80941Smrg /* Re-check in case the GPU is slow or hangs, but the commands before 392b8e80941Smrg * the fine-grained fence have completed. */ 393b8e80941Smrg if (sfence->fine.buf && 394b8e80941Smrg si_fine_fence_signaled(rws, &sfence->fine)) 395b8e80941Smrg return true; 396b8e80941Smrg 397b8e80941Smrg return false; 398b8e80941Smrg} 399b8e80941Smrg 400b8e80941Smrgstatic void si_create_fence_fd(struct pipe_context *ctx, 401b8e80941Smrg struct pipe_fence_handle **pfence, int fd, 402b8e80941Smrg enum pipe_fd_type type) 403b8e80941Smrg{ 404b8e80941Smrg struct si_screen *sscreen = (struct si_screen*)ctx->screen; 405b8e80941Smrg struct radeon_winsys *ws = sscreen->ws; 406b8e80941Smrg struct si_multi_fence *sfence; 407b8e80941Smrg 408b8e80941Smrg *pfence = NULL; 409b8e80941Smrg 410b8e80941Smrg sfence = si_create_multi_fence(); 411b8e80941Smrg if (!sfence) 412b8e80941Smrg return; 413b8e80941Smrg 414b8e80941Smrg switch (type) { 415b8e80941Smrg case PIPE_FD_TYPE_NATIVE_SYNC: 416b8e80941Smrg if (!sscreen->info.has_fence_to_handle) 417b8e80941Smrg goto finish; 418b8e80941Smrg 419b8e80941Smrg sfence->gfx = ws->fence_import_sync_file(ws, fd); 420b8e80941Smrg break; 421b8e80941Smrg 422b8e80941Smrg case PIPE_FD_TYPE_SYNCOBJ: 423b8e80941Smrg if (!sscreen->info.has_syncobj) 424b8e80941Smrg goto finish; 425b8e80941Smrg 426b8e80941Smrg sfence->gfx = ws->fence_import_syncobj(ws, fd); 427b8e80941Smrg break; 428b8e80941Smrg 429b8e80941Smrg default: 430b8e80941Smrg unreachable("bad fence fd type when importing"); 431b8e80941Smrg } 432b8e80941Smrg 433b8e80941Smrgfinish: 434b8e80941Smrg if (!sfence->gfx) { 435b8e80941Smrg FREE(sfence); 436b8e80941Smrg return; 437b8e80941Smrg } 438b8e80941Smrg 439b8e80941Smrg *pfence = (struct pipe_fence_handle*)sfence; 440b8e80941Smrg} 441b8e80941Smrg 442b8e80941Smrgstatic int si_fence_get_fd(struct pipe_screen *screen, 443b8e80941Smrg struct pipe_fence_handle *fence) 444b8e80941Smrg{ 445b8e80941Smrg struct si_screen *sscreen = (struct si_screen*)screen; 446b8e80941Smrg struct radeon_winsys *ws = sscreen->ws; 447b8e80941Smrg struct si_multi_fence *sfence = (struct si_multi_fence *)fence; 448b8e80941Smrg int gfx_fd = -1, sdma_fd = -1; 449b8e80941Smrg 450b8e80941Smrg if (!sscreen->info.has_fence_to_handle) 451b8e80941Smrg return -1; 452b8e80941Smrg 453b8e80941Smrg util_queue_fence_wait(&sfence->ready); 454b8e80941Smrg 455b8e80941Smrg /* Deferred fences aren't supported. */ 456b8e80941Smrg assert(!sfence->gfx_unflushed.ctx); 457b8e80941Smrg if (sfence->gfx_unflushed.ctx) 458b8e80941Smrg return -1; 459b8e80941Smrg 460b8e80941Smrg if (sfence->sdma) { 461b8e80941Smrg sdma_fd = ws->fence_export_sync_file(ws, sfence->sdma); 462b8e80941Smrg if (sdma_fd == -1) 463b8e80941Smrg return -1; 464b8e80941Smrg } 465b8e80941Smrg if (sfence->gfx) { 466b8e80941Smrg gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx); 467b8e80941Smrg if (gfx_fd == -1) { 468b8e80941Smrg if (sdma_fd != -1) 469b8e80941Smrg close(sdma_fd); 470b8e80941Smrg return -1; 471b8e80941Smrg } 472b8e80941Smrg } 473b8e80941Smrg 474b8e80941Smrg /* If we don't have FDs at this point, it means we don't have fences 475b8e80941Smrg * either. */ 476b8e80941Smrg if (sdma_fd == -1 && gfx_fd == -1) 477b8e80941Smrg return ws->export_signalled_sync_file(ws); 478b8e80941Smrg if (sdma_fd == -1) 479b8e80941Smrg return gfx_fd; 480b8e80941Smrg if (gfx_fd == -1) 481b8e80941Smrg return sdma_fd; 482b8e80941Smrg 483b8e80941Smrg /* Get a fence that will be a combination of both fences. */ 484b8e80941Smrg sync_accumulate("radeonsi", &gfx_fd, sdma_fd); 485b8e80941Smrg close(sdma_fd); 486b8e80941Smrg return gfx_fd; 487b8e80941Smrg} 488b8e80941Smrg 489b8e80941Smrgstatic void si_flush_from_st(struct pipe_context *ctx, 490b8e80941Smrg struct pipe_fence_handle **fence, 491b8e80941Smrg unsigned flags) 492b8e80941Smrg{ 493b8e80941Smrg struct pipe_screen *screen = ctx->screen; 494b8e80941Smrg struct si_context *sctx = (struct si_context *)ctx; 495b8e80941Smrg struct radeon_winsys *ws = sctx->ws; 496b8e80941Smrg struct pipe_fence_handle *gfx_fence = NULL; 497b8e80941Smrg struct pipe_fence_handle *sdma_fence = NULL; 498b8e80941Smrg bool deferred_fence = false; 499b8e80941Smrg struct si_fine_fence fine = {}; 500b8e80941Smrg unsigned rflags = PIPE_FLUSH_ASYNC; 501b8e80941Smrg 502b8e80941Smrg if (flags & PIPE_FLUSH_END_OF_FRAME) 503b8e80941Smrg rflags |= PIPE_FLUSH_END_OF_FRAME; 504b8e80941Smrg 505b8e80941Smrg if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) { 506b8e80941Smrg assert(flags & PIPE_FLUSH_DEFERRED); 507b8e80941Smrg assert(fence); 508b8e80941Smrg 509b8e80941Smrg si_fine_fence_set(sctx, &fine, flags); 510b8e80941Smrg } 511b8e80941Smrg 512b8e80941Smrg /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */ 513b8e80941Smrg if (sctx->dma_cs) 514b8e80941Smrg si_flush_dma_cs(sctx, rflags, fence ? &sdma_fence : NULL); 515b8e80941Smrg 516b8e80941Smrg if (!radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size)) { 517b8e80941Smrg if (fence) 518b8e80941Smrg ws->fence_reference(&gfx_fence, sctx->last_gfx_fence); 519b8e80941Smrg if (!(flags & PIPE_FLUSH_DEFERRED)) 520b8e80941Smrg ws->cs_sync_flush(sctx->gfx_cs); 521b8e80941Smrg } else { 522b8e80941Smrg /* Instead of flushing, create a deferred fence. Constraints: 523b8e80941Smrg * - The state tracker must allow a deferred flush. 524b8e80941Smrg * - The state tracker must request a fence. 525b8e80941Smrg * - fence_get_fd is not allowed. 526b8e80941Smrg * Thread safety in fence_finish must be ensured by the state tracker. 527b8e80941Smrg */ 528b8e80941Smrg if (flags & PIPE_FLUSH_DEFERRED && 529b8e80941Smrg !(flags & PIPE_FLUSH_FENCE_FD) && 530b8e80941Smrg fence) { 531b8e80941Smrg gfx_fence = sctx->ws->cs_get_next_fence(sctx->gfx_cs); 532b8e80941Smrg deferred_fence = true; 533b8e80941Smrg } else { 534b8e80941Smrg si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL); 535b8e80941Smrg } 536b8e80941Smrg } 537b8e80941Smrg 538b8e80941Smrg /* Both engines can signal out of order, so we need to keep both fences. */ 539b8e80941Smrg if (fence) { 540b8e80941Smrg struct si_multi_fence *multi_fence; 541b8e80941Smrg 542b8e80941Smrg if (flags & TC_FLUSH_ASYNC) { 543b8e80941Smrg multi_fence = (struct si_multi_fence *)*fence; 544b8e80941Smrg assert(multi_fence); 545b8e80941Smrg } else { 546b8e80941Smrg multi_fence = si_create_multi_fence(); 547b8e80941Smrg if (!multi_fence) { 548b8e80941Smrg ws->fence_reference(&sdma_fence, NULL); 549b8e80941Smrg ws->fence_reference(&gfx_fence, NULL); 550b8e80941Smrg goto finish; 551b8e80941Smrg } 552b8e80941Smrg 553b8e80941Smrg screen->fence_reference(screen, fence, NULL); 554b8e80941Smrg *fence = (struct pipe_fence_handle*)multi_fence; 555b8e80941Smrg } 556b8e80941Smrg 557b8e80941Smrg /* If both fences are NULL, fence_finish will always return true. */ 558b8e80941Smrg multi_fence->gfx = gfx_fence; 559b8e80941Smrg multi_fence->sdma = sdma_fence; 560b8e80941Smrg 561b8e80941Smrg if (deferred_fence) { 562b8e80941Smrg multi_fence->gfx_unflushed.ctx = sctx; 563b8e80941Smrg multi_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes; 564b8e80941Smrg } 565b8e80941Smrg 566b8e80941Smrg multi_fence->fine = fine; 567b8e80941Smrg fine.buf = NULL; 568b8e80941Smrg 569b8e80941Smrg if (flags & TC_FLUSH_ASYNC) { 570b8e80941Smrg util_queue_fence_signal(&multi_fence->ready); 571b8e80941Smrg tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL); 572b8e80941Smrg } 573b8e80941Smrg } 574b8e80941Smrg assert(!fine.buf); 575b8e80941Smrgfinish: 576b8e80941Smrg if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) { 577b8e80941Smrg if (sctx->dma_cs) 578b8e80941Smrg ws->cs_sync_flush(sctx->dma_cs); 579b8e80941Smrg ws->cs_sync_flush(sctx->gfx_cs); 580b8e80941Smrg } 581b8e80941Smrg} 582b8e80941Smrg 583b8e80941Smrgstatic void si_fence_server_signal(struct pipe_context *ctx, 584b8e80941Smrg struct pipe_fence_handle *fence) 585b8e80941Smrg{ 586b8e80941Smrg struct si_context *sctx = (struct si_context *)ctx; 587b8e80941Smrg struct si_multi_fence *sfence = (struct si_multi_fence *)fence; 588b8e80941Smrg 589b8e80941Smrg /* We should have at least one syncobj to signal */ 590b8e80941Smrg assert(sfence->sdma || sfence->gfx); 591b8e80941Smrg 592b8e80941Smrg if (sfence->sdma) 593b8e80941Smrg si_add_syncobj_signal(sctx, sfence->sdma); 594b8e80941Smrg if (sfence->gfx) 595b8e80941Smrg si_add_syncobj_signal(sctx, sfence->gfx); 596b8e80941Smrg 597b8e80941Smrg /** 598b8e80941Smrg * The spec does not require a flush here. We insert a flush 599b8e80941Smrg * because syncobj based signals are not directly placed into 600b8e80941Smrg * the command stream. Instead the signal happens when the 601b8e80941Smrg * submission associated with the syncobj finishes execution. 602b8e80941Smrg * 603b8e80941Smrg * Therefore, we must make sure that we flush the pipe to avoid 604b8e80941Smrg * new work being emitted and getting executed before the signal 605b8e80941Smrg * operation. 606b8e80941Smrg */ 607b8e80941Smrg si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC); 608b8e80941Smrg} 609b8e80941Smrg 610b8e80941Smrgstatic void si_fence_server_sync(struct pipe_context *ctx, 611b8e80941Smrg struct pipe_fence_handle *fence) 612b8e80941Smrg{ 613b8e80941Smrg struct si_context *sctx = (struct si_context *)ctx; 614b8e80941Smrg struct si_multi_fence *sfence = (struct si_multi_fence *)fence; 615b8e80941Smrg 616b8e80941Smrg util_queue_fence_wait(&sfence->ready); 617b8e80941Smrg 618b8e80941Smrg /* Unflushed fences from the same context are no-ops. */ 619b8e80941Smrg if (sfence->gfx_unflushed.ctx && 620b8e80941Smrg sfence->gfx_unflushed.ctx == sctx) 621b8e80941Smrg return; 622b8e80941Smrg 623b8e80941Smrg /* All unflushed commands will not start execution before 624b8e80941Smrg * this fence dependency is signalled. 625b8e80941Smrg * 626b8e80941Smrg * Therefore we must flush before inserting the dependency 627b8e80941Smrg */ 628b8e80941Smrg si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC); 629b8e80941Smrg 630b8e80941Smrg if (sfence->sdma) 631b8e80941Smrg si_add_fence_dependency(sctx, sfence->sdma); 632b8e80941Smrg if (sfence->gfx) 633b8e80941Smrg si_add_fence_dependency(sctx, sfence->gfx); 634b8e80941Smrg} 635b8e80941Smrg 636b8e80941Smrgvoid si_init_fence_functions(struct si_context *ctx) 637b8e80941Smrg{ 638b8e80941Smrg ctx->b.flush = si_flush_from_st; 639b8e80941Smrg ctx->b.create_fence_fd = si_create_fence_fd; 640b8e80941Smrg ctx->b.fence_server_sync = si_fence_server_sync; 641b8e80941Smrg ctx->b.fence_server_signal = si_fence_server_signal; 642b8e80941Smrg} 643b8e80941Smrg 644b8e80941Smrgvoid si_init_screen_fence_functions(struct si_screen *screen) 645b8e80941Smrg{ 646b8e80941Smrg screen->b.fence_finish = si_fence_finish; 647b8e80941Smrg screen->b.fence_reference = si_fence_reference; 648b8e80941Smrg screen->b.fence_get_fd = si_fence_get_fd; 649b8e80941Smrg} 650