macros.h revision b8e80941
1848b8605Smrg/**
2848b8605Smrg * \file macros.h
3848b8605Smrg * A collection of useful macros.
4848b8605Smrg */
5848b8605Smrg
6848b8605Smrg/*
7848b8605Smrg * Mesa 3-D graphics library
8848b8605Smrg *
9848b8605Smrg * Copyright (C) 1999-2006  Brian Paul   All Rights Reserved.
10848b8605Smrg *
11848b8605Smrg * Permission is hereby granted, free of charge, to any person obtaining a
12848b8605Smrg * copy of this software and associated documentation files (the "Software"),
13848b8605Smrg * to deal in the Software without restriction, including without limitation
14848b8605Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense,
15848b8605Smrg * and/or sell copies of the Software, and to permit persons to whom the
16848b8605Smrg * Software is furnished to do so, subject to the following conditions:
17848b8605Smrg *
18848b8605Smrg * The above copyright notice and this permission notice shall be included
19848b8605Smrg * in all copies or substantial portions of the Software.
20848b8605Smrg *
21848b8605Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
22848b8605Smrg * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23848b8605Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
24848b8605Smrg * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
25848b8605Smrg * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
26848b8605Smrg * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
27848b8605Smrg * OTHER DEALINGS IN THE SOFTWARE.
28848b8605Smrg */
29848b8605Smrg
30848b8605Smrg
31848b8605Smrg#ifndef MACROS_H
32848b8605Smrg#define MACROS_H
33848b8605Smrg
34b8e80941Smrg#include "util/macros.h"
35b8e80941Smrg#include "util/u_math.h"
36b8e80941Smrg#include "util/rounding.h"
37848b8605Smrg#include "imports.h"
38848b8605Smrg
39848b8605Smrg
40848b8605Smrg/**
41848b8605Smrg * \name Integer / float conversion for colors, normals, etc.
42848b8605Smrg */
43848b8605Smrg/*@{*/
44848b8605Smrg
45848b8605Smrg/** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
46848b8605Smrgextern GLfloat _mesa_ubyte_to_float_color_tab[256];
47848b8605Smrg#define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
48848b8605Smrg
49848b8605Smrg/** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
50848b8605Smrg#define FLOAT_TO_UBYTE(X)   ((GLubyte) (GLint) ((X) * 255.0F))
51848b8605Smrg
52848b8605Smrg
53848b8605Smrg/** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
54848b8605Smrg#define BYTE_TO_FLOAT(B)    ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
55848b8605Smrg
56848b8605Smrg/** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
57848b8605Smrg#define FLOAT_TO_BYTE(X)    ( (((GLint) (255.0F * (X))) - 1) / 2 )
58848b8605Smrg
59848b8605Smrg
60848b8605Smrg/** Convert GLbyte to GLfloat while preserving zero */
61848b8605Smrg#define BYTE_TO_FLOATZ(B)   ((B) == 0 ? 0.0F : BYTE_TO_FLOAT(B))
62848b8605Smrg
63848b8605Smrg
64848b8605Smrg/** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */
65848b8605Smrg#define BYTE_TO_FLOAT_TEX(B)    ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F))
66848b8605Smrg
67848b8605Smrg/** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */
68848b8605Smrg#define FLOAT_TO_BYTE_TEX(X)    CLAMP( (GLint) (127.0F * (X)), -128, 127 )
69848b8605Smrg
70848b8605Smrg/** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */
71848b8605Smrg#define USHORT_TO_FLOAT(S)  ((GLfloat) (S) * (1.0F / 65535.0F))
72848b8605Smrg
73848b8605Smrg/** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */
74848b8605Smrg#define FLOAT_TO_USHORT(X)   ((GLuint) ((X) * 65535.0F))
75848b8605Smrg
76848b8605Smrg
77848b8605Smrg/** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
78848b8605Smrg#define SHORT_TO_FLOAT(S)   ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
79848b8605Smrg
80848b8605Smrg/** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */
81848b8605Smrg#define FLOAT_TO_SHORT(X)   ( (((GLint) (65535.0F * (X))) - 1) / 2 )
82848b8605Smrg
83848b8605Smrg/** Convert GLshort to GLfloat while preserving zero */
84848b8605Smrg#define SHORT_TO_FLOATZ(S)   ((S) == 0 ? 0.0F : SHORT_TO_FLOAT(S))
85848b8605Smrg
86848b8605Smrg
87848b8605Smrg/** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */
88848b8605Smrg#define SHORT_TO_FLOAT_TEX(S)    ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F))
89848b8605Smrg
90848b8605Smrg/** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */
91848b8605Smrg#define FLOAT_TO_SHORT_TEX(X)    ( (GLint) (32767.0F * (X)) )
92848b8605Smrg
93848b8605Smrg
94848b8605Smrg/** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
95848b8605Smrg#define UINT_TO_FLOAT(U)    ((GLfloat) ((U) * (1.0F / 4294967295.0)))
96848b8605Smrg
97848b8605Smrg/** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
98848b8605Smrg#define FLOAT_TO_UINT(X)    ((GLuint) ((X) * 4294967295.0))
99848b8605Smrg
100848b8605Smrg
101848b8605Smrg/** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
102848b8605Smrg#define INT_TO_FLOAT(I)     ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0)))
103848b8605Smrg
104848b8605Smrg/** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
105848b8605Smrg/* causes overflow:
106848b8605Smrg#define FLOAT_TO_INT(X)     ( (((GLint) (4294967294.0 * (X))) - 1) / 2 )
107848b8605Smrg*/
108848b8605Smrg/* a close approximation: */
109848b8605Smrg#define FLOAT_TO_INT(X)     ( (GLint) (2147483647.0 * (X)) )
110848b8605Smrg
111848b8605Smrg/** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */
112848b8605Smrg#define FLOAT_TO_INT64(X)     ( (GLint64) (9223372036854775807.0 * (double)(X)) )
113848b8605Smrg
114848b8605Smrg
115848b8605Smrg/** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */
116848b8605Smrg#define INT_TO_FLOAT_TEX(I)    ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0))
117848b8605Smrg
118848b8605Smrg/** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */
119848b8605Smrg#define FLOAT_TO_INT_TEX(X)    ( (GLint) (2147483647.0 * (X)) )
120848b8605Smrg
121848b8605Smrg
122848b8605Smrg#define BYTE_TO_UBYTE(b)   ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
123848b8605Smrg#define SHORT_TO_UBYTE(s)  ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
124848b8605Smrg#define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
125848b8605Smrg#define INT_TO_UBYTE(i)    ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
126848b8605Smrg#define UINT_TO_UBYTE(i)   ((GLubyte) ((i) >> 24))
127848b8605Smrg
128848b8605Smrg
129848b8605Smrg#define BYTE_TO_USHORT(b)  ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
130848b8605Smrg#define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
131848b8605Smrg#define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
132848b8605Smrg#define INT_TO_USHORT(i)   ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
133848b8605Smrg#define UINT_TO_USHORT(i)  ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
134848b8605Smrg#define UNCLAMPED_FLOAT_TO_USHORT(us, f)  \
135b8e80941Smrg        us = ( (GLushort) _mesa_lroundevenf( CLAMP((f), 0.0F, 1.0F) * 65535.0F) )
136848b8605Smrg#define CLAMPED_FLOAT_TO_USHORT(us, f)  \
137b8e80941Smrg        us = ( (GLushort) _mesa_lroundevenf( (f) * 65535.0F) )
138848b8605Smrg
139848b8605Smrg#define UNCLAMPED_FLOAT_TO_SHORT(s, f)  \
140b8e80941Smrg        s = ( (GLshort) _mesa_lroundevenf( CLAMP((f), -1.0F, 1.0F) * 32767.0F) )
141848b8605Smrg
142848b8605Smrg/***
143848b8605Smrg *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
144848b8605Smrg *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
145848b8605Smrg ***/
146848b8605Smrg#ifndef DEBUG
147848b8605Smrg/* This function/macro is sensitive to precision.  Test very carefully
148848b8605Smrg * if you change it!
149848b8605Smrg */
150848b8605Smrg#define UNCLAMPED_FLOAT_TO_UBYTE(UB, FLT)				\
151848b8605Smrg        do {								\
152848b8605Smrg           fi_type __tmp;						\
153848b8605Smrg           __tmp.f = (FLT);						\
154848b8605Smrg           if (__tmp.i < 0)						\
155848b8605Smrg              UB = (GLubyte) 0;						\
156848b8605Smrg           else if (__tmp.i >= IEEE_ONE)				\
157848b8605Smrg              UB = (GLubyte) 255;					\
158848b8605Smrg           else {							\
159848b8605Smrg              __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F;		\
160848b8605Smrg              UB = (GLubyte) __tmp.i;					\
161848b8605Smrg           }								\
162848b8605Smrg        } while (0)
163848b8605Smrg#define CLAMPED_FLOAT_TO_UBYTE(UB, FLT)					\
164848b8605Smrg        do {								\
165848b8605Smrg           fi_type __tmp;						\
166848b8605Smrg           __tmp.f = (FLT) * (255.0F/256.0F) + 32768.0F;		\
167848b8605Smrg           UB = (GLubyte) __tmp.i;					\
168848b8605Smrg        } while (0)
169848b8605Smrg#else
170848b8605Smrg#define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
171b8e80941Smrg	ub = ((GLubyte) _mesa_lroundevenf(CLAMP((f), 0.0F, 1.0F) * 255.0F))
172848b8605Smrg#define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
173b8e80941Smrg	ub = ((GLubyte) _mesa_lroundevenf((f) * 255.0F))
174848b8605Smrg#endif
175848b8605Smrg
176b8e80941Smrgstatic fi_type UINT_AS_UNION(GLuint u)
177848b8605Smrg{
178848b8605Smrg   fi_type tmp;
179b8e80941Smrg   tmp.u = u;
180b8e80941Smrg   return tmp;
181848b8605Smrg}
182848b8605Smrg
183b8e80941Smrgstatic inline fi_type INT_AS_UNION(GLint i)
184848b8605Smrg{
185848b8605Smrg   fi_type tmp;
186b8e80941Smrg   tmp.i = i;
187b8e80941Smrg   return tmp;
188848b8605Smrg}
189848b8605Smrg
190b8e80941Smrgstatic inline fi_type FLOAT_AS_UNION(GLfloat f)
191848b8605Smrg{
192848b8605Smrg   fi_type tmp;
193848b8605Smrg   tmp.f = f;
194b8e80941Smrg   return tmp;
195848b8605Smrg}
196848b8605Smrg
197848b8605Smrg/**
198848b8605Smrg * Convert a floating point value to an unsigned fixed point value.
199848b8605Smrg *
200848b8605Smrg * \param frac_bits   The number of bits used to store the fractional part.
201848b8605Smrg */
202b8e80941Smrgstatic inline uint32_t
203848b8605SmrgU_FIXED(float value, uint32_t frac_bits)
204848b8605Smrg{
205848b8605Smrg   value *= (1 << frac_bits);
206848b8605Smrg   return value < 0.0f ? 0 : (uint32_t) value;
207848b8605Smrg}
208848b8605Smrg
209848b8605Smrg/**
210848b8605Smrg * Convert a floating point value to an signed fixed point value.
211848b8605Smrg *
212848b8605Smrg * \param frac_bits   The number of bits used to store the fractional part.
213848b8605Smrg */
214b8e80941Smrgstatic inline int32_t
215848b8605SmrgS_FIXED(float value, uint32_t frac_bits)
216848b8605Smrg{
217848b8605Smrg   return (int32_t) (value * (1 << frac_bits));
218848b8605Smrg}
219848b8605Smrg/*@}*/
220848b8605Smrg
221848b8605Smrg
222848b8605Smrg/** Stepping a GLfloat pointer by a byte stride */
223848b8605Smrg#define STRIDE_F(p, i)  (p = (GLfloat *)((GLubyte *)p + i))
224848b8605Smrg/** Stepping a GLuint pointer by a byte stride */
225848b8605Smrg#define STRIDE_UI(p, i)  (p = (GLuint *)((GLubyte *)p + i))
226848b8605Smrg/** Stepping a GLubyte[4] pointer by a byte stride */
227848b8605Smrg#define STRIDE_4UB(p, i)  (p = (GLubyte (*)[4])((GLubyte *)p + i))
228848b8605Smrg/** Stepping a GLfloat[4] pointer by a byte stride */
229848b8605Smrg#define STRIDE_4F(p, i)  (p = (GLfloat (*)[4])((GLubyte *)p + i))
230848b8605Smrg/** Stepping a \p t pointer by a byte stride */
231848b8605Smrg#define STRIDE_T(p, t, i)  (p = (t)((GLubyte *)p + i))
232848b8605Smrg
233848b8605Smrg
234848b8605Smrg/**********************************************************************/
235848b8605Smrg/** \name 4-element vector operations */
236848b8605Smrg/*@{*/
237848b8605Smrg
238848b8605Smrg/** Zero */
239848b8605Smrg#define ZERO_4V( DST )  (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
240848b8605Smrg
241848b8605Smrg/** Test for equality */
242848b8605Smrg#define TEST_EQ_4V(a,b)  ((a)[0] == (b)[0] &&   \
243848b8605Smrg              (a)[1] == (b)[1] &&   \
244848b8605Smrg              (a)[2] == (b)[2] &&   \
245848b8605Smrg              (a)[3] == (b)[3])
246848b8605Smrg
247848b8605Smrg/** Test for equality (unsigned bytes) */
248848b8605Smrgstatic inline GLboolean
249848b8605SmrgTEST_EQ_4UBV(const GLubyte a[4], const GLubyte b[4])
250848b8605Smrg{
251848b8605Smrg#if defined(__i386__)
252848b8605Smrg   return *((const GLuint *) a) == *((const GLuint *) b);
253848b8605Smrg#else
254848b8605Smrg   return TEST_EQ_4V(a, b);
255848b8605Smrg#endif
256848b8605Smrg}
257848b8605Smrg
258848b8605Smrg
259848b8605Smrg/** Copy a 4-element vector */
260848b8605Smrg#define COPY_4V( DST, SRC )         \
261848b8605Smrgdo {                                \
262848b8605Smrg   (DST)[0] = (SRC)[0];             \
263848b8605Smrg   (DST)[1] = (SRC)[1];             \
264848b8605Smrg   (DST)[2] = (SRC)[2];             \
265848b8605Smrg   (DST)[3] = (SRC)[3];             \
266848b8605Smrg} while (0)
267848b8605Smrg
268848b8605Smrg/** Copy a 4-element unsigned byte vector */
269848b8605Smrgstatic inline void
270848b8605SmrgCOPY_4UBV(GLubyte dst[4], const GLubyte src[4])
271848b8605Smrg{
272848b8605Smrg#if defined(__i386__)
273848b8605Smrg   *((GLuint *) dst) = *((GLuint *) src);
274848b8605Smrg#else
275848b8605Smrg   /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
276848b8605Smrg   COPY_4V(dst, src);
277848b8605Smrg#endif
278848b8605Smrg}
279848b8605Smrg
280848b8605Smrg/** Copy \p SZ elements into a 4-element vector */
281848b8605Smrg#define COPY_SZ_4V(DST, SZ, SRC)  \
282848b8605Smrgdo {                              \
283848b8605Smrg   switch (SZ) {                  \
284848b8605Smrg   case 4: (DST)[3] = (SRC)[3];   \
285848b8605Smrg   case 3: (DST)[2] = (SRC)[2];   \
286848b8605Smrg   case 2: (DST)[1] = (SRC)[1];   \
287848b8605Smrg   case 1: (DST)[0] = (SRC)[0];   \
288848b8605Smrg   }                              \
289848b8605Smrg} while(0)
290848b8605Smrg
291848b8605Smrg/** Copy \p SZ elements into a homegeneous (4-element) vector, giving
292848b8605Smrg * default values to the remaining */
293848b8605Smrg#define COPY_CLEAN_4V(DST, SZ, SRC)  \
294848b8605Smrgdo {                                 \
295848b8605Smrg      ASSIGN_4V( DST, 0, 0, 0, 1 );  \
296848b8605Smrg      COPY_SZ_4V( DST, SZ, SRC );    \
297848b8605Smrg} while (0)
298848b8605Smrg
299848b8605Smrg/** Subtraction */
300848b8605Smrg#define SUB_4V( DST, SRCA, SRCB )           \
301848b8605Smrgdo {                                        \
302848b8605Smrg      (DST)[0] = (SRCA)[0] - (SRCB)[0];     \
303848b8605Smrg      (DST)[1] = (SRCA)[1] - (SRCB)[1];     \
304848b8605Smrg      (DST)[2] = (SRCA)[2] - (SRCB)[2];     \
305848b8605Smrg      (DST)[3] = (SRCA)[3] - (SRCB)[3];     \
306848b8605Smrg} while (0)
307848b8605Smrg
308848b8605Smrg/** Addition */
309848b8605Smrg#define ADD_4V( DST, SRCA, SRCB )           \
310848b8605Smrgdo {                                        \
311848b8605Smrg      (DST)[0] = (SRCA)[0] + (SRCB)[0];     \
312848b8605Smrg      (DST)[1] = (SRCA)[1] + (SRCB)[1];     \
313848b8605Smrg      (DST)[2] = (SRCA)[2] + (SRCB)[2];     \
314848b8605Smrg      (DST)[3] = (SRCA)[3] + (SRCB)[3];     \
315848b8605Smrg} while (0)
316848b8605Smrg
317848b8605Smrg/** Element-wise multiplication */
318848b8605Smrg#define SCALE_4V( DST, SRCA, SRCB )         \
319848b8605Smrgdo {                                        \
320848b8605Smrg      (DST)[0] = (SRCA)[0] * (SRCB)[0];     \
321848b8605Smrg      (DST)[1] = (SRCA)[1] * (SRCB)[1];     \
322848b8605Smrg      (DST)[2] = (SRCA)[2] * (SRCB)[2];     \
323848b8605Smrg      (DST)[3] = (SRCA)[3] * (SRCB)[3];     \
324848b8605Smrg} while (0)
325848b8605Smrg
326848b8605Smrg/** In-place addition */
327848b8605Smrg#define ACC_4V( DST, SRC )          \
328848b8605Smrgdo {                                \
329848b8605Smrg      (DST)[0] += (SRC)[0];         \
330848b8605Smrg      (DST)[1] += (SRC)[1];         \
331848b8605Smrg      (DST)[2] += (SRC)[2];         \
332848b8605Smrg      (DST)[3] += (SRC)[3];         \
333848b8605Smrg} while (0)
334848b8605Smrg
335848b8605Smrg/** Element-wise multiplication and addition */
336848b8605Smrg#define ACC_SCALE_4V( DST, SRCA, SRCB )     \
337848b8605Smrgdo {                                        \
338848b8605Smrg      (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
339848b8605Smrg      (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
340848b8605Smrg      (DST)[2] += (SRCA)[2] * (SRCB)[2];    \
341848b8605Smrg      (DST)[3] += (SRCA)[3] * (SRCB)[3];    \
342848b8605Smrg} while (0)
343848b8605Smrg
344848b8605Smrg/** In-place scalar multiplication and addition */
345848b8605Smrg#define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
346848b8605Smrgdo {                                        \
347848b8605Smrg      (DST)[0] += S * (SRCB)[0];            \
348848b8605Smrg      (DST)[1] += S * (SRCB)[1];            \
349848b8605Smrg      (DST)[2] += S * (SRCB)[2];            \
350848b8605Smrg      (DST)[3] += S * (SRCB)[3];            \
351848b8605Smrg} while (0)
352848b8605Smrg
353848b8605Smrg/** Scalar multiplication */
354848b8605Smrg#define SCALE_SCALAR_4V( DST, S, SRCB ) \
355848b8605Smrgdo {                                    \
356848b8605Smrg      (DST)[0] = S * (SRCB)[0];         \
357848b8605Smrg      (DST)[1] = S * (SRCB)[1];         \
358848b8605Smrg      (DST)[2] = S * (SRCB)[2];         \
359848b8605Smrg      (DST)[3] = S * (SRCB)[3];         \
360848b8605Smrg} while (0)
361848b8605Smrg
362848b8605Smrg/** In-place scalar multiplication */
363848b8605Smrg#define SELF_SCALE_SCALAR_4V( DST, S ) \
364848b8605Smrgdo {                                   \
365848b8605Smrg      (DST)[0] *= S;                   \
366848b8605Smrg      (DST)[1] *= S;                   \
367848b8605Smrg      (DST)[2] *= S;                   \
368848b8605Smrg      (DST)[3] *= S;                   \
369848b8605Smrg} while (0)
370848b8605Smrg
371848b8605Smrg/*@}*/
372848b8605Smrg
373848b8605Smrg
374848b8605Smrg/**********************************************************************/
375848b8605Smrg/** \name 3-element vector operations*/
376848b8605Smrg/*@{*/
377848b8605Smrg
378848b8605Smrg/** Zero */
379848b8605Smrg#define ZERO_3V( DST )  (DST)[0] = (DST)[1] = (DST)[2] = 0
380848b8605Smrg
381848b8605Smrg/** Test for equality */
382848b8605Smrg#define TEST_EQ_3V(a,b)  \
383848b8605Smrg   ((a)[0] == (b)[0] &&  \
384848b8605Smrg    (a)[1] == (b)[1] &&  \
385848b8605Smrg    (a)[2] == (b)[2])
386848b8605Smrg
387848b8605Smrg/** Copy a 3-element vector */
388848b8605Smrg#define COPY_3V( DST, SRC )         \
389848b8605Smrgdo {                                \
390848b8605Smrg   (DST)[0] = (SRC)[0];             \
391848b8605Smrg   (DST)[1] = (SRC)[1];             \
392848b8605Smrg   (DST)[2] = (SRC)[2];             \
393848b8605Smrg} while (0)
394848b8605Smrg
395848b8605Smrg/** Copy a 3-element vector with cast */
396848b8605Smrg#define COPY_3V_CAST( DST, SRC, CAST )  \
397848b8605Smrgdo {                                    \
398848b8605Smrg   (DST)[0] = (CAST)(SRC)[0];           \
399848b8605Smrg   (DST)[1] = (CAST)(SRC)[1];           \
400848b8605Smrg   (DST)[2] = (CAST)(SRC)[2];           \
401848b8605Smrg} while (0)
402848b8605Smrg
403848b8605Smrg/** Copy a 3-element float vector */
404848b8605Smrg#define COPY_3FV( DST, SRC )        \
405848b8605Smrgdo {                                \
406848b8605Smrg   const GLfloat *_tmp = (SRC);     \
407848b8605Smrg   (DST)[0] = _tmp[0];              \
408848b8605Smrg   (DST)[1] = _tmp[1];              \
409848b8605Smrg   (DST)[2] = _tmp[2];              \
410848b8605Smrg} while (0)
411848b8605Smrg
412848b8605Smrg/** Subtraction */
413848b8605Smrg#define SUB_3V( DST, SRCA, SRCB )        \
414848b8605Smrgdo {                                     \
415848b8605Smrg      (DST)[0] = (SRCA)[0] - (SRCB)[0];  \
416848b8605Smrg      (DST)[1] = (SRCA)[1] - (SRCB)[1];  \
417848b8605Smrg      (DST)[2] = (SRCA)[2] - (SRCB)[2];  \
418848b8605Smrg} while (0)
419848b8605Smrg
420848b8605Smrg/** Addition */
421848b8605Smrg#define ADD_3V( DST, SRCA, SRCB )       \
422848b8605Smrgdo {                                    \
423848b8605Smrg      (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
424848b8605Smrg      (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
425848b8605Smrg      (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
426848b8605Smrg} while (0)
427848b8605Smrg
428848b8605Smrg/** In-place scalar multiplication */
429848b8605Smrg#define SCALE_3V( DST, SRCA, SRCB )     \
430848b8605Smrgdo {                                    \
431848b8605Smrg      (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
432848b8605Smrg      (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
433848b8605Smrg      (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
434848b8605Smrg} while (0)
435848b8605Smrg
436848b8605Smrg/** In-place element-wise multiplication */
437848b8605Smrg#define SELF_SCALE_3V( DST, SRC )   \
438848b8605Smrgdo {                                \
439848b8605Smrg      (DST)[0] *= (SRC)[0];         \
440848b8605Smrg      (DST)[1] *= (SRC)[1];         \
441848b8605Smrg      (DST)[2] *= (SRC)[2];         \
442848b8605Smrg} while (0)
443848b8605Smrg
444848b8605Smrg/** In-place addition */
445848b8605Smrg#define ACC_3V( DST, SRC )          \
446848b8605Smrgdo {                                \
447848b8605Smrg      (DST)[0] += (SRC)[0];         \
448848b8605Smrg      (DST)[1] += (SRC)[1];         \
449848b8605Smrg      (DST)[2] += (SRC)[2];         \
450848b8605Smrg} while (0)
451848b8605Smrg
452848b8605Smrg/** Element-wise multiplication and addition */
453848b8605Smrg#define ACC_SCALE_3V( DST, SRCA, SRCB )     \
454848b8605Smrgdo {                                        \
455848b8605Smrg      (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
456848b8605Smrg      (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
457848b8605Smrg      (DST)[2] += (SRCA)[2] * (SRCB)[2];    \
458848b8605Smrg} while (0)
459848b8605Smrg
460848b8605Smrg/** Scalar multiplication */
461848b8605Smrg#define SCALE_SCALAR_3V( DST, S, SRCB ) \
462848b8605Smrgdo {                                    \
463848b8605Smrg      (DST)[0] = S * (SRCB)[0];         \
464848b8605Smrg      (DST)[1] = S * (SRCB)[1];         \
465848b8605Smrg      (DST)[2] = S * (SRCB)[2];         \
466848b8605Smrg} while (0)
467848b8605Smrg
468848b8605Smrg/** In-place scalar multiplication and addition */
469848b8605Smrg#define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
470848b8605Smrgdo {                                        \
471848b8605Smrg      (DST)[0] += S * (SRCB)[0];            \
472848b8605Smrg      (DST)[1] += S * (SRCB)[1];            \
473848b8605Smrg      (DST)[2] += S * (SRCB)[2];            \
474848b8605Smrg} while (0)
475848b8605Smrg
476848b8605Smrg/** In-place scalar multiplication */
477848b8605Smrg#define SELF_SCALE_SCALAR_3V( DST, S ) \
478848b8605Smrgdo {                                   \
479848b8605Smrg      (DST)[0] *= S;                   \
480848b8605Smrg      (DST)[1] *= S;                   \
481848b8605Smrg      (DST)[2] *= S;                   \
482848b8605Smrg} while (0)
483848b8605Smrg
484848b8605Smrg/** In-place scalar addition */
485848b8605Smrg#define ACC_SCALAR_3V( DST, S )     \
486848b8605Smrgdo {                                \
487848b8605Smrg      (DST)[0] += S;                \
488848b8605Smrg      (DST)[1] += S;                \
489848b8605Smrg      (DST)[2] += S;                \
490848b8605Smrg} while (0)
491848b8605Smrg
492848b8605Smrg/** Assignment */
493848b8605Smrg#define ASSIGN_3V( V, V0, V1, V2 )  \
494848b8605Smrgdo {                                \
495848b8605Smrg    V[0] = V0;                      \
496848b8605Smrg    V[1] = V1;                      \
497848b8605Smrg    V[2] = V2;                      \
498848b8605Smrg} while(0)
499848b8605Smrg
500848b8605Smrg/*@}*/
501848b8605Smrg
502848b8605Smrg
503848b8605Smrg/**********************************************************************/
504848b8605Smrg/** \name 2-element vector operations*/
505848b8605Smrg/*@{*/
506848b8605Smrg
507848b8605Smrg/** Zero */
508848b8605Smrg#define ZERO_2V( DST )  (DST)[0] = (DST)[1] = 0
509848b8605Smrg
510848b8605Smrg/** Copy a 2-element vector */
511848b8605Smrg#define COPY_2V( DST, SRC )         \
512848b8605Smrgdo {                        \
513848b8605Smrg   (DST)[0] = (SRC)[0];             \
514848b8605Smrg   (DST)[1] = (SRC)[1];             \
515848b8605Smrg} while (0)
516848b8605Smrg
517848b8605Smrg/** Copy a 2-element vector with cast */
518848b8605Smrg#define COPY_2V_CAST( DST, SRC, CAST )      \
519848b8605Smrgdo {                        \
520848b8605Smrg   (DST)[0] = (CAST)(SRC)[0];           \
521848b8605Smrg   (DST)[1] = (CAST)(SRC)[1];           \
522848b8605Smrg} while (0)
523848b8605Smrg
524848b8605Smrg/** Copy a 2-element float vector */
525848b8605Smrg#define COPY_2FV( DST, SRC )            \
526848b8605Smrgdo {                        \
527848b8605Smrg   const GLfloat *_tmp = (SRC);         \
528848b8605Smrg   (DST)[0] = _tmp[0];              \
529848b8605Smrg   (DST)[1] = _tmp[1];              \
530848b8605Smrg} while (0)
531848b8605Smrg
532848b8605Smrg/** Subtraction */
533848b8605Smrg#define SUB_2V( DST, SRCA, SRCB )       \
534848b8605Smrgdo {                        \
535848b8605Smrg      (DST)[0] = (SRCA)[0] - (SRCB)[0];     \
536848b8605Smrg      (DST)[1] = (SRCA)[1] - (SRCB)[1];     \
537848b8605Smrg} while (0)
538848b8605Smrg
539848b8605Smrg/** Addition */
540848b8605Smrg#define ADD_2V( DST, SRCA, SRCB )       \
541848b8605Smrgdo {                        \
542848b8605Smrg      (DST)[0] = (SRCA)[0] + (SRCB)[0];     \
543848b8605Smrg      (DST)[1] = (SRCA)[1] + (SRCB)[1];     \
544848b8605Smrg} while (0)
545848b8605Smrg
546848b8605Smrg/** In-place scalar multiplication */
547848b8605Smrg#define SCALE_2V( DST, SRCA, SRCB )     \
548848b8605Smrgdo {                        \
549848b8605Smrg      (DST)[0] = (SRCA)[0] * (SRCB)[0];     \
550848b8605Smrg      (DST)[1] = (SRCA)[1] * (SRCB)[1];     \
551848b8605Smrg} while (0)
552848b8605Smrg
553848b8605Smrg/** In-place addition */
554848b8605Smrg#define ACC_2V( DST, SRC )          \
555848b8605Smrgdo {                        \
556848b8605Smrg      (DST)[0] += (SRC)[0];         \
557848b8605Smrg      (DST)[1] += (SRC)[1];         \
558848b8605Smrg} while (0)
559848b8605Smrg
560848b8605Smrg/** Element-wise multiplication and addition */
561848b8605Smrg#define ACC_SCALE_2V( DST, SRCA, SRCB )     \
562848b8605Smrgdo {                        \
563848b8605Smrg      (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
564848b8605Smrg      (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
565848b8605Smrg} while (0)
566848b8605Smrg
567848b8605Smrg/** Scalar multiplication */
568848b8605Smrg#define SCALE_SCALAR_2V( DST, S, SRCB )     \
569848b8605Smrgdo {                        \
570848b8605Smrg      (DST)[0] = S * (SRCB)[0];         \
571848b8605Smrg      (DST)[1] = S * (SRCB)[1];         \
572848b8605Smrg} while (0)
573848b8605Smrg
574848b8605Smrg/** In-place scalar multiplication and addition */
575848b8605Smrg#define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
576848b8605Smrgdo {                        \
577848b8605Smrg      (DST)[0] += S * (SRCB)[0];        \
578848b8605Smrg      (DST)[1] += S * (SRCB)[1];        \
579848b8605Smrg} while (0)
580848b8605Smrg
581848b8605Smrg/** In-place scalar multiplication */
582848b8605Smrg#define SELF_SCALE_SCALAR_2V( DST, S )      \
583848b8605Smrgdo {                        \
584848b8605Smrg      (DST)[0] *= S;                \
585848b8605Smrg      (DST)[1] *= S;                \
586848b8605Smrg} while (0)
587848b8605Smrg
588848b8605Smrg/** In-place scalar addition */
589848b8605Smrg#define ACC_SCALAR_2V( DST, S )         \
590848b8605Smrgdo {                        \
591848b8605Smrg      (DST)[0] += S;                \
592848b8605Smrg      (DST)[1] += S;                \
593848b8605Smrg} while (0)
594848b8605Smrg
595848b8605Smrg/** Assign scalers to short vectors */
596848b8605Smrg#define ASSIGN_2V( V, V0, V1 )	\
597848b8605Smrgdo {				\
598848b8605Smrg    V[0] = V0;			\
599848b8605Smrg    V[1] = V1;			\
600848b8605Smrg} while(0)
601848b8605Smrg
602848b8605Smrg/*@}*/
603848b8605Smrg
604848b8605Smrg/** Copy \p sz elements into a homegeneous (4-element) vector, giving
605848b8605Smrg * default values to the remaining components.
606848b8605Smrg * The default values are chosen based on \p type.
607848b8605Smrg */
608848b8605Smrgstatic inline void
609b8e80941SmrgCOPY_CLEAN_4V_TYPE_AS_UNION(fi_type dst[4], int sz, const fi_type src[4],
610848b8605Smrg                            GLenum type)
611848b8605Smrg{
612848b8605Smrg   switch (type) {
613848b8605Smrg   case GL_FLOAT:
614b8e80941Smrg      ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0),
615b8e80941Smrg                FLOAT_AS_UNION(0), FLOAT_AS_UNION(1));
616848b8605Smrg      break;
617848b8605Smrg   case GL_INT:
618b8e80941Smrg      ASSIGN_4V(dst, INT_AS_UNION(0), INT_AS_UNION(0),
619b8e80941Smrg                INT_AS_UNION(0), INT_AS_UNION(1));
620848b8605Smrg      break;
621848b8605Smrg   case GL_UNSIGNED_INT:
622b8e80941Smrg      ASSIGN_4V(dst, UINT_AS_UNION(0), UINT_AS_UNION(0),
623b8e80941Smrg                UINT_AS_UNION(0), UINT_AS_UNION(1));
624848b8605Smrg      break;
625848b8605Smrg   default:
626b8e80941Smrg      ASSIGN_4V(dst, FLOAT_AS_UNION(0), FLOAT_AS_UNION(0),
627b8e80941Smrg                FLOAT_AS_UNION(0), FLOAT_AS_UNION(1)); /* silence warnings */
628b8e80941Smrg      assert(!"Unexpected type in COPY_CLEAN_4V_TYPE_AS_UNION macro");
629848b8605Smrg   }
630848b8605Smrg   COPY_SZ_4V(dst, sz, src);
631848b8605Smrg}
632848b8605Smrg
633848b8605Smrg/** \name Linear interpolation functions */
634848b8605Smrg/*@{*/
635848b8605Smrg
636848b8605Smrgstatic inline GLfloat
637848b8605SmrgLINTERP(GLfloat t, GLfloat out, GLfloat in)
638848b8605Smrg{
639848b8605Smrg   return out + t * (in - out);
640848b8605Smrg}
641848b8605Smrg
642848b8605Smrgstatic inline void
643848b8605SmrgINTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3])
644848b8605Smrg{
645848b8605Smrg   dst[0] = LINTERP( t, out[0], in[0] );
646848b8605Smrg   dst[1] = LINTERP( t, out[1], in[1] );
647848b8605Smrg   dst[2] = LINTERP( t, out[2], in[2] );
648848b8605Smrg}
649848b8605Smrg
650848b8605Smrgstatic inline void
651848b8605SmrgINTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4])
652848b8605Smrg{
653848b8605Smrg   dst[0] = LINTERP( t, out[0], in[0] );
654848b8605Smrg   dst[1] = LINTERP( t, out[1], in[1] );
655848b8605Smrg   dst[2] = LINTERP( t, out[2], in[2] );
656848b8605Smrg   dst[3] = LINTERP( t, out[3], in[3] );
657848b8605Smrg}
658848b8605Smrg
659848b8605Smrg/*@}*/
660848b8605Smrg
661848b8605Smrg
662848b8605Smrg
663848b8605Smrgstatic inline unsigned
664848b8605Smrgminify(unsigned value, unsigned levels)
665848b8605Smrg{
666848b8605Smrg    return MAX2(1, value >> levels);
667848b8605Smrg}
668848b8605Smrg
669848b8605Smrg/**
670848b8605Smrg * Align a value up to an alignment value
671848b8605Smrg *
672848b8605Smrg * If \c value is not already aligned to the requested alignment value, it
673848b8605Smrg * will be rounded up.
674848b8605Smrg *
675848b8605Smrg * \param value  Value to be rounded
676848b8605Smrg * \param alignment  Alignment value to be used.  This must be a power of two.
677848b8605Smrg *
678848b8605Smrg * \sa ROUND_DOWN_TO()
679848b8605Smrg */
680b8e80941Smrgstatic inline uintptr_t
681b8e80941SmrgALIGN(uintptr_t value, int32_t alignment)
682b8e80941Smrg{
683b8e80941Smrg   assert((alignment > 0) && _mesa_is_pow_two(alignment));
684b8e80941Smrg   return (((value) + (alignment) - 1) & ~((alignment) - 1));
685b8e80941Smrg}
686b8e80941Smrg
687b8e80941Smrg/**
688b8e80941Smrg * Like ALIGN(), but works with a non-power-of-two alignment.
689b8e80941Smrg */
690b8e80941Smrgstatic inline uintptr_t
691b8e80941SmrgALIGN_NPOT(uintptr_t value, int32_t alignment)
692b8e80941Smrg{
693b8e80941Smrg   assert(alignment > 0);
694b8e80941Smrg   return (value + alignment - 1) / alignment * alignment;
695b8e80941Smrg}
696848b8605Smrg
697848b8605Smrg/**
698848b8605Smrg * Align a value down to an alignment value
699848b8605Smrg *
700848b8605Smrg * If \c value is not already aligned to the requested alignment value, it
701848b8605Smrg * will be rounded down.
702848b8605Smrg *
703848b8605Smrg * \param value  Value to be rounded
704848b8605Smrg * \param alignment  Alignment value to be used.  This must be a power of two.
705848b8605Smrg *
706848b8605Smrg * \sa ALIGN()
707848b8605Smrg */
708b8e80941Smrgstatic inline uintptr_t
709b8e80941SmrgROUND_DOWN_TO(uintptr_t value, int32_t alignment)
710b8e80941Smrg{
711b8e80941Smrg   assert((alignment > 0) && _mesa_is_pow_two(alignment));
712b8e80941Smrg   return ((value) & ~(alignment - 1));
713b8e80941Smrg}
714848b8605Smrg
715848b8605Smrg
716848b8605Smrg/** Cross product of two 3-element vectors */
717848b8605Smrgstatic inline void
718848b8605SmrgCROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3])
719848b8605Smrg{
720848b8605Smrg   n[0] = u[1] * v[2] - u[2] * v[1];
721848b8605Smrg   n[1] = u[2] * v[0] - u[0] * v[2];
722848b8605Smrg   n[2] = u[0] * v[1] - u[1] * v[0];
723848b8605Smrg}
724848b8605Smrg
725848b8605Smrg
726848b8605Smrg/** Dot product of two 2-element vectors */
727848b8605Smrgstatic inline GLfloat
728848b8605SmrgDOT2(const GLfloat a[2], const GLfloat b[2])
729848b8605Smrg{
730848b8605Smrg   return a[0] * b[0] + a[1] * b[1];
731848b8605Smrg}
732848b8605Smrg
733848b8605Smrgstatic inline GLfloat
734848b8605SmrgDOT3(const GLfloat a[3], const GLfloat b[3])
735848b8605Smrg{
736848b8605Smrg   return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
737848b8605Smrg}
738848b8605Smrg
739848b8605Smrgstatic inline GLfloat
740848b8605SmrgDOT4(const GLfloat a[4], const GLfloat b[4])
741848b8605Smrg{
742848b8605Smrg   return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
743848b8605Smrg}
744848b8605Smrg
745848b8605Smrg
746848b8605Smrgstatic inline GLfloat
747848b8605SmrgLEN_SQUARED_3FV(const GLfloat v[3])
748848b8605Smrg{
749848b8605Smrg   return DOT3(v, v);
750848b8605Smrg}
751848b8605Smrg
752848b8605Smrgstatic inline GLfloat
753848b8605SmrgLEN_SQUARED_2FV(const GLfloat v[2])
754848b8605Smrg{
755848b8605Smrg   return DOT2(v, v);
756848b8605Smrg}
757848b8605Smrg
758848b8605Smrg
759848b8605Smrgstatic inline GLfloat
760848b8605SmrgLEN_3FV(const GLfloat v[3])
761848b8605Smrg{
762848b8605Smrg   return sqrtf(LEN_SQUARED_3FV(v));
763848b8605Smrg}
764848b8605Smrg
765848b8605Smrgstatic inline GLfloat
766848b8605SmrgLEN_2FV(const GLfloat v[2])
767848b8605Smrg{
768848b8605Smrg   return sqrtf(LEN_SQUARED_2FV(v));
769848b8605Smrg}
770848b8605Smrg
771848b8605Smrg
772848b8605Smrg/* Normalize a 3-element vector to unit length. */
773848b8605Smrgstatic inline void
774848b8605SmrgNORMALIZE_3FV(GLfloat v[3])
775848b8605Smrg{
776848b8605Smrg   GLfloat len = (GLfloat) LEN_SQUARED_3FV(v);
777848b8605Smrg   if (len) {
778b8e80941Smrg      len = 1.0f / sqrtf(len);
779848b8605Smrg      v[0] *= len;
780848b8605Smrg      v[1] *= len;
781848b8605Smrg      v[2] *= len;
782848b8605Smrg   }
783848b8605Smrg}
784848b8605Smrg
785848b8605Smrg
786848b8605Smrg/** Test two floats have opposite signs */
787848b8605Smrgstatic inline GLboolean
788848b8605SmrgDIFFERENT_SIGNS(GLfloat x, GLfloat y)
789848b8605Smrg{
790b8e80941Smrg#ifdef _MSC_VER
791b8e80941Smrg#pragma warning( push )
792b8e80941Smrg#pragma warning( disable : 6334 ) /* sizeof operator applied to an expression with an operator may yield unexpected results */
793b8e80941Smrg#endif
794848b8605Smrg   return signbit(x) != signbit(y);
795b8e80941Smrg#ifdef _MSC_VER
796b8e80941Smrg#pragma warning( pop )
797b8e80941Smrg#endif
798848b8605Smrg}
799848b8605Smrg
800848b8605Smrg
801848b8605Smrg/** casts to silence warnings with some compilers */
802848b8605Smrg#define ENUM_TO_INT(E)     ((GLint)(E))
803848b8605Smrg#define ENUM_TO_FLOAT(E)   ((GLfloat)(GLint)(E))
804848b8605Smrg#define ENUM_TO_DOUBLE(E)  ((GLdouble)(GLint)(E))
805848b8605Smrg#define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
806848b8605Smrg
807848b8605Smrg
808848b8605Smrg/* Stringify */
809848b8605Smrg#define STRINGIFY(x) #x
810848b8605Smrg
811848b8605Smrg#endif
812