imports.h revision 848b8605
1/* 2 * Mesa 3-D graphics library 3 * 4 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included 14 * in all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 26/** 27 * \file imports.h 28 * Standard C library function wrappers. 29 * 30 * This file provides wrappers for all the standard C library functions 31 * like malloc(), free(), printf(), getenv(), etc. 32 */ 33 34 35#ifndef IMPORTS_H 36#define IMPORTS_H 37 38 39#include "compiler.h" 40#include "glheader.h" 41#include "errors.h" 42 43#ifdef __cplusplus 44extern "C" { 45#endif 46 47 48/**********************************************************************/ 49/** Memory macros */ 50/*@{*/ 51 52/** Allocate a structure of type \p T */ 53#define MALLOC_STRUCT(T) (struct T *) malloc(sizeof(struct T)) 54/** Allocate and zero a structure of type \p T */ 55#define CALLOC_STRUCT(T) (struct T *) calloc(1, sizeof(struct T)) 56 57/*@}*/ 58 59 60/* 61 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers 62 * as offsets into buffer stores. Since the vertex array pointer and 63 * buffer store pointer are both pointers and we need to add them, we use 64 * this macro. 65 * Both pointers/offsets are expressed in bytes. 66 */ 67#define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) ) 68 69 70/** 71 * Sometimes we treat GLfloats as GLints. On x86 systems, moving a float 72 * as a int (thereby using integer registers instead of FP registers) is 73 * a performance win. Typically, this can be done with ordinary casts. 74 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0) 75 * these casts generate warnings. 76 * The following union typedef is used to solve that. 77 */ 78typedef union { GLfloat f; GLint i; GLuint u; } fi_type; 79 80 81 82/********************************************************************** 83 * Math macros 84 */ 85 86#define MAX_GLUSHORT 0xffff 87#define MAX_GLUINT 0xffffffff 88 89/* Degrees to radians conversion: */ 90#define DEG2RAD (M_PI/180.0) 91 92 93/** 94 * \name Work-arounds for platforms that lack C99 math functions 95 */ 96/*@{*/ 97#if (!defined(_XOPEN_SOURCE) || (_XOPEN_SOURCE < 600)) && !defined(_ISOC99_SOURCE) \ 98 && (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L)) \ 99 && (!defined(_MSC_VER) || (_MSC_VER < 1400)) 100#define acosf(f) ((float) acos(f)) 101#define asinf(f) ((float) asin(f)) 102#define atan2f(x,y) ((float) atan2(x,y)) 103#define atanf(f) ((float) atan(f)) 104#define ceilf(f) ((float) ceil(f)) 105#define cosf(f) ((float) cos(f)) 106#define coshf(f) ((float) cosh(f)) 107#define expf(f) ((float) exp(f)) 108#define exp2f(f) ((float) exp2(f)) 109#define floorf(f) ((float) floor(f)) 110#define logf(f) ((float) log(f)) 111 112#ifdef ANDROID 113#define log2f(f) (logf(f) * (float) (1.0 / M_LN2)) 114#else 115#define log2f(f) ((float) log2(f)) 116#endif 117 118#define powf(x,y) ((float) pow(x,y)) 119#define sinf(f) ((float) sin(f)) 120#define sinhf(f) ((float) sinh(f)) 121#define sqrtf(f) ((float) sqrt(f)) 122#define tanf(f) ((float) tan(f)) 123#define tanhf(f) ((float) tanh(f)) 124#define acoshf(f) ((float) acosh(f)) 125#define asinhf(f) ((float) asinh(f)) 126#define atanhf(f) ((float) atanh(f)) 127#endif 128 129#if defined(_MSC_VER) 130#if _MSC_VER < 1800 /* Not req'd on VS2013 and above */ 131static inline float truncf(float x) { return x < 0.0f ? ceilf(x) : floorf(x); } 132static inline float exp2f(float x) { return powf(2.0f, x); } 133static inline float log2f(float x) { return logf(x) * 1.442695041f; } 134static inline float asinhf(float x) { return logf(x + sqrtf(x * x + 1.0f)); } 135static inline float acoshf(float x) { return logf(x + sqrtf(x * x - 1.0f)); } 136static inline float atanhf(float x) { return (logf(1.0f + x) - logf(1.0f - x)) / 2.0f; } 137static inline int isblank(int ch) { return ch == ' ' || ch == '\t'; } 138#define strtoll(p, e, b) _strtoi64(p, e, b) 139#endif /* _MSC_VER < 1800 */ 140#define strcasecmp(s1, s2) _stricmp(s1, s2) 141#endif 142/*@}*/ 143 144 145/* 146 * signbit() is a macro on Linux. Not available on Windows. 147 */ 148#ifndef signbit 149#define signbit(x) ((x) < 0.0f) 150#endif 151 152 153/** single-precision inverse square root */ 154static inline float 155INV_SQRTF(float x) 156{ 157 /* XXX we could try Quake's fast inverse square root function here */ 158 return 1.0F / sqrtf(x); 159} 160 161 162/*** 163 *** LOG2: Log base 2 of float 164 ***/ 165static inline GLfloat LOG2(GLfloat x) 166{ 167#if 0 168 /* This is pretty fast, but not accurate enough (only 2 fractional bits). 169 * Based on code from http://www.stereopsis.com/log2.html 170 */ 171 const GLfloat y = x * x * x * x; 172 const GLuint ix = *((GLuint *) &y); 173 const GLuint exp = (ix >> 23) & 0xFF; 174 const GLint log2 = ((GLint) exp) - 127; 175 return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */ 176#endif 177 /* Pretty fast, and accurate. 178 * Based on code from http://www.flipcode.com/totd/ 179 */ 180 fi_type num; 181 GLint log_2; 182 num.f = x; 183 log_2 = ((num.i >> 23) & 255) - 128; 184 num.i &= ~(255 << 23); 185 num.i += 127 << 23; 186 num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3; 187 return num.f + log_2; 188} 189 190 191 192/*** 193 *** IS_INF_OR_NAN: test if float is infinite or NaN 194 ***/ 195#if defined(isfinite) 196#define IS_INF_OR_NAN(x) (!isfinite(x)) 197#elif defined(finite) 198#define IS_INF_OR_NAN(x) (!finite(x)) 199#elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L 200#define IS_INF_OR_NAN(x) (!isfinite(x)) 201#else 202#define IS_INF_OR_NAN(x) (!finite(x)) 203#endif 204 205 206/*** 207 *** CEILF: ceiling of float 208 *** FLOORF: floor of float 209 *** FABSF: absolute value of float 210 *** LOGF: the natural logarithm (base e) of the value 211 *** EXPF: raise e to the value 212 *** LDEXPF: multiply value by an integral power of two 213 *** FREXPF: extract mantissa and exponent from value 214 ***/ 215#if defined(__gnu_linux__) 216/* C99 functions */ 217#define CEILF(x) ceilf(x) 218#define FLOORF(x) floorf(x) 219#define FABSF(x) fabsf(x) 220#define LOGF(x) logf(x) 221#define EXPF(x) expf(x) 222#define LDEXPF(x,y) ldexpf(x,y) 223#define FREXPF(x,y) frexpf(x,y) 224#else 225#define CEILF(x) ((GLfloat) ceil(x)) 226#define FLOORF(x) ((GLfloat) floor(x)) 227#define FABSF(x) ((GLfloat) fabs(x)) 228#define LOGF(x) ((GLfloat) log(x)) 229#define EXPF(x) ((GLfloat) exp(x)) 230#define LDEXPF(x,y) ((GLfloat) ldexp(x,y)) 231#define FREXPF(x,y) ((GLfloat) frexp(x,y)) 232#endif 233 234 235/** 236 * Convert float to int by rounding to nearest integer, away from zero. 237 */ 238static inline int IROUND(float f) 239{ 240 return (int) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F)); 241} 242 243 244/** 245 * Convert float to int64 by rounding to nearest integer. 246 */ 247static inline GLint64 IROUND64(float f) 248{ 249 return (GLint64) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F)); 250} 251 252 253/** 254 * Convert positive float to int by rounding to nearest integer. 255 */ 256static inline int IROUND_POS(float f) 257{ 258 assert(f >= 0.0F); 259 return (int) (f + 0.5F); 260} 261 262#if !defined(__lint__) && !defined(__PCC__) 263#ifdef __x86_64__ 264# include <xmmintrin.h> 265#endif 266#endif 267 268/** 269 * Convert float to int using a fast method. The rounding mode may vary. 270 */ 271static inline int F_TO_I(float f) 272{ 273#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) 274 int r; 275 __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st"); 276 return r; 277#elif defined(USE_X86_ASM) && defined(_MSC_VER) 278 int r; 279 _asm { 280 fld f 281 fistp r 282 } 283 return r; 284#elif defined(__x86_64__) 285 return _mm_cvt_ss2si(_mm_load_ss(&f)); 286#else 287 return IROUND(f); 288#endif 289} 290 291 292/** Return (as an integer) floor of float */ 293static inline int IFLOOR(float f) 294{ 295#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) 296 /* 297 * IEEE floor for computers that round to nearest or even. 298 * 'f' must be between -4194304 and 4194303. 299 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1", 300 * but uses some IEEE specific tricks for better speed. 301 * Contributed by Josh Vanderhoof 302 */ 303 int ai, bi; 304 double af, bf; 305 af = (3 << 22) + 0.5 + (double)f; 306 bf = (3 << 22) + 0.5 - (double)f; 307 /* GCC generates an extra fstp/fld without this. */ 308 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st"); 309 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st"); 310 return (ai - bi) >> 1; 311#else 312 int ai, bi; 313 double af, bf; 314 fi_type u; 315 af = (3 << 22) + 0.5 + (double)f; 316 bf = (3 << 22) + 0.5 - (double)f; 317 u.f = (float) af; ai = u.i; 318 u.f = (float) bf; bi = u.i; 319 return (ai - bi) >> 1; 320#endif 321} 322 323 324/** Return (as an integer) ceiling of float */ 325static inline int ICEIL(float f) 326{ 327#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) 328 /* 329 * IEEE ceil for computers that round to nearest or even. 330 * 'f' must be between -4194304 and 4194303. 331 * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1", 332 * but uses some IEEE specific tricks for better speed. 333 * Contributed by Josh Vanderhoof 334 */ 335 int ai, bi; 336 double af, bf; 337 af = (3 << 22) + 0.5 + (double)f; 338 bf = (3 << 22) + 0.5 - (double)f; 339 /* GCC generates an extra fstp/fld without this. */ 340 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st"); 341 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st"); 342 return (ai - bi + 1) >> 1; 343#else 344 int ai, bi; 345 double af, bf; 346 fi_type u; 347 af = (3 << 22) + 0.5 + (double)f; 348 bf = (3 << 22) + 0.5 - (double)f; 349 u.f = (float) af; ai = u.i; 350 u.f = (float) bf; bi = u.i; 351 return (ai - bi + 1) >> 1; 352#endif 353} 354 355 356/** 357 * Is x a power of two? 358 */ 359static inline int 360_mesa_is_pow_two(int x) 361{ 362 return !(x & (x - 1)); 363} 364 365/** 366 * Round given integer to next higer power of two 367 * If X is zero result is undefined. 368 * 369 * Source for the fallback implementation is 370 * Sean Eron Anderson's webpage "Bit Twiddling Hacks" 371 * http://graphics.stanford.edu/~seander/bithacks.html 372 * 373 * When using builtin function have to do some work 374 * for case when passed values 1 to prevent hiting 375 * undefined result from __builtin_clz. Undefined 376 * results would be different depending on optimization 377 * level used for build. 378 */ 379static inline int32_t 380_mesa_next_pow_two_32(uint32_t x) 381{ 382#if defined(__GNUC__) && \ 383 ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */ 384 uint32_t y = (x != 1); 385 return (1 + y) << ((__builtin_clz(x - y) ^ 31) ); 386#else 387 x--; 388 x |= x >> 1; 389 x |= x >> 2; 390 x |= x >> 4; 391 x |= x >> 8; 392 x |= x >> 16; 393 x++; 394 return x; 395#endif 396} 397 398static inline int64_t 399_mesa_next_pow_two_64(uint64_t x) 400{ 401#if defined(__GNUC__) && \ 402 ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */ 403 uint64_t y = (x != 1); 404 if (sizeof(x) == sizeof(long)) 405 return (1 + y) << ((__builtin_clzl(x - y) ^ 63)); 406 else 407 return (1 + y) << ((__builtin_clzll(x - y) ^ 63)); 408#else 409 x--; 410 x |= x >> 1; 411 x |= x >> 2; 412 x |= x >> 4; 413 x |= x >> 8; 414 x |= x >> 16; 415 x |= x >> 32; 416 x++; 417 return x; 418#endif 419} 420 421 422/* 423 * Returns the floor form of binary logarithm for a 32-bit integer. 424 */ 425static inline GLuint 426_mesa_logbase2(GLuint n) 427{ 428#if defined(__GNUC__) && \ 429 ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */ 430 return (31 - __builtin_clz(n | 1)); 431#else 432 GLuint pos = 0; 433 if (n >= 1<<16) { n >>= 16; pos += 16; } 434 if (n >= 1<< 8) { n >>= 8; pos += 8; } 435 if (n >= 1<< 4) { n >>= 4; pos += 4; } 436 if (n >= 1<< 2) { n >>= 2; pos += 2; } 437 if (n >= 1<< 1) { pos += 1; } 438 return pos; 439#endif 440} 441 442 443/** 444 * Return 1 if this is a little endian machine, 0 if big endian. 445 */ 446static inline GLboolean 447_mesa_little_endian(void) 448{ 449 const GLuint ui = 1; /* intentionally not static */ 450 return *((const GLubyte *) &ui); 451} 452 453 454 455/********************************************************************** 456 * Functions 457 */ 458 459extern void * 460_mesa_align_malloc( size_t bytes, unsigned long alignment ); 461 462extern void * 463_mesa_align_calloc( size_t bytes, unsigned long alignment ); 464 465extern void 466_mesa_align_free( void *ptr ); 467 468extern void * 469_mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize, 470 unsigned long alignment); 471 472extern void * 473_mesa_exec_malloc( GLuint size ); 474 475extern void 476_mesa_exec_free( void *addr ); 477 478extern void * 479_mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize ); 480 481 482#ifndef FFS_DEFINED 483#define FFS_DEFINED 1 484#ifdef __GNUC__ 485#define ffs __builtin_ffs 486#define ffsll __builtin_ffsll 487#else 488extern int ffs(int i); 489extern int ffsll(long long int i); 490#endif /*__ GNUC__ */ 491#endif /* FFS_DEFINED */ 492 493 494#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */ 495#define _mesa_bitcount(i) __builtin_popcount(i) 496#define _mesa_bitcount_64(i) __builtin_popcountll(i) 497#else 498extern unsigned int 499_mesa_bitcount(unsigned int n); 500extern unsigned int 501_mesa_bitcount_64(uint64_t n); 502#endif 503 504/** 505 * Find the last (most significant) bit set in a word. 506 * 507 * Essentially ffs() in the reverse direction. 508 */ 509static inline unsigned int 510_mesa_fls(unsigned int n) 511{ 512#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) 513 return n == 0 ? 0 : 32 - __builtin_clz(n); 514#else 515 unsigned int v = 1; 516 517 if (n == 0) 518 return 0; 519 520 while (n >>= 1) 521 v++; 522 523 return v; 524#endif 525} 526 527extern int 528_mesa_round_to_even(float val); 529 530extern GLhalfARB 531_mesa_float_to_half(float f); 532 533extern float 534_mesa_half_to_float(GLhalfARB h); 535 536static inline bool 537_mesa_half_is_negative(GLhalfARB h) 538{ 539 return h & 0x8000; 540} 541 542extern void * 543_mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size, 544 int (*compar)(const void *, const void *) ); 545 546extern char * 547_mesa_getenv( const char *var ); 548 549extern char * 550_mesa_strdup( const char *s ); 551 552extern float 553_mesa_strtof( const char *s, char **end ); 554 555extern unsigned int 556_mesa_str_checksum(const char *str); 557 558extern int 559_mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4); 560 561extern int 562_mesa_vsnprintf(char *str, size_t size, const char *fmt, va_list arg); 563 564 565#if defined(_MSC_VER) && !defined(snprintf) 566#define snprintf _snprintf 567#endif 568 569 570#ifdef __cplusplus 571} 572#endif 573 574 575#endif /* IMPORTS_H */ 576