brw_fs.cpp revision b8e80941
1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24/** @file brw_fs.cpp 25 * 26 * This file drives the GLSL IR -> LIR translation, contains the 27 * optimizations on the LIR, and drives the generation of native code 28 * from the LIR. 29 */ 30 31#include "main/macros.h" 32#include "brw_eu.h" 33#include "brw_fs.h" 34#include "brw_nir.h" 35#include "brw_vec4_gs_visitor.h" 36#include "brw_cfg.h" 37#include "brw_dead_control_flow.h" 38#include "dev/gen_debug.h" 39#include "compiler/glsl_types.h" 40#include "compiler/nir/nir_builder.h" 41#include "program/prog_parameter.h" 42#include "util/u_math.h" 43 44using namespace brw; 45 46static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo, 47 const fs_inst *inst); 48 49void 50fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, 51 const fs_reg *src, unsigned sources) 52{ 53 memset((void*)this, 0, sizeof(*this)); 54 55 this->src = new fs_reg[MAX2(sources, 3)]; 56 for (unsigned i = 0; i < sources; i++) 57 this->src[i] = src[i]; 58 59 this->opcode = opcode; 60 this->dst = dst; 61 this->sources = sources; 62 this->exec_size = exec_size; 63 this->base_mrf = -1; 64 65 assert(dst.file != IMM && dst.file != UNIFORM); 66 67 assert(this->exec_size != 0); 68 69 this->conditional_mod = BRW_CONDITIONAL_NONE; 70 71 /* This will be the case for almost all instructions. */ 72 switch (dst.file) { 73 case VGRF: 74 case ARF: 75 case FIXED_GRF: 76 case MRF: 77 case ATTR: 78 this->size_written = dst.component_size(exec_size); 79 break; 80 case BAD_FILE: 81 this->size_written = 0; 82 break; 83 case IMM: 84 case UNIFORM: 85 unreachable("Invalid destination register file"); 86 } 87 88 this->writes_accumulator = false; 89} 90 91fs_inst::fs_inst() 92{ 93 init(BRW_OPCODE_NOP, 8, dst, NULL, 0); 94} 95 96fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size) 97{ 98 init(opcode, exec_size, reg_undef, NULL, 0); 99} 100 101fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst) 102{ 103 init(opcode, exec_size, dst, NULL, 0); 104} 105 106fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, 107 const fs_reg &src0) 108{ 109 const fs_reg src[1] = { src0 }; 110 init(opcode, exec_size, dst, src, 1); 111} 112 113fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, 114 const fs_reg &src0, const fs_reg &src1) 115{ 116 const fs_reg src[2] = { src0, src1 }; 117 init(opcode, exec_size, dst, src, 2); 118} 119 120fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, 121 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2) 122{ 123 const fs_reg src[3] = { src0, src1, src2 }; 124 init(opcode, exec_size, dst, src, 3); 125} 126 127fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst, 128 const fs_reg src[], unsigned sources) 129{ 130 init(opcode, exec_width, dst, src, sources); 131} 132 133fs_inst::fs_inst(const fs_inst &that) 134{ 135 memcpy((void*)this, &that, sizeof(that)); 136 137 this->src = new fs_reg[MAX2(that.sources, 3)]; 138 139 for (unsigned i = 0; i < that.sources; i++) 140 this->src[i] = that.src[i]; 141} 142 143fs_inst::~fs_inst() 144{ 145 delete[] this->src; 146} 147 148void 149fs_inst::resize_sources(uint8_t num_sources) 150{ 151 if (this->sources != num_sources) { 152 fs_reg *src = new fs_reg[MAX2(num_sources, 3)]; 153 154 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i) 155 src[i] = this->src[i]; 156 157 delete[] this->src; 158 this->src = src; 159 this->sources = num_sources; 160 } 161} 162 163void 164fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld, 165 const fs_reg &dst, 166 const fs_reg &surf_index, 167 const fs_reg &varying_offset, 168 uint32_t const_offset) 169{ 170 /* We have our constant surface use a pitch of 4 bytes, so our index can 171 * be any component of a vector, and then we load 4 contiguous 172 * components starting from that. 173 * 174 * We break down the const_offset to a portion added to the variable offset 175 * and a portion done using fs_reg::offset, which means that if you have 176 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]", 177 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can 178 * later notice that those loads are all the same and eliminate the 179 * redundant ones. 180 */ 181 fs_reg vec4_offset = vgrf(glsl_type::uint_type); 182 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf)); 183 184 /* The pull load message will load a vec4 (16 bytes). If we are loading 185 * a double this means we are only loading 2 elements worth of data. 186 * We also want to use a 32-bit data type for the dst of the load operation 187 * so other parts of the driver don't get confused about the size of the 188 * result. 189 */ 190 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4); 191 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL, 192 vec4_result, surf_index, vec4_offset); 193 inst->size_written = 4 * vec4_result.component_size(inst->exec_size); 194 195 shuffle_from_32bit_read(bld, dst, vec4_result, 196 (const_offset & 0xf) / type_sz(dst.type), 1); 197} 198 199/** 200 * A helper for MOV generation for fixing up broken hardware SEND dependency 201 * handling. 202 */ 203void 204fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf) 205{ 206 /* The caller always wants uncompressed to emit the minimal extra 207 * dependencies, and to avoid having to deal with aligning its regs to 2. 208 */ 209 const fs_builder ubld = bld.annotate("send dependency resolve") 210 .half(0); 211 212 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F)); 213} 214 215bool 216fs_inst::is_send_from_grf() const 217{ 218 switch (opcode) { 219 case SHADER_OPCODE_SEND: 220 case SHADER_OPCODE_SHADER_TIME_ADD: 221 case FS_OPCODE_INTERPOLATE_AT_SAMPLE: 222 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: 223 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: 224 case SHADER_OPCODE_URB_WRITE_SIMD8: 225 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT: 226 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED: 227 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT: 228 case SHADER_OPCODE_URB_READ_SIMD8: 229 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT: 230 return true; 231 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: 232 return src[1].file == VGRF; 233 case FS_OPCODE_FB_WRITE: 234 case FS_OPCODE_FB_READ: 235 return src[0].file == VGRF; 236 default: 237 if (is_tex()) 238 return src[0].file == VGRF; 239 240 return false; 241 } 242} 243 244bool 245fs_inst::is_control_source(unsigned arg) const 246{ 247 switch (opcode) { 248 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: 249 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7: 250 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4: 251 return arg == 0; 252 253 case SHADER_OPCODE_BROADCAST: 254 case SHADER_OPCODE_SHUFFLE: 255 case SHADER_OPCODE_QUAD_SWIZZLE: 256 case FS_OPCODE_INTERPOLATE_AT_SAMPLE: 257 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: 258 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: 259 case SHADER_OPCODE_GET_BUFFER_SIZE: 260 return arg == 1; 261 262 case SHADER_OPCODE_MOV_INDIRECT: 263 case SHADER_OPCODE_CLUSTER_BROADCAST: 264 case SHADER_OPCODE_TEX: 265 case FS_OPCODE_TXB: 266 case SHADER_OPCODE_TXD: 267 case SHADER_OPCODE_TXF: 268 case SHADER_OPCODE_TXF_LZ: 269 case SHADER_OPCODE_TXF_CMS: 270 case SHADER_OPCODE_TXF_CMS_W: 271 case SHADER_OPCODE_TXF_UMS: 272 case SHADER_OPCODE_TXF_MCS: 273 case SHADER_OPCODE_TXL: 274 case SHADER_OPCODE_TXL_LZ: 275 case SHADER_OPCODE_TXS: 276 case SHADER_OPCODE_LOD: 277 case SHADER_OPCODE_TG4: 278 case SHADER_OPCODE_TG4_OFFSET: 279 case SHADER_OPCODE_SAMPLEINFO: 280 return arg == 1 || arg == 2; 281 282 case SHADER_OPCODE_SEND: 283 return arg == 0 || arg == 1; 284 285 default: 286 return false; 287 } 288} 289 290/** 291 * Returns true if this instruction's sources and destinations cannot 292 * safely be the same register. 293 * 294 * In most cases, a register can be written over safely by the same 295 * instruction that is its last use. For a single instruction, the 296 * sources are dereferenced before writing of the destination starts 297 * (naturally). 298 * 299 * However, there are a few cases where this can be problematic: 300 * 301 * - Virtual opcodes that translate to multiple instructions in the 302 * code generator: if src == dst and one instruction writes the 303 * destination before a later instruction reads the source, then 304 * src will have been clobbered. 305 * 306 * - SIMD16 compressed instructions with certain regioning (see below). 307 * 308 * The register allocator uses this information to set up conflicts between 309 * GRF sources and the destination. 310 */ 311bool 312fs_inst::has_source_and_destination_hazard() const 313{ 314 switch (opcode) { 315 case FS_OPCODE_PACK_HALF_2x16_SPLIT: 316 /* Multiple partial writes to the destination */ 317 return true; 318 case SHADER_OPCODE_SHUFFLE: 319 /* This instruction returns an arbitrary channel from the source and 320 * gets split into smaller instructions in the generator. It's possible 321 * that one of the instructions will read from a channel corresponding 322 * to an earlier instruction. 323 */ 324 case SHADER_OPCODE_SEL_EXEC: 325 /* This is implemented as 326 * 327 * mov(16) g4<1>D 0D { align1 WE_all 1H }; 328 * mov(16) g4<1>D g5<8,8,1>D { align1 1H } 329 * 330 * Because the source is only read in the second instruction, the first 331 * may stomp all over it. 332 */ 333 return true; 334 case SHADER_OPCODE_QUAD_SWIZZLE: 335 switch (src[1].ud) { 336 case BRW_SWIZZLE_XXXX: 337 case BRW_SWIZZLE_YYYY: 338 case BRW_SWIZZLE_ZZZZ: 339 case BRW_SWIZZLE_WWWW: 340 case BRW_SWIZZLE_XXZZ: 341 case BRW_SWIZZLE_YYWW: 342 case BRW_SWIZZLE_XYXY: 343 case BRW_SWIZZLE_ZWZW: 344 /* These can be implemented as a single Align1 region on all 345 * platforms, so there's never a hazard between source and 346 * destination. C.f. fs_generator::generate_quad_swizzle(). 347 */ 348 return false; 349 default: 350 return !is_uniform(src[0]); 351 } 352 default: 353 /* The SIMD16 compressed instruction 354 * 355 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F 356 * 357 * is actually decoded in hardware as: 358 * 359 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F 360 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F 361 * 362 * Which is safe. However, if we have uniform accesses 363 * happening, we get into trouble: 364 * 365 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F 366 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F 367 * 368 * Now our destination for the first instruction overwrote the 369 * second instruction's src0, and we get garbage for those 8 370 * pixels. There's a similar issue for the pre-gen6 371 * pixel_x/pixel_y, which are registers of 16-bit values and thus 372 * would get stomped by the first decode as well. 373 */ 374 if (exec_size == 16) { 375 for (int i = 0; i < sources; i++) { 376 if (src[i].file == VGRF && (src[i].stride == 0 || 377 src[i].type == BRW_REGISTER_TYPE_UW || 378 src[i].type == BRW_REGISTER_TYPE_W || 379 src[i].type == BRW_REGISTER_TYPE_UB || 380 src[i].type == BRW_REGISTER_TYPE_B)) { 381 return true; 382 } 383 } 384 } 385 return false; 386 } 387} 388 389bool 390fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const 391{ 392 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD) 393 return false; 394 395 fs_reg reg = this->src[0]; 396 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1) 397 return false; 398 399 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written) 400 return false; 401 402 for (int i = 0; i < this->sources; i++) { 403 reg.type = this->src[i].type; 404 if (!this->src[i].equals(reg)) 405 return false; 406 407 if (i < this->header_size) { 408 reg.offset += REG_SIZE; 409 } else { 410 reg = horiz_offset(reg, this->exec_size); 411 } 412 } 413 414 return true; 415} 416 417bool 418fs_inst::can_do_source_mods(const struct gen_device_info *devinfo) const 419{ 420 if (devinfo->gen == 6 && is_math()) 421 return false; 422 423 if (is_send_from_grf()) 424 return false; 425 426 if (!backend_instruction::can_do_source_mods()) 427 return false; 428 429 return true; 430} 431 432bool 433fs_inst::can_do_cmod() 434{ 435 if (!backend_instruction::can_do_cmod()) 436 return false; 437 438 /* The accumulator result appears to get used for the conditional modifier 439 * generation. When negating a UD value, there is a 33rd bit generated for 440 * the sign in the accumulator value, so now you can't check, for example, 441 * equality with a 32-bit value. See piglit fs-op-neg-uvec4. 442 */ 443 for (unsigned i = 0; i < sources; i++) { 444 if (type_is_unsigned_int(src[i].type) && src[i].negate) 445 return false; 446 } 447 448 return true; 449} 450 451bool 452fs_inst::can_change_types() const 453{ 454 return dst.type == src[0].type && 455 !src[0].abs && !src[0].negate && !saturate && 456 (opcode == BRW_OPCODE_MOV || 457 (opcode == BRW_OPCODE_SEL && 458 dst.type == src[1].type && 459 predicate != BRW_PREDICATE_NONE && 460 !src[1].abs && !src[1].negate)); 461} 462 463void 464fs_reg::init() 465{ 466 memset((void*)this, 0, sizeof(*this)); 467 type = BRW_REGISTER_TYPE_UD; 468 stride = 1; 469} 470 471/** Generic unset register constructor. */ 472fs_reg::fs_reg() 473{ 474 init(); 475 this->file = BAD_FILE; 476} 477 478fs_reg::fs_reg(struct ::brw_reg reg) : 479 backend_reg(reg) 480{ 481 this->offset = 0; 482 this->stride = 1; 483 if (this->file == IMM && 484 (this->type != BRW_REGISTER_TYPE_V && 485 this->type != BRW_REGISTER_TYPE_UV && 486 this->type != BRW_REGISTER_TYPE_VF)) { 487 this->stride = 0; 488 } 489} 490 491bool 492fs_reg::equals(const fs_reg &r) const 493{ 494 return (this->backend_reg::equals(r) && 495 stride == r.stride); 496} 497 498bool 499fs_reg::negative_equals(const fs_reg &r) const 500{ 501 return (this->backend_reg::negative_equals(r) && 502 stride == r.stride); 503} 504 505bool 506fs_reg::is_contiguous() const 507{ 508 return stride == 1; 509} 510 511unsigned 512fs_reg::component_size(unsigned width) const 513{ 514 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride : 515 hstride == 0 ? 0 : 516 1 << (hstride - 1)); 517 return MAX2(width * stride, 1) * type_sz(type); 518} 519 520extern "C" int 521type_size_scalar(const struct glsl_type *type, bool bindless) 522{ 523 unsigned int size, i; 524 525 switch (type->base_type) { 526 case GLSL_TYPE_UINT: 527 case GLSL_TYPE_INT: 528 case GLSL_TYPE_FLOAT: 529 case GLSL_TYPE_BOOL: 530 return type->components(); 531 case GLSL_TYPE_UINT16: 532 case GLSL_TYPE_INT16: 533 case GLSL_TYPE_FLOAT16: 534 return DIV_ROUND_UP(type->components(), 2); 535 case GLSL_TYPE_UINT8: 536 case GLSL_TYPE_INT8: 537 return DIV_ROUND_UP(type->components(), 4); 538 case GLSL_TYPE_DOUBLE: 539 case GLSL_TYPE_UINT64: 540 case GLSL_TYPE_INT64: 541 return type->components() * 2; 542 case GLSL_TYPE_ARRAY: 543 return type_size_scalar(type->fields.array, bindless) * type->length; 544 case GLSL_TYPE_STRUCT: 545 case GLSL_TYPE_INTERFACE: 546 size = 0; 547 for (i = 0; i < type->length; i++) { 548 size += type_size_scalar(type->fields.structure[i].type, bindless); 549 } 550 return size; 551 case GLSL_TYPE_SAMPLER: 552 case GLSL_TYPE_IMAGE: 553 if (bindless) 554 return type->components() * 2; 555 case GLSL_TYPE_ATOMIC_UINT: 556 /* Samplers, atomics, and images take up no register space, since 557 * they're baked in at link time. 558 */ 559 return 0; 560 case GLSL_TYPE_SUBROUTINE: 561 return 1; 562 case GLSL_TYPE_VOID: 563 case GLSL_TYPE_ERROR: 564 case GLSL_TYPE_FUNCTION: 565 unreachable("not reached"); 566 } 567 568 return 0; 569} 570 571/** 572 * Create a MOV to read the timestamp register. 573 * 574 * The caller is responsible for emitting the MOV. The return value is 575 * the destination of the MOV, with extra parameters set. 576 */ 577fs_reg 578fs_visitor::get_timestamp(const fs_builder &bld) 579{ 580 assert(devinfo->gen >= 7); 581 582 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE, 583 BRW_ARF_TIMESTAMP, 584 0), 585 BRW_REGISTER_TYPE_UD)); 586 587 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD); 588 589 /* We want to read the 3 fields we care about even if it's not enabled in 590 * the dispatch. 591 */ 592 bld.group(4, 0).exec_all().MOV(dst, ts); 593 594 return dst; 595} 596 597void 598fs_visitor::emit_shader_time_begin() 599{ 600 /* We want only the low 32 bits of the timestamp. Since it's running 601 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds, 602 * which is plenty of time for our purposes. It is identical across the 603 * EUs, but since it's tracking GPU core speed it will increment at a 604 * varying rate as render P-states change. 605 */ 606 shader_start_time = component( 607 get_timestamp(bld.annotate("shader time start")), 0); 608} 609 610void 611fs_visitor::emit_shader_time_end() 612{ 613 /* Insert our code just before the final SEND with EOT. */ 614 exec_node *end = this->instructions.get_tail(); 615 assert(end && ((fs_inst *) end)->eot); 616 const fs_builder ibld = bld.annotate("shader time end") 617 .exec_all().at(NULL, end); 618 const fs_reg timestamp = get_timestamp(ibld); 619 620 /* We only use the low 32 bits of the timestamp - see 621 * emit_shader_time_begin()). 622 * 623 * We could also check if render P-states have changed (or anything 624 * else that might disrupt timing) by setting smear to 2 and checking if 625 * that field is != 0. 626 */ 627 const fs_reg shader_end_time = component(timestamp, 0); 628 629 /* Check that there weren't any timestamp reset events (assuming these 630 * were the only two timestamp reads that happened). 631 */ 632 const fs_reg reset = component(timestamp, 2); 633 set_condmod(BRW_CONDITIONAL_Z, 634 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u))); 635 ibld.IF(BRW_PREDICATE_NORMAL); 636 637 fs_reg start = shader_start_time; 638 start.negate = true; 639 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1), 640 BRW_REGISTER_TYPE_UD), 641 0); 642 const fs_builder cbld = ibld.group(1, 0); 643 cbld.group(1, 0).ADD(diff, start, shader_end_time); 644 645 /* If there were no instructions between the two timestamp gets, the diff 646 * is 2 cycles. Remove that overhead, so I can forget about that when 647 * trying to determine the time taken for single instructions. 648 */ 649 cbld.ADD(diff, diff, brw_imm_ud(-2u)); 650 SHADER_TIME_ADD(cbld, 0, diff); 651 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u)); 652 ibld.emit(BRW_OPCODE_ELSE); 653 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u)); 654 ibld.emit(BRW_OPCODE_ENDIF); 655} 656 657void 658fs_visitor::SHADER_TIME_ADD(const fs_builder &bld, 659 int shader_time_subindex, 660 fs_reg value) 661{ 662 int index = shader_time_index * 3 + shader_time_subindex; 663 struct brw_reg offset = brw_imm_d(index * BRW_SHADER_TIME_STRIDE); 664 665 fs_reg payload; 666 if (dispatch_width == 8) 667 payload = vgrf(glsl_type::uvec2_type); 668 else 669 payload = vgrf(glsl_type::uint_type); 670 671 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value); 672} 673 674void 675fs_visitor::vfail(const char *format, va_list va) 676{ 677 char *msg; 678 679 if (failed) 680 return; 681 682 failed = true; 683 684 msg = ralloc_vasprintf(mem_ctx, format, va); 685 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg); 686 687 this->fail_msg = msg; 688 689 if (debug_enabled) { 690 fprintf(stderr, "%s", msg); 691 } 692} 693 694void 695fs_visitor::fail(const char *format, ...) 696{ 697 va_list va; 698 699 va_start(va, format); 700 vfail(format, va); 701 va_end(va); 702} 703 704/** 705 * Mark this program as impossible to compile with dispatch width greater 706 * than n. 707 * 708 * During the SIMD8 compile (which happens first), we can detect and flag 709 * things that are unsupported in SIMD16+ mode, so the compiler can skip the 710 * SIMD16+ compile altogether. 711 * 712 * During a compile of dispatch width greater than n (if one happens anyway), 713 * this just calls fail(). 714 */ 715void 716fs_visitor::limit_dispatch_width(unsigned n, const char *msg) 717{ 718 if (dispatch_width > n) { 719 fail("%s", msg); 720 } else { 721 max_dispatch_width = n; 722 compiler->shader_perf_log(log_data, 723 "Shader dispatch width limited to SIMD%d: %s", 724 n, msg); 725 } 726} 727 728/** 729 * Returns true if the instruction has a flag that means it won't 730 * update an entire destination register. 731 * 732 * For example, dead code elimination and live variable analysis want to know 733 * when a write to a variable screens off any preceding values that were in 734 * it. 735 */ 736bool 737fs_inst::is_partial_write() const 738{ 739 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) || 740 (this->exec_size * type_sz(this->dst.type)) < 32 || 741 !this->dst.is_contiguous() || 742 this->dst.offset % REG_SIZE != 0); 743} 744 745unsigned 746fs_inst::components_read(unsigned i) const 747{ 748 /* Return zero if the source is not present. */ 749 if (src[i].file == BAD_FILE) 750 return 0; 751 752 switch (opcode) { 753 case FS_OPCODE_LINTERP: 754 if (i == 0) 755 return 2; 756 else 757 return 1; 758 759 case FS_OPCODE_PIXEL_X: 760 case FS_OPCODE_PIXEL_Y: 761 assert(i == 0); 762 return 2; 763 764 case FS_OPCODE_FB_WRITE_LOGICAL: 765 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM); 766 /* First/second FB write color. */ 767 if (i < 2) 768 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud; 769 else 770 return 1; 771 772 case SHADER_OPCODE_TEX_LOGICAL: 773 case SHADER_OPCODE_TXD_LOGICAL: 774 case SHADER_OPCODE_TXF_LOGICAL: 775 case SHADER_OPCODE_TXL_LOGICAL: 776 case SHADER_OPCODE_TXS_LOGICAL: 777 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL: 778 case FS_OPCODE_TXB_LOGICAL: 779 case SHADER_OPCODE_TXF_CMS_LOGICAL: 780 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: 781 case SHADER_OPCODE_TXF_UMS_LOGICAL: 782 case SHADER_OPCODE_TXF_MCS_LOGICAL: 783 case SHADER_OPCODE_LOD_LOGICAL: 784 case SHADER_OPCODE_TG4_LOGICAL: 785 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: 786 case SHADER_OPCODE_SAMPLEINFO_LOGICAL: 787 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM && 788 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM); 789 /* Texture coordinates. */ 790 if (i == TEX_LOGICAL_SRC_COORDINATE) 791 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud; 792 /* Texture derivatives. */ 793 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) && 794 opcode == SHADER_OPCODE_TXD_LOGICAL) 795 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud; 796 /* Texture offset. */ 797 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET) 798 return 2; 799 /* MCS */ 800 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL) 801 return 2; 802 else 803 return 1; 804 805 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL: 806 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL: 807 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM); 808 /* Surface coordinates. */ 809 if (i == SURFACE_LOGICAL_SRC_ADDRESS) 810 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud; 811 /* Surface operation source (ignored for reads). */ 812 else if (i == SURFACE_LOGICAL_SRC_DATA) 813 return 0; 814 else 815 return 1; 816 817 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL: 818 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL: 819 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM && 820 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); 821 /* Surface coordinates. */ 822 if (i == SURFACE_LOGICAL_SRC_ADDRESS) 823 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud; 824 /* Surface operation source. */ 825 else if (i == SURFACE_LOGICAL_SRC_DATA) 826 return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud; 827 else 828 return 1; 829 830 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL: 831 assert(src[2].file == IMM); 832 return 1; 833 834 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL: 835 assert(src[2].file == IMM); 836 return i == 1 ? src[2].ud : 1; 837 838 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL: 839 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL: 840 assert(src[2].file == IMM); 841 if (i == 1) { 842 /* Data source */ 843 const unsigned op = src[2].ud; 844 switch (op) { 845 case BRW_AOP_INC: 846 case BRW_AOP_DEC: 847 case BRW_AOP_PREDEC: 848 return 0; 849 case BRW_AOP_CMPWR: 850 return 2; 851 default: 852 return 1; 853 } 854 } else { 855 return 1; 856 } 857 858 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL: 859 assert(src[2].file == IMM); 860 if (i == 1) { 861 /* Data source */ 862 const unsigned op = src[2].ud; 863 return op == BRW_AOP_FCMPWR ? 2 : 1; 864 } else { 865 return 1; 866 } 867 868 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL: 869 /* Scattered logical opcodes use the following params: 870 * src[0] Surface coordinates 871 * src[1] Surface operation source (ignored for reads) 872 * src[2] Surface 873 * src[3] IMM with always 1 dimension. 874 * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32 875 */ 876 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM && 877 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); 878 return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1; 879 880 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL: 881 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM && 882 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); 883 return 1; 884 885 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL: 886 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: { 887 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM && 888 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); 889 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud; 890 /* Surface coordinates. */ 891 if (i == SURFACE_LOGICAL_SRC_ADDRESS) 892 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud; 893 /* Surface operation source. */ 894 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_CMPWR) 895 return 2; 896 else if (i == SURFACE_LOGICAL_SRC_DATA && 897 (op == BRW_AOP_INC || op == BRW_AOP_DEC || op == BRW_AOP_PREDEC)) 898 return 0; 899 else 900 return 1; 901 } 902 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: 903 return (i == 0 ? 2 : 1); 904 905 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: { 906 assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM && 907 src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM); 908 const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud; 909 /* Surface coordinates. */ 910 if (i == SURFACE_LOGICAL_SRC_ADDRESS) 911 return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud; 912 /* Surface operation source. */ 913 else if (i == SURFACE_LOGICAL_SRC_DATA && op == BRW_AOP_FCMPWR) 914 return 2; 915 else 916 return 1; 917 } 918 919 default: 920 return 1; 921 } 922} 923 924unsigned 925fs_inst::size_read(int arg) const 926{ 927 switch (opcode) { 928 case SHADER_OPCODE_SEND: 929 if (arg == 2) { 930 return mlen * REG_SIZE; 931 } else if (arg == 3) { 932 return ex_mlen * REG_SIZE; 933 } 934 break; 935 936 case FS_OPCODE_FB_WRITE: 937 case FS_OPCODE_REP_FB_WRITE: 938 if (arg == 0) { 939 if (base_mrf >= 0) 940 return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE; 941 else 942 return mlen * REG_SIZE; 943 } 944 break; 945 946 case FS_OPCODE_FB_READ: 947 case SHADER_OPCODE_URB_WRITE_SIMD8: 948 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT: 949 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED: 950 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT: 951 case SHADER_OPCODE_URB_READ_SIMD8: 952 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT: 953 case FS_OPCODE_INTERPOLATE_AT_SAMPLE: 954 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: 955 if (arg == 0) 956 return mlen * REG_SIZE; 957 break; 958 959 case FS_OPCODE_SET_SAMPLE_ID: 960 if (arg == 1) 961 return 1; 962 break; 963 964 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7: 965 /* The payload is actually stored in src1 */ 966 if (arg == 1) 967 return mlen * REG_SIZE; 968 break; 969 970 case FS_OPCODE_LINTERP: 971 if (arg == 1) 972 return 16; 973 break; 974 975 case SHADER_OPCODE_LOAD_PAYLOAD: 976 if (arg < this->header_size) 977 return REG_SIZE; 978 break; 979 980 case CS_OPCODE_CS_TERMINATE: 981 case SHADER_OPCODE_BARRIER: 982 return REG_SIZE; 983 984 case SHADER_OPCODE_MOV_INDIRECT: 985 if (arg == 0) { 986 assert(src[2].file == IMM); 987 return src[2].ud; 988 } 989 break; 990 991 default: 992 if (is_tex() && arg == 0 && src[0].file == VGRF) 993 return mlen * REG_SIZE; 994 break; 995 } 996 997 switch (src[arg].file) { 998 case UNIFORM: 999 case IMM: 1000 return components_read(arg) * type_sz(src[arg].type); 1001 case BAD_FILE: 1002 case ARF: 1003 case FIXED_GRF: 1004 case VGRF: 1005 case ATTR: 1006 return components_read(arg) * src[arg].component_size(exec_size); 1007 case MRF: 1008 unreachable("MRF registers are not allowed as sources"); 1009 } 1010 return 0; 1011} 1012 1013namespace { 1014 /* Return the subset of flag registers that an instruction could 1015 * potentially read or write based on the execution controls and flag 1016 * subregister number of the instruction. 1017 */ 1018 unsigned 1019 flag_mask(const fs_inst *inst) 1020 { 1021 const unsigned start = inst->flag_subreg * 16 + inst->group; 1022 const unsigned end = start + inst->exec_size; 1023 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1); 1024 } 1025 1026 unsigned 1027 bit_mask(unsigned n) 1028 { 1029 return (n >= CHAR_BIT * sizeof(bit_mask(n)) ? ~0u : (1u << n) - 1); 1030 } 1031 1032 unsigned 1033 flag_mask(const fs_reg &r, unsigned sz) 1034 { 1035 if (r.file == ARF) { 1036 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr; 1037 const unsigned end = start + sz; 1038 return bit_mask(end) & ~bit_mask(start); 1039 } else { 1040 return 0; 1041 } 1042 } 1043} 1044 1045unsigned 1046fs_inst::flags_read(const gen_device_info *devinfo) const 1047{ 1048 if (predicate == BRW_PREDICATE_ALIGN1_ANYV || 1049 predicate == BRW_PREDICATE_ALIGN1_ALLV) { 1050 /* The vertical predication modes combine corresponding bits from 1051 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware. 1052 */ 1053 const unsigned shift = devinfo->gen >= 7 ? 4 : 2; 1054 return flag_mask(this) << shift | flag_mask(this); 1055 } else if (predicate) { 1056 return flag_mask(this); 1057 } else { 1058 unsigned mask = 0; 1059 for (int i = 0; i < sources; i++) { 1060 mask |= flag_mask(src[i], size_read(i)); 1061 } 1062 return mask; 1063 } 1064} 1065 1066unsigned 1067fs_inst::flags_written() const 1068{ 1069 if ((conditional_mod && (opcode != BRW_OPCODE_SEL && 1070 opcode != BRW_OPCODE_CSEL && 1071 opcode != BRW_OPCODE_IF && 1072 opcode != BRW_OPCODE_WHILE)) || 1073 opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL || 1074 opcode == FS_OPCODE_FB_WRITE) { 1075 return flag_mask(this); 1076 } else { 1077 return flag_mask(dst, size_written); 1078 } 1079} 1080 1081/** 1082 * Returns how many MRFs an FS opcode will write over. 1083 * 1084 * Note that this is not the 0 or 1 implied writes in an actual gen 1085 * instruction -- the FS opcodes often generate MOVs in addition. 1086 */ 1087int 1088fs_visitor::implied_mrf_writes(fs_inst *inst) const 1089{ 1090 if (inst->mlen == 0) 1091 return 0; 1092 1093 if (inst->base_mrf == -1) 1094 return 0; 1095 1096 switch (inst->opcode) { 1097 case SHADER_OPCODE_RCP: 1098 case SHADER_OPCODE_RSQ: 1099 case SHADER_OPCODE_SQRT: 1100 case SHADER_OPCODE_EXP2: 1101 case SHADER_OPCODE_LOG2: 1102 case SHADER_OPCODE_SIN: 1103 case SHADER_OPCODE_COS: 1104 return 1 * dispatch_width / 8; 1105 case SHADER_OPCODE_POW: 1106 case SHADER_OPCODE_INT_QUOTIENT: 1107 case SHADER_OPCODE_INT_REMAINDER: 1108 return 2 * dispatch_width / 8; 1109 case SHADER_OPCODE_TEX: 1110 case FS_OPCODE_TXB: 1111 case SHADER_OPCODE_TXD: 1112 case SHADER_OPCODE_TXF: 1113 case SHADER_OPCODE_TXF_CMS: 1114 case SHADER_OPCODE_TXF_MCS: 1115 case SHADER_OPCODE_TG4: 1116 case SHADER_OPCODE_TG4_OFFSET: 1117 case SHADER_OPCODE_TXL: 1118 case SHADER_OPCODE_TXS: 1119 case SHADER_OPCODE_LOD: 1120 case SHADER_OPCODE_SAMPLEINFO: 1121 return 1; 1122 case FS_OPCODE_FB_WRITE: 1123 case FS_OPCODE_REP_FB_WRITE: 1124 return inst->src[0].file == BAD_FILE ? 0 : 2; 1125 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: 1126 case SHADER_OPCODE_GEN4_SCRATCH_READ: 1127 return 1; 1128 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4: 1129 return inst->mlen; 1130 case SHADER_OPCODE_GEN4_SCRATCH_WRITE: 1131 return inst->mlen; 1132 default: 1133 unreachable("not reached"); 1134 } 1135} 1136 1137fs_reg 1138fs_visitor::vgrf(const glsl_type *const type) 1139{ 1140 int reg_width = dispatch_width / 8; 1141 return fs_reg(VGRF, 1142 alloc.allocate(type_size_scalar(type, false) * reg_width), 1143 brw_type_for_base_type(type)); 1144} 1145 1146fs_reg::fs_reg(enum brw_reg_file file, int nr) 1147{ 1148 init(); 1149 this->file = file; 1150 this->nr = nr; 1151 this->type = BRW_REGISTER_TYPE_F; 1152 this->stride = (file == UNIFORM ? 0 : 1); 1153} 1154 1155fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type) 1156{ 1157 init(); 1158 this->file = file; 1159 this->nr = nr; 1160 this->type = type; 1161 this->stride = (file == UNIFORM ? 0 : 1); 1162} 1163 1164/* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch. 1165 * This brings in those uniform definitions 1166 */ 1167void 1168fs_visitor::import_uniforms(fs_visitor *v) 1169{ 1170 this->push_constant_loc = v->push_constant_loc; 1171 this->pull_constant_loc = v->pull_constant_loc; 1172 this->uniforms = v->uniforms; 1173 this->subgroup_id = v->subgroup_id; 1174} 1175 1176void 1177fs_visitor::emit_fragcoord_interpolation(fs_reg wpos) 1178{ 1179 assert(stage == MESA_SHADER_FRAGMENT); 1180 1181 /* gl_FragCoord.x */ 1182 bld.MOV(wpos, this->pixel_x); 1183 wpos = offset(wpos, bld, 1); 1184 1185 /* gl_FragCoord.y */ 1186 bld.MOV(wpos, this->pixel_y); 1187 wpos = offset(wpos, bld, 1); 1188 1189 /* gl_FragCoord.z */ 1190 if (devinfo->gen >= 6) { 1191 bld.MOV(wpos, fetch_payload_reg(bld, payload.source_depth_reg)); 1192 } else { 1193 bld.emit(FS_OPCODE_LINTERP, wpos, 1194 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL], 1195 component(interp_reg(VARYING_SLOT_POS, 2), 0)); 1196 } 1197 wpos = offset(wpos, bld, 1); 1198 1199 /* gl_FragCoord.w: Already set up in emit_interpolation */ 1200 bld.MOV(wpos, this->wpos_w); 1201} 1202 1203enum brw_barycentric_mode 1204brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op) 1205{ 1206 /* Barycentric modes don't make sense for flat inputs. */ 1207 assert(mode != INTERP_MODE_FLAT); 1208 1209 unsigned bary; 1210 switch (op) { 1211 case nir_intrinsic_load_barycentric_pixel: 1212 case nir_intrinsic_load_barycentric_at_offset: 1213 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL; 1214 break; 1215 case nir_intrinsic_load_barycentric_centroid: 1216 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID; 1217 break; 1218 case nir_intrinsic_load_barycentric_sample: 1219 case nir_intrinsic_load_barycentric_at_sample: 1220 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE; 1221 break; 1222 default: 1223 unreachable("invalid intrinsic"); 1224 } 1225 1226 if (mode == INTERP_MODE_NOPERSPECTIVE) 1227 bary += 3; 1228 1229 return (enum brw_barycentric_mode) bary; 1230} 1231 1232/** 1233 * Turn one of the two CENTROID barycentric modes into PIXEL mode. 1234 */ 1235static enum brw_barycentric_mode 1236centroid_to_pixel(enum brw_barycentric_mode bary) 1237{ 1238 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID || 1239 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID); 1240 return (enum brw_barycentric_mode) ((unsigned) bary - 1); 1241} 1242 1243fs_reg * 1244fs_visitor::emit_frontfacing_interpolation() 1245{ 1246 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type)); 1247 1248 if (devinfo->gen >= 6) { 1249 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create 1250 * a boolean result from this (~0/true or 0/false). 1251 * 1252 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish 1253 * this task in only one instruction: 1254 * - a negation source modifier will flip the bit; and 1255 * - a W -> D type conversion will sign extend the bit into the high 1256 * word of the destination. 1257 * 1258 * An ASR 15 fills the low word of the destination. 1259 */ 1260 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W)); 1261 g0.negate = true; 1262 1263 bld.ASR(*reg, g0, brw_imm_d(15)); 1264 } else { 1265 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create 1266 * a boolean result from this (1/true or 0/false). 1267 * 1268 * Like in the above case, since the bit is the MSB of g1.6:UD we can use 1269 * the negation source modifier to flip it. Unfortunately the SHR 1270 * instruction only operates on UD (or D with an abs source modifier) 1271 * sources without negation. 1272 * 1273 * Instead, use ASR (which will give ~0/true or 0/false). 1274 */ 1275 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D)); 1276 g1_6.negate = true; 1277 1278 bld.ASR(*reg, g1_6, brw_imm_d(31)); 1279 } 1280 1281 return reg; 1282} 1283 1284void 1285fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos) 1286{ 1287 assert(stage == MESA_SHADER_FRAGMENT); 1288 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data); 1289 assert(dst.type == BRW_REGISTER_TYPE_F); 1290 1291 if (wm_prog_data->persample_dispatch) { 1292 /* Convert int_sample_pos to floating point */ 1293 bld.MOV(dst, int_sample_pos); 1294 /* Scale to the range [0, 1] */ 1295 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f)); 1296 } 1297 else { 1298 /* From ARB_sample_shading specification: 1299 * "When rendering to a non-multisample buffer, or if multisample 1300 * rasterization is disabled, gl_SamplePosition will always be 1301 * (0.5, 0.5). 1302 */ 1303 bld.MOV(dst, brw_imm_f(0.5f)); 1304 } 1305} 1306 1307fs_reg * 1308fs_visitor::emit_samplepos_setup() 1309{ 1310 assert(devinfo->gen >= 6); 1311 1312 const fs_builder abld = bld.annotate("compute sample position"); 1313 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type)); 1314 fs_reg pos = *reg; 1315 fs_reg int_sample_x = vgrf(glsl_type::int_type); 1316 fs_reg int_sample_y = vgrf(glsl_type::int_type); 1317 1318 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16 1319 * mode will be enabled. 1320 * 1321 * From the Ivy Bridge PRM, volume 2 part 1, page 344: 1322 * R31.1:0 Position Offset X/Y for Slot[3:0] 1323 * R31.3:2 Position Offset X/Y for Slot[7:4] 1324 * ..... 1325 * 1326 * The X, Y sample positions come in as bytes in thread payload. So, read 1327 * the positions using vstride=16, width=8, hstride=2. 1328 */ 1329 const fs_reg sample_pos_reg = 1330 fetch_payload_reg(abld, payload.sample_pos_reg, BRW_REGISTER_TYPE_W); 1331 1332 /* Compute gl_SamplePosition.x */ 1333 abld.MOV(int_sample_x, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 0)); 1334 compute_sample_position(offset(pos, abld, 0), int_sample_x); 1335 1336 /* Compute gl_SamplePosition.y */ 1337 abld.MOV(int_sample_y, subscript(sample_pos_reg, BRW_REGISTER_TYPE_B, 1)); 1338 compute_sample_position(offset(pos, abld, 1), int_sample_y); 1339 return reg; 1340} 1341 1342fs_reg * 1343fs_visitor::emit_sampleid_setup() 1344{ 1345 assert(stage == MESA_SHADER_FRAGMENT); 1346 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; 1347 assert(devinfo->gen >= 6); 1348 1349 const fs_builder abld = bld.annotate("compute sample id"); 1350 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uint_type)); 1351 1352 if (!key->multisample_fbo) { 1353 /* As per GL_ARB_sample_shading specification: 1354 * "When rendering to a non-multisample buffer, or if multisample 1355 * rasterization is disabled, gl_SampleID will always be zero." 1356 */ 1357 abld.MOV(*reg, brw_imm_d(0)); 1358 } else if (devinfo->gen >= 8) { 1359 /* Sample ID comes in as 4-bit numbers in g1.0: 1360 * 1361 * 15:12 Slot 3 SampleID (only used in SIMD16) 1362 * 11:8 Slot 2 SampleID (only used in SIMD16) 1363 * 7:4 Slot 1 SampleID 1364 * 3:0 Slot 0 SampleID 1365 * 1366 * Each slot corresponds to four channels, so we want to replicate each 1367 * half-byte value to 4 channels in a row: 1368 * 1369 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0 1370 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0 1371 * 1372 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16) 1373 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8 1374 * 1375 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8 1376 * channels to read the first byte (7:0), and the second group of 8 1377 * channels to read the second byte (15:8). Then, we shift right by 1378 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3 1379 * values into place. Finally, we AND with 0xf to keep the low nibble. 1380 * 1381 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V 1382 * and(16) dst<1>D tmp<8,8,1>W 0xf:W 1383 * 1384 * TODO: These payload bits exist on Gen7 too, but they appear to always 1385 * be zero, so this code fails to work. We should find out why. 1386 */ 1387 const fs_reg tmp = abld.vgrf(BRW_REGISTER_TYPE_UW); 1388 1389 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 16); i++) { 1390 const fs_builder hbld = abld.group(MIN2(16, dispatch_width), i); 1391 hbld.SHR(offset(tmp, hbld, i), 1392 stride(retype(brw_vec1_grf(1 + i, 0), BRW_REGISTER_TYPE_UB), 1393 1, 8, 0), 1394 brw_imm_v(0x44440000)); 1395 } 1396 1397 abld.AND(*reg, tmp, brw_imm_w(0xf)); 1398 } else { 1399 const fs_reg t1 = component(abld.vgrf(BRW_REGISTER_TYPE_UD), 0); 1400 const fs_reg t2 = abld.vgrf(BRW_REGISTER_TYPE_UW); 1401 1402 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with 1403 * 8x multisampling, subspan 0 will represent sample N (where N 1404 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or 1405 * 7. We can find the value of N by looking at R0.0 bits 7:6 1406 * ("Starting Sample Pair Index (SSPI)") and multiplying by two 1407 * (since samples are always delivered in pairs). That is, we 1408 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then 1409 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in 1410 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 1411 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by 1412 * populating a temporary variable with the sequence (0, 1, 2, 3), 1413 * and then reading from it using vstride=1, width=4, hstride=0. 1414 * These computations hold good for 4x multisampling as well. 1415 * 1416 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1): 1417 * the first four slots are sample 0 of subspan 0; the next four 1418 * are sample 1 of subspan 0; the third group is sample 0 of 1419 * subspan 1, and finally sample 1 of subspan 1. 1420 */ 1421 1422 /* SKL+ has an extra bit for the Starting Sample Pair Index to 1423 * accomodate 16x MSAA. 1424 */ 1425 abld.exec_all().group(1, 0) 1426 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)), 1427 brw_imm_ud(0xc0)); 1428 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5)); 1429 1430 /* This works for SIMD8-SIMD16. It also works for SIMD32 but only if we 1431 * can assume 4x MSAA. Disallow it on IVB+ 1432 * 1433 * FINISHME: One day, we could come up with a way to do this that 1434 * actually works on gen7. 1435 */ 1436 if (devinfo->gen >= 7) 1437 limit_dispatch_width(16, "gl_SampleId is unsupported in SIMD32 on gen7"); 1438 abld.exec_all().group(8, 0).MOV(t2, brw_imm_v(0x32103210)); 1439 1440 /* This special instruction takes care of setting vstride=1, 1441 * width=4, hstride=0 of t2 during an ADD instruction. 1442 */ 1443 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2); 1444 } 1445 1446 return reg; 1447} 1448 1449fs_reg * 1450fs_visitor::emit_samplemaskin_setup() 1451{ 1452 assert(stage == MESA_SHADER_FRAGMENT); 1453 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data); 1454 assert(devinfo->gen >= 6); 1455 1456 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type)); 1457 1458 fs_reg coverage_mask = 1459 fetch_payload_reg(bld, payload.sample_mask_in_reg, BRW_REGISTER_TYPE_D); 1460 1461 if (wm_prog_data->persample_dispatch) { 1462 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask, 1463 * and a mask representing which sample is being processed by the 1464 * current shader invocation. 1465 * 1466 * From the OES_sample_variables specification: 1467 * "When per-sample shading is active due to the use of a fragment input 1468 * qualified by "sample" or due to the use of the gl_SampleID or 1469 * gl_SamplePosition variables, only the bit for the current sample is 1470 * set in gl_SampleMaskIn." 1471 */ 1472 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn"); 1473 1474 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE) 1475 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup(); 1476 1477 fs_reg one = vgrf(glsl_type::int_type); 1478 fs_reg enabled_mask = vgrf(glsl_type::int_type); 1479 abld.MOV(one, brw_imm_d(1)); 1480 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]); 1481 abld.AND(*reg, enabled_mask, coverage_mask); 1482 } else { 1483 /* In per-pixel mode, the coverage mask is sufficient. */ 1484 *reg = coverage_mask; 1485 } 1486 return reg; 1487} 1488 1489fs_reg 1490fs_visitor::resolve_source_modifiers(const fs_reg &src) 1491{ 1492 if (!src.abs && !src.negate) 1493 return src; 1494 1495 fs_reg temp = bld.vgrf(src.type); 1496 bld.MOV(temp, src); 1497 1498 return temp; 1499} 1500 1501void 1502fs_visitor::emit_discard_jump() 1503{ 1504 assert(brw_wm_prog_data(this->prog_data)->uses_kill); 1505 1506 /* For performance, after a discard, jump to the end of the 1507 * shader if all relevant channels have been discarded. 1508 */ 1509 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP); 1510 discard_jump->flag_subreg = 1; 1511 1512 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H; 1513 discard_jump->predicate_inverse = true; 1514} 1515 1516void 1517fs_visitor::emit_gs_thread_end() 1518{ 1519 assert(stage == MESA_SHADER_GEOMETRY); 1520 1521 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data); 1522 1523 if (gs_compile->control_data_header_size_bits > 0) { 1524 emit_gs_control_data_bits(this->final_gs_vertex_count); 1525 } 1526 1527 const fs_builder abld = bld.annotate("thread end"); 1528 fs_inst *inst; 1529 1530 if (gs_prog_data->static_vertex_count != -1) { 1531 foreach_in_list_reverse(fs_inst, prev, &this->instructions) { 1532 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 || 1533 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED || 1534 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT || 1535 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) { 1536 prev->eot = true; 1537 1538 /* Delete now dead instructions. */ 1539 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) { 1540 if (dead == prev) 1541 break; 1542 dead->remove(); 1543 } 1544 return; 1545 } else if (prev->is_control_flow() || prev->has_side_effects()) { 1546 break; 1547 } 1548 } 1549 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1); 1550 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD))); 1551 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr); 1552 inst->mlen = 1; 1553 } else { 1554 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2); 1555 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2); 1556 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)); 1557 sources[1] = this->final_gs_vertex_count; 1558 abld.LOAD_PAYLOAD(payload, sources, 2, 2); 1559 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload); 1560 inst->mlen = 2; 1561 } 1562 inst->eot = true; 1563 inst->offset = 0; 1564} 1565 1566void 1567fs_visitor::assign_curb_setup() 1568{ 1569 unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8); 1570 1571 unsigned ubo_push_length = 0; 1572 unsigned ubo_push_start[4]; 1573 for (int i = 0; i < 4; i++) { 1574 ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length); 1575 ubo_push_length += stage_prog_data->ubo_ranges[i].length; 1576 } 1577 1578 prog_data->curb_read_length = uniform_push_length + ubo_push_length; 1579 1580 /* Map the offsets in the UNIFORM file to fixed HW regs. */ 1581 foreach_block_and_inst(block, fs_inst, inst, cfg) { 1582 for (unsigned int i = 0; i < inst->sources; i++) { 1583 if (inst->src[i].file == UNIFORM) { 1584 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4; 1585 int constant_nr; 1586 if (inst->src[i].nr >= UBO_START) { 1587 /* constant_nr is in 32-bit units, the rest are in bytes */ 1588 constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] + 1589 inst->src[i].offset / 4; 1590 } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) { 1591 constant_nr = push_constant_loc[uniform_nr]; 1592 } else { 1593 /* Section 5.11 of the OpenGL 4.1 spec says: 1594 * "Out-of-bounds reads return undefined values, which include 1595 * values from other variables of the active program or zero." 1596 * Just return the first push constant. 1597 */ 1598 constant_nr = 0; 1599 } 1600 1601 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs + 1602 constant_nr / 8, 1603 constant_nr % 8); 1604 brw_reg.abs = inst->src[i].abs; 1605 brw_reg.negate = inst->src[i].negate; 1606 1607 assert(inst->src[i].stride == 0); 1608 inst->src[i] = byte_offset( 1609 retype(brw_reg, inst->src[i].type), 1610 inst->src[i].offset % 4); 1611 } 1612 } 1613 } 1614 1615 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */ 1616 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length; 1617} 1618 1619void 1620fs_visitor::calculate_urb_setup() 1621{ 1622 assert(stage == MESA_SHADER_FRAGMENT); 1623 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data); 1624 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; 1625 1626 memset(prog_data->urb_setup, -1, 1627 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX); 1628 1629 int urb_next = 0; 1630 /* Figure out where each of the incoming setup attributes lands. */ 1631 if (devinfo->gen >= 6) { 1632 if (util_bitcount64(nir->info.inputs_read & 1633 BRW_FS_VARYING_INPUT_MASK) <= 16) { 1634 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the 1635 * first 16 varying inputs, so we can put them wherever we want. 1636 * Just put them in order. 1637 * 1638 * This is useful because it means that (a) inputs not used by the 1639 * fragment shader won't take up valuable register space, and (b) we 1640 * won't have to recompile the fragment shader if it gets paired with 1641 * a different vertex (or geometry) shader. 1642 */ 1643 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) { 1644 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK & 1645 BITFIELD64_BIT(i)) { 1646 prog_data->urb_setup[i] = urb_next++; 1647 } 1648 } 1649 } else { 1650 /* We have enough input varyings that the SF/SBE pipeline stage can't 1651 * arbitrarily rearrange them to suit our whim; we have to put them 1652 * in an order that matches the output of the previous pipeline stage 1653 * (geometry or vertex shader). 1654 */ 1655 struct brw_vue_map prev_stage_vue_map; 1656 brw_compute_vue_map(devinfo, &prev_stage_vue_map, 1657 key->input_slots_valid, 1658 nir->info.separate_shader); 1659 1660 int first_slot = 1661 brw_compute_first_urb_slot_required(nir->info.inputs_read, 1662 &prev_stage_vue_map); 1663 1664 assert(prev_stage_vue_map.num_slots <= first_slot + 32); 1665 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots; 1666 slot++) { 1667 int varying = prev_stage_vue_map.slot_to_varying[slot]; 1668 if (varying != BRW_VARYING_SLOT_PAD && 1669 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK & 1670 BITFIELD64_BIT(varying))) { 1671 prog_data->urb_setup[varying] = slot - first_slot; 1672 } 1673 } 1674 urb_next = prev_stage_vue_map.num_slots - first_slot; 1675 } 1676 } else { 1677 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */ 1678 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) { 1679 /* Point size is packed into the header, not as a general attribute */ 1680 if (i == VARYING_SLOT_PSIZ) 1681 continue; 1682 1683 if (key->input_slots_valid & BITFIELD64_BIT(i)) { 1684 /* The back color slot is skipped when the front color is 1685 * also written to. In addition, some slots can be 1686 * written in the vertex shader and not read in the 1687 * fragment shader. So the register number must always be 1688 * incremented, mapped or not. 1689 */ 1690 if (_mesa_varying_slot_in_fs((gl_varying_slot) i)) 1691 prog_data->urb_setup[i] = urb_next; 1692 urb_next++; 1693 } 1694 } 1695 1696 /* 1697 * It's a FS only attribute, and we did interpolation for this attribute 1698 * in SF thread. So, count it here, too. 1699 * 1700 * See compile_sf_prog() for more info. 1701 */ 1702 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC)) 1703 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++; 1704 } 1705 1706 prog_data->num_varying_inputs = urb_next; 1707} 1708 1709void 1710fs_visitor::assign_urb_setup() 1711{ 1712 assert(stage == MESA_SHADER_FRAGMENT); 1713 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data); 1714 1715 int urb_start = payload.num_regs + prog_data->base.curb_read_length; 1716 1717 /* Offset all the urb_setup[] index by the actual position of the 1718 * setup regs, now that the location of the constants has been chosen. 1719 */ 1720 foreach_block_and_inst(block, fs_inst, inst, cfg) { 1721 for (int i = 0; i < inst->sources; i++) { 1722 if (inst->src[i].file == ATTR) { 1723 /* ATTR regs in the FS are in units of logical scalar inputs each 1724 * of which consumes half of a GRF register. 1725 */ 1726 assert(inst->src[i].offset < REG_SIZE / 2); 1727 const unsigned grf = urb_start + inst->src[i].nr / 2; 1728 const unsigned offset = (inst->src[i].nr % 2) * (REG_SIZE / 2) + 1729 inst->src[i].offset; 1730 const unsigned width = inst->src[i].stride == 0 ? 1731 1 : MIN2(inst->exec_size, 8); 1732 struct brw_reg reg = stride( 1733 byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type), 1734 offset), 1735 width * inst->src[i].stride, 1736 width, inst->src[i].stride); 1737 reg.abs = inst->src[i].abs; 1738 reg.negate = inst->src[i].negate; 1739 inst->src[i] = reg; 1740 } 1741 } 1742 } 1743 1744 /* Each attribute is 4 setup channels, each of which is half a reg. */ 1745 this->first_non_payload_grf += prog_data->num_varying_inputs * 2; 1746} 1747 1748void 1749fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst) 1750{ 1751 for (int i = 0; i < inst->sources; i++) { 1752 if (inst->src[i].file == ATTR) { 1753 int grf = payload.num_regs + 1754 prog_data->curb_read_length + 1755 inst->src[i].nr + 1756 inst->src[i].offset / REG_SIZE; 1757 1758 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM: 1759 * 1760 * VertStride must be used to cross GRF register boundaries. This 1761 * rule implies that elements within a 'Width' cannot cross GRF 1762 * boundaries. 1763 * 1764 * So, for registers that are large enough, we have to split the exec 1765 * size in two and trust the compression state to sort it out. 1766 */ 1767 unsigned total_size = inst->exec_size * 1768 inst->src[i].stride * 1769 type_sz(inst->src[i].type); 1770 1771 assert(total_size <= 2 * REG_SIZE); 1772 const unsigned exec_size = 1773 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2; 1774 1775 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size; 1776 struct brw_reg reg = 1777 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type), 1778 inst->src[i].offset % REG_SIZE), 1779 exec_size * inst->src[i].stride, 1780 width, inst->src[i].stride); 1781 reg.abs = inst->src[i].abs; 1782 reg.negate = inst->src[i].negate; 1783 1784 inst->src[i] = reg; 1785 } 1786 } 1787} 1788 1789void 1790fs_visitor::assign_vs_urb_setup() 1791{ 1792 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data); 1793 1794 assert(stage == MESA_SHADER_VERTEX); 1795 1796 /* Each attribute is 4 regs. */ 1797 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots; 1798 1799 assert(vs_prog_data->base.urb_read_length <= 15); 1800 1801 /* Rewrite all ATTR file references to the hw grf that they land in. */ 1802 foreach_block_and_inst(block, fs_inst, inst, cfg) { 1803 convert_attr_sources_to_hw_regs(inst); 1804 } 1805} 1806 1807void 1808fs_visitor::assign_tcs_single_patch_urb_setup() 1809{ 1810 assert(stage == MESA_SHADER_TESS_CTRL); 1811 1812 /* Rewrite all ATTR file references to HW_REGs. */ 1813 foreach_block_and_inst(block, fs_inst, inst, cfg) { 1814 convert_attr_sources_to_hw_regs(inst); 1815 } 1816} 1817 1818void 1819fs_visitor::assign_tes_urb_setup() 1820{ 1821 assert(stage == MESA_SHADER_TESS_EVAL); 1822 1823 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data); 1824 1825 first_non_payload_grf += 8 * vue_prog_data->urb_read_length; 1826 1827 /* Rewrite all ATTR file references to HW_REGs. */ 1828 foreach_block_and_inst(block, fs_inst, inst, cfg) { 1829 convert_attr_sources_to_hw_regs(inst); 1830 } 1831} 1832 1833void 1834fs_visitor::assign_gs_urb_setup() 1835{ 1836 assert(stage == MESA_SHADER_GEOMETRY); 1837 1838 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data); 1839 1840 first_non_payload_grf += 1841 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in; 1842 1843 foreach_block_and_inst(block, fs_inst, inst, cfg) { 1844 /* Rewrite all ATTR file references to GRFs. */ 1845 convert_attr_sources_to_hw_regs(inst); 1846 } 1847} 1848 1849 1850/** 1851 * Split large virtual GRFs into separate components if we can. 1852 * 1853 * This is mostly duplicated with what brw_fs_vector_splitting does, 1854 * but that's really conservative because it's afraid of doing 1855 * splitting that doesn't result in real progress after the rest of 1856 * the optimization phases, which would cause infinite looping in 1857 * optimization. We can do it once here, safely. This also has the 1858 * opportunity to split interpolated values, or maybe even uniforms, 1859 * which we don't have at the IR level. 1860 * 1861 * We want to split, because virtual GRFs are what we register 1862 * allocate and spill (due to contiguousness requirements for some 1863 * instructions), and they're what we naturally generate in the 1864 * codegen process, but most virtual GRFs don't actually need to be 1865 * contiguous sets of GRFs. If we split, we'll end up with reduced 1866 * live intervals and better dead code elimination and coalescing. 1867 */ 1868void 1869fs_visitor::split_virtual_grfs() 1870{ 1871 /* Compact the register file so we eliminate dead vgrfs. This 1872 * only defines split points for live registers, so if we have 1873 * too large dead registers they will hit assertions later. 1874 */ 1875 compact_virtual_grfs(); 1876 1877 int num_vars = this->alloc.count; 1878 1879 /* Count the total number of registers */ 1880 int reg_count = 0; 1881 int vgrf_to_reg[num_vars]; 1882 for (int i = 0; i < num_vars; i++) { 1883 vgrf_to_reg[i] = reg_count; 1884 reg_count += alloc.sizes[i]; 1885 } 1886 1887 /* An array of "split points". For each register slot, this indicates 1888 * if this slot can be separated from the previous slot. Every time an 1889 * instruction uses multiple elements of a register (as a source or 1890 * destination), we mark the used slots as inseparable. Then we go 1891 * through and split the registers into the smallest pieces we can. 1892 */ 1893 bool *split_points = new bool[reg_count]; 1894 memset(split_points, 0, reg_count * sizeof(*split_points)); 1895 1896 /* Mark all used registers as fully splittable */ 1897 foreach_block_and_inst(block, fs_inst, inst, cfg) { 1898 if (inst->dst.file == VGRF) { 1899 int reg = vgrf_to_reg[inst->dst.nr]; 1900 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++) 1901 split_points[reg + j] = true; 1902 } 1903 1904 for (int i = 0; i < inst->sources; i++) { 1905 if (inst->src[i].file == VGRF) { 1906 int reg = vgrf_to_reg[inst->src[i].nr]; 1907 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++) 1908 split_points[reg + j] = true; 1909 } 1910 } 1911 } 1912 1913 foreach_block_and_inst(block, fs_inst, inst, cfg) { 1914 if (inst->dst.file == VGRF) { 1915 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE; 1916 for (unsigned j = 1; j < regs_written(inst); j++) 1917 split_points[reg + j] = false; 1918 } 1919 for (int i = 0; i < inst->sources; i++) { 1920 if (inst->src[i].file == VGRF) { 1921 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE; 1922 for (unsigned j = 1; j < regs_read(inst, i); j++) 1923 split_points[reg + j] = false; 1924 } 1925 } 1926 } 1927 1928 int *new_virtual_grf = new int[reg_count]; 1929 int *new_reg_offset = new int[reg_count]; 1930 1931 int reg = 0; 1932 for (int i = 0; i < num_vars; i++) { 1933 /* The first one should always be 0 as a quick sanity check. */ 1934 assert(split_points[reg] == false); 1935 1936 /* j = 0 case */ 1937 new_reg_offset[reg] = 0; 1938 reg++; 1939 int offset = 1; 1940 1941 /* j > 0 case */ 1942 for (unsigned j = 1; j < alloc.sizes[i]; j++) { 1943 /* If this is a split point, reset the offset to 0 and allocate a 1944 * new virtual GRF for the previous offset many registers 1945 */ 1946 if (split_points[reg]) { 1947 assert(offset <= MAX_VGRF_SIZE); 1948 int grf = alloc.allocate(offset); 1949 for (int k = reg - offset; k < reg; k++) 1950 new_virtual_grf[k] = grf; 1951 offset = 0; 1952 } 1953 new_reg_offset[reg] = offset; 1954 offset++; 1955 reg++; 1956 } 1957 1958 /* The last one gets the original register number */ 1959 assert(offset <= MAX_VGRF_SIZE); 1960 alloc.sizes[i] = offset; 1961 for (int k = reg - offset; k < reg; k++) 1962 new_virtual_grf[k] = i; 1963 } 1964 assert(reg == reg_count); 1965 1966 foreach_block_and_inst(block, fs_inst, inst, cfg) { 1967 if (inst->dst.file == VGRF) { 1968 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE; 1969 inst->dst.nr = new_virtual_grf[reg]; 1970 inst->dst.offset = new_reg_offset[reg] * REG_SIZE + 1971 inst->dst.offset % REG_SIZE; 1972 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]); 1973 } 1974 for (int i = 0; i < inst->sources; i++) { 1975 if (inst->src[i].file == VGRF) { 1976 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE; 1977 inst->src[i].nr = new_virtual_grf[reg]; 1978 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE + 1979 inst->src[i].offset % REG_SIZE; 1980 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]); 1981 } 1982 } 1983 } 1984 invalidate_live_intervals(); 1985 1986 delete[] split_points; 1987 delete[] new_virtual_grf; 1988 delete[] new_reg_offset; 1989} 1990 1991/** 1992 * Remove unused virtual GRFs and compact the virtual_grf_* arrays. 1993 * 1994 * During code generation, we create tons of temporary variables, many of 1995 * which get immediately killed and are never used again. Yet, in later 1996 * optimization and analysis passes, such as compute_live_intervals, we need 1997 * to loop over all the virtual GRFs. Compacting them can save a lot of 1998 * overhead. 1999 */ 2000bool 2001fs_visitor::compact_virtual_grfs() 2002{ 2003 bool progress = false; 2004 int *remap_table = new int[this->alloc.count]; 2005 memset(remap_table, -1, this->alloc.count * sizeof(int)); 2006 2007 /* Mark which virtual GRFs are used. */ 2008 foreach_block_and_inst(block, const fs_inst, inst, cfg) { 2009 if (inst->dst.file == VGRF) 2010 remap_table[inst->dst.nr] = 0; 2011 2012 for (int i = 0; i < inst->sources; i++) { 2013 if (inst->src[i].file == VGRF) 2014 remap_table[inst->src[i].nr] = 0; 2015 } 2016 } 2017 2018 /* Compact the GRF arrays. */ 2019 int new_index = 0; 2020 for (unsigned i = 0; i < this->alloc.count; i++) { 2021 if (remap_table[i] == -1) { 2022 /* We just found an unused register. This means that we are 2023 * actually going to compact something. 2024 */ 2025 progress = true; 2026 } else { 2027 remap_table[i] = new_index; 2028 alloc.sizes[new_index] = alloc.sizes[i]; 2029 invalidate_live_intervals(); 2030 ++new_index; 2031 } 2032 } 2033 2034 this->alloc.count = new_index; 2035 2036 /* Patch all the instructions to use the newly renumbered registers */ 2037 foreach_block_and_inst(block, fs_inst, inst, cfg) { 2038 if (inst->dst.file == VGRF) 2039 inst->dst.nr = remap_table[inst->dst.nr]; 2040 2041 for (int i = 0; i < inst->sources; i++) { 2042 if (inst->src[i].file == VGRF) 2043 inst->src[i].nr = remap_table[inst->src[i].nr]; 2044 } 2045 } 2046 2047 /* Patch all the references to delta_xy, since they're used in register 2048 * allocation. If they're unused, switch them to BAD_FILE so we don't 2049 * think some random VGRF is delta_xy. 2050 */ 2051 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) { 2052 if (delta_xy[i].file == VGRF) { 2053 if (remap_table[delta_xy[i].nr] != -1) { 2054 delta_xy[i].nr = remap_table[delta_xy[i].nr]; 2055 } else { 2056 delta_xy[i].file = BAD_FILE; 2057 } 2058 } 2059 } 2060 2061 delete[] remap_table; 2062 2063 return progress; 2064} 2065 2066static int 2067get_subgroup_id_param_index(const brw_stage_prog_data *prog_data) 2068{ 2069 if (prog_data->nr_params == 0) 2070 return -1; 2071 2072 /* The local thread id is always the last parameter in the list */ 2073 uint32_t last_param = prog_data->param[prog_data->nr_params - 1]; 2074 if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID) 2075 return prog_data->nr_params - 1; 2076 2077 return -1; 2078} 2079 2080/** 2081 * Struct for handling complex alignments. 2082 * 2083 * A complex alignment is stored as multiplier and an offset. A value is 2084 * considered to be aligned if it is {offset} larger than a multiple of {mul}. 2085 * For instance, with an alignment of {8, 2}, cplx_align_apply would do the 2086 * following: 2087 * 2088 * N | cplx_align_apply({8, 2}, N) 2089 * ----+----------------------------- 2090 * 4 | 6 2091 * 6 | 6 2092 * 8 | 14 2093 * 10 | 14 2094 * 12 | 14 2095 * 14 | 14 2096 * 16 | 22 2097 */ 2098struct cplx_align { 2099 unsigned mul:4; 2100 unsigned offset:4; 2101}; 2102 2103#define CPLX_ALIGN_MAX_MUL 8 2104 2105static void 2106cplx_align_assert_sane(struct cplx_align a) 2107{ 2108 assert(a.mul > 0 && util_is_power_of_two_nonzero(a.mul)); 2109 assert(a.offset < a.mul); 2110} 2111 2112/** 2113 * Combines two alignments to produce a least multiple of sorts. 2114 * 2115 * The returned alignment is the smallest (in terms of multiplier) such that 2116 * anything aligned to both a and b will be aligned to the new alignment. 2117 * This function will assert-fail if a and b are not compatible, i.e. if the 2118 * offset parameters are such that no common alignment is possible. 2119 */ 2120static struct cplx_align 2121cplx_align_combine(struct cplx_align a, struct cplx_align b) 2122{ 2123 cplx_align_assert_sane(a); 2124 cplx_align_assert_sane(b); 2125 2126 /* Assert that the alignments agree. */ 2127 assert((a.offset & (b.mul - 1)) == (b.offset & (a.mul - 1))); 2128 2129 return a.mul > b.mul ? a : b; 2130} 2131 2132/** 2133 * Apply a complex alignment 2134 * 2135 * This function will return the smallest number greater than or equal to 2136 * offset that is aligned to align. 2137 */ 2138static unsigned 2139cplx_align_apply(struct cplx_align align, unsigned offset) 2140{ 2141 return ALIGN(offset - align.offset, align.mul) + align.offset; 2142} 2143 2144#define UNIFORM_SLOT_SIZE 4 2145 2146struct uniform_slot_info { 2147 /** True if the given uniform slot is live */ 2148 unsigned is_live:1; 2149 2150 /** True if this slot and the next slot must remain contiguous */ 2151 unsigned contiguous:1; 2152 2153 struct cplx_align align; 2154}; 2155 2156static void 2157mark_uniform_slots_read(struct uniform_slot_info *slots, 2158 unsigned num_slots, unsigned alignment) 2159{ 2160 assert(alignment > 0 && util_is_power_of_two_nonzero(alignment)); 2161 assert(alignment <= CPLX_ALIGN_MAX_MUL); 2162 2163 /* We can't align a slot to anything less than the slot size */ 2164 alignment = MAX2(alignment, UNIFORM_SLOT_SIZE); 2165 2166 struct cplx_align align = {alignment, 0}; 2167 cplx_align_assert_sane(align); 2168 2169 for (unsigned i = 0; i < num_slots; i++) { 2170 slots[i].is_live = true; 2171 if (i < num_slots - 1) 2172 slots[i].contiguous = true; 2173 2174 align.offset = (i * UNIFORM_SLOT_SIZE) & (align.mul - 1); 2175 if (slots[i].align.mul == 0) { 2176 slots[i].align = align; 2177 } else { 2178 slots[i].align = cplx_align_combine(slots[i].align, align); 2179 } 2180 } 2181} 2182 2183/** 2184 * Assign UNIFORM file registers to either push constants or pull constants. 2185 * 2186 * We allow a fragment shader to have more than the specified minimum 2187 * maximum number of fragment shader uniform components (64). If 2188 * there are too many of these, they'd fill up all of register space. 2189 * So, this will push some of them out to the pull constant buffer and 2190 * update the program to load them. 2191 */ 2192void 2193fs_visitor::assign_constant_locations() 2194{ 2195 /* Only the first compile gets to decide on locations. */ 2196 if (push_constant_loc) { 2197 assert(pull_constant_loc); 2198 return; 2199 } 2200 2201 struct uniform_slot_info slots[uniforms]; 2202 memset(slots, 0, sizeof(slots)); 2203 2204 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 2205 for (int i = 0 ; i < inst->sources; i++) { 2206 if (inst->src[i].file != UNIFORM) 2207 continue; 2208 2209 /* NIR tightly packs things so the uniform number might not be 2210 * aligned (if we have a double right after a float, for instance). 2211 * This is fine because the process of re-arranging them will ensure 2212 * that things are properly aligned. The offset into that uniform, 2213 * however, must be aligned. 2214 * 2215 * In Vulkan, we have explicit offsets but everything is crammed 2216 * into a single "variable" so inst->src[i].nr will always be 0. 2217 * Everything will be properly aligned relative to that one base. 2218 */ 2219 assert(inst->src[i].offset % type_sz(inst->src[i].type) == 0); 2220 2221 unsigned u = inst->src[i].nr + 2222 inst->src[i].offset / UNIFORM_SLOT_SIZE; 2223 2224 if (u >= uniforms) 2225 continue; 2226 2227 unsigned slots_read; 2228 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) { 2229 slots_read = DIV_ROUND_UP(inst->src[2].ud, UNIFORM_SLOT_SIZE); 2230 } else { 2231 unsigned bytes_read = inst->components_read(i) * 2232 type_sz(inst->src[i].type); 2233 slots_read = DIV_ROUND_UP(bytes_read, UNIFORM_SLOT_SIZE); 2234 } 2235 2236 assert(u + slots_read <= uniforms); 2237 mark_uniform_slots_read(&slots[u], slots_read, 2238 type_sz(inst->src[i].type)); 2239 } 2240 } 2241 2242 int subgroup_id_index = get_subgroup_id_param_index(stage_prog_data); 2243 2244 /* Only allow 16 registers (128 uniform components) as push constants. 2245 * 2246 * Just demote the end of the list. We could probably do better 2247 * here, demoting things that are rarely used in the program first. 2248 * 2249 * If changing this value, note the limitation about total_regs in 2250 * brw_curbe.c. 2251 */ 2252 unsigned int max_push_components = 16 * 8; 2253 if (subgroup_id_index >= 0) 2254 max_push_components--; /* Save a slot for the thread ID */ 2255 2256 /* We push small arrays, but no bigger than 16 floats. This is big enough 2257 * for a vec4 but hopefully not large enough to push out other stuff. We 2258 * should probably use a better heuristic at some point. 2259 */ 2260 const unsigned int max_chunk_size = 16; 2261 2262 unsigned int num_push_constants = 0; 2263 unsigned int num_pull_constants = 0; 2264 2265 push_constant_loc = ralloc_array(mem_ctx, int, uniforms); 2266 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms); 2267 2268 /* Default to -1 meaning no location */ 2269 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc)); 2270 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc)); 2271 2272 int chunk_start = -1; 2273 struct cplx_align align; 2274 for (unsigned u = 0; u < uniforms; u++) { 2275 if (!slots[u].is_live) { 2276 assert(chunk_start == -1); 2277 continue; 2278 } 2279 2280 /* Skip subgroup_id_index to put it in the last push register. */ 2281 if (subgroup_id_index == (int)u) 2282 continue; 2283 2284 if (chunk_start == -1) { 2285 chunk_start = u; 2286 align = slots[u].align; 2287 } else { 2288 /* Offset into the chunk */ 2289 unsigned chunk_offset = (u - chunk_start) * UNIFORM_SLOT_SIZE; 2290 2291 /* Shift the slot alignment down by the chunk offset so it is 2292 * comparable with the base chunk alignment. 2293 */ 2294 struct cplx_align slot_align = slots[u].align; 2295 slot_align.offset = 2296 (slot_align.offset - chunk_offset) & (align.mul - 1); 2297 2298 align = cplx_align_combine(align, slot_align); 2299 } 2300 2301 /* Sanity check the alignment */ 2302 cplx_align_assert_sane(align); 2303 2304 if (slots[u].contiguous) 2305 continue; 2306 2307 /* Adjust the alignment to be in terms of slots, not bytes */ 2308 assert((align.mul & (UNIFORM_SLOT_SIZE - 1)) == 0); 2309 assert((align.offset & (UNIFORM_SLOT_SIZE - 1)) == 0); 2310 align.mul /= UNIFORM_SLOT_SIZE; 2311 align.offset /= UNIFORM_SLOT_SIZE; 2312 2313 unsigned push_start_align = cplx_align_apply(align, num_push_constants); 2314 unsigned chunk_size = u - chunk_start + 1; 2315 if ((!compiler->supports_pull_constants && u < UBO_START) || 2316 (chunk_size < max_chunk_size && 2317 push_start_align + chunk_size <= max_push_components)) { 2318 /* Align up the number of push constants */ 2319 num_push_constants = push_start_align; 2320 for (unsigned i = 0; i < chunk_size; i++) 2321 push_constant_loc[chunk_start + i] = num_push_constants++; 2322 } else { 2323 /* We need to pull this one */ 2324 num_pull_constants = cplx_align_apply(align, num_pull_constants); 2325 for (unsigned i = 0; i < chunk_size; i++) 2326 pull_constant_loc[chunk_start + i] = num_pull_constants++; 2327 } 2328 2329 /* Reset the chunk and start again */ 2330 chunk_start = -1; 2331 } 2332 2333 /* Add the CS local thread ID uniform at the end of the push constants */ 2334 if (subgroup_id_index >= 0) 2335 push_constant_loc[subgroup_id_index] = num_push_constants++; 2336 2337 /* As the uniforms are going to be reordered, stash the old array and 2338 * create two new arrays for push/pull params. 2339 */ 2340 uint32_t *param = stage_prog_data->param; 2341 stage_prog_data->nr_params = num_push_constants; 2342 if (num_push_constants) { 2343 stage_prog_data->param = rzalloc_array(mem_ctx, uint32_t, 2344 num_push_constants); 2345 } else { 2346 stage_prog_data->param = NULL; 2347 } 2348 assert(stage_prog_data->nr_pull_params == 0); 2349 assert(stage_prog_data->pull_param == NULL); 2350 if (num_pull_constants > 0) { 2351 stage_prog_data->nr_pull_params = num_pull_constants; 2352 stage_prog_data->pull_param = rzalloc_array(mem_ctx, uint32_t, 2353 num_pull_constants); 2354 } 2355 2356 /* Now that we know how many regular uniforms we'll push, reduce the 2357 * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits. 2358 */ 2359 unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8); 2360 for (int i = 0; i < 4; i++) { 2361 struct brw_ubo_range *range = &prog_data->ubo_ranges[i]; 2362 2363 if (push_length + range->length > 64) 2364 range->length = 64 - push_length; 2365 2366 push_length += range->length; 2367 } 2368 assert(push_length <= 64); 2369 2370 /* Up until now, the param[] array has been indexed by reg + offset 2371 * of UNIFORM registers. Move pull constants into pull_param[] and 2372 * condense param[] to only contain the uniforms we chose to push. 2373 * 2374 * NOTE: Because we are condensing the params[] array, we know that 2375 * push_constant_loc[i] <= i and we can do it in one smooth loop without 2376 * having to make a copy. 2377 */ 2378 for (unsigned int i = 0; i < uniforms; i++) { 2379 uint32_t value = param[i]; 2380 if (pull_constant_loc[i] != -1) { 2381 stage_prog_data->pull_param[pull_constant_loc[i]] = value; 2382 } else if (push_constant_loc[i] != -1) { 2383 stage_prog_data->param[push_constant_loc[i]] = value; 2384 } 2385 } 2386 ralloc_free(param); 2387} 2388 2389bool 2390fs_visitor::get_pull_locs(const fs_reg &src, 2391 unsigned *out_surf_index, 2392 unsigned *out_pull_index) 2393{ 2394 assert(src.file == UNIFORM); 2395 2396 if (src.nr >= UBO_START) { 2397 const struct brw_ubo_range *range = 2398 &prog_data->ubo_ranges[src.nr - UBO_START]; 2399 2400 /* If this access is in our (reduced) range, use the push data. */ 2401 if (src.offset / 32 < range->length) 2402 return false; 2403 2404 *out_surf_index = prog_data->binding_table.ubo_start + range->block; 2405 *out_pull_index = (32 * range->start + src.offset) / 4; 2406 return true; 2407 } 2408 2409 const unsigned location = src.nr + src.offset / 4; 2410 2411 if (location < uniforms && pull_constant_loc[location] != -1) { 2412 /* A regular uniform push constant */ 2413 *out_surf_index = stage_prog_data->binding_table.pull_constants_start; 2414 *out_pull_index = pull_constant_loc[location]; 2415 return true; 2416 } 2417 2418 return false; 2419} 2420 2421/** 2422 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD 2423 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs. 2424 */ 2425void 2426fs_visitor::lower_constant_loads() 2427{ 2428 unsigned index, pull_index; 2429 2430 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) { 2431 /* Set up the annotation tracking for new generated instructions. */ 2432 const fs_builder ibld(this, block, inst); 2433 2434 for (int i = 0; i < inst->sources; i++) { 2435 if (inst->src[i].file != UNIFORM) 2436 continue; 2437 2438 /* We'll handle this case later */ 2439 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) 2440 continue; 2441 2442 if (!get_pull_locs(inst->src[i], &index, &pull_index)) 2443 continue; 2444 2445 assert(inst->src[i].stride == 0); 2446 2447 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */ 2448 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0); 2449 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD); 2450 const unsigned base = pull_index * 4; 2451 2452 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, 2453 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1))); 2454 2455 /* Rewrite the instruction to use the temporary VGRF. */ 2456 inst->src[i].file = VGRF; 2457 inst->src[i].nr = dst.nr; 2458 inst->src[i].offset = (base & (block_sz - 1)) + 2459 inst->src[i].offset % 4; 2460 } 2461 2462 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && 2463 inst->src[0].file == UNIFORM) { 2464 2465 if (!get_pull_locs(inst->src[0], &index, &pull_index)) 2466 continue; 2467 2468 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst, 2469 brw_imm_ud(index), 2470 inst->src[1], 2471 pull_index * 4); 2472 inst->remove(block); 2473 } 2474 } 2475 invalidate_live_intervals(); 2476} 2477 2478bool 2479fs_visitor::opt_algebraic() 2480{ 2481 bool progress = false; 2482 2483 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 2484 switch (inst->opcode) { 2485 case BRW_OPCODE_MOV: 2486 if (!devinfo->has_64bit_types && 2487 (inst->dst.type == BRW_REGISTER_TYPE_DF || 2488 inst->dst.type == BRW_REGISTER_TYPE_UQ || 2489 inst->dst.type == BRW_REGISTER_TYPE_Q)) { 2490 assert(inst->dst.type == inst->src[0].type); 2491 assert(!inst->saturate); 2492 assert(!inst->src[0].abs); 2493 assert(!inst->src[0].negate); 2494 const brw::fs_builder ibld(this, block, inst); 2495 2496 if (inst->src[0].file == IMM) { 2497 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1), 2498 brw_imm_ud(inst->src[0].u64 >> 32)); 2499 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0), 2500 brw_imm_ud(inst->src[0].u64)); 2501 } else { 2502 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1), 2503 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1)); 2504 ibld.MOV(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0), 2505 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0)); 2506 } 2507 2508 inst->remove(block); 2509 progress = true; 2510 } 2511 2512 if ((inst->conditional_mod == BRW_CONDITIONAL_Z || 2513 inst->conditional_mod == BRW_CONDITIONAL_NZ) && 2514 inst->dst.is_null() && 2515 (inst->src[0].abs || inst->src[0].negate)) { 2516 inst->src[0].abs = false; 2517 inst->src[0].negate = false; 2518 progress = true; 2519 break; 2520 } 2521 2522 if (inst->src[0].file != IMM) 2523 break; 2524 2525 if (inst->saturate) { 2526 /* Full mixed-type saturates don't happen. However, we can end up 2527 * with things like: 2528 * 2529 * mov.sat(8) g21<1>DF -1F 2530 * 2531 * Other mixed-size-but-same-base-type cases may also be possible. 2532 */ 2533 if (inst->dst.type != inst->src[0].type && 2534 inst->dst.type != BRW_REGISTER_TYPE_DF && 2535 inst->src[0].type != BRW_REGISTER_TYPE_F) 2536 assert(!"unimplemented: saturate mixed types"); 2537 2538 if (brw_saturate_immediate(inst->src[0].type, 2539 &inst->src[0].as_brw_reg())) { 2540 inst->saturate = false; 2541 progress = true; 2542 } 2543 } 2544 break; 2545 2546 case BRW_OPCODE_MUL: 2547 if (inst->src[1].file != IMM) 2548 continue; 2549 2550 /* a * 1.0 = a */ 2551 if (inst->src[1].is_one()) { 2552 inst->opcode = BRW_OPCODE_MOV; 2553 inst->src[1] = reg_undef; 2554 progress = true; 2555 break; 2556 } 2557 2558 /* a * -1.0 = -a */ 2559 if (inst->src[1].is_negative_one()) { 2560 inst->opcode = BRW_OPCODE_MOV; 2561 inst->src[0].negate = !inst->src[0].negate; 2562 inst->src[1] = reg_undef; 2563 progress = true; 2564 break; 2565 } 2566 2567 if (inst->src[0].file == IMM) { 2568 assert(inst->src[0].type == BRW_REGISTER_TYPE_F); 2569 inst->opcode = BRW_OPCODE_MOV; 2570 inst->src[0].f *= inst->src[1].f; 2571 inst->src[1] = reg_undef; 2572 progress = true; 2573 break; 2574 } 2575 break; 2576 case BRW_OPCODE_ADD: 2577 if (inst->src[1].file != IMM) 2578 continue; 2579 2580 if (inst->src[0].file == IMM) { 2581 assert(inst->src[0].type == BRW_REGISTER_TYPE_F); 2582 inst->opcode = BRW_OPCODE_MOV; 2583 inst->src[0].f += inst->src[1].f; 2584 inst->src[1] = reg_undef; 2585 progress = true; 2586 break; 2587 } 2588 break; 2589 case BRW_OPCODE_OR: 2590 if (inst->src[0].equals(inst->src[1]) || 2591 inst->src[1].is_zero()) { 2592 /* On Gen8+, the OR instruction can have a source modifier that 2593 * performs logical not on the operand. Cases of 'OR r0, ~r1, 0' 2594 * or 'OR r0, ~r1, ~r1' should become a NOT instead of a MOV. 2595 */ 2596 if (inst->src[0].negate) { 2597 inst->opcode = BRW_OPCODE_NOT; 2598 inst->src[0].negate = false; 2599 } else { 2600 inst->opcode = BRW_OPCODE_MOV; 2601 } 2602 inst->src[1] = reg_undef; 2603 progress = true; 2604 break; 2605 } 2606 break; 2607 case BRW_OPCODE_CMP: 2608 if ((inst->conditional_mod == BRW_CONDITIONAL_Z || 2609 inst->conditional_mod == BRW_CONDITIONAL_NZ) && 2610 inst->src[1].is_zero() && 2611 (inst->src[0].abs || inst->src[0].negate)) { 2612 inst->src[0].abs = false; 2613 inst->src[0].negate = false; 2614 progress = true; 2615 break; 2616 } 2617 break; 2618 case BRW_OPCODE_SEL: 2619 if (!devinfo->has_64bit_types && 2620 (inst->dst.type == BRW_REGISTER_TYPE_DF || 2621 inst->dst.type == BRW_REGISTER_TYPE_UQ || 2622 inst->dst.type == BRW_REGISTER_TYPE_Q)) { 2623 assert(inst->dst.type == inst->src[0].type); 2624 assert(!inst->saturate); 2625 assert(!inst->src[0].abs && !inst->src[0].negate); 2626 assert(!inst->src[1].abs && !inst->src[1].negate); 2627 const brw::fs_builder ibld(this, block, inst); 2628 2629 set_predicate(inst->predicate, 2630 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 0), 2631 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 0), 2632 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 0))); 2633 set_predicate(inst->predicate, 2634 ibld.SEL(subscript(inst->dst, BRW_REGISTER_TYPE_UD, 1), 2635 subscript(inst->src[0], BRW_REGISTER_TYPE_UD, 1), 2636 subscript(inst->src[1], BRW_REGISTER_TYPE_UD, 1))); 2637 2638 inst->remove(block); 2639 progress = true; 2640 } 2641 if (inst->src[0].equals(inst->src[1])) { 2642 inst->opcode = BRW_OPCODE_MOV; 2643 inst->src[1] = reg_undef; 2644 inst->predicate = BRW_PREDICATE_NONE; 2645 inst->predicate_inverse = false; 2646 progress = true; 2647 } else if (inst->saturate && inst->src[1].file == IMM) { 2648 switch (inst->conditional_mod) { 2649 case BRW_CONDITIONAL_LE: 2650 case BRW_CONDITIONAL_L: 2651 switch (inst->src[1].type) { 2652 case BRW_REGISTER_TYPE_F: 2653 if (inst->src[1].f >= 1.0f) { 2654 inst->opcode = BRW_OPCODE_MOV; 2655 inst->src[1] = reg_undef; 2656 inst->conditional_mod = BRW_CONDITIONAL_NONE; 2657 progress = true; 2658 } 2659 break; 2660 default: 2661 break; 2662 } 2663 break; 2664 case BRW_CONDITIONAL_GE: 2665 case BRW_CONDITIONAL_G: 2666 switch (inst->src[1].type) { 2667 case BRW_REGISTER_TYPE_F: 2668 if (inst->src[1].f <= 0.0f) { 2669 inst->opcode = BRW_OPCODE_MOV; 2670 inst->src[1] = reg_undef; 2671 inst->conditional_mod = BRW_CONDITIONAL_NONE; 2672 progress = true; 2673 } 2674 break; 2675 default: 2676 break; 2677 } 2678 default: 2679 break; 2680 } 2681 } 2682 break; 2683 case BRW_OPCODE_MAD: 2684 if (inst->src[0].type != BRW_REGISTER_TYPE_F || 2685 inst->src[1].type != BRW_REGISTER_TYPE_F || 2686 inst->src[2].type != BRW_REGISTER_TYPE_F) 2687 break; 2688 if (inst->src[1].is_one()) { 2689 inst->opcode = BRW_OPCODE_ADD; 2690 inst->src[1] = inst->src[2]; 2691 inst->src[2] = reg_undef; 2692 progress = true; 2693 } else if (inst->src[2].is_one()) { 2694 inst->opcode = BRW_OPCODE_ADD; 2695 inst->src[2] = reg_undef; 2696 progress = true; 2697 } 2698 break; 2699 case SHADER_OPCODE_BROADCAST: 2700 if (is_uniform(inst->src[0])) { 2701 inst->opcode = BRW_OPCODE_MOV; 2702 inst->sources = 1; 2703 inst->force_writemask_all = true; 2704 progress = true; 2705 } else if (inst->src[1].file == IMM) { 2706 inst->opcode = BRW_OPCODE_MOV; 2707 /* It's possible that the selected component will be too large and 2708 * overflow the register. This can happen if someone does a 2709 * readInvocation() from GLSL or SPIR-V and provides an OOB 2710 * invocationIndex. If this happens and we some how manage 2711 * to constant fold it in and get here, then component() may cause 2712 * us to start reading outside of the VGRF which will lead to an 2713 * assert later. Instead, just let it wrap around if it goes over 2714 * exec_size. 2715 */ 2716 const unsigned comp = inst->src[1].ud & (inst->exec_size - 1); 2717 inst->src[0] = component(inst->src[0], comp); 2718 inst->sources = 1; 2719 inst->force_writemask_all = true; 2720 progress = true; 2721 } 2722 break; 2723 2724 case SHADER_OPCODE_SHUFFLE: 2725 if (is_uniform(inst->src[0])) { 2726 inst->opcode = BRW_OPCODE_MOV; 2727 inst->sources = 1; 2728 progress = true; 2729 } else if (inst->src[1].file == IMM) { 2730 inst->opcode = BRW_OPCODE_MOV; 2731 inst->src[0] = component(inst->src[0], 2732 inst->src[1].ud); 2733 inst->sources = 1; 2734 progress = true; 2735 } 2736 break; 2737 2738 default: 2739 break; 2740 } 2741 2742 /* Swap if src[0] is immediate. */ 2743 if (progress && inst->is_commutative()) { 2744 if (inst->src[0].file == IMM) { 2745 fs_reg tmp = inst->src[1]; 2746 inst->src[1] = inst->src[0]; 2747 inst->src[0] = tmp; 2748 } 2749 } 2750 } 2751 return progress; 2752} 2753 2754/** 2755 * Optimize sample messages that have constant zero values for the trailing 2756 * texture coordinates. We can just reduce the message length for these 2757 * instructions instead of reserving a register for it. Trailing parameters 2758 * that aren't sent default to zero anyway. This will cause the dead code 2759 * eliminator to remove the MOV instruction that would otherwise be emitted to 2760 * set up the zero value. 2761 */ 2762bool 2763fs_visitor::opt_zero_samples() 2764{ 2765 /* Gen4 infers the texturing opcode based on the message length so we can't 2766 * change it. 2767 */ 2768 if (devinfo->gen < 5) 2769 return false; 2770 2771 bool progress = false; 2772 2773 foreach_block_and_inst(block, fs_inst, inst, cfg) { 2774 if (!inst->is_tex()) 2775 continue; 2776 2777 fs_inst *load_payload = (fs_inst *) inst->prev; 2778 2779 if (load_payload->is_head_sentinel() || 2780 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD) 2781 continue; 2782 2783 /* We don't want to remove the message header or the first parameter. 2784 * Removing the first parameter is not allowed, see the Haswell PRM 2785 * volume 7, page 149: 2786 * 2787 * "Parameter 0 is required except for the sampleinfo message, which 2788 * has no parameter 0" 2789 */ 2790 while (inst->mlen > inst->header_size + inst->exec_size / 8 && 2791 load_payload->src[(inst->mlen - inst->header_size) / 2792 (inst->exec_size / 8) + 2793 inst->header_size - 1].is_zero()) { 2794 inst->mlen -= inst->exec_size / 8; 2795 progress = true; 2796 } 2797 } 2798 2799 if (progress) 2800 invalidate_live_intervals(); 2801 2802 return progress; 2803} 2804 2805/** 2806 * Optimize sample messages which are followed by the final RT write. 2807 * 2808 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its 2809 * results sent directly to the framebuffer, bypassing the EU. Recognize the 2810 * final texturing results copied to the framebuffer write payload and modify 2811 * them to write to the framebuffer directly. 2812 */ 2813bool 2814fs_visitor::opt_sampler_eot() 2815{ 2816 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; 2817 2818 if (stage != MESA_SHADER_FRAGMENT || dispatch_width > 16) 2819 return false; 2820 2821 if (devinfo->gen != 9 && !devinfo->is_cherryview) 2822 return false; 2823 2824 /* FINISHME: It should be possible to implement this optimization when there 2825 * are multiple drawbuffers. 2826 */ 2827 if (key->nr_color_regions != 1) 2828 return false; 2829 2830 /* Requires emitting a bunch of saturating MOV instructions during logical 2831 * send lowering to clamp the color payload, which the sampler unit isn't 2832 * going to do for us. 2833 */ 2834 if (key->clamp_fragment_color) 2835 return false; 2836 2837 /* Look for a texturing instruction immediately before the final FB_WRITE. */ 2838 bblock_t *block = cfg->blocks[cfg->num_blocks - 1]; 2839 fs_inst *fb_write = (fs_inst *)block->end(); 2840 assert(fb_write->eot); 2841 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL); 2842 2843 /* There wasn't one; nothing to do. */ 2844 if (unlikely(fb_write->prev->is_head_sentinel())) 2845 return false; 2846 2847 fs_inst *tex_inst = (fs_inst *) fb_write->prev; 2848 2849 /* 3D Sampler » Messages » Message Format 2850 * 2851 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler 2852 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*” 2853 */ 2854 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL && 2855 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL && 2856 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL && 2857 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL && 2858 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL && 2859 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL && 2860 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL && 2861 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL) 2862 return false; 2863 2864 /* XXX - This shouldn't be necessary. */ 2865 if (tex_inst->prev->is_head_sentinel()) 2866 return false; 2867 2868 /* Check that the FB write sources are fully initialized by the single 2869 * texturing instruction. 2870 */ 2871 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) { 2872 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) { 2873 if (!fb_write->src[i].equals(tex_inst->dst) || 2874 fb_write->size_read(i) != tex_inst->size_written) 2875 return false; 2876 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) { 2877 if (fb_write->src[i].file != BAD_FILE) 2878 return false; 2879 } 2880 } 2881 2882 assert(!tex_inst->eot); /* We can't get here twice */ 2883 assert((tex_inst->offset & (0xff << 24)) == 0); 2884 2885 const fs_builder ibld(this, block, tex_inst); 2886 2887 tex_inst->offset |= fb_write->target << 24; 2888 tex_inst->eot = true; 2889 tex_inst->dst = ibld.null_reg_ud(); 2890 tex_inst->size_written = 0; 2891 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]); 2892 2893 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT 2894 * flag and submit a header together with the sampler message as required 2895 * by the hardware. 2896 */ 2897 invalidate_live_intervals(); 2898 return true; 2899} 2900 2901bool 2902fs_visitor::opt_register_renaming() 2903{ 2904 bool progress = false; 2905 int depth = 0; 2906 2907 unsigned remap[alloc.count]; 2908 memset(remap, ~0u, sizeof(unsigned) * alloc.count); 2909 2910 foreach_block_and_inst(block, fs_inst, inst, cfg) { 2911 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) { 2912 depth++; 2913 } else if (inst->opcode == BRW_OPCODE_ENDIF || 2914 inst->opcode == BRW_OPCODE_WHILE) { 2915 depth--; 2916 } 2917 2918 /* Rewrite instruction sources. */ 2919 for (int i = 0; i < inst->sources; i++) { 2920 if (inst->src[i].file == VGRF && 2921 remap[inst->src[i].nr] != ~0u && 2922 remap[inst->src[i].nr] != inst->src[i].nr) { 2923 inst->src[i].nr = remap[inst->src[i].nr]; 2924 progress = true; 2925 } 2926 } 2927 2928 const unsigned dst = inst->dst.nr; 2929 2930 if (depth == 0 && 2931 inst->dst.file == VGRF && 2932 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written && 2933 !inst->is_partial_write()) { 2934 if (remap[dst] == ~0u) { 2935 remap[dst] = dst; 2936 } else { 2937 remap[dst] = alloc.allocate(regs_written(inst)); 2938 inst->dst.nr = remap[dst]; 2939 progress = true; 2940 } 2941 } else if (inst->dst.file == VGRF && 2942 remap[dst] != ~0u && 2943 remap[dst] != dst) { 2944 inst->dst.nr = remap[dst]; 2945 progress = true; 2946 } 2947 } 2948 2949 if (progress) { 2950 invalidate_live_intervals(); 2951 2952 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) { 2953 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != ~0u) { 2954 delta_xy[i].nr = remap[delta_xy[i].nr]; 2955 } 2956 } 2957 } 2958 2959 return progress; 2960} 2961 2962/** 2963 * Remove redundant or useless discard jumps. 2964 * 2965 * For example, we can eliminate jumps in the following sequence: 2966 * 2967 * discard-jump (redundant with the next jump) 2968 * discard-jump (useless; jumps to the next instruction) 2969 * placeholder-halt 2970 */ 2971bool 2972fs_visitor::opt_redundant_discard_jumps() 2973{ 2974 bool progress = false; 2975 2976 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1]; 2977 2978 fs_inst *placeholder_halt = NULL; 2979 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) { 2980 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) { 2981 placeholder_halt = inst; 2982 break; 2983 } 2984 } 2985 2986 if (!placeholder_halt) 2987 return false; 2988 2989 /* Delete any HALTs immediately before the placeholder halt. */ 2990 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev; 2991 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP; 2992 prev = (fs_inst *) placeholder_halt->prev) { 2993 prev->remove(last_bblock); 2994 progress = true; 2995 } 2996 2997 if (progress) 2998 invalidate_live_intervals(); 2999 3000 return progress; 3001} 3002 3003/** 3004 * Compute a bitmask with GRF granularity with a bit set for each GRF starting 3005 * from \p r.offset which overlaps the region starting at \p s.offset and 3006 * spanning \p ds bytes. 3007 */ 3008static inline unsigned 3009mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds) 3010{ 3011 const int rel_offset = reg_offset(s) - reg_offset(r); 3012 const int shift = rel_offset / REG_SIZE; 3013 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE); 3014 assert(reg_space(r) == reg_space(s) && 3015 shift >= 0 && shift < int(8 * sizeof(unsigned))); 3016 return ((1 << n) - 1) << shift; 3017} 3018 3019bool 3020fs_visitor::opt_peephole_csel() 3021{ 3022 if (devinfo->gen < 8) 3023 return false; 3024 3025 bool progress = false; 3026 3027 foreach_block_reverse(block, cfg) { 3028 int ip = block->end_ip + 1; 3029 3030 foreach_inst_in_block_reverse_safe(fs_inst, inst, block) { 3031 ip--; 3032 3033 if (inst->opcode != BRW_OPCODE_SEL || 3034 inst->predicate != BRW_PREDICATE_NORMAL || 3035 (inst->dst.type != BRW_REGISTER_TYPE_F && 3036 inst->dst.type != BRW_REGISTER_TYPE_D && 3037 inst->dst.type != BRW_REGISTER_TYPE_UD)) 3038 continue; 3039 3040 /* Because it is a 3-src instruction, CSEL cannot have an immediate 3041 * value as a source, but we can sometimes handle zero. 3042 */ 3043 if ((inst->src[0].file != VGRF && inst->src[0].file != ATTR && 3044 inst->src[0].file != UNIFORM) || 3045 (inst->src[1].file != VGRF && inst->src[1].file != ATTR && 3046 inst->src[1].file != UNIFORM && !inst->src[1].is_zero())) 3047 continue; 3048 3049 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) { 3050 if (!scan_inst->flags_written()) 3051 continue; 3052 3053 if ((scan_inst->opcode != BRW_OPCODE_CMP && 3054 scan_inst->opcode != BRW_OPCODE_MOV) || 3055 scan_inst->predicate != BRW_PREDICATE_NONE || 3056 (scan_inst->src[0].file != VGRF && 3057 scan_inst->src[0].file != ATTR && 3058 scan_inst->src[0].file != UNIFORM) || 3059 scan_inst->src[0].type != BRW_REGISTER_TYPE_F) 3060 break; 3061 3062 if (scan_inst->opcode == BRW_OPCODE_CMP && !scan_inst->src[1].is_zero()) 3063 break; 3064 3065 const brw::fs_builder ibld(this, block, inst); 3066 3067 const enum brw_conditional_mod cond = 3068 inst->predicate_inverse 3069 ? brw_negate_cmod(scan_inst->conditional_mod) 3070 : scan_inst->conditional_mod; 3071 3072 fs_inst *csel_inst = NULL; 3073 3074 if (inst->src[1].file != IMM) { 3075 csel_inst = ibld.CSEL(inst->dst, 3076 inst->src[0], 3077 inst->src[1], 3078 scan_inst->src[0], 3079 cond); 3080 } else if (cond == BRW_CONDITIONAL_NZ) { 3081 /* Consider the sequence 3082 * 3083 * cmp.nz.f0 null<1>F g3<8,8,1>F 0F 3084 * (+f0) sel g124<1>UD g2<8,8,1>UD 0x00000000UD 3085 * 3086 * The sel will pick the immediate value 0 if r0 is ±0.0. 3087 * Therefore, this sequence is equivalent: 3088 * 3089 * cmp.nz.f0 null<1>F g3<8,8,1>F 0F 3090 * (+f0) sel g124<1>F g2<8,8,1>F (abs)g3<8,8,1>F 3091 * 3092 * The abs is ensures that the result is 0UD when g3 is -0.0F. 3093 * By normal cmp-sel merging, this is also equivalent: 3094 * 3095 * csel.nz g124<1>F g2<4,4,1>F (abs)g3<4,4,1>F g3<4,4,1>F 3096 */ 3097 csel_inst = ibld.CSEL(inst->dst, 3098 inst->src[0], 3099 scan_inst->src[0], 3100 scan_inst->src[0], 3101 cond); 3102 3103 csel_inst->src[1].abs = true; 3104 } 3105 3106 if (csel_inst != NULL) { 3107 progress = true; 3108 csel_inst->saturate = inst->saturate; 3109 inst->remove(block); 3110 } 3111 3112 break; 3113 } 3114 } 3115 } 3116 3117 return progress; 3118} 3119 3120bool 3121fs_visitor::compute_to_mrf() 3122{ 3123 bool progress = false; 3124 int next_ip = 0; 3125 3126 /* No MRFs on Gen >= 7. */ 3127 if (devinfo->gen >= 7) 3128 return false; 3129 3130 calculate_live_intervals(); 3131 3132 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 3133 int ip = next_ip; 3134 next_ip++; 3135 3136 if (inst->opcode != BRW_OPCODE_MOV || 3137 inst->is_partial_write() || 3138 inst->dst.file != MRF || inst->src[0].file != VGRF || 3139 inst->dst.type != inst->src[0].type || 3140 inst->src[0].abs || inst->src[0].negate || 3141 !inst->src[0].is_contiguous() || 3142 inst->src[0].offset % REG_SIZE != 0) 3143 continue; 3144 3145 /* Can't compute-to-MRF this GRF if someone else was going to 3146 * read it later. 3147 */ 3148 if (this->virtual_grf_end[inst->src[0].nr] > ip) 3149 continue; 3150 3151 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the 3152 * things that computed the value of all GRFs of the source region. The 3153 * regs_left bitset keeps track of the registers we haven't yet found a 3154 * generating instruction for. 3155 */ 3156 unsigned regs_left = (1 << regs_read(inst, 0)) - 1; 3157 3158 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) { 3159 if (regions_overlap(scan_inst->dst, scan_inst->size_written, 3160 inst->src[0], inst->size_read(0))) { 3161 /* Found the last thing to write our reg we want to turn 3162 * into a compute-to-MRF. 3163 */ 3164 3165 /* If this one instruction didn't populate all the 3166 * channels, bail. We might be able to rewrite everything 3167 * that writes that reg, but it would require smarter 3168 * tracking. 3169 */ 3170 if (scan_inst->is_partial_write()) 3171 break; 3172 3173 /* Handling things not fully contained in the source of the copy 3174 * would need us to understand coalescing out more than one MOV at 3175 * a time. 3176 */ 3177 if (!region_contained_in(scan_inst->dst, scan_inst->size_written, 3178 inst->src[0], inst->size_read(0))) 3179 break; 3180 3181 /* SEND instructions can't have MRF as a destination. */ 3182 if (scan_inst->mlen) 3183 break; 3184 3185 if (devinfo->gen == 6) { 3186 /* gen6 math instructions must have the destination be 3187 * GRF, so no compute-to-MRF for them. 3188 */ 3189 if (scan_inst->is_math()) { 3190 break; 3191 } 3192 } 3193 3194 /* Clear the bits for any registers this instruction overwrites. */ 3195 regs_left &= ~mask_relative_to( 3196 inst->src[0], scan_inst->dst, scan_inst->size_written); 3197 if (!regs_left) 3198 break; 3199 } 3200 3201 /* We don't handle control flow here. Most computation of 3202 * values that end up in MRFs are shortly before the MRF 3203 * write anyway. 3204 */ 3205 if (block->start() == scan_inst) 3206 break; 3207 3208 /* You can't read from an MRF, so if someone else reads our 3209 * MRF's source GRF that we wanted to rewrite, that stops us. 3210 */ 3211 bool interfered = false; 3212 for (int i = 0; i < scan_inst->sources; i++) { 3213 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i), 3214 inst->src[0], inst->size_read(0))) { 3215 interfered = true; 3216 } 3217 } 3218 if (interfered) 3219 break; 3220 3221 if (regions_overlap(scan_inst->dst, scan_inst->size_written, 3222 inst->dst, inst->size_written)) { 3223 /* If somebody else writes our MRF here, we can't 3224 * compute-to-MRF before that. 3225 */ 3226 break; 3227 } 3228 3229 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 && 3230 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE, 3231 inst->dst, inst->size_written)) { 3232 /* Found a SEND instruction, which means that there are 3233 * live values in MRFs from base_mrf to base_mrf + 3234 * scan_inst->mlen - 1. Don't go pushing our MRF write up 3235 * above it. 3236 */ 3237 break; 3238 } 3239 } 3240 3241 if (regs_left) 3242 continue; 3243 3244 /* Found all generating instructions of our MRF's source value, so it 3245 * should be safe to rewrite them to point to the MRF directly. 3246 */ 3247 regs_left = (1 << regs_read(inst, 0)) - 1; 3248 3249 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) { 3250 if (regions_overlap(scan_inst->dst, scan_inst->size_written, 3251 inst->src[0], inst->size_read(0))) { 3252 /* Clear the bits for any registers this instruction overwrites. */ 3253 regs_left &= ~mask_relative_to( 3254 inst->src[0], scan_inst->dst, scan_inst->size_written); 3255 3256 const unsigned rel_offset = reg_offset(scan_inst->dst) - 3257 reg_offset(inst->src[0]); 3258 3259 if (inst->dst.nr & BRW_MRF_COMPR4) { 3260 /* Apply the same address transformation done by the hardware 3261 * for COMPR4 MRF writes. 3262 */ 3263 assert(rel_offset < 2 * REG_SIZE); 3264 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4; 3265 3266 /* Clear the COMPR4 bit if the generating instruction is not 3267 * compressed. 3268 */ 3269 if (scan_inst->size_written < 2 * REG_SIZE) 3270 scan_inst->dst.nr &= ~BRW_MRF_COMPR4; 3271 3272 } else { 3273 /* Calculate the MRF number the result of this instruction is 3274 * ultimately written to. 3275 */ 3276 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE; 3277 } 3278 3279 scan_inst->dst.file = MRF; 3280 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE; 3281 scan_inst->saturate |= inst->saturate; 3282 if (!regs_left) 3283 break; 3284 } 3285 } 3286 3287 assert(!regs_left); 3288 inst->remove(block); 3289 progress = true; 3290 } 3291 3292 if (progress) 3293 invalidate_live_intervals(); 3294 3295 return progress; 3296} 3297 3298/** 3299 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control 3300 * flow. We could probably do better here with some form of divergence 3301 * analysis. 3302 */ 3303bool 3304fs_visitor::eliminate_find_live_channel() 3305{ 3306 bool progress = false; 3307 unsigned depth = 0; 3308 3309 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) { 3310 /* The optimization below assumes that channel zero is live on thread 3311 * dispatch, which may not be the case if the fixed function dispatches 3312 * threads sparsely. 3313 */ 3314 return false; 3315 } 3316 3317 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 3318 switch (inst->opcode) { 3319 case BRW_OPCODE_IF: 3320 case BRW_OPCODE_DO: 3321 depth++; 3322 break; 3323 3324 case BRW_OPCODE_ENDIF: 3325 case BRW_OPCODE_WHILE: 3326 depth--; 3327 break; 3328 3329 case FS_OPCODE_DISCARD_JUMP: 3330 /* This can potentially make control flow non-uniform until the end 3331 * of the program. 3332 */ 3333 return progress; 3334 3335 case SHADER_OPCODE_FIND_LIVE_CHANNEL: 3336 if (depth == 0) { 3337 inst->opcode = BRW_OPCODE_MOV; 3338 inst->src[0] = brw_imm_ud(0u); 3339 inst->sources = 1; 3340 inst->force_writemask_all = true; 3341 progress = true; 3342 } 3343 break; 3344 3345 default: 3346 break; 3347 } 3348 } 3349 3350 return progress; 3351} 3352 3353/** 3354 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE 3355 * instructions to FS_OPCODE_REP_FB_WRITE. 3356 */ 3357void 3358fs_visitor::emit_repclear_shader() 3359{ 3360 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key; 3361 int base_mrf = 0; 3362 int color_mrf = base_mrf + 2; 3363 fs_inst *mov; 3364 3365 if (uniforms > 0) { 3366 mov = bld.exec_all().group(4, 0) 3367 .MOV(brw_message_reg(color_mrf), 3368 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F)); 3369 } else { 3370 struct brw_reg reg = 3371 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F, 3372 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4, 3373 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW); 3374 3375 mov = bld.exec_all().group(4, 0) 3376 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg)); 3377 } 3378 3379 fs_inst *write = NULL; 3380 if (key->nr_color_regions == 1) { 3381 write = bld.emit(FS_OPCODE_REP_FB_WRITE); 3382 write->saturate = key->clamp_fragment_color; 3383 write->base_mrf = color_mrf; 3384 write->target = 0; 3385 write->header_size = 0; 3386 write->mlen = 1; 3387 } else { 3388 assume(key->nr_color_regions > 0); 3389 3390 struct brw_reg header = 3391 retype(brw_message_reg(base_mrf), BRW_REGISTER_TYPE_UD); 3392 bld.exec_all().group(16, 0) 3393 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); 3394 3395 for (int i = 0; i < key->nr_color_regions; ++i) { 3396 if (i > 0) { 3397 bld.exec_all().group(1, 0) 3398 .MOV(component(header, 2), brw_imm_ud(i)); 3399 } 3400 3401 write = bld.emit(FS_OPCODE_REP_FB_WRITE); 3402 write->saturate = key->clamp_fragment_color; 3403 write->base_mrf = base_mrf; 3404 write->target = i; 3405 write->header_size = 2; 3406 write->mlen = 3; 3407 } 3408 } 3409 write->eot = true; 3410 write->last_rt = true; 3411 3412 calculate_cfg(); 3413 3414 assign_constant_locations(); 3415 assign_curb_setup(); 3416 3417 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */ 3418 if (uniforms > 0) { 3419 assert(mov->src[0].file == FIXED_GRF); 3420 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0); 3421 } 3422} 3423 3424/** 3425 * Walks through basic blocks, looking for repeated MRF writes and 3426 * removing the later ones. 3427 */ 3428bool 3429fs_visitor::remove_duplicate_mrf_writes() 3430{ 3431 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)]; 3432 bool progress = false; 3433 3434 /* Need to update the MRF tracking for compressed instructions. */ 3435 if (dispatch_width >= 16) 3436 return false; 3437 3438 memset(last_mrf_move, 0, sizeof(last_mrf_move)); 3439 3440 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) { 3441 if (inst->is_control_flow()) { 3442 memset(last_mrf_move, 0, sizeof(last_mrf_move)); 3443 } 3444 3445 if (inst->opcode == BRW_OPCODE_MOV && 3446 inst->dst.file == MRF) { 3447 fs_inst *prev_inst = last_mrf_move[inst->dst.nr]; 3448 if (prev_inst && prev_inst->opcode == BRW_OPCODE_MOV && 3449 inst->dst.equals(prev_inst->dst) && 3450 inst->src[0].equals(prev_inst->src[0]) && 3451 inst->saturate == prev_inst->saturate && 3452 inst->predicate == prev_inst->predicate && 3453 inst->conditional_mod == prev_inst->conditional_mod && 3454 inst->exec_size == prev_inst->exec_size) { 3455 inst->remove(block); 3456 progress = true; 3457 continue; 3458 } 3459 } 3460 3461 /* Clear out the last-write records for MRFs that were overwritten. */ 3462 if (inst->dst.file == MRF) { 3463 last_mrf_move[inst->dst.nr] = NULL; 3464 } 3465 3466 if (inst->mlen > 0 && inst->base_mrf != -1) { 3467 /* Found a SEND instruction, which will include two or fewer 3468 * implied MRF writes. We could do better here. 3469 */ 3470 for (int i = 0; i < implied_mrf_writes(inst); i++) { 3471 last_mrf_move[inst->base_mrf + i] = NULL; 3472 } 3473 } 3474 3475 /* Clear out any MRF move records whose sources got overwritten. */ 3476 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) { 3477 if (last_mrf_move[i] && 3478 regions_overlap(inst->dst, inst->size_written, 3479 last_mrf_move[i]->src[0], 3480 last_mrf_move[i]->size_read(0))) { 3481 last_mrf_move[i] = NULL; 3482 } 3483 } 3484 3485 if (inst->opcode == BRW_OPCODE_MOV && 3486 inst->dst.file == MRF && 3487 inst->src[0].file != ARF && 3488 !inst->is_partial_write()) { 3489 last_mrf_move[inst->dst.nr] = inst; 3490 } 3491 } 3492 3493 if (progress) 3494 invalidate_live_intervals(); 3495 3496 return progress; 3497} 3498 3499/** 3500 * Rounding modes for conversion instructions are included for each 3501 * conversion, but right now it is a state. So once it is set, 3502 * we don't need to call it again for subsequent calls. 3503 * 3504 * This is useful for vector/matrices conversions, as setting the 3505 * mode once is enough for the full vector/matrix 3506 */ 3507bool 3508fs_visitor::remove_extra_rounding_modes() 3509{ 3510 bool progress = false; 3511 3512 foreach_block (block, cfg) { 3513 brw_rnd_mode prev_mode = BRW_RND_MODE_UNSPECIFIED; 3514 3515 foreach_inst_in_block_safe (fs_inst, inst, block) { 3516 if (inst->opcode == SHADER_OPCODE_RND_MODE) { 3517 assert(inst->src[0].file == BRW_IMMEDIATE_VALUE); 3518 const brw_rnd_mode mode = (brw_rnd_mode) inst->src[0].d; 3519 if (mode == prev_mode) { 3520 inst->remove(block); 3521 progress = true; 3522 } else { 3523 prev_mode = mode; 3524 } 3525 } 3526 } 3527 } 3528 3529 if (progress) 3530 invalidate_live_intervals(); 3531 3532 return progress; 3533} 3534 3535static void 3536clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len) 3537{ 3538 /* Clear the flag for registers that actually got read (as expected). */ 3539 for (int i = 0; i < inst->sources; i++) { 3540 int grf; 3541 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) { 3542 grf = inst->src[i].nr; 3543 } else { 3544 continue; 3545 } 3546 3547 if (grf >= first_grf && 3548 grf < first_grf + grf_len) { 3549 deps[grf - first_grf] = false; 3550 if (inst->exec_size == 16) 3551 deps[grf - first_grf + 1] = false; 3552 } 3553 } 3554} 3555 3556/** 3557 * Implements this workaround for the original 965: 3558 * 3559 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not 3560 * check for post destination dependencies on this instruction, software 3561 * must ensure that there is no destination hazard for the case of ‘write 3562 * followed by a posted write’ shown in the following example. 3563 * 3564 * 1. mov r3 0 3565 * 2. send r3.xy <rest of send instruction> 3566 * 3. mov r2 r3 3567 * 3568 * Due to no post-destination dependency check on the ‘send’, the above 3569 * code sequence could have two instructions (1 and 2) in flight at the 3570 * same time that both consider ‘r3’ as the target of their final writes. 3571 */ 3572void 3573fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block, 3574 fs_inst *inst) 3575{ 3576 int write_len = regs_written(inst); 3577 int first_write_grf = inst->dst.nr; 3578 bool needs_dep[BRW_MAX_MRF(devinfo->gen)]; 3579 assert(write_len < (int)sizeof(needs_dep) - 1); 3580 3581 memset(needs_dep, false, sizeof(needs_dep)); 3582 memset(needs_dep, true, write_len); 3583 3584 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len); 3585 3586 /* Walk backwards looking for writes to registers we're writing which 3587 * aren't read since being written. If we hit the start of the program, 3588 * we assume that there are no outstanding dependencies on entry to the 3589 * program. 3590 */ 3591 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) { 3592 /* If we hit control flow, assume that there *are* outstanding 3593 * dependencies, and force their cleanup before our instruction. 3594 */ 3595 if (block->start() == scan_inst && block->num != 0) { 3596 for (int i = 0; i < write_len; i++) { 3597 if (needs_dep[i]) 3598 DEP_RESOLVE_MOV(fs_builder(this, block, inst), 3599 first_write_grf + i); 3600 } 3601 return; 3602 } 3603 3604 /* We insert our reads as late as possible on the assumption that any 3605 * instruction but a MOV that might have left us an outstanding 3606 * dependency has more latency than a MOV. 3607 */ 3608 if (scan_inst->dst.file == VGRF) { 3609 for (unsigned i = 0; i < regs_written(scan_inst); i++) { 3610 int reg = scan_inst->dst.nr + i; 3611 3612 if (reg >= first_write_grf && 3613 reg < first_write_grf + write_len && 3614 needs_dep[reg - first_write_grf]) { 3615 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg); 3616 needs_dep[reg - first_write_grf] = false; 3617 if (scan_inst->exec_size == 16) 3618 needs_dep[reg - first_write_grf + 1] = false; 3619 } 3620 } 3621 } 3622 3623 /* Clear the flag for registers that actually got read (as expected). */ 3624 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len); 3625 3626 /* Continue the loop only if we haven't resolved all the dependencies */ 3627 int i; 3628 for (i = 0; i < write_len; i++) { 3629 if (needs_dep[i]) 3630 break; 3631 } 3632 if (i == write_len) 3633 return; 3634 } 3635} 3636 3637/** 3638 * Implements this workaround for the original 965: 3639 * 3640 * "[DevBW, DevCL] Errata: A destination register from a send can not be 3641 * used as a destination register until after it has been sourced by an 3642 * instruction with a different destination register. 3643 */ 3644void 3645fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst) 3646{ 3647 int write_len = regs_written(inst); 3648 unsigned first_write_grf = inst->dst.nr; 3649 bool needs_dep[BRW_MAX_MRF(devinfo->gen)]; 3650 assert(write_len < (int)sizeof(needs_dep) - 1); 3651 3652 memset(needs_dep, false, sizeof(needs_dep)); 3653 memset(needs_dep, true, write_len); 3654 /* Walk forwards looking for writes to registers we're writing which aren't 3655 * read before being written. 3656 */ 3657 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) { 3658 /* If we hit control flow, force resolve all remaining dependencies. */ 3659 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) { 3660 for (int i = 0; i < write_len; i++) { 3661 if (needs_dep[i]) 3662 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst), 3663 first_write_grf + i); 3664 } 3665 return; 3666 } 3667 3668 /* Clear the flag for registers that actually got read (as expected). */ 3669 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len); 3670 3671 /* We insert our reads as late as possible since they're reading the 3672 * result of a SEND, which has massive latency. 3673 */ 3674 if (scan_inst->dst.file == VGRF && 3675 scan_inst->dst.nr >= first_write_grf && 3676 scan_inst->dst.nr < first_write_grf + write_len && 3677 needs_dep[scan_inst->dst.nr - first_write_grf]) { 3678 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst), 3679 scan_inst->dst.nr); 3680 needs_dep[scan_inst->dst.nr - first_write_grf] = false; 3681 } 3682 3683 /* Continue the loop only if we haven't resolved all the dependencies */ 3684 int i; 3685 for (i = 0; i < write_len; i++) { 3686 if (needs_dep[i]) 3687 break; 3688 } 3689 if (i == write_len) 3690 return; 3691 } 3692} 3693 3694void 3695fs_visitor::insert_gen4_send_dependency_workarounds() 3696{ 3697 if (devinfo->gen != 4 || devinfo->is_g4x) 3698 return; 3699 3700 bool progress = false; 3701 3702 foreach_block_and_inst(block, fs_inst, inst, cfg) { 3703 if (inst->mlen != 0 && inst->dst.file == VGRF) { 3704 insert_gen4_pre_send_dependency_workarounds(block, inst); 3705 insert_gen4_post_send_dependency_workarounds(block, inst); 3706 progress = true; 3707 } 3708 } 3709 3710 if (progress) 3711 invalidate_live_intervals(); 3712} 3713 3714/** 3715 * Turns the generic expression-style uniform pull constant load instruction 3716 * into a hardware-specific series of instructions for loading a pull 3717 * constant. 3718 * 3719 * The expression style allows the CSE pass before this to optimize out 3720 * repeated loads from the same offset, and gives the pre-register-allocation 3721 * scheduling full flexibility, while the conversion to native instructions 3722 * allows the post-register-allocation scheduler the best information 3723 * possible. 3724 * 3725 * Note that execution masking for setting up pull constant loads is special: 3726 * the channels that need to be written are unrelated to the current execution 3727 * mask, since a later instruction will use one of the result channels as a 3728 * source operand for all 8 or 16 of its channels. 3729 */ 3730void 3731fs_visitor::lower_uniform_pull_constant_loads() 3732{ 3733 foreach_block_and_inst (block, fs_inst, inst, cfg) { 3734 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD) 3735 continue; 3736 3737 if (devinfo->gen >= 7) { 3738 const fs_builder ubld = fs_builder(this, block, inst).exec_all(); 3739 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD); 3740 3741 ubld.group(8, 0).MOV(payload, 3742 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); 3743 ubld.group(1, 0).MOV(component(payload, 2), 3744 brw_imm_ud(inst->src[1].ud / 16)); 3745 3746 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7; 3747 inst->src[1] = payload; 3748 inst->header_size = 1; 3749 inst->mlen = 1; 3750 3751 invalidate_live_intervals(); 3752 } else { 3753 /* Before register allocation, we didn't tell the scheduler about the 3754 * MRF we use. We know it's safe to use this MRF because nothing 3755 * else does except for register spill/unspill, which generates and 3756 * uses its MRF within a single IR instruction. 3757 */ 3758 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1; 3759 inst->mlen = 1; 3760 } 3761 } 3762} 3763 3764bool 3765fs_visitor::lower_load_payload() 3766{ 3767 bool progress = false; 3768 3769 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) { 3770 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD) 3771 continue; 3772 3773 assert(inst->dst.file == MRF || inst->dst.file == VGRF); 3774 assert(inst->saturate == false); 3775 fs_reg dst = inst->dst; 3776 3777 /* Get rid of COMPR4. We'll add it back in if we need it */ 3778 if (dst.file == MRF) 3779 dst.nr = dst.nr & ~BRW_MRF_COMPR4; 3780 3781 const fs_builder ibld(this, block, inst); 3782 const fs_builder hbld = ibld.exec_all().group(8, 0); 3783 3784 for (uint8_t i = 0; i < inst->header_size; i++) { 3785 if (inst->src[i].file != BAD_FILE) { 3786 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD); 3787 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD); 3788 hbld.MOV(mov_dst, mov_src); 3789 } 3790 dst = offset(dst, hbld, 1); 3791 } 3792 3793 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) && 3794 inst->exec_size > 8) { 3795 /* In this case, the payload portion of the LOAD_PAYLOAD isn't 3796 * a straightforward copy. Instead, the result of the 3797 * LOAD_PAYLOAD is treated as interleaved and the first four 3798 * non-header sources are unpacked as: 3799 * 3800 * m + 0: r0 3801 * m + 1: g0 3802 * m + 2: b0 3803 * m + 3: a0 3804 * m + 4: r1 3805 * m + 5: g1 3806 * m + 6: b1 3807 * m + 7: a1 3808 * 3809 * This is used for gen <= 5 fb writes. 3810 */ 3811 assert(inst->exec_size == 16); 3812 assert(inst->header_size + 4 <= inst->sources); 3813 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) { 3814 if (inst->src[i].file != BAD_FILE) { 3815 if (devinfo->has_compr4) { 3816 fs_reg compr4_dst = retype(dst, inst->src[i].type); 3817 compr4_dst.nr |= BRW_MRF_COMPR4; 3818 ibld.MOV(compr4_dst, inst->src[i]); 3819 } else { 3820 /* Platform doesn't have COMPR4. We have to fake it */ 3821 fs_reg mov_dst = retype(dst, inst->src[i].type); 3822 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0)); 3823 mov_dst.nr += 4; 3824 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1)); 3825 } 3826 } 3827 3828 dst.nr++; 3829 } 3830 3831 /* The loop above only ever incremented us through the first set 3832 * of 4 registers. However, thanks to the magic of COMPR4, we 3833 * actually wrote to the first 8 registers, so we need to take 3834 * that into account now. 3835 */ 3836 dst.nr += 4; 3837 3838 /* The COMPR4 code took care of the first 4 sources. We'll let 3839 * the regular path handle any remaining sources. Yes, we are 3840 * modifying the instruction but we're about to delete it so 3841 * this really doesn't hurt anything. 3842 */ 3843 inst->header_size += 4; 3844 } 3845 3846 for (uint8_t i = inst->header_size; i < inst->sources; i++) { 3847 if (inst->src[i].file != BAD_FILE) { 3848 dst.type = inst->src[i].type; 3849 ibld.MOV(dst, inst->src[i]); 3850 } else { 3851 dst.type = BRW_REGISTER_TYPE_UD; 3852 } 3853 dst = offset(dst, ibld, 1); 3854 } 3855 3856 inst->remove(block); 3857 progress = true; 3858 } 3859 3860 if (progress) 3861 invalidate_live_intervals(); 3862 3863 return progress; 3864} 3865 3866bool 3867fs_visitor::lower_linterp() 3868{ 3869 bool progress = false; 3870 3871 if (devinfo->gen < 11) 3872 return false; 3873 3874 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 3875 const fs_builder ibld(this, block, inst); 3876 3877 if (inst->opcode != FS_OPCODE_LINTERP) 3878 continue; 3879 3880 fs_reg dwP = component(inst->src[1], 0); 3881 fs_reg dwQ = component(inst->src[1], 1); 3882 fs_reg dwR = component(inst->src[1], 3); 3883 for (unsigned i = 0; i < DIV_ROUND_UP(dispatch_width, 8); i++) { 3884 const fs_builder hbld(ibld.half(i)); 3885 fs_reg dst = half(inst->dst, i); 3886 fs_reg delta_xy = offset(inst->src[0], ibld, i); 3887 hbld.MAD(dst, dwR, half(delta_xy, 0), dwP); 3888 fs_inst *mad = hbld.MAD(dst, dst, half(delta_xy, 1), dwQ); 3889 3890 /* Propagate conditional mod and saturate from the original 3891 * instruction to the second MAD instruction. 3892 */ 3893 set_saturate(inst->saturate, mad); 3894 set_condmod(inst->conditional_mod, mad); 3895 } 3896 3897 inst->remove(block); 3898 progress = true; 3899 } 3900 3901 if (progress) 3902 invalidate_live_intervals(); 3903 3904 return progress; 3905} 3906 3907bool 3908fs_visitor::lower_integer_multiplication() 3909{ 3910 bool progress = false; 3911 3912 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 3913 const fs_builder ibld(this, block, inst); 3914 3915 if (inst->opcode == BRW_OPCODE_MUL) { 3916 if (inst->dst.is_accumulator() || 3917 (inst->dst.type != BRW_REGISTER_TYPE_D && 3918 inst->dst.type != BRW_REGISTER_TYPE_UD)) 3919 continue; 3920 3921 if (devinfo->has_integer_dword_mul) 3922 continue; 3923 3924 if (inst->src[1].file == IMM && 3925 inst->src[1].ud < (1 << 16)) { 3926 /* The MUL instruction isn't commutative. On Gen <= 6, only the low 3927 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of 3928 * src1 are used. 3929 * 3930 * If multiplying by an immediate value that fits in 16-bits, do a 3931 * single MUL instruction with that value in the proper location. 3932 */ 3933 if (devinfo->gen < 7) { 3934 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8), 3935 inst->dst.type); 3936 ibld.MOV(imm, inst->src[1]); 3937 ibld.MUL(inst->dst, imm, inst->src[0]); 3938 } else { 3939 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD); 3940 ibld.MUL(inst->dst, inst->src[0], 3941 ud ? brw_imm_uw(inst->src[1].ud) 3942 : brw_imm_w(inst->src[1].d)); 3943 } 3944 } else { 3945 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot 3946 * do 32-bit integer multiplication in one instruction, but instead 3947 * must do a sequence (which actually calculates a 64-bit result): 3948 * 3949 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D 3950 * mach(8) null g3<8,8,1>D g4<8,8,1>D 3951 * mov(8) g2<1>D acc0<8,8,1>D 3952 * 3953 * But on Gen > 6, the ability to use second accumulator register 3954 * (acc1) for non-float data types was removed, preventing a simple 3955 * implementation in SIMD16. A 16-channel result can be calculated by 3956 * executing the three instructions twice in SIMD8, once with quarter 3957 * control of 1Q for the first eight channels and again with 2Q for 3958 * the second eight channels. 3959 * 3960 * Which accumulator register is implicitly accessed (by AccWrEnable 3961 * for instance) is determined by the quarter control. Unfortunately 3962 * Ivybridge (and presumably Baytrail) has a hardware bug in which an 3963 * implicit accumulator access by an instruction with 2Q will access 3964 * acc1 regardless of whether the data type is usable in acc1. 3965 * 3966 * Specifically, the 2Q mach(8) writes acc1 which does not exist for 3967 * integer data types. 3968 * 3969 * Since we only want the low 32-bits of the result, we can do two 3970 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and 3971 * adjust the high result and add them (like the mach is doing): 3972 * 3973 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW 3974 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW 3975 * shl(8) g9<1>D g8<8,8,1>D 16D 3976 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D 3977 * 3978 * We avoid the shl instruction by realizing that we only want to add 3979 * the low 16-bits of the "high" result to the high 16-bits of the 3980 * "low" result and using proper regioning on the add: 3981 * 3982 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW 3983 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW 3984 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW 3985 * 3986 * Since it does not use the (single) accumulator register, we can 3987 * schedule multi-component multiplications much better. 3988 */ 3989 3990 bool needs_mov = false; 3991 fs_reg orig_dst = inst->dst; 3992 3993 /* Get a new VGRF for the "low" 32x16-bit multiplication result if 3994 * reusing the original destination is impossible due to hardware 3995 * restrictions, source/destination overlap, or it being the null 3996 * register. 3997 */ 3998 fs_reg low = inst->dst; 3999 if (orig_dst.is_null() || orig_dst.file == MRF || 4000 regions_overlap(inst->dst, inst->size_written, 4001 inst->src[0], inst->size_read(0)) || 4002 regions_overlap(inst->dst, inst->size_written, 4003 inst->src[1], inst->size_read(1)) || 4004 inst->dst.stride >= 4) { 4005 needs_mov = true; 4006 low = fs_reg(VGRF, alloc.allocate(regs_written(inst)), 4007 inst->dst.type); 4008 } 4009 4010 /* Get a new VGRF but keep the same stride as inst->dst */ 4011 fs_reg high(VGRF, alloc.allocate(regs_written(inst)), 4012 inst->dst.type); 4013 high.stride = inst->dst.stride; 4014 high.offset = inst->dst.offset % REG_SIZE; 4015 4016 if (devinfo->gen >= 7) { 4017 if (inst->src[1].abs) 4018 lower_src_modifiers(this, block, inst, 1); 4019 4020 if (inst->src[1].file == IMM) { 4021 ibld.MUL(low, inst->src[0], 4022 brw_imm_uw(inst->src[1].ud & 0xffff)); 4023 ibld.MUL(high, inst->src[0], 4024 brw_imm_uw(inst->src[1].ud >> 16)); 4025 } else { 4026 ibld.MUL(low, inst->src[0], 4027 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0)); 4028 ibld.MUL(high, inst->src[0], 4029 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1)); 4030 } 4031 } else { 4032 if (inst->src[0].abs) 4033 lower_src_modifiers(this, block, inst, 0); 4034 4035 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0), 4036 inst->src[1]); 4037 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1), 4038 inst->src[1]); 4039 } 4040 4041 ibld.ADD(subscript(low, BRW_REGISTER_TYPE_UW, 1), 4042 subscript(low, BRW_REGISTER_TYPE_UW, 1), 4043 subscript(high, BRW_REGISTER_TYPE_UW, 0)); 4044 4045 if (needs_mov || inst->conditional_mod) { 4046 set_condmod(inst->conditional_mod, 4047 ibld.MOV(orig_dst, low)); 4048 } 4049 } 4050 4051 } else if (inst->opcode == SHADER_OPCODE_MULH) { 4052 /* According to the BDW+ BSpec page for the "Multiply Accumulate 4053 * High" instruction: 4054 * 4055 * "An added preliminary mov is required for source modification on 4056 * src1: 4057 * mov (8) r3.0<1>:d -r3<8;8,1>:d 4058 * mul (8) acc0:d r2.0<8;8,1>:d r3.0<16;8,2>:uw 4059 * mach (8) r5.0<1>:d r2.0<8;8,1>:d r3.0<8;8,1>:d" 4060 */ 4061 if (devinfo->gen >= 8 && (inst->src[1].negate || inst->src[1].abs)) 4062 lower_src_modifiers(this, block, inst, 1); 4063 4064 /* Should have been lowered to 8-wide. */ 4065 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst)); 4066 const fs_reg acc = retype(brw_acc_reg(inst->exec_size), 4067 inst->dst.type); 4068 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]); 4069 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]); 4070 4071 if (devinfo->gen >= 8) { 4072 /* Until Gen8, integer multiplies read 32-bits from one source, 4073 * and 16-bits from the other, and relying on the MACH instruction 4074 * to generate the high bits of the result. 4075 * 4076 * On Gen8, the multiply instruction does a full 32x32-bit 4077 * multiply, but in order to do a 64-bit multiply we can simulate 4078 * the previous behavior and then use a MACH instruction. 4079 */ 4080 assert(mul->src[1].type == BRW_REGISTER_TYPE_D || 4081 mul->src[1].type == BRW_REGISTER_TYPE_UD); 4082 mul->src[1].type = BRW_REGISTER_TYPE_UW; 4083 mul->src[1].stride *= 2; 4084 4085 } else if (devinfo->gen == 7 && !devinfo->is_haswell && 4086 inst->group > 0) { 4087 /* Among other things the quarter control bits influence which 4088 * accumulator register is used by the hardware for instructions 4089 * that access the accumulator implicitly (e.g. MACH). A 4090 * second-half instruction would normally map to acc1, which 4091 * doesn't exist on Gen7 and up (the hardware does emulate it for 4092 * floating-point instructions *only* by taking advantage of the 4093 * extra precision of acc0 not normally used for floating point 4094 * arithmetic). 4095 * 4096 * HSW and up are careful enough not to try to access an 4097 * accumulator register that doesn't exist, but on earlier Gen7 4098 * hardware we need to make sure that the quarter control bits are 4099 * zero to avoid non-deterministic behaviour and emit an extra MOV 4100 * to get the result masked correctly according to the current 4101 * channel enables. 4102 */ 4103 mach->group = 0; 4104 mach->force_writemask_all = true; 4105 mach->dst = ibld.vgrf(inst->dst.type); 4106 ibld.MOV(inst->dst, mach->dst); 4107 } 4108 } else { 4109 continue; 4110 } 4111 4112 inst->remove(block); 4113 progress = true; 4114 } 4115 4116 if (progress) 4117 invalidate_live_intervals(); 4118 4119 return progress; 4120} 4121 4122bool 4123fs_visitor::lower_minmax() 4124{ 4125 assert(devinfo->gen < 6); 4126 4127 bool progress = false; 4128 4129 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 4130 const fs_builder ibld(this, block, inst); 4131 4132 if (inst->opcode == BRW_OPCODE_SEL && 4133 inst->predicate == BRW_PREDICATE_NONE) { 4134 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of 4135 * the original SEL.L/GE instruction 4136 */ 4137 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1], 4138 inst->conditional_mod); 4139 inst->predicate = BRW_PREDICATE_NORMAL; 4140 inst->conditional_mod = BRW_CONDITIONAL_NONE; 4141 4142 progress = true; 4143 } 4144 } 4145 4146 if (progress) 4147 invalidate_live_intervals(); 4148 4149 return progress; 4150} 4151 4152static void 4153setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key, 4154 fs_reg *dst, fs_reg color, unsigned components) 4155{ 4156 if (key->clamp_fragment_color) { 4157 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4); 4158 assert(color.type == BRW_REGISTER_TYPE_F); 4159 4160 for (unsigned i = 0; i < components; i++) 4161 set_saturate(true, 4162 bld.MOV(offset(tmp, bld, i), offset(color, bld, i))); 4163 4164 color = tmp; 4165 } 4166 4167 for (unsigned i = 0; i < components; i++) 4168 dst[i] = offset(color, bld, i); 4169} 4170 4171static void 4172lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst, 4173 const struct brw_wm_prog_data *prog_data, 4174 const brw_wm_prog_key *key, 4175 const fs_visitor::thread_payload &payload) 4176{ 4177 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM); 4178 const gen_device_info *devinfo = bld.shader->devinfo; 4179 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0]; 4180 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1]; 4181 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA]; 4182 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH]; 4183 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH]; 4184 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL]; 4185 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK]; 4186 const unsigned components = 4187 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud; 4188 4189 /* We can potentially have a message length of up to 15, so we have to set 4190 * base_mrf to either 0 or 1 in order to fit in m0..m15. 4191 */ 4192 fs_reg sources[15]; 4193 int header_size = 2, payload_header_size; 4194 unsigned length = 0; 4195 4196 if (devinfo->gen < 6) { 4197 /* TODO: Support SIMD32 on gen4-5 */ 4198 assert(bld.group() < 16); 4199 4200 /* For gen4-5, we always have a header consisting of g0 and g1. We have 4201 * an implied MOV from g0,g1 to the start of the message. The MOV from 4202 * g0 is handled by the hardware and the MOV from g1 is provided by the 4203 * generator. This is required because, on gen4-5, the generator may 4204 * generate two write messages with different message lengths in order 4205 * to handle AA data properly. 4206 * 4207 * Also, since the pixel mask goes in the g0 portion of the message and 4208 * since render target writes are the last thing in the shader, we write 4209 * the pixel mask directly into g0 and it will get copied as part of the 4210 * implied write. 4211 */ 4212 if (prog_data->uses_kill) { 4213 bld.exec_all().group(1, 0) 4214 .MOV(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 4215 brw_flag_reg(0, 1)); 4216 } 4217 4218 assert(length == 0); 4219 length = 2; 4220 } else if ((devinfo->gen <= 7 && !devinfo->is_haswell && 4221 prog_data->uses_kill) || 4222 color1.file != BAD_FILE || 4223 key->nr_color_regions > 1) { 4224 /* From the Sandy Bridge PRM, volume 4, page 198: 4225 * 4226 * "Dispatched Pixel Enables. One bit per pixel indicating 4227 * which pixels were originally enabled when the thread was 4228 * dispatched. This field is only required for the end-of- 4229 * thread message and on all dual-source messages." 4230 */ 4231 const fs_builder ubld = bld.exec_all().group(8, 0); 4232 4233 fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2); 4234 if (bld.group() < 16) { 4235 /* The header starts off as g0 and g1 for the first half */ 4236 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0), 4237 BRW_REGISTER_TYPE_UD)); 4238 } else { 4239 /* The header starts off as g0 and g2 for the second half */ 4240 assert(bld.group() < 32); 4241 const fs_reg header_sources[2] = { 4242 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD), 4243 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD), 4244 }; 4245 ubld.LOAD_PAYLOAD(header, header_sources, 2, 0); 4246 } 4247 4248 uint32_t g00_bits = 0; 4249 4250 /* Set "Source0 Alpha Present to RenderTarget" bit in message 4251 * header. 4252 */ 4253 if (inst->target > 0 && prog_data->replicate_alpha) 4254 g00_bits |= 1 << 11; 4255 4256 /* Set computes stencil to render target */ 4257 if (prog_data->computed_stencil) 4258 g00_bits |= 1 << 14; 4259 4260 if (g00_bits) { 4261 /* OR extra bits into g0.0 */ 4262 ubld.group(1, 0).OR(component(header, 0), 4263 retype(brw_vec1_grf(0, 0), 4264 BRW_REGISTER_TYPE_UD), 4265 brw_imm_ud(g00_bits)); 4266 } 4267 4268 /* Set the render target index for choosing BLEND_STATE. */ 4269 if (inst->target > 0) { 4270 ubld.group(1, 0).MOV(component(header, 2), brw_imm_ud(inst->target)); 4271 } 4272 4273 if (prog_data->uses_kill) { 4274 assert(bld.group() < 16); 4275 ubld.group(1, 0).MOV(retype(component(header, 15), 4276 BRW_REGISTER_TYPE_UW), 4277 brw_flag_reg(0, 1)); 4278 } 4279 4280 assert(length == 0); 4281 sources[0] = header; 4282 sources[1] = horiz_offset(header, 8); 4283 length = 2; 4284 } 4285 assert(length == 0 || length == 2); 4286 header_size = length; 4287 4288 if (payload.aa_dest_stencil_reg[0]) { 4289 assert(inst->group < 16); 4290 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1)); 4291 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha") 4292 .MOV(sources[length], 4293 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg[0], 0))); 4294 length++; 4295 } 4296 4297 if (src0_alpha.file != BAD_FILE) { 4298 for (unsigned i = 0; i < bld.dispatch_width() / 8; i++) { 4299 const fs_builder &ubld = bld.exec_all().group(8, i) 4300 .annotate("FB write src0 alpha"); 4301 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_F); 4302 ubld.MOV(tmp, horiz_offset(src0_alpha, i * 8)); 4303 setup_color_payload(ubld, key, &sources[length], tmp, 1); 4304 length++; 4305 } 4306 } else if (prog_data->replicate_alpha && inst->target != 0) { 4307 /* Handle the case when fragment shader doesn't write to draw buffer 4308 * zero. No need to call setup_color_payload() for src0_alpha because 4309 * alpha value will be undefined. 4310 */ 4311 length += bld.dispatch_width() / 8; 4312 } 4313 4314 if (sample_mask.file != BAD_FILE) { 4315 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1), 4316 BRW_REGISTER_TYPE_UD); 4317 4318 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are 4319 * relevant. Since it's unsigned single words one vgrf is always 4320 * 16-wide, but only the lower or higher 8 channels will be used by the 4321 * hardware when doing a SIMD8 write depending on whether we have 4322 * selected the subspans for the first or second half respectively. 4323 */ 4324 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4); 4325 sample_mask.type = BRW_REGISTER_TYPE_UW; 4326 sample_mask.stride *= 2; 4327 4328 bld.exec_all().annotate("FB write oMask") 4329 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW), 4330 inst->group % 16), 4331 sample_mask); 4332 length++; 4333 } 4334 4335 payload_header_size = length; 4336 4337 setup_color_payload(bld, key, &sources[length], color0, components); 4338 length += 4; 4339 4340 if (color1.file != BAD_FILE) { 4341 setup_color_payload(bld, key, &sources[length], color1, components); 4342 length += 4; 4343 } 4344 4345 if (src_depth.file != BAD_FILE) { 4346 sources[length] = src_depth; 4347 length++; 4348 } 4349 4350 if (dst_depth.file != BAD_FILE) { 4351 sources[length] = dst_depth; 4352 length++; 4353 } 4354 4355 if (src_stencil.file != BAD_FILE) { 4356 assert(devinfo->gen >= 9); 4357 assert(bld.dispatch_width() == 8); 4358 4359 /* XXX: src_stencil is only available on gen9+. dst_depth is never 4360 * available on gen9+. As such it's impossible to have both enabled at the 4361 * same time and therefore length cannot overrun the array. 4362 */ 4363 assert(length < 15); 4364 4365 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD); 4366 bld.exec_all().annotate("FB write OS") 4367 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB), 4368 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0)); 4369 length++; 4370 } 4371 4372 fs_inst *load; 4373 if (devinfo->gen >= 7) { 4374 /* Send from the GRF */ 4375 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F); 4376 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size); 4377 payload.nr = bld.shader->alloc.allocate(regs_written(load)); 4378 load->dst = payload; 4379 4380 inst->src[0] = payload; 4381 inst->resize_sources(1); 4382 } else { 4383 /* Send from the MRF */ 4384 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F), 4385 sources, length, payload_header_size); 4386 4387 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD 4388 * will do this for us if we just give it a COMPR4 destination. 4389 */ 4390 if (devinfo->gen < 6 && bld.dispatch_width() == 16) 4391 load->dst.nr |= BRW_MRF_COMPR4; 4392 4393 if (devinfo->gen < 6) { 4394 /* Set up src[0] for the implied MOV from grf0-1 */ 4395 inst->resize_sources(1); 4396 inst->src[0] = brw_vec8_grf(0, 0); 4397 } else { 4398 inst->resize_sources(0); 4399 } 4400 inst->base_mrf = 1; 4401 } 4402 4403 inst->opcode = FS_OPCODE_FB_WRITE; 4404 inst->mlen = regs_written(load); 4405 inst->header_size = header_size; 4406} 4407 4408static void 4409lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst) 4410{ 4411 const fs_builder &ubld = bld.exec_all().group(8, 0); 4412 const unsigned length = 2; 4413 const fs_reg header = ubld.vgrf(BRW_REGISTER_TYPE_UD, length); 4414 4415 if (bld.group() < 16) { 4416 ubld.group(16, 0).MOV(header, retype(brw_vec8_grf(0, 0), 4417 BRW_REGISTER_TYPE_UD)); 4418 } else { 4419 assert(bld.group() < 32); 4420 const fs_reg header_sources[] = { 4421 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD), 4422 retype(brw_vec8_grf(2, 0), BRW_REGISTER_TYPE_UD) 4423 }; 4424 ubld.LOAD_PAYLOAD(header, header_sources, ARRAY_SIZE(header_sources), 0); 4425 } 4426 4427 inst->resize_sources(1); 4428 inst->src[0] = header; 4429 inst->opcode = FS_OPCODE_FB_READ; 4430 inst->mlen = length; 4431 inst->header_size = length; 4432} 4433 4434static void 4435lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op, 4436 const fs_reg &coordinate, 4437 const fs_reg &shadow_c, 4438 const fs_reg &lod, const fs_reg &lod2, 4439 const fs_reg &surface, 4440 const fs_reg &sampler, 4441 unsigned coord_components, 4442 unsigned grad_components) 4443{ 4444 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB || 4445 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS); 4446 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F); 4447 fs_reg msg_end = msg_begin; 4448 4449 /* g0 header. */ 4450 msg_end = offset(msg_end, bld.group(8, 0), 1); 4451 4452 for (unsigned i = 0; i < coord_components; i++) 4453 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type), 4454 offset(coordinate, bld, i)); 4455 4456 msg_end = offset(msg_end, bld, coord_components); 4457 4458 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8 4459 * require all three components to be present and zero if they are unused. 4460 */ 4461 if (coord_components > 0 && 4462 (has_lod || shadow_c.file != BAD_FILE || 4463 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) { 4464 for (unsigned i = coord_components; i < 3; i++) 4465 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f)); 4466 4467 msg_end = offset(msg_end, bld, 3 - coord_components); 4468 } 4469 4470 if (op == SHADER_OPCODE_TXD) { 4471 /* TXD unsupported in SIMD16 mode. */ 4472 assert(bld.dispatch_width() == 8); 4473 4474 /* the slots for u and v are always present, but r is optional */ 4475 if (coord_components < 2) 4476 msg_end = offset(msg_end, bld, 2 - coord_components); 4477 4478 /* P = u, v, r 4479 * dPdx = dudx, dvdx, drdx 4480 * dPdy = dudy, dvdy, drdy 4481 * 4482 * 1-arg: Does not exist. 4483 * 4484 * 2-arg: dudx dvdx dudy dvdy 4485 * dPdx.x dPdx.y dPdy.x dPdy.y 4486 * m4 m5 m6 m7 4487 * 4488 * 3-arg: dudx dvdx drdx dudy dvdy drdy 4489 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z 4490 * m5 m6 m7 m8 m9 m10 4491 */ 4492 for (unsigned i = 0; i < grad_components; i++) 4493 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i)); 4494 4495 msg_end = offset(msg_end, bld, MAX2(grad_components, 2)); 4496 4497 for (unsigned i = 0; i < grad_components; i++) 4498 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i)); 4499 4500 msg_end = offset(msg_end, bld, MAX2(grad_components, 2)); 4501 } 4502 4503 if (has_lod) { 4504 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without* 4505 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode. 4506 */ 4507 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 : 4508 bld.dispatch_width() == 16); 4509 4510 const brw_reg_type type = 4511 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ? 4512 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F); 4513 bld.MOV(retype(msg_end, type), lod); 4514 msg_end = offset(msg_end, bld, 1); 4515 } 4516 4517 if (shadow_c.file != BAD_FILE) { 4518 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) { 4519 /* There's no plain shadow compare message, so we use shadow 4520 * compare with a bias of 0.0. 4521 */ 4522 bld.MOV(msg_end, brw_imm_f(0.0f)); 4523 msg_end = offset(msg_end, bld, 1); 4524 } 4525 4526 bld.MOV(msg_end, shadow_c); 4527 msg_end = offset(msg_end, bld, 1); 4528 } 4529 4530 inst->opcode = op; 4531 inst->src[0] = reg_undef; 4532 inst->src[1] = surface; 4533 inst->src[2] = sampler; 4534 inst->resize_sources(3); 4535 inst->base_mrf = msg_begin.nr; 4536 inst->mlen = msg_end.nr - msg_begin.nr; 4537 inst->header_size = 1; 4538} 4539 4540static void 4541lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op, 4542 const fs_reg &coordinate, 4543 const fs_reg &shadow_c, 4544 const fs_reg &lod, const fs_reg &lod2, 4545 const fs_reg &sample_index, 4546 const fs_reg &surface, 4547 const fs_reg &sampler, 4548 unsigned coord_components, 4549 unsigned grad_components) 4550{ 4551 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F); 4552 fs_reg msg_coords = message; 4553 unsigned header_size = 0; 4554 4555 if (inst->offset != 0) { 4556 /* The offsets set up by the visitor are in the m1 header, so we can't 4557 * go headerless. 4558 */ 4559 header_size = 1; 4560 message.nr--; 4561 } 4562 4563 for (unsigned i = 0; i < coord_components; i++) 4564 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type), 4565 offset(coordinate, bld, i)); 4566 4567 fs_reg msg_end = offset(msg_coords, bld, coord_components); 4568 fs_reg msg_lod = offset(msg_coords, bld, 4); 4569 4570 if (shadow_c.file != BAD_FILE) { 4571 fs_reg msg_shadow = msg_lod; 4572 bld.MOV(msg_shadow, shadow_c); 4573 msg_lod = offset(msg_shadow, bld, 1); 4574 msg_end = msg_lod; 4575 } 4576 4577 switch (op) { 4578 case SHADER_OPCODE_TXL: 4579 case FS_OPCODE_TXB: 4580 bld.MOV(msg_lod, lod); 4581 msg_end = offset(msg_lod, bld, 1); 4582 break; 4583 case SHADER_OPCODE_TXD: 4584 /** 4585 * P = u, v, r 4586 * dPdx = dudx, dvdx, drdx 4587 * dPdy = dudy, dvdy, drdy 4588 * 4589 * Load up these values: 4590 * - dudx dudy dvdx dvdy drdx drdy 4591 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z 4592 */ 4593 msg_end = msg_lod; 4594 for (unsigned i = 0; i < grad_components; i++) { 4595 bld.MOV(msg_end, offset(lod, bld, i)); 4596 msg_end = offset(msg_end, bld, 1); 4597 4598 bld.MOV(msg_end, offset(lod2, bld, i)); 4599 msg_end = offset(msg_end, bld, 1); 4600 } 4601 break; 4602 case SHADER_OPCODE_TXS: 4603 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD); 4604 bld.MOV(msg_lod, lod); 4605 msg_end = offset(msg_lod, bld, 1); 4606 break; 4607 case SHADER_OPCODE_TXF: 4608 msg_lod = offset(msg_coords, bld, 3); 4609 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod); 4610 msg_end = offset(msg_lod, bld, 1); 4611 break; 4612 case SHADER_OPCODE_TXF_CMS: 4613 msg_lod = offset(msg_coords, bld, 3); 4614 /* lod */ 4615 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u)); 4616 /* sample index */ 4617 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index); 4618 msg_end = offset(msg_lod, bld, 2); 4619 break; 4620 default: 4621 break; 4622 } 4623 4624 inst->opcode = op; 4625 inst->src[0] = reg_undef; 4626 inst->src[1] = surface; 4627 inst->src[2] = sampler; 4628 inst->resize_sources(3); 4629 inst->base_mrf = message.nr; 4630 inst->mlen = msg_end.nr - message.nr; 4631 inst->header_size = header_size; 4632 4633 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */ 4634 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE); 4635} 4636 4637static bool 4638is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler) 4639{ 4640 if (devinfo->gen < 8 && !devinfo->is_haswell) 4641 return false; 4642 4643 return sampler.file != IMM || sampler.ud >= 16; 4644} 4645 4646static unsigned 4647sampler_msg_type(const gen_device_info *devinfo, 4648 opcode opcode, bool shadow_compare) 4649{ 4650 assert(devinfo->gen >= 5); 4651 switch (opcode) { 4652 case SHADER_OPCODE_TEX: 4653 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_COMPARE : 4654 GEN5_SAMPLER_MESSAGE_SAMPLE; 4655 case FS_OPCODE_TXB: 4656 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE : 4657 GEN5_SAMPLER_MESSAGE_SAMPLE_BIAS; 4658 case SHADER_OPCODE_TXL: 4659 return shadow_compare ? GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE : 4660 GEN5_SAMPLER_MESSAGE_SAMPLE_LOD; 4661 case SHADER_OPCODE_TXL_LZ: 4662 return shadow_compare ? GEN9_SAMPLER_MESSAGE_SAMPLE_C_LZ : 4663 GEN9_SAMPLER_MESSAGE_SAMPLE_LZ; 4664 case SHADER_OPCODE_TXS: 4665 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL: 4666 return GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO; 4667 case SHADER_OPCODE_TXD: 4668 assert(!shadow_compare || devinfo->gen >= 8 || devinfo->is_haswell); 4669 return shadow_compare ? HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE : 4670 GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS; 4671 case SHADER_OPCODE_TXF: 4672 return GEN5_SAMPLER_MESSAGE_SAMPLE_LD; 4673 case SHADER_OPCODE_TXF_LZ: 4674 assert(devinfo->gen >= 9); 4675 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD_LZ; 4676 case SHADER_OPCODE_TXF_CMS_W: 4677 assert(devinfo->gen >= 9); 4678 return GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W; 4679 case SHADER_OPCODE_TXF_CMS: 4680 return devinfo->gen >= 7 ? GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS : 4681 GEN5_SAMPLER_MESSAGE_SAMPLE_LD; 4682 case SHADER_OPCODE_TXF_UMS: 4683 assert(devinfo->gen >= 7); 4684 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DSS; 4685 case SHADER_OPCODE_TXF_MCS: 4686 assert(devinfo->gen >= 7); 4687 return GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS; 4688 case SHADER_OPCODE_LOD: 4689 return GEN5_SAMPLER_MESSAGE_LOD; 4690 case SHADER_OPCODE_TG4: 4691 assert(devinfo->gen >= 7); 4692 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C : 4693 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4; 4694 break; 4695 case SHADER_OPCODE_TG4_OFFSET: 4696 assert(devinfo->gen >= 7); 4697 return shadow_compare ? GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C : 4698 GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO; 4699 case SHADER_OPCODE_SAMPLEINFO: 4700 return GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO; 4701 default: 4702 unreachable("not reached"); 4703 } 4704} 4705 4706static void 4707lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op, 4708 const fs_reg &coordinate, 4709 const fs_reg &shadow_c, 4710 fs_reg lod, const fs_reg &lod2, 4711 const fs_reg &min_lod, 4712 const fs_reg &sample_index, 4713 const fs_reg &mcs, 4714 const fs_reg &surface, 4715 const fs_reg &sampler, 4716 const fs_reg &surface_handle, 4717 const fs_reg &sampler_handle, 4718 const fs_reg &tg4_offset, 4719 unsigned coord_components, 4720 unsigned grad_components) 4721{ 4722 const gen_device_info *devinfo = bld.shader->devinfo; 4723 const brw_stage_prog_data *prog_data = bld.shader->stage_prog_data; 4724 unsigned reg_width = bld.dispatch_width() / 8; 4725 unsigned header_size = 0, length = 0; 4726 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE]; 4727 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++) 4728 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F); 4729 4730 /* We must have exactly one of surface/sampler and surface/sampler_handle */ 4731 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE)); 4732 assert((sampler.file == BAD_FILE) != (sampler_handle.file == BAD_FILE)); 4733 4734 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET || 4735 inst->offset != 0 || inst->eot || 4736 op == SHADER_OPCODE_SAMPLEINFO || 4737 sampler_handle.file != BAD_FILE || 4738 is_high_sampler(devinfo, sampler)) { 4739 /* For general texture offsets (no txf workaround), we need a header to 4740 * put them in. 4741 * 4742 * TG4 needs to place its channel select in the header, for interaction 4743 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for 4744 * larger sampler numbers we need to offset the Sampler State Pointer in 4745 * the header. 4746 */ 4747 fs_reg header = retype(sources[0], BRW_REGISTER_TYPE_UD); 4748 header_size = 1; 4749 length++; 4750 4751 /* If we're requesting fewer than four channels worth of response, 4752 * and we have an explicit header, we need to set up the sampler 4753 * writemask. It's reversed from normal: 1 means "don't write". 4754 */ 4755 if (!inst->eot && regs_written(inst) != 4 * reg_width) { 4756 assert(regs_written(inst) % reg_width == 0); 4757 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf; 4758 inst->offset |= mask << 12; 4759 } 4760 4761 /* Build the actual header */ 4762 const fs_builder ubld = bld.exec_all().group(8, 0); 4763 const fs_builder ubld1 = ubld.group(1, 0); 4764 ubld.MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); 4765 if (inst->offset) { 4766 ubld1.MOV(component(header, 2), brw_imm_ud(inst->offset)); 4767 } else if (bld.shader->stage != MESA_SHADER_VERTEX && 4768 bld.shader->stage != MESA_SHADER_FRAGMENT) { 4769 /* The vertex and fragment stages have g0.2 set to 0, so 4770 * header0.2 is 0 when g0 is copied. Other stages may not, so we 4771 * must set it to 0 to avoid setting undesirable bits in the 4772 * message. 4773 */ 4774 ubld1.MOV(component(header, 2), brw_imm_ud(0)); 4775 } 4776 4777 if (sampler_handle.file != BAD_FILE) { 4778 /* Bindless sampler handles aren't relative to the sampler state 4779 * pointer passed into the shader through SAMPLER_STATE_POINTERS_*. 4780 * Instead, it's an absolute pointer relative to dynamic state base 4781 * address. 4782 * 4783 * Sampler states are 16 bytes each and the pointer we give here has 4784 * to be 32-byte aligned. In order to avoid more indirect messages 4785 * than required, we assume that all bindless sampler states are 4786 * 32-byte aligned. This sacrifices a bit of general state base 4787 * address space but means we can do something more efficient in the 4788 * shader. 4789 */ 4790 ubld1.MOV(component(header, 3), sampler_handle); 4791 } else if (is_high_sampler(devinfo, sampler)) { 4792 if (sampler.file == BRW_IMMEDIATE_VALUE) { 4793 assert(sampler.ud >= 16); 4794 const int sampler_state_size = 16; /* 16 bytes */ 4795 4796 ubld1.ADD(component(header, 3), 4797 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD), 4798 brw_imm_ud(16 * (sampler.ud / 16) * sampler_state_size)); 4799 } else { 4800 fs_reg tmp = ubld1.vgrf(BRW_REGISTER_TYPE_UD); 4801 ubld1.AND(tmp, sampler, brw_imm_ud(0x0f0)); 4802 ubld1.SHL(tmp, tmp, brw_imm_ud(4)); 4803 ubld1.ADD(component(header, 3), 4804 retype(brw_vec1_grf(0, 3), BRW_REGISTER_TYPE_UD), 4805 tmp); 4806 } 4807 } 4808 } 4809 4810 if (shadow_c.file != BAD_FILE) { 4811 bld.MOV(sources[length], shadow_c); 4812 length++; 4813 } 4814 4815 bool coordinate_done = false; 4816 4817 /* Set up the LOD info */ 4818 switch (op) { 4819 case FS_OPCODE_TXB: 4820 case SHADER_OPCODE_TXL: 4821 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) { 4822 op = SHADER_OPCODE_TXL_LZ; 4823 break; 4824 } 4825 bld.MOV(sources[length], lod); 4826 length++; 4827 break; 4828 case SHADER_OPCODE_TXD: 4829 /* TXD should have been lowered in SIMD16 mode. */ 4830 assert(bld.dispatch_width() == 8); 4831 4832 /* Load dPdx and the coordinate together: 4833 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z 4834 */ 4835 for (unsigned i = 0; i < coord_components; i++) { 4836 bld.MOV(sources[length++], offset(coordinate, bld, i)); 4837 4838 /* For cube map array, the coordinate is (u,v,r,ai) but there are 4839 * only derivatives for (u, v, r). 4840 */ 4841 if (i < grad_components) { 4842 bld.MOV(sources[length++], offset(lod, bld, i)); 4843 bld.MOV(sources[length++], offset(lod2, bld, i)); 4844 } 4845 } 4846 4847 coordinate_done = true; 4848 break; 4849 case SHADER_OPCODE_TXS: 4850 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod); 4851 length++; 4852 break; 4853 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL: 4854 /* We need an LOD; just use 0 */ 4855 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), brw_imm_ud(0)); 4856 length++; 4857 break; 4858 case SHADER_OPCODE_TXF: 4859 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r. 4860 * On Gen9 they are u, v, lod, r 4861 */ 4862 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate); 4863 4864 if (devinfo->gen >= 9) { 4865 if (coord_components >= 2) { 4866 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), 4867 offset(coordinate, bld, 1)); 4868 } else { 4869 sources[length] = brw_imm_d(0); 4870 } 4871 length++; 4872 } 4873 4874 if (devinfo->gen >= 9 && lod.is_zero()) { 4875 op = SHADER_OPCODE_TXF_LZ; 4876 } else { 4877 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod); 4878 length++; 4879 } 4880 4881 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) 4882 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), 4883 offset(coordinate, bld, i)); 4884 4885 coordinate_done = true; 4886 break; 4887 4888 case SHADER_OPCODE_TXF_CMS: 4889 case SHADER_OPCODE_TXF_CMS_W: 4890 case SHADER_OPCODE_TXF_UMS: 4891 case SHADER_OPCODE_TXF_MCS: 4892 if (op == SHADER_OPCODE_TXF_UMS || 4893 op == SHADER_OPCODE_TXF_CMS || 4894 op == SHADER_OPCODE_TXF_CMS_W) { 4895 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index); 4896 length++; 4897 } 4898 4899 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) { 4900 /* Data from the multisample control surface. */ 4901 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs); 4902 length++; 4903 4904 /* On Gen9+ we'll use ld2dms_w instead which has two registers for 4905 * the MCS data. 4906 */ 4907 if (op == SHADER_OPCODE_TXF_CMS_W) { 4908 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), 4909 mcs.file == IMM ? 4910 mcs : 4911 offset(mcs, bld, 1)); 4912 length++; 4913 } 4914 } 4915 4916 /* There is no offsetting for this message; just copy in the integer 4917 * texture coordinates. 4918 */ 4919 for (unsigned i = 0; i < coord_components; i++) 4920 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), 4921 offset(coordinate, bld, i)); 4922 4923 coordinate_done = true; 4924 break; 4925 case SHADER_OPCODE_TG4_OFFSET: 4926 /* More crazy intermixing */ 4927 for (unsigned i = 0; i < 2; i++) /* u, v */ 4928 bld.MOV(sources[length++], offset(coordinate, bld, i)); 4929 4930 for (unsigned i = 0; i < 2; i++) /* offu, offv */ 4931 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), 4932 offset(tg4_offset, bld, i)); 4933 4934 if (coord_components == 3) /* r if present */ 4935 bld.MOV(sources[length++], offset(coordinate, bld, 2)); 4936 4937 coordinate_done = true; 4938 break; 4939 default: 4940 break; 4941 } 4942 4943 /* Set up the coordinate (except for cases where it was done above) */ 4944 if (!coordinate_done) { 4945 for (unsigned i = 0; i < coord_components; i++) 4946 bld.MOV(sources[length++], offset(coordinate, bld, i)); 4947 } 4948 4949 if (min_lod.file != BAD_FILE) { 4950 /* Account for all of the missing coordinate sources */ 4951 length += 4 - coord_components; 4952 if (op == SHADER_OPCODE_TXD) 4953 length += (3 - grad_components) * 2; 4954 4955 bld.MOV(sources[length++], min_lod); 4956 } 4957 4958 unsigned mlen; 4959 if (reg_width == 2) 4960 mlen = length * reg_width - header_size; 4961 else 4962 mlen = length * reg_width; 4963 4964 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen), 4965 BRW_REGISTER_TYPE_F); 4966 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size); 4967 4968 /* Generate the SEND. */ 4969 inst->opcode = SHADER_OPCODE_SEND; 4970 inst->mlen = mlen; 4971 inst->header_size = header_size; 4972 4973 const unsigned msg_type = 4974 sampler_msg_type(devinfo, op, inst->shadow_compare); 4975 const unsigned simd_mode = 4976 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 : 4977 BRW_SAMPLER_SIMD_MODE_SIMD16; 4978 4979 uint32_t base_binding_table_index; 4980 switch (op) { 4981 case SHADER_OPCODE_TG4: 4982 case SHADER_OPCODE_TG4_OFFSET: 4983 base_binding_table_index = prog_data->binding_table.gather_texture_start; 4984 break; 4985 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL: 4986 base_binding_table_index = prog_data->binding_table.image_start; 4987 break; 4988 default: 4989 base_binding_table_index = prog_data->binding_table.texture_start; 4990 break; 4991 } 4992 4993 inst->sfid = BRW_SFID_SAMPLER; 4994 if (surface.file == IMM && 4995 (sampler.file == IMM || sampler_handle.file != BAD_FILE)) { 4996 inst->desc = brw_sampler_desc(devinfo, 4997 surface.ud + base_binding_table_index, 4998 sampler.file == IMM ? sampler.ud % 16 : 0, 4999 msg_type, 5000 simd_mode, 5001 0 /* return_format unused on gen7+ */); 5002 inst->src[0] = brw_imm_ud(0); 5003 inst->src[1] = brw_imm_ud(0); /* ex_desc */ 5004 } else if (surface_handle.file != BAD_FILE) { 5005 /* Bindless surface */ 5006 assert(devinfo->gen >= 9); 5007 inst->desc = brw_sampler_desc(devinfo, 5008 GEN9_BTI_BINDLESS, 5009 sampler.file == IMM ? sampler.ud % 16 : 0, 5010 msg_type, 5011 simd_mode, 5012 0 /* return_format unused on gen7+ */); 5013 5014 /* For bindless samplers, the entire address is included in the message 5015 * header so we can leave the portion in the message descriptor 0. 5016 */ 5017 if (sampler_handle.file != BAD_FILE || sampler.file == IMM) { 5018 inst->src[0] = brw_imm_ud(0); 5019 } else { 5020 const fs_builder ubld = bld.group(1, 0).exec_all(); 5021 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD); 5022 ubld.SHL(desc, sampler, brw_imm_ud(8)); 5023 inst->src[0] = desc; 5024 } 5025 5026 /* We assume that the driver provided the handle in the top 20 bits so 5027 * we can use the surface handle directly as the extended descriptor. 5028 */ 5029 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD); 5030 } else { 5031 /* Immediate portion of the descriptor */ 5032 inst->desc = brw_sampler_desc(devinfo, 5033 0, /* surface */ 5034 0, /* sampler */ 5035 msg_type, 5036 simd_mode, 5037 0 /* return_format unused on gen7+ */); 5038 const fs_builder ubld = bld.group(1, 0).exec_all(); 5039 fs_reg desc = ubld.vgrf(BRW_REGISTER_TYPE_UD); 5040 if (surface.equals(sampler)) { 5041 /* This case is common in GL */ 5042 ubld.MUL(desc, surface, brw_imm_ud(0x101)); 5043 } else { 5044 if (sampler_handle.file != BAD_FILE) { 5045 ubld.MOV(desc, surface); 5046 } else if (sampler.file == IMM) { 5047 ubld.OR(desc, surface, brw_imm_ud(sampler.ud << 8)); 5048 } else { 5049 ubld.SHL(desc, sampler, brw_imm_ud(8)); 5050 ubld.OR(desc, desc, surface); 5051 } 5052 } 5053 if (base_binding_table_index) 5054 ubld.ADD(desc, desc, brw_imm_ud(base_binding_table_index)); 5055 ubld.AND(desc, desc, brw_imm_ud(0xfff)); 5056 5057 inst->src[0] = component(desc, 0); 5058 inst->src[1] = brw_imm_ud(0); /* ex_desc */ 5059 } 5060 5061 inst->src[2] = src_payload; 5062 inst->resize_sources(3); 5063 5064 if (inst->eot) { 5065 /* EOT sampler messages don't make sense to split because it would 5066 * involve ending half of the thread early. 5067 */ 5068 assert(inst->group == 0); 5069 /* We need to use SENDC for EOT sampler messages */ 5070 inst->check_tdr = true; 5071 inst->send_has_side_effects = true; 5072 } 5073 5074 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */ 5075 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE); 5076} 5077 5078static void 5079lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op) 5080{ 5081 const gen_device_info *devinfo = bld.shader->devinfo; 5082 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE]; 5083 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C]; 5084 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD]; 5085 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2]; 5086 const fs_reg &min_lod = inst->src[TEX_LOGICAL_SRC_MIN_LOD]; 5087 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX]; 5088 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS]; 5089 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE]; 5090 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER]; 5091 const fs_reg &surface_handle = inst->src[TEX_LOGICAL_SRC_SURFACE_HANDLE]; 5092 const fs_reg &sampler_handle = inst->src[TEX_LOGICAL_SRC_SAMPLER_HANDLE]; 5093 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET]; 5094 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM); 5095 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud; 5096 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM); 5097 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud; 5098 5099 if (devinfo->gen >= 7) { 5100 lower_sampler_logical_send_gen7(bld, inst, op, coordinate, 5101 shadow_c, lod, lod2, min_lod, 5102 sample_index, 5103 mcs, surface, sampler, 5104 surface_handle, sampler_handle, 5105 tg4_offset, 5106 coord_components, grad_components); 5107 } else if (devinfo->gen >= 5) { 5108 lower_sampler_logical_send_gen5(bld, inst, op, coordinate, 5109 shadow_c, lod, lod2, sample_index, 5110 surface, sampler, 5111 coord_components, grad_components); 5112 } else { 5113 lower_sampler_logical_send_gen4(bld, inst, op, coordinate, 5114 shadow_c, lod, lod2, 5115 surface, sampler, 5116 coord_components, grad_components); 5117 } 5118} 5119 5120/** 5121 * Initialize the header present in some typed and untyped surface 5122 * messages. 5123 */ 5124static fs_reg 5125emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask) 5126{ 5127 fs_builder ubld = bld.exec_all().group(8, 0); 5128 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD); 5129 ubld.MOV(dst, brw_imm_d(0)); 5130 ubld.group(1, 0).MOV(component(dst, 7), sample_mask); 5131 return dst; 5132} 5133 5134static void 5135lower_surface_logical_send(const fs_builder &bld, fs_inst *inst) 5136{ 5137 const gen_device_info *devinfo = bld.shader->devinfo; 5138 5139 /* Get the logical send arguments. */ 5140 const fs_reg &addr = inst->src[SURFACE_LOGICAL_SRC_ADDRESS]; 5141 const fs_reg &src = inst->src[SURFACE_LOGICAL_SRC_DATA]; 5142 const fs_reg &surface = inst->src[SURFACE_LOGICAL_SRC_SURFACE]; 5143 const fs_reg &surface_handle = inst->src[SURFACE_LOGICAL_SRC_SURFACE_HANDLE]; 5144 const UNUSED fs_reg &dims = inst->src[SURFACE_LOGICAL_SRC_IMM_DIMS]; 5145 const fs_reg &arg = inst->src[SURFACE_LOGICAL_SRC_IMM_ARG]; 5146 assert(arg.file == IMM); 5147 5148 /* We must have exactly one of surface and surface_handle */ 5149 assert((surface.file == BAD_FILE) != (surface_handle.file == BAD_FILE)); 5150 5151 /* Calculate the total number of components of the payload. */ 5152 const unsigned addr_sz = inst->components_read(SURFACE_LOGICAL_SRC_ADDRESS); 5153 const unsigned src_sz = inst->components_read(SURFACE_LOGICAL_SRC_DATA); 5154 5155 const bool is_typed_access = 5156 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL || 5157 inst->opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL || 5158 inst->opcode == SHADER_OPCODE_TYPED_ATOMIC_LOGICAL; 5159 5160 /* From the BDW PRM Volume 7, page 147: 5161 * 5162 * "For the Data Cache Data Port*, the header must be present for the 5163 * following message types: [...] Typed read/write/atomics" 5164 * 5165 * Earlier generations have a similar wording. Because of this restriction 5166 * we don't attempt to implement sample masks via predication for such 5167 * messages prior to Gen9, since we have to provide a header anyway. On 5168 * Gen11+ the header has been removed so we can only use predication. 5169 */ 5170 const unsigned header_sz = devinfo->gen < 9 && is_typed_access ? 1 : 0; 5171 5172 const bool has_side_effects = inst->has_side_effects(); 5173 fs_reg sample_mask = has_side_effects ? bld.sample_mask_reg() : 5174 fs_reg(brw_imm_d(0xffff)); 5175 5176 fs_reg payload, payload2; 5177 unsigned mlen, ex_mlen = 0; 5178 if (devinfo->gen >= 9) { 5179 /* We have split sends on gen9 and above */ 5180 assert(header_sz == 0); 5181 payload = bld.move_to_vgrf(addr, addr_sz); 5182 payload2 = bld.move_to_vgrf(src, src_sz); 5183 mlen = addr_sz * (inst->exec_size / 8); 5184 ex_mlen = src_sz * (inst->exec_size / 8); 5185 } else { 5186 /* Allocate space for the payload. */ 5187 const unsigned sz = header_sz + addr_sz + src_sz; 5188 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz); 5189 fs_reg *const components = new fs_reg[sz]; 5190 unsigned n = 0; 5191 5192 /* Construct the payload. */ 5193 if (header_sz) 5194 components[n++] = emit_surface_header(bld, sample_mask); 5195 5196 for (unsigned i = 0; i < addr_sz; i++) 5197 components[n++] = offset(addr, bld, i); 5198 5199 for (unsigned i = 0; i < src_sz; i++) 5200 components[n++] = offset(src, bld, i); 5201 5202 bld.LOAD_PAYLOAD(payload, components, sz, header_sz); 5203 mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8; 5204 5205 delete[] components; 5206 } 5207 5208 /* Predicate the instruction on the sample mask if no header is 5209 * provided. 5210 */ 5211 if (!header_sz && sample_mask.file != BAD_FILE && 5212 sample_mask.file != IMM) { 5213 const fs_builder ubld = bld.group(1, 0).exec_all(); 5214 if (inst->predicate) { 5215 assert(inst->predicate == BRW_PREDICATE_NORMAL); 5216 assert(!inst->predicate_inverse); 5217 assert(inst->flag_subreg < 2); 5218 /* Combine the sample mask with the existing predicate by using a 5219 * vertical predication mode. 5220 */ 5221 inst->predicate = BRW_PREDICATE_ALIGN1_ALLV; 5222 ubld.MOV(retype(brw_flag_subreg(inst->flag_subreg + 2), 5223 sample_mask.type), 5224 sample_mask); 5225 } else { 5226 inst->flag_subreg = 2; 5227 inst->predicate = BRW_PREDICATE_NORMAL; 5228 inst->predicate_inverse = false; 5229 ubld.MOV(retype(brw_flag_subreg(inst->flag_subreg), sample_mask.type), 5230 sample_mask); 5231 } 5232 } 5233 5234 uint32_t sfid; 5235 switch (inst->opcode) { 5236 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL: 5237 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL: 5238 /* Byte scattered opcodes go through the normal data cache */ 5239 sfid = GEN7_SFID_DATAPORT_DATA_CACHE; 5240 break; 5241 5242 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL: 5243 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL: 5244 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL: 5245 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: 5246 /* Untyped Surface messages go through the data cache but the SFID value 5247 * changed on Haswell. 5248 */ 5249 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ? 5250 HSW_SFID_DATAPORT_DATA_CACHE_1 : 5251 GEN7_SFID_DATAPORT_DATA_CACHE); 5252 break; 5253 5254 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL: 5255 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL: 5256 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: 5257 /* Typed surface messages go through the render cache on IVB and the 5258 * data cache on HSW+. 5259 */ 5260 sfid = (devinfo->gen >= 8 || devinfo->is_haswell ? 5261 HSW_SFID_DATAPORT_DATA_CACHE_1 : 5262 GEN6_SFID_DATAPORT_RENDER_CACHE); 5263 break; 5264 5265 default: 5266 unreachable("Unsupported surface opcode"); 5267 } 5268 5269 uint32_t desc; 5270 switch (inst->opcode) { 5271 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL: 5272 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size, 5273 arg.ud, /* num_channels */ 5274 false /* write */); 5275 break; 5276 5277 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL: 5278 desc = brw_dp_untyped_surface_rw_desc(devinfo, inst->exec_size, 5279 arg.ud, /* num_channels */ 5280 true /* write */); 5281 break; 5282 5283 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL: 5284 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size, 5285 arg.ud, /* bit_size */ 5286 false /* write */); 5287 break; 5288 5289 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL: 5290 desc = brw_dp_byte_scattered_rw_desc(devinfo, inst->exec_size, 5291 arg.ud, /* bit_size */ 5292 true /* write */); 5293 break; 5294 5295 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL: 5296 desc = brw_dp_untyped_atomic_desc(devinfo, inst->exec_size, 5297 arg.ud, /* atomic_op */ 5298 !inst->dst.is_null()); 5299 break; 5300 5301 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: 5302 desc = brw_dp_untyped_atomic_float_desc(devinfo, inst->exec_size, 5303 arg.ud, /* atomic_op */ 5304 !inst->dst.is_null()); 5305 break; 5306 5307 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL: 5308 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group, 5309 arg.ud, /* num_channels */ 5310 false /* write */); 5311 break; 5312 5313 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL: 5314 desc = brw_dp_typed_surface_rw_desc(devinfo, inst->exec_size, inst->group, 5315 arg.ud, /* num_channels */ 5316 true /* write */); 5317 break; 5318 5319 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: 5320 desc = brw_dp_typed_atomic_desc(devinfo, inst->exec_size, inst->group, 5321 arg.ud, /* atomic_op */ 5322 !inst->dst.is_null()); 5323 break; 5324 5325 default: 5326 unreachable("Unknown surface logical instruction"); 5327 } 5328 5329 /* Update the original instruction. */ 5330 inst->opcode = SHADER_OPCODE_SEND; 5331 inst->mlen = mlen; 5332 inst->ex_mlen = ex_mlen; 5333 inst->header_size = header_sz; 5334 inst->send_has_side_effects = has_side_effects; 5335 inst->send_is_volatile = !has_side_effects; 5336 5337 /* Set up SFID and descriptors */ 5338 inst->sfid = sfid; 5339 inst->desc = desc; 5340 if (surface.file == IMM) { 5341 inst->desc |= surface.ud & 0xff; 5342 inst->src[0] = brw_imm_ud(0); 5343 inst->src[1] = brw_imm_ud(0); /* ex_desc */ 5344 } else if (surface_handle.file != BAD_FILE) { 5345 /* Bindless surface */ 5346 assert(devinfo->gen >= 9); 5347 inst->desc |= GEN9_BTI_BINDLESS; 5348 inst->src[0] = brw_imm_ud(0); 5349 5350 /* We assume that the driver provided the handle in the top 20 bits so 5351 * we can use the surface handle directly as the extended descriptor. 5352 */ 5353 inst->src[1] = retype(surface_handle, BRW_REGISTER_TYPE_UD); 5354 } else { 5355 const fs_builder ubld = bld.exec_all().group(1, 0); 5356 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD); 5357 ubld.AND(tmp, surface, brw_imm_ud(0xff)); 5358 inst->src[0] = component(tmp, 0); 5359 inst->src[1] = brw_imm_ud(0); /* ex_desc */ 5360 } 5361 5362 /* Finally, the payload */ 5363 inst->src[2] = payload; 5364 inst->src[3] = payload2; 5365 5366 inst->resize_sources(4); 5367} 5368 5369static void 5370lower_a64_logical_send(const fs_builder &bld, fs_inst *inst) 5371{ 5372 const gen_device_info *devinfo = bld.shader->devinfo; 5373 5374 const fs_reg &addr = inst->src[0]; 5375 const fs_reg &src = inst->src[1]; 5376 const unsigned src_comps = inst->components_read(1); 5377 assert(inst->src[2].file == IMM); 5378 const unsigned arg = inst->src[2].ud; 5379 const bool has_side_effects = inst->has_side_effects(); 5380 5381 /* If the surface message has side effects and we're a fragment shader, we 5382 * have to predicate with the sample mask to avoid helper invocations. 5383 */ 5384 if (has_side_effects && bld.shader->stage == MESA_SHADER_FRAGMENT) { 5385 inst->flag_subreg = 2; 5386 inst->predicate = BRW_PREDICATE_NORMAL; 5387 inst->predicate_inverse = false; 5388 5389 fs_reg sample_mask = bld.sample_mask_reg(); 5390 const fs_builder ubld = bld.group(1, 0).exec_all(); 5391 ubld.MOV(retype(brw_flag_subreg(inst->flag_subreg), sample_mask.type), 5392 sample_mask); 5393 } 5394 5395 fs_reg payload, payload2; 5396 unsigned mlen, ex_mlen = 0; 5397 if (devinfo->gen >= 9) { 5398 /* On Skylake and above, we have SENDS */ 5399 mlen = 2 * (inst->exec_size / 8); 5400 ex_mlen = src_comps * type_sz(src.type) * inst->exec_size / REG_SIZE; 5401 payload = retype(bld.move_to_vgrf(addr, 1), BRW_REGISTER_TYPE_UD); 5402 payload2 = retype(bld.move_to_vgrf(src, src_comps), 5403 BRW_REGISTER_TYPE_UD); 5404 } else { 5405 /* Add two because the address is 64-bit */ 5406 const unsigned dwords = 2 + src_comps; 5407 mlen = dwords * (inst->exec_size / 8); 5408 5409 fs_reg sources[5]; 5410 5411 sources[0] = addr; 5412 5413 for (unsigned i = 0; i < src_comps; i++) 5414 sources[1 + i] = offset(src, bld, i); 5415 5416 payload = bld.vgrf(BRW_REGISTER_TYPE_UD, dwords); 5417 bld.LOAD_PAYLOAD(payload, sources, 1 + src_comps, 0); 5418 } 5419 5420 uint32_t desc; 5421 switch (inst->opcode) { 5422 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL: 5423 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size, 5424 arg, /* num_channels */ 5425 false /* write */); 5426 break; 5427 5428 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL: 5429 desc = brw_dp_a64_untyped_surface_rw_desc(devinfo, inst->exec_size, 5430 arg, /* num_channels */ 5431 true /* write */); 5432 break; 5433 5434 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL: 5435 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size, 5436 arg, /* bit_size */ 5437 false /* write */); 5438 break; 5439 5440 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL: 5441 desc = brw_dp_a64_byte_scattered_rw_desc(devinfo, inst->exec_size, 5442 arg, /* bit_size */ 5443 true /* write */); 5444 break; 5445 5446 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL: 5447 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 32, 5448 arg, /* atomic_op */ 5449 !inst->dst.is_null()); 5450 break; 5451 5452 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL: 5453 desc = brw_dp_a64_untyped_atomic_desc(devinfo, inst->exec_size, 64, 5454 arg, /* atomic_op */ 5455 !inst->dst.is_null()); 5456 break; 5457 5458 5459 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL: 5460 desc = brw_dp_a64_untyped_atomic_float_desc(devinfo, inst->exec_size, 5461 arg, /* atomic_op */ 5462 !inst->dst.is_null()); 5463 break; 5464 5465 default: 5466 unreachable("Unknown A64 logical instruction"); 5467 } 5468 5469 /* Update the original instruction. */ 5470 inst->opcode = SHADER_OPCODE_SEND; 5471 inst->mlen = mlen; 5472 inst->ex_mlen = ex_mlen; 5473 inst->header_size = 0; 5474 inst->send_has_side_effects = has_side_effects; 5475 inst->send_is_volatile = !has_side_effects; 5476 5477 /* Set up SFID and descriptors */ 5478 inst->sfid = HSW_SFID_DATAPORT_DATA_CACHE_1; 5479 inst->desc = desc; 5480 inst->resize_sources(4); 5481 inst->src[0] = brw_imm_ud(0); /* desc */ 5482 inst->src[1] = brw_imm_ud(0); /* ex_desc */ 5483 inst->src[2] = payload; 5484 inst->src[3] = payload2; 5485} 5486 5487static void 5488lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst) 5489{ 5490 const gen_device_info *devinfo = bld.shader->devinfo; 5491 5492 if (devinfo->gen >= 7) { 5493 fs_reg index = inst->src[0]; 5494 /* We are switching the instruction from an ALU-like instruction to a 5495 * send-from-grf instruction. Since sends can't handle strides or 5496 * source modifiers, we have to make a copy of the offset source. 5497 */ 5498 fs_reg offset = bld.vgrf(BRW_REGISTER_TYPE_UD); 5499 bld.MOV(offset, inst->src[1]); 5500 5501 const unsigned simd_mode = 5502 inst->exec_size <= 8 ? BRW_SAMPLER_SIMD_MODE_SIMD8 : 5503 BRW_SAMPLER_SIMD_MODE_SIMD16; 5504 5505 inst->opcode = SHADER_OPCODE_SEND; 5506 inst->mlen = inst->exec_size / 8; 5507 inst->resize_sources(3); 5508 5509 inst->sfid = BRW_SFID_SAMPLER; 5510 inst->desc = brw_sampler_desc(devinfo, 0, 0, 5511 GEN5_SAMPLER_MESSAGE_SAMPLE_LD, 5512 simd_mode, 0); 5513 if (index.file == IMM) { 5514 inst->desc |= index.ud & 0xff; 5515 inst->src[0] = brw_imm_ud(0); 5516 } else { 5517 const fs_builder ubld = bld.exec_all().group(1, 0); 5518 fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD); 5519 ubld.AND(tmp, index, brw_imm_ud(0xff)); 5520 inst->src[0] = component(tmp, 0); 5521 } 5522 inst->src[1] = brw_imm_ud(0); /* ex_desc */ 5523 inst->src[2] = offset; /* payload */ 5524 } else { 5525 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen), 5526 BRW_REGISTER_TYPE_UD); 5527 5528 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]); 5529 5530 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4; 5531 inst->resize_sources(1); 5532 inst->base_mrf = payload.nr; 5533 inst->header_size = 1; 5534 inst->mlen = 1 + inst->exec_size / 8; 5535 } 5536} 5537 5538static void 5539lower_math_logical_send(const fs_builder &bld, fs_inst *inst) 5540{ 5541 assert(bld.shader->devinfo->gen < 6); 5542 5543 inst->base_mrf = 2; 5544 inst->mlen = inst->sources * inst->exec_size / 8; 5545 5546 if (inst->sources > 1) { 5547 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13 5548 * "Message Payload": 5549 * 5550 * "Operand0[7]. For the INT DIV functions, this operand is the 5551 * denominator." 5552 * ... 5553 * "Operand1[7]. For the INT DIV functions, this operand is the 5554 * numerator." 5555 */ 5556 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW; 5557 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0]; 5558 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1]; 5559 5560 inst->resize_sources(1); 5561 inst->src[0] = src0; 5562 5563 assert(inst->exec_size == 8); 5564 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1); 5565 } 5566} 5567 5568bool 5569fs_visitor::lower_logical_sends() 5570{ 5571 bool progress = false; 5572 5573 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 5574 const fs_builder ibld(this, block, inst); 5575 5576 switch (inst->opcode) { 5577 case FS_OPCODE_FB_WRITE_LOGICAL: 5578 assert(stage == MESA_SHADER_FRAGMENT); 5579 lower_fb_write_logical_send(ibld, inst, 5580 brw_wm_prog_data(prog_data), 5581 (const brw_wm_prog_key *)key, 5582 payload); 5583 break; 5584 5585 case FS_OPCODE_FB_READ_LOGICAL: 5586 lower_fb_read_logical_send(ibld, inst); 5587 break; 5588 5589 case SHADER_OPCODE_TEX_LOGICAL: 5590 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX); 5591 break; 5592 5593 case SHADER_OPCODE_TXD_LOGICAL: 5594 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD); 5595 break; 5596 5597 case SHADER_OPCODE_TXF_LOGICAL: 5598 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF); 5599 break; 5600 5601 case SHADER_OPCODE_TXL_LOGICAL: 5602 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL); 5603 break; 5604 5605 case SHADER_OPCODE_TXS_LOGICAL: 5606 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS); 5607 break; 5608 5609 case SHADER_OPCODE_IMAGE_SIZE_LOGICAL: 5610 lower_sampler_logical_send(ibld, inst, 5611 SHADER_OPCODE_IMAGE_SIZE_LOGICAL); 5612 break; 5613 5614 case FS_OPCODE_TXB_LOGICAL: 5615 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB); 5616 break; 5617 5618 case SHADER_OPCODE_TXF_CMS_LOGICAL: 5619 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS); 5620 break; 5621 5622 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: 5623 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W); 5624 break; 5625 5626 case SHADER_OPCODE_TXF_UMS_LOGICAL: 5627 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS); 5628 break; 5629 5630 case SHADER_OPCODE_TXF_MCS_LOGICAL: 5631 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS); 5632 break; 5633 5634 case SHADER_OPCODE_LOD_LOGICAL: 5635 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD); 5636 break; 5637 5638 case SHADER_OPCODE_TG4_LOGICAL: 5639 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4); 5640 break; 5641 5642 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: 5643 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET); 5644 break; 5645 5646 case SHADER_OPCODE_SAMPLEINFO_LOGICAL: 5647 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO); 5648 break; 5649 5650 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL: 5651 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL: 5652 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL: 5653 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL: 5654 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL: 5655 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: 5656 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL: 5657 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL: 5658 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: 5659 lower_surface_logical_send(ibld, inst); 5660 break; 5661 5662 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL: 5663 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL: 5664 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL: 5665 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL: 5666 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL: 5667 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL: 5668 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL: 5669 lower_a64_logical_send(ibld, inst); 5670 break; 5671 5672 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL: 5673 lower_varying_pull_constant_logical_send(ibld, inst); 5674 break; 5675 5676 case SHADER_OPCODE_RCP: 5677 case SHADER_OPCODE_RSQ: 5678 case SHADER_OPCODE_SQRT: 5679 case SHADER_OPCODE_EXP2: 5680 case SHADER_OPCODE_LOG2: 5681 case SHADER_OPCODE_SIN: 5682 case SHADER_OPCODE_COS: 5683 case SHADER_OPCODE_POW: 5684 case SHADER_OPCODE_INT_QUOTIENT: 5685 case SHADER_OPCODE_INT_REMAINDER: 5686 /* The math opcodes are overloaded for the send-like and 5687 * expression-like instructions which seems kind of icky. Gen6+ has 5688 * a native (but rather quirky) MATH instruction so we don't need to 5689 * do anything here. On Gen4-5 we'll have to lower the Gen6-like 5690 * logical instructions (which we can easily recognize because they 5691 * have mlen = 0) into send-like virtual instructions. 5692 */ 5693 if (devinfo->gen < 6 && inst->mlen == 0) { 5694 lower_math_logical_send(ibld, inst); 5695 break; 5696 5697 } else { 5698 continue; 5699 } 5700 5701 default: 5702 continue; 5703 } 5704 5705 progress = true; 5706 } 5707 5708 if (progress) 5709 invalidate_live_intervals(); 5710 5711 return progress; 5712} 5713 5714static bool 5715is_mixed_float_with_fp32_dst(const fs_inst *inst) 5716{ 5717 /* This opcode sometimes uses :W type on the source even if the operand is 5718 * a :HF, because in gen7 there is no support for :HF, and thus it uses :W. 5719 */ 5720 if (inst->opcode == BRW_OPCODE_F16TO32) 5721 return true; 5722 5723 if (inst->dst.type != BRW_REGISTER_TYPE_F) 5724 return false; 5725 5726 for (int i = 0; i < inst->sources; i++) { 5727 if (inst->src[i].type == BRW_REGISTER_TYPE_HF) 5728 return true; 5729 } 5730 5731 return false; 5732} 5733 5734static bool 5735is_mixed_float_with_packed_fp16_dst(const fs_inst *inst) 5736{ 5737 /* This opcode sometimes uses :W type on the destination even if the 5738 * destination is a :HF, because in gen7 there is no support for :HF, and 5739 * thus it uses :W. 5740 */ 5741 if (inst->opcode == BRW_OPCODE_F32TO16 && 5742 inst->dst.stride == 1) 5743 return true; 5744 5745 if (inst->dst.type != BRW_REGISTER_TYPE_HF || 5746 inst->dst.stride != 1) 5747 return false; 5748 5749 for (int i = 0; i < inst->sources; i++) { 5750 if (inst->src[i].type == BRW_REGISTER_TYPE_F) 5751 return true; 5752 } 5753 5754 return false; 5755} 5756 5757/** 5758 * Get the closest allowed SIMD width for instruction \p inst accounting for 5759 * some common regioning and execution control restrictions that apply to FPU 5760 * instructions. These restrictions don't necessarily have any relevance to 5761 * instructions not executed by the FPU pipeline like extended math, control 5762 * flow or send message instructions. 5763 * 5764 * For virtual opcodes it's really up to the instruction -- In some cases 5765 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU 5766 * instructions) it may simplify virtual instruction lowering if we can 5767 * enforce FPU-like regioning restrictions already on the virtual instruction, 5768 * in other cases (e.g. virtual send-like instructions) this may be 5769 * excessively restrictive. 5770 */ 5771static unsigned 5772get_fpu_lowered_simd_width(const struct gen_device_info *devinfo, 5773 const fs_inst *inst) 5774{ 5775 /* Maximum execution size representable in the instruction controls. */ 5776 unsigned max_width = MIN2(32, inst->exec_size); 5777 5778 /* According to the PRMs: 5779 * "A. In Direct Addressing mode, a source cannot span more than 2 5780 * adjacent GRF registers. 5781 * B. A destination cannot span more than 2 adjacent GRF registers." 5782 * 5783 * Look for the source or destination with the largest register region 5784 * which is the one that is going to limit the overall execution size of 5785 * the instruction due to this rule. 5786 */ 5787 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE); 5788 5789 for (unsigned i = 0; i < inst->sources; i++) 5790 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE)); 5791 5792 /* Calculate the maximum execution size of the instruction based on the 5793 * factor by which it goes over the hardware limit of 2 GRFs. 5794 */ 5795 if (reg_count > 2) 5796 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2)); 5797 5798 /* According to the IVB PRMs: 5799 * "When destination spans two registers, the source MUST span two 5800 * registers. The exception to the above rule: 5801 * 5802 * - When source is scalar, the source registers are not incremented. 5803 * - When source is packed integer Word and destination is packed 5804 * integer DWord, the source register is not incremented but the 5805 * source sub register is incremented." 5806 * 5807 * The hardware specs from Gen4 to Gen7.5 mention similar regioning 5808 * restrictions. The code below intentionally doesn't check whether the 5809 * destination type is integer because empirically the hardware doesn't 5810 * seem to care what the actual type is as long as it's dword-aligned. 5811 */ 5812 if (devinfo->gen < 8) { 5813 for (unsigned i = 0; i < inst->sources; i++) { 5814 /* IVB implements DF scalars as <0;2,1> regions. */ 5815 const bool is_scalar_exception = is_uniform(inst->src[i]) && 5816 (devinfo->is_haswell || type_sz(inst->src[i].type) != 8); 5817 const bool is_packed_word_exception = 5818 type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 && 5819 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1; 5820 5821 /* We check size_read(i) against size_written instead of REG_SIZE 5822 * because we want to properly handle SIMD32. In SIMD32, you can end 5823 * up with writes to 4 registers and a source that reads 2 registers 5824 * and we may still need to lower all the way to SIMD8 in that case. 5825 */ 5826 if (inst->size_written > REG_SIZE && 5827 inst->size_read(i) != 0 && 5828 inst->size_read(i) < inst->size_written && 5829 !is_scalar_exception && !is_packed_word_exception) { 5830 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE); 5831 max_width = MIN2(max_width, inst->exec_size / reg_count); 5832 } 5833 } 5834 } 5835 5836 if (devinfo->gen < 6) { 5837 /* From the G45 PRM, Volume 4 Page 361: 5838 * 5839 * "Operand Alignment Rule: With the exceptions listed below, a 5840 * source/destination operand in general should be aligned to even 5841 * 256-bit physical register with a region size equal to two 256-bit 5842 * physical registers." 5843 * 5844 * Normally we enforce this by allocating virtual registers to the 5845 * even-aligned class. But we need to handle payload registers. 5846 */ 5847 for (unsigned i = 0; i < inst->sources; i++) { 5848 if (inst->src[i].file == FIXED_GRF && (inst->src[i].nr & 1) && 5849 inst->size_read(i) > REG_SIZE) { 5850 max_width = MIN2(max_width, 8); 5851 } 5852 } 5853 } 5854 5855 /* From the IVB PRMs: 5856 * "When an instruction is SIMD32, the low 16 bits of the execution mask 5857 * are applied for both halves of the SIMD32 instruction. If different 5858 * execution mask channels are required, split the instruction into two 5859 * SIMD16 instructions." 5860 * 5861 * There is similar text in the HSW PRMs. Gen4-6 don't even implement 5862 * 32-wide control flow support in hardware and will behave similarly. 5863 */ 5864 if (devinfo->gen < 8 && !inst->force_writemask_all) 5865 max_width = MIN2(max_width, 16); 5866 5867 /* From the IVB PRMs (applies to HSW too): 5868 * "Instructions with condition modifiers must not use SIMD32." 5869 * 5870 * From the BDW PRMs (applies to later hardware too): 5871 * "Ternary instruction with condition modifiers must not use SIMD32." 5872 */ 5873 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo))) 5874 max_width = MIN2(max_width, 16); 5875 5876 /* From the IVB PRMs (applies to other devices that don't have the 5877 * gen_device_info::supports_simd16_3src flag set): 5878 * "In Align16 access mode, SIMD16 is not allowed for DW operations and 5879 * SIMD8 is not allowed for DF operations." 5880 */ 5881 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src) 5882 max_width = MIN2(max_width, inst->exec_size / reg_count); 5883 5884 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is 5885 * the 8-bit quarter of the execution mask signals specified in the 5886 * instruction control fields) for the second compressed half of any 5887 * single-precision instruction (for double-precision instructions 5888 * it's hardwired to use NibCtrl+1, at least on HSW), which means that 5889 * the EU will apply the wrong execution controls for the second 5890 * sequential GRF write if the number of channels per GRF is not exactly 5891 * eight in single-precision mode (or four in double-float mode). 5892 * 5893 * In this situation we calculate the maximum size of the split 5894 * instructions so they only ever write to a single register. 5895 */ 5896 if (devinfo->gen < 8 && inst->size_written > REG_SIZE && 5897 !inst->force_writemask_all) { 5898 const unsigned channels_per_grf = inst->exec_size / 5899 DIV_ROUND_UP(inst->size_written, REG_SIZE); 5900 const unsigned exec_type_size = get_exec_type_size(inst); 5901 assert(exec_type_size); 5902 5903 /* The hardware shifts exactly 8 channels per compressed half of the 5904 * instruction in single-precision mode and exactly 4 in double-precision. 5905 */ 5906 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8)) 5907 max_width = MIN2(max_width, channels_per_grf); 5908 5909 /* Lower all non-force_writemask_all DF instructions to SIMD4 on IVB/BYT 5910 * because HW applies the same channel enable signals to both halves of 5911 * the compressed instruction which will be just wrong under 5912 * non-uniform control flow. 5913 */ 5914 if (devinfo->gen == 7 && !devinfo->is_haswell && 5915 (exec_type_size == 8 || type_sz(inst->dst.type) == 8)) 5916 max_width = MIN2(max_width, 4); 5917 } 5918 5919 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode 5920 * Float Operations: 5921 * 5922 * "No SIMD16 in mixed mode when destination is f32. Instruction 5923 * execution size must be no more than 8." 5924 * 5925 * FIXME: the simulator doesn't seem to complain if we don't do this and 5926 * empirical testing with existing CTS tests show that they pass just fine 5927 * without implementing this, however, since our interpretation of the PRM 5928 * is that conversion MOVs between HF and F are still mixed-float 5929 * instructions (and therefore subject to this restriction) we decided to 5930 * split them to be safe. Might be useful to do additional investigation to 5931 * lift the restriction if we can ensure that it is safe though, since these 5932 * conversions are common when half-float types are involved since many 5933 * instructions do not support HF types and conversions from/to F are 5934 * required. 5935 */ 5936 if (is_mixed_float_with_fp32_dst(inst)) 5937 max_width = MIN2(max_width, 8); 5938 5939 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode 5940 * Float Operations: 5941 * 5942 * "No SIMD16 in mixed mode when destination is packed f16 for both 5943 * Align1 and Align16." 5944 */ 5945 if (is_mixed_float_with_packed_fp16_dst(inst)) 5946 max_width = MIN2(max_width, 8); 5947 5948 /* Only power-of-two execution sizes are representable in the instruction 5949 * control fields. 5950 */ 5951 return 1 << _mesa_logbase2(max_width); 5952} 5953 5954/** 5955 * Get the maximum allowed SIMD width for instruction \p inst accounting for 5956 * various payload size restrictions that apply to sampler message 5957 * instructions. 5958 * 5959 * This is only intended to provide a maximum theoretical bound for the 5960 * execution size of the message based on the number of argument components 5961 * alone, which in most cases will determine whether the SIMD8 or SIMD16 5962 * variant of the message can be used, though some messages may have 5963 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses 5964 * the message length to determine the exact SIMD width and argument count, 5965 * which makes a number of sampler message combinations impossible to 5966 * represent). 5967 */ 5968static unsigned 5969get_sampler_lowered_simd_width(const struct gen_device_info *devinfo, 5970 const fs_inst *inst) 5971{ 5972 /* If we have a min_lod parameter on anything other than a simple sample 5973 * message, it will push it over 5 arguments and we have to fall back to 5974 * SIMD8. 5975 */ 5976 if (inst->opcode != SHADER_OPCODE_TEX && 5977 inst->components_read(TEX_LOGICAL_SRC_MIN_LOD)) 5978 return 8; 5979 5980 /* Calculate the number of coordinate components that have to be present 5981 * assuming that additional arguments follow the texel coordinates in the 5982 * message payload. On IVB+ there is no need for padding, on ILK-SNB we 5983 * need to pad to four or three components depending on the message, 5984 * pre-ILK we need to pad to at most three components. 5985 */ 5986 const unsigned req_coord_components = 5987 (devinfo->gen >= 7 || 5988 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 : 5989 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL && 5990 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 : 5991 3; 5992 5993 /* On Gen9+ the LOD argument is for free if we're able to use the LZ 5994 * variant of the TXL or TXF message. 5995 */ 5996 const bool implicit_lod = devinfo->gen >= 9 && 5997 (inst->opcode == SHADER_OPCODE_TXL || 5998 inst->opcode == SHADER_OPCODE_TXF) && 5999 inst->src[TEX_LOGICAL_SRC_LOD].is_zero(); 6000 6001 /* Calculate the total number of argument components that need to be passed 6002 * to the sampler unit. 6003 */ 6004 const unsigned num_payload_components = 6005 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE), 6006 req_coord_components) + 6007 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) + 6008 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) + 6009 inst->components_read(TEX_LOGICAL_SRC_LOD2) + 6010 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) + 6011 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ? 6012 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) + 6013 inst->components_read(TEX_LOGICAL_SRC_MCS); 6014 6015 /* SIMD16 messages with more than five arguments exceed the maximum message 6016 * size supported by the sampler, regardless of whether a header is 6017 * provided or not. 6018 */ 6019 return MIN2(inst->exec_size, 6020 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16); 6021} 6022 6023/** 6024 * Get the closest native SIMD width supported by the hardware for instruction 6025 * \p inst. The instruction will be left untouched by 6026 * fs_visitor::lower_simd_width() if the returned value is equal to the 6027 * original execution size. 6028 */ 6029static unsigned 6030get_lowered_simd_width(const struct gen_device_info *devinfo, 6031 const fs_inst *inst) 6032{ 6033 switch (inst->opcode) { 6034 case BRW_OPCODE_MOV: 6035 case BRW_OPCODE_SEL: 6036 case BRW_OPCODE_NOT: 6037 case BRW_OPCODE_AND: 6038 case BRW_OPCODE_OR: 6039 case BRW_OPCODE_XOR: 6040 case BRW_OPCODE_SHR: 6041 case BRW_OPCODE_SHL: 6042 case BRW_OPCODE_ASR: 6043 case BRW_OPCODE_CMPN: 6044 case BRW_OPCODE_CSEL: 6045 case BRW_OPCODE_F32TO16: 6046 case BRW_OPCODE_F16TO32: 6047 case BRW_OPCODE_BFREV: 6048 case BRW_OPCODE_BFE: 6049 case BRW_OPCODE_ADD: 6050 case BRW_OPCODE_MUL: 6051 case BRW_OPCODE_AVG: 6052 case BRW_OPCODE_FRC: 6053 case BRW_OPCODE_RNDU: 6054 case BRW_OPCODE_RNDD: 6055 case BRW_OPCODE_RNDE: 6056 case BRW_OPCODE_RNDZ: 6057 case BRW_OPCODE_LZD: 6058 case BRW_OPCODE_FBH: 6059 case BRW_OPCODE_FBL: 6060 case BRW_OPCODE_CBIT: 6061 case BRW_OPCODE_SAD2: 6062 case BRW_OPCODE_MAD: 6063 case BRW_OPCODE_LRP: 6064 case FS_OPCODE_PACK: 6065 case SHADER_OPCODE_SEL_EXEC: 6066 case SHADER_OPCODE_CLUSTER_BROADCAST: 6067 return get_fpu_lowered_simd_width(devinfo, inst); 6068 6069 case BRW_OPCODE_CMP: { 6070 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that 6071 * when the destination is a GRF the dependency-clear bit on the flag 6072 * register is cleared early. 6073 * 6074 * Suggested workarounds are to disable coissuing CMP instructions 6075 * or to split CMP(16) instructions into two CMP(8) instructions. 6076 * 6077 * We choose to split into CMP(8) instructions since disabling 6078 * coissuing would affect CMP instructions not otherwise affected by 6079 * the errata. 6080 */ 6081 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell && 6082 !inst->dst.is_null() ? 8 : ~0); 6083 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst)); 6084 } 6085 case BRW_OPCODE_BFI1: 6086 case BRW_OPCODE_BFI2: 6087 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we 6088 * should 6089 * "Force BFI instructions to be executed always in SIMD8." 6090 */ 6091 return MIN2(devinfo->is_haswell ? 8 : ~0u, 6092 get_fpu_lowered_simd_width(devinfo, inst)); 6093 6094 case BRW_OPCODE_IF: 6095 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16); 6096 return inst->exec_size; 6097 6098 case SHADER_OPCODE_RCP: 6099 case SHADER_OPCODE_RSQ: 6100 case SHADER_OPCODE_SQRT: 6101 case SHADER_OPCODE_EXP2: 6102 case SHADER_OPCODE_LOG2: 6103 case SHADER_OPCODE_SIN: 6104 case SHADER_OPCODE_COS: { 6105 /* Unary extended math instructions are limited to SIMD8 on Gen4 and 6106 * Gen6. Extended Math Function is limited to SIMD8 with half-float. 6107 */ 6108 if (devinfo->gen == 6 || (devinfo->gen == 4 && !devinfo->is_g4x)) 6109 return MIN2(8, inst->exec_size); 6110 if (inst->dst.type == BRW_REGISTER_TYPE_HF) 6111 return MIN2(8, inst->exec_size); 6112 return MIN2(16, inst->exec_size); 6113 } 6114 6115 case SHADER_OPCODE_POW: { 6116 /* SIMD16 is only allowed on Gen7+. Extended Math Function is limited 6117 * to SIMD8 with half-float 6118 */ 6119 if (devinfo->gen < 7) 6120 return MIN2(8, inst->exec_size); 6121 if (inst->dst.type == BRW_REGISTER_TYPE_HF) 6122 return MIN2(8, inst->exec_size); 6123 return MIN2(16, inst->exec_size); 6124 } 6125 6126 case SHADER_OPCODE_INT_QUOTIENT: 6127 case SHADER_OPCODE_INT_REMAINDER: 6128 /* Integer division is limited to SIMD8 on all generations. */ 6129 return MIN2(8, inst->exec_size); 6130 6131 case FS_OPCODE_LINTERP: 6132 case SHADER_OPCODE_GET_BUFFER_SIZE: 6133 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: 6134 case FS_OPCODE_PACK_HALF_2x16_SPLIT: 6135 case FS_OPCODE_INTERPOLATE_AT_SAMPLE: 6136 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: 6137 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: 6138 return MIN2(16, inst->exec_size); 6139 6140 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL: 6141 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch 6142 * message used to implement varying pull constant loads, so expand it 6143 * to SIMD16. An alternative with longer message payload length but 6144 * shorter return payload would be to use the SIMD8 sampler message that 6145 * takes (header, u, v, r) as parameters instead of (header, u). 6146 */ 6147 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size)); 6148 6149 case FS_OPCODE_DDX_COARSE: 6150 case FS_OPCODE_DDX_FINE: 6151 case FS_OPCODE_DDY_COARSE: 6152 case FS_OPCODE_DDY_FINE: 6153 /* The implementation of this virtual opcode may require emitting 6154 * compressed Align16 instructions, which are severely limited on some 6155 * generations. 6156 * 6157 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register 6158 * Region Restrictions): 6159 * 6160 * "In Align16 access mode, SIMD16 is not allowed for DW operations 6161 * and SIMD8 is not allowed for DF operations." 6162 * 6163 * In this context, "DW operations" means "operations acting on 32-bit 6164 * values", so it includes operations on floats. 6165 * 6166 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3 6167 * (Instruction Compression -> Rules and Restrictions): 6168 * 6169 * "A compressed instruction must be in Align1 access mode. Align16 6170 * mode instructions cannot be compressed." 6171 * 6172 * Similar text exists in the g45 PRM. 6173 * 6174 * Empirically, compressed align16 instructions using odd register 6175 * numbers don't appear to work on Sandybridge either. 6176 */ 6177 return (devinfo->gen == 4 || devinfo->gen == 6 || 6178 (devinfo->gen == 7 && !devinfo->is_haswell) ? 6179 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size)); 6180 6181 case SHADER_OPCODE_MULH: 6182 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which 6183 * is 8-wide on Gen7+. 6184 */ 6185 return (devinfo->gen >= 7 ? 8 : 6186 get_fpu_lowered_simd_width(devinfo, inst)); 6187 6188 case FS_OPCODE_FB_WRITE_LOGICAL: 6189 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them 6190 * here. 6191 */ 6192 assert(devinfo->gen != 6 || 6193 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE || 6194 inst->exec_size == 8); 6195 /* Dual-source FB writes are unsupported in SIMD16 mode. */ 6196 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ? 6197 8 : MIN2(16, inst->exec_size)); 6198 6199 case FS_OPCODE_FB_READ_LOGICAL: 6200 return MIN2(16, inst->exec_size); 6201 6202 case SHADER_OPCODE_TEX_LOGICAL: 6203 case SHADER_OPCODE_TXF_CMS_LOGICAL: 6204 case SHADER_OPCODE_TXF_UMS_LOGICAL: 6205 case SHADER_OPCODE_TXF_MCS_LOGICAL: 6206 case SHADER_OPCODE_LOD_LOGICAL: 6207 case SHADER_OPCODE_TG4_LOGICAL: 6208 case SHADER_OPCODE_SAMPLEINFO_LOGICAL: 6209 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: 6210 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: 6211 return get_sampler_lowered_simd_width(devinfo, inst); 6212 6213 case SHADER_OPCODE_TXD_LOGICAL: 6214 /* TXD is unsupported in SIMD16 mode. */ 6215 return 8; 6216 6217 case SHADER_OPCODE_TXL_LOGICAL: 6218 case FS_OPCODE_TXB_LOGICAL: 6219 /* Only one execution size is representable pre-ILK depending on whether 6220 * the shadow reference argument is present. 6221 */ 6222 if (devinfo->gen == 4) 6223 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8; 6224 else 6225 return get_sampler_lowered_simd_width(devinfo, inst); 6226 6227 case SHADER_OPCODE_TXF_LOGICAL: 6228 case SHADER_OPCODE_TXS_LOGICAL: 6229 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD 6230 * messages. Use SIMD16 instead. 6231 */ 6232 if (devinfo->gen == 4) 6233 return 16; 6234 else 6235 return get_sampler_lowered_simd_width(devinfo, inst); 6236 6237 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: 6238 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL: 6239 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL: 6240 return 8; 6241 6242 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL: 6243 case SHADER_OPCODE_UNTYPED_ATOMIC_FLOAT_LOGICAL: 6244 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL: 6245 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL: 6246 case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL: 6247 case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL: 6248 return MIN2(16, inst->exec_size); 6249 6250 case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL: 6251 case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL: 6252 case SHADER_OPCODE_A64_BYTE_SCATTERED_WRITE_LOGICAL: 6253 case SHADER_OPCODE_A64_BYTE_SCATTERED_READ_LOGICAL: 6254 return devinfo->gen <= 8 ? 8 : MIN2(16, inst->exec_size); 6255 6256 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL: 6257 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_INT64_LOGICAL: 6258 case SHADER_OPCODE_A64_UNTYPED_ATOMIC_FLOAT_LOGICAL: 6259 return 8; 6260 6261 case SHADER_OPCODE_URB_READ_SIMD8: 6262 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT: 6263 case SHADER_OPCODE_URB_WRITE_SIMD8: 6264 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT: 6265 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED: 6266 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT: 6267 return MIN2(8, inst->exec_size); 6268 6269 case SHADER_OPCODE_QUAD_SWIZZLE: { 6270 const unsigned swiz = inst->src[1].ud; 6271 return (is_uniform(inst->src[0]) ? 6272 get_fpu_lowered_simd_width(devinfo, inst) : 6273 devinfo->gen < 11 && type_sz(inst->src[0].type) == 4 ? 8 : 6274 swiz == BRW_SWIZZLE_XYXY || swiz == BRW_SWIZZLE_ZWZW ? 4 : 6275 get_fpu_lowered_simd_width(devinfo, inst)); 6276 } 6277 case SHADER_OPCODE_MOV_INDIRECT: { 6278 /* From IVB and HSW PRMs: 6279 * 6280 * "2.When the destination requires two registers and the sources are 6281 * indirect, the sources must use 1x1 regioning mode. 6282 * 6283 * In case of DF instructions in HSW/IVB, the exec_size is limited by 6284 * the EU decompression logic not handling VxH indirect addressing 6285 * correctly. 6286 */ 6287 const unsigned max_size = (devinfo->gen >= 8 ? 2 : 1) * REG_SIZE; 6288 /* Prior to Broadwell, we only have 8 address subregisters. */ 6289 return MIN3(devinfo->gen >= 8 ? 16 : 8, 6290 max_size / (inst->dst.stride * type_sz(inst->dst.type)), 6291 inst->exec_size); 6292 } 6293 6294 case SHADER_OPCODE_LOAD_PAYLOAD: { 6295 const unsigned reg_count = 6296 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE); 6297 6298 if (reg_count > 2) { 6299 /* Only LOAD_PAYLOAD instructions with per-channel destination region 6300 * can be easily lowered (which excludes headers and heterogeneous 6301 * types). 6302 */ 6303 assert(!inst->header_size); 6304 for (unsigned i = 0; i < inst->sources; i++) 6305 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) || 6306 inst->src[i].file == BAD_FILE); 6307 6308 return inst->exec_size / DIV_ROUND_UP(reg_count, 2); 6309 } else { 6310 return inst->exec_size; 6311 } 6312 } 6313 default: 6314 return inst->exec_size; 6315 } 6316} 6317 6318/** 6319 * Return true if splitting out the group of channels of instruction \p inst 6320 * given by lbld.group() requires allocating a temporary for the i-th source 6321 * of the lowered instruction. 6322 */ 6323static inline bool 6324needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i) 6325{ 6326 return !(is_periodic(inst->src[i], lbld.dispatch_width()) || 6327 (inst->components_read(i) == 1 && 6328 lbld.dispatch_width() <= inst->exec_size)) || 6329 (inst->flags_written() & 6330 flag_mask(inst->src[i], type_sz(inst->src[i].type))); 6331} 6332 6333/** 6334 * Extract the data that would be consumed by the channel group given by 6335 * lbld.group() from the i-th source region of instruction \p inst and return 6336 * it as result in packed form. 6337 */ 6338static fs_reg 6339emit_unzip(const fs_builder &lbld, fs_inst *inst, unsigned i) 6340{ 6341 assert(lbld.group() >= inst->group); 6342 6343 /* Specified channel group from the source region. */ 6344 const fs_reg src = horiz_offset(inst->src[i], lbld.group() - inst->group); 6345 6346 if (needs_src_copy(lbld, inst, i)) { 6347 /* Builder of the right width to perform the copy avoiding uninitialized 6348 * data if the lowered execution size is greater than the original 6349 * execution size of the instruction. 6350 */ 6351 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(), 6352 inst->exec_size), 0); 6353 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i)); 6354 6355 for (unsigned k = 0; k < inst->components_read(i); ++k) 6356 cbld.MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k)); 6357 6358 return tmp; 6359 6360 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) { 6361 /* The source is invariant for all dispatch_width-wide groups of the 6362 * original region. 6363 */ 6364 return inst->src[i]; 6365 6366 } else { 6367 /* We can just point the lowered instruction at the right channel group 6368 * from the original region. 6369 */ 6370 return src; 6371 } 6372} 6373 6374/** 6375 * Return true if splitting out the group of channels of instruction \p inst 6376 * given by lbld.group() requires allocating a temporary for the destination 6377 * of the lowered instruction and copying the data back to the original 6378 * destination region. 6379 */ 6380static inline bool 6381needs_dst_copy(const fs_builder &lbld, const fs_inst *inst) 6382{ 6383 /* If the instruction writes more than one component we'll have to shuffle 6384 * the results of multiple lowered instructions in order to make sure that 6385 * they end up arranged correctly in the original destination region. 6386 */ 6387 if (inst->size_written > inst->dst.component_size(inst->exec_size)) 6388 return true; 6389 6390 /* If the lowered execution size is larger than the original the result of 6391 * the instruction won't fit in the original destination, so we'll have to 6392 * allocate a temporary in any case. 6393 */ 6394 if (lbld.dispatch_width() > inst->exec_size) 6395 return true; 6396 6397 for (unsigned i = 0; i < inst->sources; i++) { 6398 /* If we already made a copy of the source for other reasons there won't 6399 * be any overlap with the destination. 6400 */ 6401 if (needs_src_copy(lbld, inst, i)) 6402 continue; 6403 6404 /* In order to keep the logic simple we emit a copy whenever the 6405 * destination region doesn't exactly match an overlapping source, which 6406 * may point at the source and destination not being aligned group by 6407 * group which could cause one of the lowered instructions to overwrite 6408 * the data read from the same source by other lowered instructions. 6409 */ 6410 if (regions_overlap(inst->dst, inst->size_written, 6411 inst->src[i], inst->size_read(i)) && 6412 !inst->dst.equals(inst->src[i])) 6413 return true; 6414 } 6415 6416 return false; 6417} 6418 6419/** 6420 * Insert data from a packed temporary into the channel group given by 6421 * lbld.group() of the destination region of instruction \p inst and return 6422 * the temporary as result. Any copy instructions that are required for 6423 * unzipping the previous value (in the case of partial writes) will be 6424 * inserted using \p lbld_before and any copy instructions required for 6425 * zipping up the destination of \p inst will be inserted using \p lbld_after. 6426 */ 6427static fs_reg 6428emit_zip(const fs_builder &lbld_before, const fs_builder &lbld_after, 6429 fs_inst *inst) 6430{ 6431 assert(lbld_before.dispatch_width() == lbld_after.dispatch_width()); 6432 assert(lbld_before.group() == lbld_after.group()); 6433 assert(lbld_after.group() >= inst->group); 6434 6435 /* Specified channel group from the destination region. */ 6436 const fs_reg dst = horiz_offset(inst->dst, lbld_after.group() - inst->group); 6437 const unsigned dst_size = inst->size_written / 6438 inst->dst.component_size(inst->exec_size); 6439 6440 if (needs_dst_copy(lbld_after, inst)) { 6441 const fs_reg tmp = lbld_after.vgrf(inst->dst.type, dst_size); 6442 6443 if (inst->predicate) { 6444 /* Handle predication by copying the original contents of 6445 * the destination into the temporary before emitting the 6446 * lowered instruction. 6447 */ 6448 const fs_builder gbld_before = 6449 lbld_before.group(MIN2(lbld_before.dispatch_width(), 6450 inst->exec_size), 0); 6451 for (unsigned k = 0; k < dst_size; ++k) { 6452 gbld_before.MOV(offset(tmp, lbld_before, k), 6453 offset(dst, inst->exec_size, k)); 6454 } 6455 } 6456 6457 const fs_builder gbld_after = 6458 lbld_after.group(MIN2(lbld_after.dispatch_width(), 6459 inst->exec_size), 0); 6460 for (unsigned k = 0; k < dst_size; ++k) { 6461 /* Use a builder of the right width to perform the copy avoiding 6462 * uninitialized data if the lowered execution size is greater than 6463 * the original execution size of the instruction. 6464 */ 6465 gbld_after.MOV(offset(dst, inst->exec_size, k), 6466 offset(tmp, lbld_after, k)); 6467 } 6468 6469 return tmp; 6470 6471 } else { 6472 /* No need to allocate a temporary for the lowered instruction, just 6473 * take the right group of channels from the original region. 6474 */ 6475 return dst; 6476 } 6477} 6478 6479bool 6480fs_visitor::lower_simd_width() 6481{ 6482 bool progress = false; 6483 6484 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) { 6485 const unsigned lower_width = get_lowered_simd_width(devinfo, inst); 6486 6487 if (lower_width != inst->exec_size) { 6488 /* Builder matching the original instruction. We may also need to 6489 * emit an instruction of width larger than the original, set the 6490 * execution size of the builder to the highest of both for now so 6491 * we're sure that both cases can be handled. 6492 */ 6493 const unsigned max_width = MAX2(inst->exec_size, lower_width); 6494 const fs_builder ibld = bld.at(block, inst) 6495 .exec_all(inst->force_writemask_all) 6496 .group(max_width, inst->group / max_width); 6497 6498 /* Split the copies in chunks of the execution width of either the 6499 * original or the lowered instruction, whichever is lower. 6500 */ 6501 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width); 6502 const unsigned dst_size = inst->size_written / 6503 inst->dst.component_size(inst->exec_size); 6504 6505 assert(!inst->writes_accumulator && !inst->mlen); 6506 6507 /* Inserting the zip, unzip, and duplicated instructions in all of 6508 * the right spots is somewhat tricky. All of the unzip and any 6509 * instructions from the zip which unzip the destination prior to 6510 * writing need to happen before all of the per-group instructions 6511 * and the zip instructions need to happen after. In order to sort 6512 * this all out, we insert the unzip instructions before \p inst, 6513 * insert the per-group instructions after \p inst (i.e. before 6514 * inst->next), and insert the zip instructions before the 6515 * instruction after \p inst. Since we are inserting instructions 6516 * after \p inst, inst->next is a moving target and we need to save 6517 * it off here so that we insert the zip instructions in the right 6518 * place. 6519 * 6520 * Since we're inserting split instructions after after_inst, the 6521 * instructions will end up in the reverse order that we insert them. 6522 * However, certain render target writes require that the low group 6523 * instructions come before the high group. From the Ivy Bridge PRM 6524 * Vol. 4, Pt. 1, Section 3.9.11: 6525 * 6526 * "If multiple SIMD8 Dual Source messages are delivered by the 6527 * pixel shader thread, each SIMD8_DUALSRC_LO message must be 6528 * issued before the SIMD8_DUALSRC_HI message with the same Slot 6529 * Group Select setting." 6530 * 6531 * And, from Section 3.9.11.1 of the same PRM: 6532 * 6533 * "When SIMD32 or SIMD16 PS threads send render target writes 6534 * with multiple SIMD8 and SIMD16 messages, the following must 6535 * hold: 6536 * 6537 * All the slots (as described above) must have a corresponding 6538 * render target write irrespective of the slot's validity. A slot 6539 * is considered valid when at least one sample is enabled. For 6540 * example, a SIMD16 PS thread must send two SIMD8 render target 6541 * writes to cover all the slots. 6542 * 6543 * PS thread must send SIMD render target write messages with 6544 * increasing slot numbers. For example, SIMD16 thread has 6545 * Slot[15:0] and if two SIMD8 render target writes are used, the 6546 * first SIMD8 render target write must send Slot[7:0] and the 6547 * next one must send Slot[15:8]." 6548 * 6549 * In order to make low group instructions come before high group 6550 * instructions (this is required for some render target writes), we 6551 * split from the highest group to lowest. 6552 */ 6553 exec_node *const after_inst = inst->next; 6554 for (int i = n - 1; i >= 0; i--) { 6555 /* Emit a copy of the original instruction with the lowered width. 6556 * If the EOT flag was set throw it away except for the last 6557 * instruction to avoid killing the thread prematurely. 6558 */ 6559 fs_inst split_inst = *inst; 6560 split_inst.exec_size = lower_width; 6561 split_inst.eot = inst->eot && i == int(n - 1); 6562 6563 /* Select the correct channel enables for the i-th group, then 6564 * transform the sources and destination and emit the lowered 6565 * instruction. 6566 */ 6567 const fs_builder lbld = ibld.group(lower_width, i); 6568 6569 for (unsigned j = 0; j < inst->sources; j++) 6570 split_inst.src[j] = emit_unzip(lbld.at(block, inst), inst, j); 6571 6572 split_inst.dst = emit_zip(lbld.at(block, inst), 6573 lbld.at(block, after_inst), inst); 6574 split_inst.size_written = 6575 split_inst.dst.component_size(lower_width) * dst_size; 6576 6577 lbld.at(block, inst->next).emit(split_inst); 6578 } 6579 6580 inst->remove(block); 6581 progress = true; 6582 } 6583 } 6584 6585 if (progress) 6586 invalidate_live_intervals(); 6587 6588 return progress; 6589} 6590 6591void 6592fs_visitor::dump_instructions() 6593{ 6594 dump_instructions(NULL); 6595} 6596 6597void 6598fs_visitor::dump_instructions(const char *name) 6599{ 6600 FILE *file = stderr; 6601 if (name && geteuid() != 0) { 6602 file = fopen(name, "w"); 6603 if (!file) 6604 file = stderr; 6605 } 6606 6607 if (cfg) { 6608 calculate_register_pressure(); 6609 int ip = 0, max_pressure = 0; 6610 foreach_block_and_inst(block, backend_instruction, inst, cfg) { 6611 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]); 6612 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip); 6613 dump_instruction(inst, file); 6614 ip++; 6615 } 6616 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure); 6617 } else { 6618 int ip = 0; 6619 foreach_in_list(backend_instruction, inst, &instructions) { 6620 fprintf(file, "%4d: ", ip++); 6621 dump_instruction(inst, file); 6622 } 6623 } 6624 6625 if (file != stderr) { 6626 fclose(file); 6627 } 6628} 6629 6630void 6631fs_visitor::dump_instruction(backend_instruction *be_inst) 6632{ 6633 dump_instruction(be_inst, stderr); 6634} 6635 6636void 6637fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file) 6638{ 6639 fs_inst *inst = (fs_inst *)be_inst; 6640 6641 if (inst->predicate) { 6642 fprintf(file, "(%cf%d.%d) ", 6643 inst->predicate_inverse ? '-' : '+', 6644 inst->flag_subreg / 2, 6645 inst->flag_subreg % 2); 6646 } 6647 6648 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode)); 6649 if (inst->saturate) 6650 fprintf(file, ".sat"); 6651 if (inst->conditional_mod) { 6652 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]); 6653 if (!inst->predicate && 6654 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL && 6655 inst->opcode != BRW_OPCODE_CSEL && 6656 inst->opcode != BRW_OPCODE_IF && 6657 inst->opcode != BRW_OPCODE_WHILE))) { 6658 fprintf(file, ".f%d.%d", inst->flag_subreg / 2, 6659 inst->flag_subreg % 2); 6660 } 6661 } 6662 fprintf(file, "(%d) ", inst->exec_size); 6663 6664 if (inst->mlen) { 6665 fprintf(file, "(mlen: %d) ", inst->mlen); 6666 } 6667 6668 if (inst->ex_mlen) { 6669 fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen); 6670 } 6671 6672 if (inst->eot) { 6673 fprintf(file, "(EOT) "); 6674 } 6675 6676 switch (inst->dst.file) { 6677 case VGRF: 6678 fprintf(file, "vgrf%d", inst->dst.nr); 6679 break; 6680 case FIXED_GRF: 6681 fprintf(file, "g%d", inst->dst.nr); 6682 break; 6683 case MRF: 6684 fprintf(file, "m%d", inst->dst.nr); 6685 break; 6686 case BAD_FILE: 6687 fprintf(file, "(null)"); 6688 break; 6689 case UNIFORM: 6690 fprintf(file, "***u%d***", inst->dst.nr); 6691 break; 6692 case ATTR: 6693 fprintf(file, "***attr%d***", inst->dst.nr); 6694 break; 6695 case ARF: 6696 switch (inst->dst.nr) { 6697 case BRW_ARF_NULL: 6698 fprintf(file, "null"); 6699 break; 6700 case BRW_ARF_ADDRESS: 6701 fprintf(file, "a0.%d", inst->dst.subnr); 6702 break; 6703 case BRW_ARF_ACCUMULATOR: 6704 fprintf(file, "acc%d", inst->dst.subnr); 6705 break; 6706 case BRW_ARF_FLAG: 6707 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); 6708 break; 6709 default: 6710 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); 6711 break; 6712 } 6713 break; 6714 case IMM: 6715 unreachable("not reached"); 6716 } 6717 6718 if (inst->dst.offset || 6719 (inst->dst.file == VGRF && 6720 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) { 6721 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE); 6722 fprintf(file, "+%d.%d", inst->dst.offset / reg_size, 6723 inst->dst.offset % reg_size); 6724 } 6725 6726 if (inst->dst.stride != 1) 6727 fprintf(file, "<%u>", inst->dst.stride); 6728 fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type)); 6729 6730 for (int i = 0; i < inst->sources; i++) { 6731 if (inst->src[i].negate) 6732 fprintf(file, "-"); 6733 if (inst->src[i].abs) 6734 fprintf(file, "|"); 6735 switch (inst->src[i].file) { 6736 case VGRF: 6737 fprintf(file, "vgrf%d", inst->src[i].nr); 6738 break; 6739 case FIXED_GRF: 6740 fprintf(file, "g%d", inst->src[i].nr); 6741 break; 6742 case MRF: 6743 fprintf(file, "***m%d***", inst->src[i].nr); 6744 break; 6745 case ATTR: 6746 fprintf(file, "attr%d", inst->src[i].nr); 6747 break; 6748 case UNIFORM: 6749 fprintf(file, "u%d", inst->src[i].nr); 6750 break; 6751 case BAD_FILE: 6752 fprintf(file, "(null)"); 6753 break; 6754 case IMM: 6755 switch (inst->src[i].type) { 6756 case BRW_REGISTER_TYPE_F: 6757 fprintf(file, "%-gf", inst->src[i].f); 6758 break; 6759 case BRW_REGISTER_TYPE_DF: 6760 fprintf(file, "%fdf", inst->src[i].df); 6761 break; 6762 case BRW_REGISTER_TYPE_W: 6763 case BRW_REGISTER_TYPE_D: 6764 fprintf(file, "%dd", inst->src[i].d); 6765 break; 6766 case BRW_REGISTER_TYPE_UW: 6767 case BRW_REGISTER_TYPE_UD: 6768 fprintf(file, "%uu", inst->src[i].ud); 6769 break; 6770 case BRW_REGISTER_TYPE_Q: 6771 fprintf(file, "%" PRId64 "q", inst->src[i].d64); 6772 break; 6773 case BRW_REGISTER_TYPE_UQ: 6774 fprintf(file, "%" PRIu64 "uq", inst->src[i].u64); 6775 break; 6776 case BRW_REGISTER_TYPE_VF: 6777 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]", 6778 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff), 6779 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff), 6780 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff), 6781 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff)); 6782 break; 6783 case BRW_REGISTER_TYPE_V: 6784 case BRW_REGISTER_TYPE_UV: 6785 fprintf(file, "%08x%s", inst->src[i].ud, 6786 inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV"); 6787 break; 6788 default: 6789 fprintf(file, "???"); 6790 break; 6791 } 6792 break; 6793 case ARF: 6794 switch (inst->src[i].nr) { 6795 case BRW_ARF_NULL: 6796 fprintf(file, "null"); 6797 break; 6798 case BRW_ARF_ADDRESS: 6799 fprintf(file, "a0.%d", inst->src[i].subnr); 6800 break; 6801 case BRW_ARF_ACCUMULATOR: 6802 fprintf(file, "acc%d", inst->src[i].subnr); 6803 break; 6804 case BRW_ARF_FLAG: 6805 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); 6806 break; 6807 default: 6808 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); 6809 break; 6810 } 6811 break; 6812 } 6813 6814 if (inst->src[i].offset || 6815 (inst->src[i].file == VGRF && 6816 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) { 6817 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE); 6818 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size, 6819 inst->src[i].offset % reg_size); 6820 } 6821 6822 if (inst->src[i].abs) 6823 fprintf(file, "|"); 6824 6825 if (inst->src[i].file != IMM) { 6826 unsigned stride; 6827 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) { 6828 unsigned hstride = inst->src[i].hstride; 6829 stride = (hstride == 0 ? 0 : (1 << (hstride - 1))); 6830 } else { 6831 stride = inst->src[i].stride; 6832 } 6833 if (stride != 1) 6834 fprintf(file, "<%u>", stride); 6835 6836 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type)); 6837 } 6838 6839 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE) 6840 fprintf(file, ", "); 6841 } 6842 6843 fprintf(file, " "); 6844 6845 if (inst->force_writemask_all) 6846 fprintf(file, "NoMask "); 6847 6848 if (inst->exec_size != dispatch_width) 6849 fprintf(file, "group%d ", inst->group); 6850 6851 fprintf(file, "\n"); 6852} 6853 6854void 6855fs_visitor::setup_fs_payload_gen6() 6856{ 6857 assert(stage == MESA_SHADER_FRAGMENT); 6858 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data); 6859 const unsigned payload_width = MIN2(16, dispatch_width); 6860 assert(dispatch_width % payload_width == 0); 6861 assert(devinfo->gen >= 6); 6862 6863 prog_data->uses_src_depth = prog_data->uses_src_w = 6864 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0; 6865 6866 prog_data->uses_sample_mask = 6867 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0; 6868 6869 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS: 6870 * 6871 * "MSDISPMODE_PERSAMPLE is required in order to select 6872 * POSOFFSET_SAMPLE" 6873 * 6874 * So we can only really get sample positions if we are doing real 6875 * per-sample dispatch. If we need gl_SamplePosition and we don't have 6876 * persample dispatch, we hard-code it to 0.5. 6877 */ 6878 prog_data->uses_pos_offset = prog_data->persample_dispatch && 6879 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS); 6880 6881 /* R0: PS thread payload header. */ 6882 payload.num_regs++; 6883 6884 for (unsigned j = 0; j < dispatch_width / payload_width; j++) { 6885 /* R1: masks, pixel X/Y coordinates. */ 6886 payload.subspan_coord_reg[j] = payload.num_regs++; 6887 } 6888 6889 for (unsigned j = 0; j < dispatch_width / payload_width; j++) { 6890 /* R3-26: barycentric interpolation coordinates. These appear in the 6891 * same order that they appear in the brw_barycentric_mode enum. Each 6892 * set of coordinates occupies 2 registers if dispatch width == 8 and 4 6893 * registers if dispatch width == 16. Coordinates only appear if they 6894 * were enabled using the "Barycentric Interpolation Mode" bits in 6895 * WM_STATE. 6896 */ 6897 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) { 6898 if (prog_data->barycentric_interp_modes & (1 << i)) { 6899 payload.barycentric_coord_reg[i][j] = payload.num_regs; 6900 payload.num_regs += payload_width / 4; 6901 } 6902 } 6903 6904 /* R27-28: interpolated depth if uses source depth */ 6905 if (prog_data->uses_src_depth) { 6906 payload.source_depth_reg[j] = payload.num_regs; 6907 payload.num_regs += payload_width / 8; 6908 } 6909 6910 /* R29-30: interpolated W set if GEN6_WM_USES_SOURCE_W. */ 6911 if (prog_data->uses_src_w) { 6912 payload.source_w_reg[j] = payload.num_regs; 6913 payload.num_regs += payload_width / 8; 6914 } 6915 6916 /* R31: MSAA position offsets. */ 6917 if (prog_data->uses_pos_offset) { 6918 payload.sample_pos_reg[j] = payload.num_regs; 6919 payload.num_regs++; 6920 } 6921 6922 /* R32-33: MSAA input coverage mask */ 6923 if (prog_data->uses_sample_mask) { 6924 assert(devinfo->gen >= 7); 6925 payload.sample_mask_in_reg[j] = payload.num_regs; 6926 payload.num_regs += payload_width / 8; 6927 } 6928 } 6929 6930 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) { 6931 source_depth_to_render_target = true; 6932 } 6933} 6934 6935void 6936fs_visitor::setup_vs_payload() 6937{ 6938 /* R0: thread header, R1: urb handles */ 6939 payload.num_regs = 2; 6940} 6941 6942void 6943fs_visitor::setup_gs_payload() 6944{ 6945 assert(stage == MESA_SHADER_GEOMETRY); 6946 6947 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data); 6948 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data); 6949 6950 /* R0: thread header, R1: output URB handles */ 6951 payload.num_regs = 2; 6952 6953 if (gs_prog_data->include_primitive_id) { 6954 /* R2: Primitive ID 0..7 */ 6955 payload.num_regs++; 6956 } 6957 6958 /* Always enable VUE handles so we can safely use pull model if needed. 6959 * 6960 * The push model for a GS uses a ton of register space even for trivial 6961 * scenarios with just a few inputs, so just make things easier and a bit 6962 * safer by always having pull model available. 6963 */ 6964 gs_prog_data->base.include_vue_handles = true; 6965 6966 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */ 6967 payload.num_regs += nir->info.gs.vertices_in; 6968 6969 /* Use a maximum of 24 registers for push-model inputs. */ 6970 const unsigned max_push_components = 24; 6971 6972 /* If pushing our inputs would take too many registers, reduce the URB read 6973 * length (which is in HWords, or 8 registers), and resort to pulling. 6974 * 6975 * Note that the GS reads <URB Read Length> HWords for every vertex - so we 6976 * have to multiply by VerticesIn to obtain the total storage requirement. 6977 */ 6978 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in > 6979 max_push_components) { 6980 vue_prog_data->urb_read_length = 6981 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8; 6982 } 6983} 6984 6985void 6986fs_visitor::setup_cs_payload() 6987{ 6988 assert(devinfo->gen >= 7); 6989 payload.num_regs = 1; 6990} 6991 6992void 6993fs_visitor::calculate_register_pressure() 6994{ 6995 invalidate_live_intervals(); 6996 calculate_live_intervals(); 6997 6998 unsigned num_instructions = 0; 6999 foreach_block(block, cfg) 7000 num_instructions += block->instructions.length(); 7001 7002 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions); 7003 7004 for (unsigned reg = 0; reg < alloc.count; reg++) { 7005 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++) 7006 regs_live_at_ip[ip] += alloc.sizes[reg]; 7007 } 7008} 7009 7010void 7011fs_visitor::optimize() 7012{ 7013 /* Start by validating the shader we currently have. */ 7014 validate(); 7015 7016 /* bld is the common builder object pointing at the end of the program we 7017 * used to translate it into i965 IR. For the optimization and lowering 7018 * passes coming next, any code added after the end of the program without 7019 * having explicitly called fs_builder::at() clearly points at a mistake. 7020 * Ideally optimization passes wouldn't be part of the visitor so they 7021 * wouldn't have access to bld at all, but they do, so just in case some 7022 * pass forgets to ask for a location explicitly set it to NULL here to 7023 * make it trip. The dispatch width is initialized to a bogus value to 7024 * make sure that optimizations set the execution controls explicitly to 7025 * match the code they are manipulating instead of relying on the defaults. 7026 */ 7027 bld = fs_builder(this, 64); 7028 7029 assign_constant_locations(); 7030 lower_constant_loads(); 7031 7032 validate(); 7033 7034 split_virtual_grfs(); 7035 validate(); 7036 7037#define OPT(pass, args...) ({ \ 7038 pass_num++; \ 7039 bool this_progress = pass(args); \ 7040 \ 7041 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \ 7042 char filename[64]; \ 7043 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \ 7044 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \ 7045 \ 7046 backend_shader::dump_instructions(filename); \ 7047 } \ 7048 \ 7049 validate(); \ 7050 \ 7051 progress = progress || this_progress; \ 7052 this_progress; \ 7053 }) 7054 7055 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) { 7056 char filename[64]; 7057 snprintf(filename, 64, "%s%d-%s-00-00-start", 7058 stage_abbrev, dispatch_width, nir->info.name); 7059 7060 backend_shader::dump_instructions(filename); 7061 } 7062 7063 bool progress = false; 7064 int iteration = 0; 7065 int pass_num = 0; 7066 7067 /* Before anything else, eliminate dead code. The results of some NIR 7068 * instructions may effectively be calculated twice. Once when the 7069 * instruction is encountered, and again when the user of that result is 7070 * encountered. Wipe those away before algebraic optimizations and 7071 * especially copy propagation can mix things up. 7072 */ 7073 OPT(dead_code_eliminate); 7074 7075 OPT(remove_extra_rounding_modes); 7076 7077 do { 7078 progress = false; 7079 pass_num = 0; 7080 iteration++; 7081 7082 OPT(remove_duplicate_mrf_writes); 7083 7084 OPT(opt_algebraic); 7085 OPT(opt_cse); 7086 OPT(opt_copy_propagation); 7087 OPT(opt_predicated_break, this); 7088 OPT(opt_cmod_propagation); 7089 OPT(dead_code_eliminate); 7090 OPT(opt_peephole_sel); 7091 OPT(dead_control_flow_eliminate, this); 7092 OPT(opt_register_renaming); 7093 OPT(opt_saturate_propagation); 7094 OPT(register_coalesce); 7095 OPT(compute_to_mrf); 7096 OPT(eliminate_find_live_channel); 7097 7098 OPT(compact_virtual_grfs); 7099 } while (progress); 7100 7101 if (OPT(lower_linterp)) { 7102 OPT(opt_copy_propagation); 7103 OPT(dead_code_eliminate); 7104 } 7105 7106 /* Do this after cmod propagation has had every possible opportunity to 7107 * propagate results into SEL instructions. 7108 */ 7109 if (OPT(opt_peephole_csel)) 7110 OPT(dead_code_eliminate); 7111 7112 progress = false; 7113 pass_num = 0; 7114 7115 if (OPT(lower_pack)) { 7116 OPT(register_coalesce); 7117 OPT(dead_code_eliminate); 7118 } 7119 7120 OPT(lower_simd_width); 7121 7122 /* After SIMD lowering just in case we had to unroll the EOT send. */ 7123 OPT(opt_sampler_eot); 7124 7125 OPT(lower_logical_sends); 7126 7127 if (progress) { 7128 OPT(opt_copy_propagation); 7129 /* Only run after logical send lowering because it's easier to implement 7130 * in terms of physical sends. 7131 */ 7132 if (OPT(opt_zero_samples)) 7133 OPT(opt_copy_propagation); 7134 /* Run after logical send lowering to give it a chance to CSE the 7135 * LOAD_PAYLOAD instructions created to construct the payloads of 7136 * e.g. texturing messages in cases where it wasn't possible to CSE the 7137 * whole logical instruction. 7138 */ 7139 OPT(opt_cse); 7140 OPT(register_coalesce); 7141 OPT(compute_to_mrf); 7142 OPT(dead_code_eliminate); 7143 OPT(remove_duplicate_mrf_writes); 7144 OPT(opt_peephole_sel); 7145 } 7146 7147 OPT(opt_redundant_discard_jumps); 7148 7149 if (OPT(lower_load_payload)) { 7150 split_virtual_grfs(); 7151 OPT(register_coalesce); 7152 OPT(lower_simd_width); 7153 OPT(compute_to_mrf); 7154 OPT(dead_code_eliminate); 7155 } 7156 7157 OPT(opt_combine_constants); 7158 OPT(lower_integer_multiplication); 7159 7160 if (devinfo->gen <= 5 && OPT(lower_minmax)) { 7161 OPT(opt_cmod_propagation); 7162 OPT(opt_cse); 7163 OPT(opt_copy_propagation); 7164 OPT(dead_code_eliminate); 7165 } 7166 7167 if (OPT(lower_regioning)) { 7168 OPT(opt_copy_propagation); 7169 OPT(dead_code_eliminate); 7170 OPT(lower_simd_width); 7171 } 7172 7173 OPT(fixup_sends_duplicate_payload); 7174 7175 lower_uniform_pull_constant_loads(); 7176 7177 validate(); 7178} 7179 7180/** 7181 * From the Skylake PRM Vol. 2a docs for sends: 7182 * 7183 * "It is required that the second block of GRFs does not overlap with the 7184 * first block." 7185 * 7186 * There are plenty of cases where we may accidentally violate this due to 7187 * having, for instance, both sources be the constant 0. This little pass 7188 * just adds a new vgrf for the second payload and copies it over. 7189 */ 7190bool 7191fs_visitor::fixup_sends_duplicate_payload() 7192{ 7193 bool progress = false; 7194 7195 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) { 7196 if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 && 7197 regions_overlap(inst->src[2], inst->mlen * REG_SIZE, 7198 inst->src[3], inst->ex_mlen * REG_SIZE)) { 7199 fs_reg tmp = fs_reg(VGRF, alloc.allocate(inst->ex_mlen), 7200 BRW_REGISTER_TYPE_UD); 7201 /* Sadly, we've lost all notion of channels and bit sizes at this 7202 * point. Just WE_all it. 7203 */ 7204 const fs_builder ibld = bld.at(block, inst).exec_all().group(16, 0); 7205 fs_reg copy_src = retype(inst->src[3], BRW_REGISTER_TYPE_UD); 7206 fs_reg copy_dst = tmp; 7207 for (unsigned i = 0; i < inst->ex_mlen; i += 2) { 7208 if (inst->ex_mlen == i + 1) { 7209 /* Only one register left; do SIMD8 */ 7210 ibld.group(8, 0).MOV(copy_dst, copy_src); 7211 } else { 7212 ibld.MOV(copy_dst, copy_src); 7213 } 7214 copy_src = offset(copy_src, ibld, 1); 7215 copy_dst = offset(copy_dst, ibld, 1); 7216 } 7217 inst->src[3] = tmp; 7218 progress = true; 7219 } 7220 } 7221 7222 if (progress) 7223 invalidate_live_intervals(); 7224 7225 return progress; 7226} 7227 7228/** 7229 * Three source instruction must have a GRF/MRF destination register. 7230 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF. 7231 */ 7232void 7233fs_visitor::fixup_3src_null_dest() 7234{ 7235 bool progress = false; 7236 7237 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) { 7238 if (inst->is_3src(devinfo) && inst->dst.is_null()) { 7239 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8), 7240 inst->dst.type); 7241 progress = true; 7242 } 7243 } 7244 7245 if (progress) 7246 invalidate_live_intervals(); 7247} 7248 7249void 7250fs_visitor::allocate_registers(unsigned min_dispatch_width, bool allow_spilling) 7251{ 7252 bool allocated_without_spills; 7253 7254 static const enum instruction_scheduler_mode pre_modes[] = { 7255 SCHEDULE_PRE, 7256 SCHEDULE_PRE_NON_LIFO, 7257 SCHEDULE_PRE_LIFO, 7258 }; 7259 7260 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS); 7261 7262 /* Try each scheduling heuristic to see if it can successfully register 7263 * allocate without spilling. They should be ordered by decreasing 7264 * performance but increasing likelihood of allocating. 7265 */ 7266 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) { 7267 schedule_instructions(pre_modes[i]); 7268 7269 if (0) { 7270 assign_regs_trivial(); 7271 allocated_without_spills = true; 7272 } else { 7273 allocated_without_spills = assign_regs(false, spill_all); 7274 } 7275 if (allocated_without_spills) 7276 break; 7277 } 7278 7279 if (!allocated_without_spills) { 7280 if (!allow_spilling) 7281 fail("Failure to register allocate and spilling is not allowed."); 7282 7283 /* We assume that any spilling is worse than just dropping back to 7284 * SIMD8. There's probably actually some intermediate point where 7285 * SIMD16 with a couple of spills is still better. 7286 */ 7287 if (dispatch_width > min_dispatch_width) { 7288 fail("Failure to register allocate. Reduce number of " 7289 "live scalar values to avoid this."); 7290 } else { 7291 compiler->shader_perf_log(log_data, 7292 "%s shader triggered register spilling. " 7293 "Try reducing the number of live scalar " 7294 "values to improve performance.\n", 7295 stage_name); 7296 } 7297 7298 /* Since we're out of heuristics, just go spill registers until we 7299 * get an allocation. 7300 */ 7301 while (!assign_regs(true, spill_all)) { 7302 if (failed) 7303 break; 7304 } 7305 } 7306 7307 /* This must come after all optimization and register allocation, since 7308 * it inserts dead code that happens to have side effects, and it does 7309 * so based on the actual physical registers in use. 7310 */ 7311 insert_gen4_send_dependency_workarounds(); 7312 7313 if (failed) 7314 return; 7315 7316 opt_bank_conflicts(); 7317 7318 schedule_instructions(SCHEDULE_POST); 7319 7320 if (last_scratch > 0) { 7321 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024; 7322 7323 prog_data->total_scratch = brw_get_scratch_size(last_scratch); 7324 7325 if (stage == MESA_SHADER_COMPUTE) { 7326 if (devinfo->is_haswell) { 7327 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space" 7328 * field documentation, Haswell supports a minimum of 2kB of 7329 * scratch space for compute shaders, unlike every other stage 7330 * and platform. 7331 */ 7332 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048); 7333 } else if (devinfo->gen <= 7) { 7334 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space" 7335 * field documentation, platforms prior to Haswell measure scratch 7336 * size linearly with a range of [1kB, 12kB] and 1kB granularity. 7337 */ 7338 prog_data->total_scratch = ALIGN(last_scratch, 1024); 7339 max_scratch_size = 12 * 1024; 7340 } 7341 } 7342 7343 /* We currently only support up to 2MB of scratch space. If we 7344 * need to support more eventually, the documentation suggests 7345 * that we could allocate a larger buffer, and partition it out 7346 * ourselves. We'd just have to undo the hardware's address 7347 * calculation by subtracting (FFTID * Per Thread Scratch Space) 7348 * and then add FFTID * (Larger Per Thread Scratch Space). 7349 * 7350 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline > 7351 * Thread Group Tracking > Local Memory/Scratch Space. 7352 */ 7353 assert(prog_data->total_scratch < max_scratch_size); 7354 } 7355} 7356 7357bool 7358fs_visitor::run_vs() 7359{ 7360 assert(stage == MESA_SHADER_VERTEX); 7361 7362 setup_vs_payload(); 7363 7364 if (shader_time_index >= 0) 7365 emit_shader_time_begin(); 7366 7367 emit_nir_code(); 7368 7369 if (failed) 7370 return false; 7371 7372 compute_clip_distance(); 7373 7374 emit_urb_writes(); 7375 7376 if (shader_time_index >= 0) 7377 emit_shader_time_end(); 7378 7379 calculate_cfg(); 7380 7381 optimize(); 7382 7383 assign_curb_setup(); 7384 assign_vs_urb_setup(); 7385 7386 fixup_3src_null_dest(); 7387 allocate_registers(8, true); 7388 7389 return !failed; 7390} 7391 7392bool 7393fs_visitor::run_tcs_single_patch() 7394{ 7395 assert(stage == MESA_SHADER_TESS_CTRL); 7396 7397 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data); 7398 7399 /* r1-r4 contain the ICP handles. */ 7400 payload.num_regs = 5; 7401 7402 if (shader_time_index >= 0) 7403 emit_shader_time_begin(); 7404 7405 /* Initialize gl_InvocationID */ 7406 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW); 7407 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD); 7408 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210))); 7409 bld.MOV(channels_ud, channels_uw); 7410 7411 if (tcs_prog_data->instances == 1) { 7412 invocation_id = channels_ud; 7413 } else { 7414 const unsigned invocation_id_mask = devinfo->gen >= 11 ? 7415 INTEL_MASK(22, 16) : INTEL_MASK(23, 17); 7416 const unsigned invocation_id_shift = devinfo->gen >= 11 ? 16 : 17; 7417 7418 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD); 7419 7420 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */ 7421 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD); 7422 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD); 7423 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)), 7424 brw_imm_ud(invocation_id_mask)); 7425 bld.SHR(instance_times_8, t, brw_imm_ud(invocation_id_shift - 3)); 7426 7427 bld.ADD(invocation_id, instance_times_8, channels_ud); 7428 } 7429 7430 /* Fix the disptach mask */ 7431 if (nir->info.tess.tcs_vertices_out % 8) { 7432 bld.CMP(bld.null_reg_ud(), invocation_id, 7433 brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L); 7434 bld.IF(BRW_PREDICATE_NORMAL); 7435 } 7436 7437 emit_nir_code(); 7438 7439 if (nir->info.tess.tcs_vertices_out % 8) { 7440 bld.emit(BRW_OPCODE_ENDIF); 7441 } 7442 7443 /* Emit EOT write; set TR DS Cache bit */ 7444 fs_reg srcs[3] = { 7445 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)), 7446 fs_reg(brw_imm_ud(WRITEMASK_X << 16)), 7447 fs_reg(brw_imm_ud(0)), 7448 }; 7449 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3); 7450 bld.LOAD_PAYLOAD(payload, srcs, 3, 2); 7451 7452 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED, 7453 bld.null_reg_ud(), payload); 7454 inst->mlen = 3; 7455 inst->eot = true; 7456 7457 if (shader_time_index >= 0) 7458 emit_shader_time_end(); 7459 7460 if (failed) 7461 return false; 7462 7463 calculate_cfg(); 7464 7465 optimize(); 7466 7467 assign_curb_setup(); 7468 assign_tcs_single_patch_urb_setup(); 7469 7470 fixup_3src_null_dest(); 7471 allocate_registers(8, true); 7472 7473 return !failed; 7474} 7475 7476bool 7477fs_visitor::run_tes() 7478{ 7479 assert(stage == MESA_SHADER_TESS_EVAL); 7480 7481 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */ 7482 payload.num_regs = 5; 7483 7484 if (shader_time_index >= 0) 7485 emit_shader_time_begin(); 7486 7487 emit_nir_code(); 7488 7489 if (failed) 7490 return false; 7491 7492 emit_urb_writes(); 7493 7494 if (shader_time_index >= 0) 7495 emit_shader_time_end(); 7496 7497 calculate_cfg(); 7498 7499 optimize(); 7500 7501 assign_curb_setup(); 7502 assign_tes_urb_setup(); 7503 7504 fixup_3src_null_dest(); 7505 allocate_registers(8, true); 7506 7507 return !failed; 7508} 7509 7510bool 7511fs_visitor::run_gs() 7512{ 7513 assert(stage == MESA_SHADER_GEOMETRY); 7514 7515 setup_gs_payload(); 7516 7517 this->final_gs_vertex_count = vgrf(glsl_type::uint_type); 7518 7519 if (gs_compile->control_data_header_size_bits > 0) { 7520 /* Create a VGRF to store accumulated control data bits. */ 7521 this->control_data_bits = vgrf(glsl_type::uint_type); 7522 7523 /* If we're outputting more than 32 control data bits, then EmitVertex() 7524 * will set control_data_bits to 0 after emitting the first vertex. 7525 * Otherwise, we need to initialize it to 0 here. 7526 */ 7527 if (gs_compile->control_data_header_size_bits <= 32) { 7528 const fs_builder abld = bld.annotate("initialize control data bits"); 7529 abld.MOV(this->control_data_bits, brw_imm_ud(0u)); 7530 } 7531 } 7532 7533 if (shader_time_index >= 0) 7534 emit_shader_time_begin(); 7535 7536 emit_nir_code(); 7537 7538 emit_gs_thread_end(); 7539 7540 if (shader_time_index >= 0) 7541 emit_shader_time_end(); 7542 7543 if (failed) 7544 return false; 7545 7546 calculate_cfg(); 7547 7548 optimize(); 7549 7550 assign_curb_setup(); 7551 assign_gs_urb_setup(); 7552 7553 fixup_3src_null_dest(); 7554 allocate_registers(8, true); 7555 7556 return !failed; 7557} 7558 7559/* From the SKL PRM, Volume 16, Workarounds: 7560 * 7561 * 0877 3D Pixel Shader Hang possible when pixel shader dispatched with 7562 * only header phases (R0-R2) 7563 * 7564 * WA: Enable a non-header phase (e.g. push constant) when dispatch would 7565 * have been header only. 7566 * 7567 * Instead of enabling push constants one can alternatively enable one of the 7568 * inputs. Here one simply chooses "layer" which shouldn't impose much 7569 * overhead. 7570 */ 7571static void 7572gen9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data) 7573{ 7574 if (wm_prog_data->num_varying_inputs) 7575 return; 7576 7577 if (wm_prog_data->base.curb_read_length) 7578 return; 7579 7580 wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0; 7581 wm_prog_data->num_varying_inputs = 1; 7582} 7583 7584bool 7585fs_visitor::run_fs(bool allow_spilling, bool do_rep_send) 7586{ 7587 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data); 7588 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key; 7589 7590 assert(stage == MESA_SHADER_FRAGMENT); 7591 7592 if (devinfo->gen >= 6) 7593 setup_fs_payload_gen6(); 7594 else 7595 setup_fs_payload_gen4(); 7596 7597 if (0) { 7598 emit_dummy_fs(); 7599 } else if (do_rep_send) { 7600 assert(dispatch_width == 16); 7601 emit_repclear_shader(); 7602 } else { 7603 if (shader_time_index >= 0) 7604 emit_shader_time_begin(); 7605 7606 calculate_urb_setup(); 7607 if (nir->info.inputs_read > 0 || 7608 (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) { 7609 if (devinfo->gen < 6) 7610 emit_interpolation_setup_gen4(); 7611 else 7612 emit_interpolation_setup_gen6(); 7613 } 7614 7615 /* We handle discards by keeping track of the still-live pixels in f0.1. 7616 * Initialize it with the dispatched pixels. 7617 */ 7618 if (wm_prog_data->uses_kill) { 7619 const fs_reg dispatch_mask = 7620 devinfo->gen >= 6 ? brw_vec1_grf(1, 7) : brw_vec1_grf(0, 0); 7621 bld.exec_all().group(1, 0) 7622 .MOV(retype(brw_flag_reg(0, 1), BRW_REGISTER_TYPE_UW), 7623 retype(dispatch_mask, BRW_REGISTER_TYPE_UW)); 7624 } 7625 7626 emit_nir_code(); 7627 7628 if (failed) 7629 return false; 7630 7631 if (wm_prog_data->uses_kill) 7632 bld.emit(FS_OPCODE_PLACEHOLDER_HALT); 7633 7634 if (wm_key->alpha_test_func) 7635 emit_alpha_test(); 7636 7637 emit_fb_writes(); 7638 7639 if (shader_time_index >= 0) 7640 emit_shader_time_end(); 7641 7642 calculate_cfg(); 7643 7644 optimize(); 7645 7646 assign_curb_setup(); 7647 7648 if (devinfo->gen >= 9) 7649 gen9_ps_header_only_workaround(wm_prog_data); 7650 7651 assign_urb_setup(); 7652 7653 fixup_3src_null_dest(); 7654 allocate_registers(8, allow_spilling); 7655 7656 if (failed) 7657 return false; 7658 } 7659 7660 return !failed; 7661} 7662 7663bool 7664fs_visitor::run_cs(unsigned min_dispatch_width) 7665{ 7666 assert(stage == MESA_SHADER_COMPUTE); 7667 assert(dispatch_width >= min_dispatch_width); 7668 7669 setup_cs_payload(); 7670 7671 if (shader_time_index >= 0) 7672 emit_shader_time_begin(); 7673 7674 if (devinfo->is_haswell && prog_data->total_shared > 0) { 7675 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */ 7676 const fs_builder abld = bld.exec_all().group(1, 0); 7677 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW), 7678 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1)); 7679 } 7680 7681 emit_nir_code(); 7682 7683 if (failed) 7684 return false; 7685 7686 emit_cs_terminate(); 7687 7688 if (shader_time_index >= 0) 7689 emit_shader_time_end(); 7690 7691 calculate_cfg(); 7692 7693 optimize(); 7694 7695 assign_curb_setup(); 7696 7697 fixup_3src_null_dest(); 7698 allocate_registers(min_dispatch_width, true); 7699 7700 if (failed) 7701 return false; 7702 7703 return !failed; 7704} 7705 7706/** 7707 * Return a bitfield where bit n is set if barycentric interpolation mode n 7708 * (see enum brw_barycentric_mode) is needed by the fragment shader. 7709 * 7710 * We examine the load_barycentric intrinsics rather than looking at input 7711 * variables so that we catch interpolateAtCentroid() messages too, which 7712 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up. 7713 */ 7714static unsigned 7715brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo, 7716 const nir_shader *shader) 7717{ 7718 unsigned barycentric_interp_modes = 0; 7719 7720 nir_foreach_function(f, shader) { 7721 if (!f->impl) 7722 continue; 7723 7724 nir_foreach_block(block, f->impl) { 7725 nir_foreach_instr(instr, block) { 7726 if (instr->type != nir_instr_type_intrinsic) 7727 continue; 7728 7729 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); 7730 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input) 7731 continue; 7732 7733 /* Ignore WPOS; it doesn't require interpolation. */ 7734 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS) 7735 continue; 7736 7737 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr); 7738 enum glsl_interp_mode interp = (enum glsl_interp_mode) 7739 nir_intrinsic_interp_mode(intrin); 7740 nir_intrinsic_op bary_op = intrin->intrinsic; 7741 enum brw_barycentric_mode bary = 7742 brw_barycentric_mode(interp, bary_op); 7743 7744 barycentric_interp_modes |= 1 << bary; 7745 7746 if (devinfo->needs_unlit_centroid_workaround && 7747 bary_op == nir_intrinsic_load_barycentric_centroid) 7748 barycentric_interp_modes |= 1 << centroid_to_pixel(bary); 7749 } 7750 } 7751 } 7752 7753 return barycentric_interp_modes; 7754} 7755 7756static void 7757brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data, 7758 const nir_shader *shader) 7759{ 7760 prog_data->flat_inputs = 0; 7761 7762 nir_foreach_variable(var, &shader->inputs) { 7763 unsigned slots = glsl_count_attribute_slots(var->type, false); 7764 for (unsigned s = 0; s < slots; s++) { 7765 int input_index = prog_data->urb_setup[var->data.location + s]; 7766 7767 if (input_index < 0) 7768 continue; 7769 7770 /* flat shading */ 7771 if (var->data.interpolation == INTERP_MODE_FLAT) 7772 prog_data->flat_inputs |= 1 << input_index; 7773 } 7774 } 7775} 7776 7777static uint8_t 7778computed_depth_mode(const nir_shader *shader) 7779{ 7780 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) { 7781 switch (shader->info.fs.depth_layout) { 7782 case FRAG_DEPTH_LAYOUT_NONE: 7783 case FRAG_DEPTH_LAYOUT_ANY: 7784 return BRW_PSCDEPTH_ON; 7785 case FRAG_DEPTH_LAYOUT_GREATER: 7786 return BRW_PSCDEPTH_ON_GE; 7787 case FRAG_DEPTH_LAYOUT_LESS: 7788 return BRW_PSCDEPTH_ON_LE; 7789 case FRAG_DEPTH_LAYOUT_UNCHANGED: 7790 return BRW_PSCDEPTH_OFF; 7791 } 7792 } 7793 return BRW_PSCDEPTH_OFF; 7794} 7795 7796/** 7797 * Move load_interpolated_input with simple (payload-based) barycentric modes 7798 * to the top of the program so we don't emit multiple PLNs for the same input. 7799 * 7800 * This works around CSE not being able to handle non-dominating cases 7801 * such as: 7802 * 7803 * if (...) { 7804 * interpolate input 7805 * } else { 7806 * interpolate the same exact input 7807 * } 7808 * 7809 * This should be replaced by global value numbering someday. 7810 */ 7811static bool 7812move_interpolation_to_top(nir_shader *nir) 7813{ 7814 bool progress = false; 7815 7816 nir_foreach_function(f, nir) { 7817 if (!f->impl) 7818 continue; 7819 7820 nir_block *top = nir_start_block(f->impl); 7821 exec_node *cursor_node = NULL; 7822 7823 nir_foreach_block(block, f->impl) { 7824 if (block == top) 7825 continue; 7826 7827 nir_foreach_instr_safe(instr, block) { 7828 if (instr->type != nir_instr_type_intrinsic) 7829 continue; 7830 7831 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); 7832 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input) 7833 continue; 7834 nir_intrinsic_instr *bary_intrinsic = 7835 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr); 7836 nir_intrinsic_op op = bary_intrinsic->intrinsic; 7837 7838 /* Leave interpolateAtSample/Offset() where they are. */ 7839 if (op == nir_intrinsic_load_barycentric_at_sample || 7840 op == nir_intrinsic_load_barycentric_at_offset) 7841 continue; 7842 7843 nir_instr *move[3] = { 7844 &bary_intrinsic->instr, 7845 intrin->src[1].ssa->parent_instr, 7846 instr 7847 }; 7848 7849 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) { 7850 if (move[i]->block != top) { 7851 move[i]->block = top; 7852 exec_node_remove(&move[i]->node); 7853 if (cursor_node) { 7854 exec_node_insert_after(cursor_node, &move[i]->node); 7855 } else { 7856 exec_list_push_head(&top->instr_list, &move[i]->node); 7857 } 7858 cursor_node = &move[i]->node; 7859 progress = true; 7860 } 7861 } 7862 } 7863 } 7864 nir_metadata_preserve(f->impl, (nir_metadata) 7865 ((unsigned) nir_metadata_block_index | 7866 (unsigned) nir_metadata_dominance)); 7867 } 7868 7869 return progress; 7870} 7871 7872/** 7873 * Demote per-sample barycentric intrinsics to centroid. 7874 * 7875 * Useful when rendering to a non-multisampled buffer. 7876 */ 7877static bool 7878demote_sample_qualifiers(nir_shader *nir) 7879{ 7880 bool progress = true; 7881 7882 nir_foreach_function(f, nir) { 7883 if (!f->impl) 7884 continue; 7885 7886 nir_builder b; 7887 nir_builder_init(&b, f->impl); 7888 7889 nir_foreach_block(block, f->impl) { 7890 nir_foreach_instr_safe(instr, block) { 7891 if (instr->type != nir_instr_type_intrinsic) 7892 continue; 7893 7894 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); 7895 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample && 7896 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample) 7897 continue; 7898 7899 b.cursor = nir_before_instr(instr); 7900 nir_ssa_def *centroid = 7901 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid, 7902 nir_intrinsic_interp_mode(intrin)); 7903 nir_ssa_def_rewrite_uses(&intrin->dest.ssa, 7904 nir_src_for_ssa(centroid)); 7905 nir_instr_remove(instr); 7906 progress = true; 7907 } 7908 } 7909 7910 nir_metadata_preserve(f->impl, (nir_metadata) 7911 ((unsigned) nir_metadata_block_index | 7912 (unsigned) nir_metadata_dominance)); 7913 } 7914 7915 return progress; 7916} 7917 7918/** 7919 * Pre-gen6, the register file of the EUs was shared between threads, 7920 * and each thread used some subset allocated on a 16-register block 7921 * granularity. The unit states wanted these block counts. 7922 */ 7923static inline int 7924brw_register_blocks(int reg_count) 7925{ 7926 return ALIGN(reg_count, 16) / 16 - 1; 7927} 7928 7929const unsigned * 7930brw_compile_fs(const struct brw_compiler *compiler, void *log_data, 7931 void *mem_ctx, 7932 const struct brw_wm_prog_key *key, 7933 struct brw_wm_prog_data *prog_data, 7934 nir_shader *shader, 7935 struct gl_program *prog, 7936 int shader_time_index8, int shader_time_index16, 7937 int shader_time_index32, bool allow_spilling, 7938 bool use_rep_send, struct brw_vue_map *vue_map, 7939 char **error_str) 7940{ 7941 const struct gen_device_info *devinfo = compiler->devinfo; 7942 7943 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true); 7944 brw_nir_lower_fs_inputs(shader, devinfo, key); 7945 brw_nir_lower_fs_outputs(shader); 7946 7947 if (devinfo->gen < 6) 7948 brw_setup_vue_interpolation(vue_map, shader, prog_data); 7949 7950 if (!key->multisample_fbo) 7951 NIR_PASS_V(shader, demote_sample_qualifiers); 7952 NIR_PASS_V(shader, move_interpolation_to_top); 7953 shader = brw_postprocess_nir(shader, compiler, true); 7954 7955 /* key->alpha_test_func means simulating alpha testing via discards, 7956 * so the shader definitely kills pixels. 7957 */ 7958 prog_data->uses_kill = shader->info.fs.uses_discard || 7959 key->alpha_test_func; 7960 prog_data->uses_omask = key->multisample_fbo && 7961 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK); 7962 prog_data->computed_depth_mode = computed_depth_mode(shader); 7963 prog_data->computed_stencil = 7964 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL); 7965 7966 prog_data->persample_dispatch = 7967 key->multisample_fbo && 7968 (key->persample_interp || 7969 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID | 7970 SYSTEM_BIT_SAMPLE_POS)) || 7971 shader->info.fs.uses_sample_qualifier || 7972 shader->info.outputs_read); 7973 7974 prog_data->has_render_target_reads = shader->info.outputs_read != 0ull; 7975 7976 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests; 7977 prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage; 7978 prog_data->inner_coverage = shader->info.fs.inner_coverage; 7979 7980 prog_data->barycentric_interp_modes = 7981 brw_compute_barycentric_interp_modes(compiler->devinfo, shader); 7982 7983 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL; 7984 7985 fs_visitor v8(compiler, log_data, mem_ctx, key, 7986 &prog_data->base, prog, shader, 8, 7987 shader_time_index8); 7988 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) { 7989 if (error_str) 7990 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg); 7991 7992 return NULL; 7993 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) { 7994 simd8_cfg = v8.cfg; 7995 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs; 7996 prog_data->reg_blocks_8 = brw_register_blocks(v8.grf_used); 7997 } 7998 7999 if (v8.max_dispatch_width >= 16 && 8000 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) { 8001 /* Try a SIMD16 compile */ 8002 fs_visitor v16(compiler, log_data, mem_ctx, key, 8003 &prog_data->base, prog, shader, 16, 8004 shader_time_index16); 8005 v16.import_uniforms(&v8); 8006 if (!v16.run_fs(allow_spilling, use_rep_send)) { 8007 compiler->shader_perf_log(log_data, 8008 "SIMD16 shader failed to compile: %s", 8009 v16.fail_msg); 8010 } else { 8011 simd16_cfg = v16.cfg; 8012 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs; 8013 prog_data->reg_blocks_16 = brw_register_blocks(v16.grf_used); 8014 } 8015 } 8016 8017 /* Currently, the compiler only supports SIMD32 on SNB+ */ 8018 if (v8.max_dispatch_width >= 32 && !use_rep_send && 8019 compiler->devinfo->gen >= 6 && 8020 unlikely(INTEL_DEBUG & DEBUG_DO32)) { 8021 /* Try a SIMD32 compile */ 8022 fs_visitor v32(compiler, log_data, mem_ctx, key, 8023 &prog_data->base, prog, shader, 32, 8024 shader_time_index32); 8025 v32.import_uniforms(&v8); 8026 if (!v32.run_fs(allow_spilling, false)) { 8027 compiler->shader_perf_log(log_data, 8028 "SIMD32 shader failed to compile: %s", 8029 v32.fail_msg); 8030 } else { 8031 simd32_cfg = v32.cfg; 8032 prog_data->dispatch_grf_start_reg_32 = v32.payload.num_regs; 8033 prog_data->reg_blocks_32 = brw_register_blocks(v32.grf_used); 8034 } 8035 } 8036 8037 /* When the caller requests a repclear shader, they want SIMD16-only */ 8038 if (use_rep_send) 8039 simd8_cfg = NULL; 8040 8041 /* Prior to Iron Lake, the PS had a single shader offset with a jump table 8042 * at the top to select the shader. We've never implemented that. 8043 * Instead, we just give them exactly one shader and we pick the widest one 8044 * available. 8045 */ 8046 if (compiler->devinfo->gen < 5) { 8047 if (simd32_cfg || simd16_cfg) 8048 simd8_cfg = NULL; 8049 if (simd32_cfg) 8050 simd16_cfg = NULL; 8051 } 8052 8053 /* If computed depth is enabled SNB only allows SIMD8. */ 8054 if (compiler->devinfo->gen == 6 && 8055 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) 8056 assert(simd16_cfg == NULL && simd32_cfg == NULL); 8057 8058 if (compiler->devinfo->gen <= 5 && !simd8_cfg) { 8059 /* Iron lake and earlier only have one Dispatch GRF start field. Make 8060 * the data available in the base prog data struct for convenience. 8061 */ 8062 if (simd16_cfg) { 8063 prog_data->base.dispatch_grf_start_reg = 8064 prog_data->dispatch_grf_start_reg_16; 8065 } else if (simd32_cfg) { 8066 prog_data->base.dispatch_grf_start_reg = 8067 prog_data->dispatch_grf_start_reg_32; 8068 } 8069 } 8070 8071 if (prog_data->persample_dispatch) { 8072 /* Starting with SandyBridge (where we first get MSAA), the different 8073 * pixel dispatch combinations are grouped into classifications A 8074 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware 8075 * generations, the only configurations supporting persample dispatch 8076 * are are this in which only one dispatch width is enabled. 8077 */ 8078 if (simd32_cfg || simd16_cfg) 8079 simd8_cfg = NULL; 8080 if (simd32_cfg) 8081 simd16_cfg = NULL; 8082 } 8083 8084 /* We have to compute the flat inputs after the visitor is finished running 8085 * because it relies on prog_data->urb_setup which is computed in 8086 * fs_visitor::calculate_urb_setup(). 8087 */ 8088 brw_compute_flat_inputs(prog_data, shader); 8089 8090 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base, 8091 v8.promoted_constants, v8.runtime_check_aads_emit, 8092 MESA_SHADER_FRAGMENT); 8093 8094 if (unlikely(INTEL_DEBUG & DEBUG_WM)) { 8095 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s", 8096 shader->info.label ? 8097 shader->info.label : "unnamed", 8098 shader->info.name)); 8099 } 8100 8101 if (simd8_cfg) { 8102 prog_data->dispatch_8 = true; 8103 g.generate_code(simd8_cfg, 8); 8104 } 8105 8106 if (simd16_cfg) { 8107 prog_data->dispatch_16 = true; 8108 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16); 8109 } 8110 8111 if (simd32_cfg) { 8112 prog_data->dispatch_32 = true; 8113 prog_data->prog_offset_32 = g.generate_code(simd32_cfg, 32); 8114 } 8115 8116 return g.get_assembly(); 8117} 8118 8119fs_reg * 8120fs_visitor::emit_cs_work_group_id_setup() 8121{ 8122 assert(stage == MESA_SHADER_COMPUTE); 8123 8124 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type)); 8125 8126 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD)); 8127 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD)); 8128 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD)); 8129 8130 bld.MOV(*reg, r0_1); 8131 bld.MOV(offset(*reg, bld, 1), r0_6); 8132 bld.MOV(offset(*reg, bld, 2), r0_7); 8133 8134 return reg; 8135} 8136 8137static void 8138fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords) 8139{ 8140 block->dwords = dwords; 8141 block->regs = DIV_ROUND_UP(dwords, 8); 8142 block->size = block->regs * 32; 8143} 8144 8145static void 8146cs_fill_push_const_info(const struct gen_device_info *devinfo, 8147 struct brw_cs_prog_data *cs_prog_data) 8148{ 8149 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base; 8150 int subgroup_id_index = get_subgroup_id_param_index(prog_data); 8151 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell; 8152 8153 /* The thread ID should be stored in the last param dword */ 8154 assert(subgroup_id_index == -1 || 8155 subgroup_id_index == (int)prog_data->nr_params - 1); 8156 8157 unsigned cross_thread_dwords, per_thread_dwords; 8158 if (!cross_thread_supported) { 8159 cross_thread_dwords = 0u; 8160 per_thread_dwords = prog_data->nr_params; 8161 } else if (subgroup_id_index >= 0) { 8162 /* Fill all but the last register with cross-thread payload */ 8163 cross_thread_dwords = 8 * (subgroup_id_index / 8); 8164 per_thread_dwords = prog_data->nr_params - cross_thread_dwords; 8165 assert(per_thread_dwords > 0 && per_thread_dwords <= 8); 8166 } else { 8167 /* Fill all data using cross-thread payload */ 8168 cross_thread_dwords = prog_data->nr_params; 8169 per_thread_dwords = 0u; 8170 } 8171 8172 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords); 8173 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords); 8174 8175 unsigned total_dwords = 8176 (cs_prog_data->push.per_thread.size * cs_prog_data->threads + 8177 cs_prog_data->push.cross_thread.size) / 4; 8178 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords); 8179 8180 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 || 8181 cs_prog_data->push.per_thread.size == 0); 8182 assert(cs_prog_data->push.cross_thread.dwords + 8183 cs_prog_data->push.per_thread.dwords == 8184 prog_data->nr_params); 8185} 8186 8187static void 8188cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size) 8189{ 8190 cs_prog_data->simd_size = size; 8191 unsigned group_size = cs_prog_data->local_size[0] * 8192 cs_prog_data->local_size[1] * cs_prog_data->local_size[2]; 8193 cs_prog_data->threads = (group_size + size - 1) / size; 8194} 8195 8196static nir_shader * 8197compile_cs_to_nir(const struct brw_compiler *compiler, 8198 void *mem_ctx, 8199 const struct brw_cs_prog_key *key, 8200 const nir_shader *src_shader, 8201 unsigned dispatch_width) 8202{ 8203 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader); 8204 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, true); 8205 8206 NIR_PASS_V(shader, brw_nir_lower_cs_intrinsics, dispatch_width); 8207 8208 /* Clean up after the local index and ID calculations. */ 8209 NIR_PASS_V(shader, nir_opt_constant_folding); 8210 NIR_PASS_V(shader, nir_opt_dce); 8211 8212 return brw_postprocess_nir(shader, compiler, true); 8213} 8214 8215const unsigned * 8216brw_compile_cs(const struct brw_compiler *compiler, void *log_data, 8217 void *mem_ctx, 8218 const struct brw_cs_prog_key *key, 8219 struct brw_cs_prog_data *prog_data, 8220 const nir_shader *src_shader, 8221 int shader_time_index, 8222 char **error_str) 8223{ 8224 prog_data->local_size[0] = src_shader->info.cs.local_size[0]; 8225 prog_data->local_size[1] = src_shader->info.cs.local_size[1]; 8226 prog_data->local_size[2] = src_shader->info.cs.local_size[2]; 8227 unsigned local_workgroup_size = 8228 src_shader->info.cs.local_size[0] * src_shader->info.cs.local_size[1] * 8229 src_shader->info.cs.local_size[2]; 8230 8231 unsigned min_dispatch_width = 8232 DIV_ROUND_UP(local_workgroup_size, compiler->devinfo->max_cs_threads); 8233 min_dispatch_width = MAX2(8, min_dispatch_width); 8234 min_dispatch_width = util_next_power_of_two(min_dispatch_width); 8235 assert(min_dispatch_width <= 32); 8236 8237 fs_visitor *v8 = NULL, *v16 = NULL, *v32 = NULL; 8238 cfg_t *cfg = NULL; 8239 const char *fail_msg = NULL; 8240 unsigned promoted_constants = 0; 8241 8242 /* Now the main event: Visit the shader IR and generate our CS IR for it. 8243 */ 8244 if (min_dispatch_width <= 8) { 8245 nir_shader *nir8 = compile_cs_to_nir(compiler, mem_ctx, key, 8246 src_shader, 8); 8247 v8 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base, 8248 NULL, /* Never used in core profile */ 8249 nir8, 8, shader_time_index); 8250 if (!v8->run_cs(min_dispatch_width)) { 8251 fail_msg = v8->fail_msg; 8252 } else { 8253 /* We should always be able to do SIMD32 for compute shaders */ 8254 assert(v8->max_dispatch_width >= 32); 8255 8256 cfg = v8->cfg; 8257 cs_set_simd_size(prog_data, 8); 8258 cs_fill_push_const_info(compiler->devinfo, prog_data); 8259 promoted_constants = v8->promoted_constants; 8260 } 8261 } 8262 8263 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) && 8264 !fail_msg && min_dispatch_width <= 16) { 8265 /* Try a SIMD16 compile */ 8266 nir_shader *nir16 = compile_cs_to_nir(compiler, mem_ctx, key, 8267 src_shader, 16); 8268 v16 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base, 8269 NULL, /* Never used in core profile */ 8270 nir16, 16, shader_time_index); 8271 if (v8) 8272 v16->import_uniforms(v8); 8273 8274 if (!v16->run_cs(min_dispatch_width)) { 8275 compiler->shader_perf_log(log_data, 8276 "SIMD16 shader failed to compile: %s", 8277 v16->fail_msg); 8278 if (!cfg) { 8279 fail_msg = 8280 "Couldn't generate SIMD16 program and not " 8281 "enough threads for SIMD8"; 8282 } 8283 } else { 8284 /* We should always be able to do SIMD32 for compute shaders */ 8285 assert(v16->max_dispatch_width >= 32); 8286 8287 cfg = v16->cfg; 8288 cs_set_simd_size(prog_data, 16); 8289 cs_fill_push_const_info(compiler->devinfo, prog_data); 8290 promoted_constants = v16->promoted_constants; 8291 } 8292 } 8293 8294 /* We should always be able to do SIMD32 for compute shaders */ 8295 assert(!v16 || v16->max_dispatch_width >= 32); 8296 8297 if (!fail_msg && (min_dispatch_width > 16 || (INTEL_DEBUG & DEBUG_DO32))) { 8298 /* Try a SIMD32 compile */ 8299 nir_shader *nir32 = compile_cs_to_nir(compiler, mem_ctx, key, 8300 src_shader, 32); 8301 v32 = new fs_visitor(compiler, log_data, mem_ctx, key, &prog_data->base, 8302 NULL, /* Never used in core profile */ 8303 nir32, 32, shader_time_index); 8304 if (v8) 8305 v32->import_uniforms(v8); 8306 else if (v16) 8307 v32->import_uniforms(v16); 8308 8309 if (!v32->run_cs(min_dispatch_width)) { 8310 compiler->shader_perf_log(log_data, 8311 "SIMD32 shader failed to compile: %s", 8312 v32->fail_msg); 8313 if (!cfg) { 8314 fail_msg = 8315 "Couldn't generate SIMD32 program and not " 8316 "enough threads for SIMD16"; 8317 } 8318 } else { 8319 cfg = v32->cfg; 8320 cs_set_simd_size(prog_data, 32); 8321 cs_fill_push_const_info(compiler->devinfo, prog_data); 8322 promoted_constants = v32->promoted_constants; 8323 } 8324 } 8325 8326 const unsigned *ret = NULL; 8327 if (unlikely(cfg == NULL)) { 8328 assert(fail_msg); 8329 if (error_str) 8330 *error_str = ralloc_strdup(mem_ctx, fail_msg); 8331 } else { 8332 fs_generator g(compiler, log_data, mem_ctx, &prog_data->base, 8333 promoted_constants, false, MESA_SHADER_COMPUTE); 8334 if (INTEL_DEBUG & DEBUG_CS) { 8335 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s", 8336 src_shader->info.label ? 8337 src_shader->info.label : "unnamed", 8338 src_shader->info.name); 8339 g.enable_debug(name); 8340 } 8341 8342 g.generate_code(cfg, prog_data->simd_size); 8343 8344 ret = g.get_assembly(); 8345 } 8346 8347 delete v8; 8348 delete v16; 8349 delete v32; 8350 8351 return ret; 8352} 8353 8354/** 8355 * Test the dispatch mask packing assumptions of 8356 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of 8357 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is 8358 * executed with an unexpected dispatch mask. 8359 */ 8360static UNUSED void 8361brw_fs_test_dispatch_packing(const fs_builder &bld) 8362{ 8363 const gl_shader_stage stage = bld.shader->stage; 8364 8365 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage, 8366 bld.shader->stage_prog_data)) { 8367 const fs_builder ubld = bld.exec_all().group(1, 0); 8368 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0); 8369 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() : 8370 brw_dmask_reg()); 8371 8372 ubld.ADD(tmp, mask, brw_imm_ud(1)); 8373 ubld.AND(tmp, mask, tmp); 8374 8375 /* This will loop forever if the dispatch mask doesn't have the expected 8376 * form '2^n-1', in which case tmp will be non-zero. 8377 */ 8378 bld.emit(BRW_OPCODE_DO); 8379 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ); 8380 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE)); 8381 } 8382} 8383