imports.h revision 848b8605
1/*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008  Brian Paul   All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/**
27 * \file imports.h
28 * Standard C library function wrappers.
29 *
30 * This file provides wrappers for all the standard C library functions
31 * like malloc(), free(), printf(), getenv(), etc.
32 */
33
34
35#ifndef IMPORTS_H
36#define IMPORTS_H
37
38
39#include "compiler.h"
40#include "glheader.h"
41#include "errors.h"
42
43#ifdef __cplusplus
44extern "C" {
45#endif
46
47
48/**********************************************************************/
49/** Memory macros */
50/*@{*/
51
52/** Allocate a structure of type \p T */
53#define MALLOC_STRUCT(T)   (struct T *) malloc(sizeof(struct T))
54/** Allocate and zero a structure of type \p T */
55#define CALLOC_STRUCT(T)   (struct T *) calloc(1, sizeof(struct T))
56
57/*@}*/
58
59
60/*
61 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
62 * as offsets into buffer stores.  Since the vertex array pointer and
63 * buffer store pointer are both pointers and we need to add them, we use
64 * this macro.
65 * Both pointers/offsets are expressed in bytes.
66 */
67#define ADD_POINTERS(A, B)  ( (GLubyte *) (A) + (uintptr_t) (B) )
68
69
70/**
71 * Sometimes we treat GLfloats as GLints.  On x86 systems, moving a float
72 * as a int (thereby using integer registers instead of FP registers) is
73 * a performance win.  Typically, this can be done with ordinary casts.
74 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
75 * these casts generate warnings.
76 * The following union typedef is used to solve that.
77 */
78typedef union { GLfloat f; GLint i; GLuint u; } fi_type;
79
80
81
82/**********************************************************************
83 * Math macros
84 */
85
86#define MAX_GLUSHORT	0xffff
87#define MAX_GLUINT	0xffffffff
88
89/* Degrees to radians conversion: */
90#define DEG2RAD (M_PI/180.0)
91
92
93/**
94 * \name Work-arounds for platforms that lack C99 math functions
95 */
96/*@{*/
97#if (!defined(_XOPEN_SOURCE) || (_XOPEN_SOURCE < 600)) && !defined(_ISOC99_SOURCE) \
98   && (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L)) \
99   && (!defined(_MSC_VER) || (_MSC_VER < 1400))
100#define acosf(f) ((float) acos(f))
101#define asinf(f) ((float) asin(f))
102#define atan2f(x,y) ((float) atan2(x,y))
103#define atanf(f) ((float) atan(f))
104#define ceilf(f) ((float) ceil(f))
105#define cosf(f) ((float) cos(f))
106#define coshf(f) ((float) cosh(f))
107#define expf(f) ((float) exp(f))
108#define exp2f(f) ((float) exp2(f))
109#define floorf(f) ((float) floor(f))
110#define logf(f) ((float) log(f))
111
112#ifdef ANDROID
113#define log2f(f) (logf(f) * (float) (1.0 / M_LN2))
114#else
115#define log2f(f) ((float) log2(f))
116#endif
117
118#define powf(x,y) ((float) pow(x,y))
119#define sinf(f) ((float) sin(f))
120#define sinhf(f) ((float) sinh(f))
121#define sqrtf(f) ((float) sqrt(f))
122#define tanf(f) ((float) tan(f))
123#define tanhf(f) ((float) tanh(f))
124#define acoshf(f) ((float) acosh(f))
125#define asinhf(f) ((float) asinh(f))
126#define atanhf(f) ((float) atanh(f))
127#endif
128
129#if defined(_MSC_VER)
130#if _MSC_VER < 1800  /* Not req'd on VS2013 and above */
131static inline float truncf(float x) { return x < 0.0f ? ceilf(x) : floorf(x); }
132static inline float exp2f(float x) { return powf(2.0f, x); }
133static inline float log2f(float x) { return logf(x) * 1.442695041f; }
134static inline float asinhf(float x) { return logf(x + sqrtf(x * x + 1.0f)); }
135static inline float acoshf(float x) { return logf(x + sqrtf(x * x - 1.0f)); }
136static inline float atanhf(float x) { return (logf(1.0f + x) - logf(1.0f - x)) / 2.0f; }
137static inline int isblank(int ch) { return ch == ' ' || ch == '\t'; }
138#define strtoll(p, e, b) _strtoi64(p, e, b)
139#endif /* _MSC_VER < 1800 */
140#define strcasecmp(s1, s2) _stricmp(s1, s2)
141#endif
142/*@}*/
143
144
145/*
146 * signbit() is a macro on Linux.  Not available on Windows.
147 */
148#ifndef signbit
149#define signbit(x) ((x) < 0.0f)
150#endif
151
152
153/** single-precision inverse square root */
154static inline float
155INV_SQRTF(float x)
156{
157   /* XXX we could try Quake's fast inverse square root function here */
158   return 1.0F / sqrtf(x);
159}
160
161
162/***
163 *** LOG2: Log base 2 of float
164 ***/
165static inline GLfloat LOG2(GLfloat x)
166{
167#if 0
168   /* This is pretty fast, but not accurate enough (only 2 fractional bits).
169    * Based on code from http://www.stereopsis.com/log2.html
170    */
171   const GLfloat y = x * x * x * x;
172   const GLuint ix = *((GLuint *) &y);
173   const GLuint exp = (ix >> 23) & 0xFF;
174   const GLint log2 = ((GLint) exp) - 127;
175   return (GLfloat) log2 * (1.0 / 4.0);  /* 4, because of x^4 above */
176#endif
177   /* Pretty fast, and accurate.
178    * Based on code from http://www.flipcode.com/totd/
179    */
180   fi_type num;
181   GLint log_2;
182   num.f = x;
183   log_2 = ((num.i >> 23) & 255) - 128;
184   num.i &= ~(255 << 23);
185   num.i += 127 << 23;
186   num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
187   return num.f + log_2;
188}
189
190
191
192/***
193 *** IS_INF_OR_NAN: test if float is infinite or NaN
194 ***/
195#if defined(isfinite)
196#define IS_INF_OR_NAN(x)        (!isfinite(x))
197#elif defined(finite)
198#define IS_INF_OR_NAN(x)        (!finite(x))
199#elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
200#define IS_INF_OR_NAN(x)        (!isfinite(x))
201#else
202#define IS_INF_OR_NAN(x)        (!finite(x))
203#endif
204
205
206/***
207 *** CEILF: ceiling of float
208 *** FLOORF: floor of float
209 *** FABSF: absolute value of float
210 *** LOGF: the natural logarithm (base e) of the value
211 *** EXPF: raise e to the value
212 *** LDEXPF: multiply value by an integral power of two
213 *** FREXPF: extract mantissa and exponent from value
214 ***/
215#if defined(__gnu_linux__)
216/* C99 functions */
217#define CEILF(x)   ceilf(x)
218#define FLOORF(x)  floorf(x)
219#define FABSF(x)   fabsf(x)
220#define LOGF(x)    logf(x)
221#define EXPF(x)    expf(x)
222#define LDEXPF(x,y)  ldexpf(x,y)
223#define FREXPF(x,y)  frexpf(x,y)
224#else
225#define CEILF(x)   ((GLfloat) ceil(x))
226#define FLOORF(x)  ((GLfloat) floor(x))
227#define FABSF(x)   ((GLfloat) fabs(x))
228#define LOGF(x)    ((GLfloat) log(x))
229#define EXPF(x)    ((GLfloat) exp(x))
230#define LDEXPF(x,y)  ((GLfloat) ldexp(x,y))
231#define FREXPF(x,y)  ((GLfloat) frexp(x,y))
232#endif
233
234
235/**
236 * Convert float to int by rounding to nearest integer, away from zero.
237 */
238static inline int IROUND(float f)
239{
240   return (int) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
241}
242
243
244/**
245 * Convert float to int64 by rounding to nearest integer.
246 */
247static inline GLint64 IROUND64(float f)
248{
249   return (GLint64) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
250}
251
252
253/**
254 * Convert positive float to int by rounding to nearest integer.
255 */
256static inline int IROUND_POS(float f)
257{
258   assert(f >= 0.0F);
259   return (int) (f + 0.5F);
260}
261
262#if !defined(__lint__) && !defined(__PCC__)
263#ifdef __x86_64__
264#  include <xmmintrin.h>
265#endif
266#endif
267
268/**
269 * Convert float to int using a fast method.  The rounding mode may vary.
270 */
271static inline int F_TO_I(float f)
272{
273#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
274   int r;
275   __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
276   return r;
277#elif defined(USE_X86_ASM) && defined(_MSC_VER)
278   int r;
279   _asm {
280	 fld f
281	 fistp r
282	}
283   return r;
284#elif defined(__x86_64__)
285   return _mm_cvt_ss2si(_mm_load_ss(&f));
286#else
287   return IROUND(f);
288#endif
289}
290
291
292/** Return (as an integer) floor of float */
293static inline int IFLOOR(float f)
294{
295#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
296   /*
297    * IEEE floor for computers that round to nearest or even.
298    * 'f' must be between -4194304 and 4194303.
299    * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
300    * but uses some IEEE specific tricks for better speed.
301    * Contributed by Josh Vanderhoof
302    */
303   int ai, bi;
304   double af, bf;
305   af = (3 << 22) + 0.5 + (double)f;
306   bf = (3 << 22) + 0.5 - (double)f;
307   /* GCC generates an extra fstp/fld without this. */
308   __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
309   __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
310   return (ai - bi) >> 1;
311#else
312   int ai, bi;
313   double af, bf;
314   fi_type u;
315   af = (3 << 22) + 0.5 + (double)f;
316   bf = (3 << 22) + 0.5 - (double)f;
317   u.f = (float) af;  ai = u.i;
318   u.f = (float) bf;  bi = u.i;
319   return (ai - bi) >> 1;
320#endif
321}
322
323
324/** Return (as an integer) ceiling of float */
325static inline int ICEIL(float f)
326{
327#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
328   /*
329    * IEEE ceil for computers that round to nearest or even.
330    * 'f' must be between -4194304 and 4194303.
331    * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
332    * but uses some IEEE specific tricks for better speed.
333    * Contributed by Josh Vanderhoof
334    */
335   int ai, bi;
336   double af, bf;
337   af = (3 << 22) + 0.5 + (double)f;
338   bf = (3 << 22) + 0.5 - (double)f;
339   /* GCC generates an extra fstp/fld without this. */
340   __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
341   __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
342   return (ai - bi + 1) >> 1;
343#else
344   int ai, bi;
345   double af, bf;
346   fi_type u;
347   af = (3 << 22) + 0.5 + (double)f;
348   bf = (3 << 22) + 0.5 - (double)f;
349   u.f = (float) af; ai = u.i;
350   u.f = (float) bf; bi = u.i;
351   return (ai - bi + 1) >> 1;
352#endif
353}
354
355
356/**
357 * Is x a power of two?
358 */
359static inline int
360_mesa_is_pow_two(int x)
361{
362   return !(x & (x - 1));
363}
364
365/**
366 * Round given integer to next higer power of two
367 * If X is zero result is undefined.
368 *
369 * Source for the fallback implementation is
370 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
371 * http://graphics.stanford.edu/~seander/bithacks.html
372 *
373 * When using builtin function have to do some work
374 * for case when passed values 1 to prevent hiting
375 * undefined result from __builtin_clz. Undefined
376 * results would be different depending on optimization
377 * level used for build.
378 */
379static inline int32_t
380_mesa_next_pow_two_32(uint32_t x)
381{
382#if defined(__GNUC__) && \
383	((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
384	uint32_t y = (x != 1);
385	return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
386#else
387	x--;
388	x |= x >> 1;
389	x |= x >> 2;
390	x |= x >> 4;
391	x |= x >> 8;
392	x |= x >> 16;
393	x++;
394	return x;
395#endif
396}
397
398static inline int64_t
399_mesa_next_pow_two_64(uint64_t x)
400{
401#if defined(__GNUC__) && \
402	((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
403	uint64_t y = (x != 1);
404	if (sizeof(x) == sizeof(long))
405		return (1 + y) << ((__builtin_clzl(x - y) ^ 63));
406	else
407		return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
408#else
409	x--;
410	x |= x >> 1;
411	x |= x >> 2;
412	x |= x >> 4;
413	x |= x >> 8;
414	x |= x >> 16;
415	x |= x >> 32;
416	x++;
417	return x;
418#endif
419}
420
421
422/*
423 * Returns the floor form of binary logarithm for a 32-bit integer.
424 */
425static inline GLuint
426_mesa_logbase2(GLuint n)
427{
428#if defined(__GNUC__) && \
429   ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
430   return (31 - __builtin_clz(n | 1));
431#else
432   GLuint pos = 0;
433   if (n >= 1<<16) { n >>= 16; pos += 16; }
434   if (n >= 1<< 8) { n >>=  8; pos +=  8; }
435   if (n >= 1<< 4) { n >>=  4; pos +=  4; }
436   if (n >= 1<< 2) { n >>=  2; pos +=  2; }
437   if (n >= 1<< 1) {           pos +=  1; }
438   return pos;
439#endif
440}
441
442
443/**
444 * Return 1 if this is a little endian machine, 0 if big endian.
445 */
446static inline GLboolean
447_mesa_little_endian(void)
448{
449   const GLuint ui = 1; /* intentionally not static */
450   return *((const GLubyte *) &ui);
451}
452
453
454
455/**********************************************************************
456 * Functions
457 */
458
459extern void *
460_mesa_align_malloc( size_t bytes, unsigned long alignment );
461
462extern void *
463_mesa_align_calloc( size_t bytes, unsigned long alignment );
464
465extern void
466_mesa_align_free( void *ptr );
467
468extern void *
469_mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
470                    unsigned long alignment);
471
472extern void *
473_mesa_exec_malloc( GLuint size );
474
475extern void
476_mesa_exec_free( void *addr );
477
478extern void *
479_mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
480
481
482#ifndef FFS_DEFINED
483#define FFS_DEFINED 1
484#ifdef __GNUC__
485#define ffs __builtin_ffs
486#define ffsll __builtin_ffsll
487#else
488extern int ffs(int i);
489extern int ffsll(long long int i);
490#endif /*__ GNUC__ */
491#endif /* FFS_DEFINED */
492
493
494#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
495#define _mesa_bitcount(i) __builtin_popcount(i)
496#define _mesa_bitcount_64(i) __builtin_popcountll(i)
497#else
498extern unsigned int
499_mesa_bitcount(unsigned int n);
500extern unsigned int
501_mesa_bitcount_64(uint64_t n);
502#endif
503
504/**
505 * Find the last (most significant) bit set in a word.
506 *
507 * Essentially ffs() in the reverse direction.
508 */
509static inline unsigned int
510_mesa_fls(unsigned int n)
511{
512#if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304)
513   return n == 0 ? 0 : 32 - __builtin_clz(n);
514#else
515   unsigned int v = 1;
516
517   if (n == 0)
518      return 0;
519
520   while (n >>= 1)
521       v++;
522
523   return v;
524#endif
525}
526
527extern int
528_mesa_round_to_even(float val);
529
530extern GLhalfARB
531_mesa_float_to_half(float f);
532
533extern float
534_mesa_half_to_float(GLhalfARB h);
535
536static inline bool
537_mesa_half_is_negative(GLhalfARB h)
538{
539   return h & 0x8000;
540}
541
542extern void *
543_mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
544               int (*compar)(const void *, const void *) );
545
546extern char *
547_mesa_getenv( const char *var );
548
549extern char *
550_mesa_strdup( const char *s );
551
552extern float
553_mesa_strtof( const char *s, char **end );
554
555extern unsigned int
556_mesa_str_checksum(const char *str);
557
558extern int
559_mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4);
560
561extern int
562_mesa_vsnprintf(char *str, size_t size, const char *fmt, va_list arg);
563
564
565#if defined(_MSC_VER) && !defined(snprintf)
566#define snprintf _snprintf
567#endif
568
569
570#ifdef __cplusplus
571}
572#endif
573
574
575#endif /* IMPORTS_H */
576