hash_table.c revision b8e80941
1/*
2 * Copyright © 2009,2012 Intel Corporation
3 * Copyright © 1988-2004 Keith Packard and Bart Massey.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 * Except as contained in this notice, the names of the authors
25 * or their institutions shall not be used in advertising or
26 * otherwise to promote the sale, use or other dealings in this
27 * Software without prior written authorization from the
28 * authors.
29 *
30 * Authors:
31 *    Eric Anholt <eric@anholt.net>
32 *    Keith Packard <keithp@keithp.com>
33 */
34
35/**
36 * Implements an open-addressing, linear-reprobing hash table.
37 *
38 * For more information, see:
39 *
40 * http://cgit.freedesktop.org/~anholt/hash_table/tree/README
41 */
42
43#include <stdlib.h>
44#include <string.h>
45#include <assert.h>
46
47#include "hash_table.h"
48#include "ralloc.h"
49#include "macros.h"
50#include "main/hash.h"
51
52static const uint32_t deleted_key_value;
53
54/**
55 * From Knuth -- a good choice for hash/rehash values is p, p-2 where
56 * p and p-2 are both prime.  These tables are sized to have an extra 10%
57 * free to avoid exponential performance degradation as the hash table fills
58 */
59static const struct {
60   uint32_t max_entries, size, rehash;
61} hash_sizes[] = {
62   { 2,			5,		3	  },
63   { 4,			7,		5	  },
64   { 8,			13,		11	  },
65   { 16,		19,		17	  },
66   { 32,		43,		41        },
67   { 64,		73,		71        },
68   { 128,		151,		149       },
69   { 256,		283,		281       },
70   { 512,		571,		569       },
71   { 1024,		1153,		1151      },
72   { 2048,		2269,		2267      },
73   { 4096,		4519,		4517      },
74   { 8192,		9013,		9011      },
75   { 16384,		18043,		18041     },
76   { 32768,		36109,		36107     },
77   { 65536,		72091,		72089     },
78   { 131072,		144409,		144407    },
79   { 262144,		288361,		288359    },
80   { 524288,		576883,		576881    },
81   { 1048576,		1153459,	1153457   },
82   { 2097152,		2307163,	2307161   },
83   { 4194304,		4613893,	4613891   },
84   { 8388608,		9227641,	9227639   },
85   { 16777216,		18455029,	18455027  },
86   { 33554432,		36911011,	36911009  },
87   { 67108864,		73819861,	73819859  },
88   { 134217728,		147639589,	147639587 },
89   { 268435456,		295279081,	295279079 },
90   { 536870912,		590559793,	590559791 },
91   { 1073741824,	1181116273,	1181116271},
92   { 2147483648ul,	2362232233ul,	2362232231ul}
93};
94
95static int
96entry_is_free(const struct hash_entry *entry)
97{
98   return entry->key == NULL;
99}
100
101static int
102entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry)
103{
104   return entry->key == ht->deleted_key;
105}
106
107static int
108entry_is_present(const struct hash_table *ht, struct hash_entry *entry)
109{
110   return entry->key != NULL && entry->key != ht->deleted_key;
111}
112
113bool
114_mesa_hash_table_init(struct hash_table *ht,
115                      void *mem_ctx,
116                      uint32_t (*key_hash_function)(const void *key),
117                      bool (*key_equals_function)(const void *a,
118                                                  const void *b))
119{
120   ht->size_index = 0;
121   ht->size = hash_sizes[ht->size_index].size;
122   ht->rehash = hash_sizes[ht->size_index].rehash;
123   ht->max_entries = hash_sizes[ht->size_index].max_entries;
124   ht->key_hash_function = key_hash_function;
125   ht->key_equals_function = key_equals_function;
126   ht->table = rzalloc_array(mem_ctx, struct hash_entry, ht->size);
127   ht->entries = 0;
128   ht->deleted_entries = 0;
129   ht->deleted_key = &deleted_key_value;
130
131   return ht->table != NULL;
132}
133
134struct hash_table *
135_mesa_hash_table_create(void *mem_ctx,
136                        uint32_t (*key_hash_function)(const void *key),
137                        bool (*key_equals_function)(const void *a,
138                                                    const void *b))
139{
140   struct hash_table *ht;
141
142   /* mem_ctx is used to allocate the hash table, but the hash table is used
143    * to allocate all of the suballocations.
144    */
145   ht = ralloc(mem_ctx, struct hash_table);
146   if (ht == NULL)
147      return NULL;
148
149   if (!_mesa_hash_table_init(ht, ht, key_hash_function, key_equals_function)) {
150      ralloc_free(ht);
151      return NULL;
152   }
153
154   return ht;
155}
156
157struct hash_table *
158_mesa_hash_table_clone(struct hash_table *src, void *dst_mem_ctx)
159{
160   struct hash_table *ht;
161
162   ht = ralloc(dst_mem_ctx, struct hash_table);
163   if (ht == NULL)
164      return NULL;
165
166   memcpy(ht, src, sizeof(struct hash_table));
167
168   ht->table = ralloc_array(ht, struct hash_entry, ht->size);
169   if (ht->table == NULL) {
170      ralloc_free(ht);
171      return NULL;
172   }
173
174   memcpy(ht->table, src->table, ht->size * sizeof(struct hash_entry));
175
176   return ht;
177}
178
179/**
180 * Frees the given hash table.
181 *
182 * If delete_function is passed, it gets called on each entry present before
183 * freeing.
184 */
185void
186_mesa_hash_table_destroy(struct hash_table *ht,
187                         void (*delete_function)(struct hash_entry *entry))
188{
189   if (!ht)
190      return;
191
192   if (delete_function) {
193      hash_table_foreach(ht, entry) {
194         delete_function(entry);
195      }
196   }
197   ralloc_free(ht);
198}
199
200/**
201 * Deletes all entries of the given hash table without deleting the table
202 * itself or changing its structure.
203 *
204 * If delete_function is passed, it gets called on each entry present.
205 */
206void
207_mesa_hash_table_clear(struct hash_table *ht,
208                       void (*delete_function)(struct hash_entry *entry))
209{
210   struct hash_entry *entry;
211
212   for (entry = ht->table; entry != ht->table + ht->size; entry++) {
213      if (entry->key == NULL)
214         continue;
215
216      if (delete_function != NULL && entry->key != ht->deleted_key)
217         delete_function(entry);
218
219      entry->key = NULL;
220   }
221
222   ht->entries = 0;
223   ht->deleted_entries = 0;
224}
225
226/** Sets the value of the key pointer used for deleted entries in the table.
227 *
228 * The assumption is that usually keys are actual pointers, so we use a
229 * default value of a pointer to an arbitrary piece of storage in the library.
230 * But in some cases a consumer wants to store some other sort of value in the
231 * table, like a uint32_t, in which case that pointer may conflict with one of
232 * their valid keys.  This lets that user select a safe value.
233 *
234 * This must be called before any keys are actually deleted from the table.
235 */
236void
237_mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key)
238{
239   ht->deleted_key = deleted_key;
240}
241
242static struct hash_entry *
243hash_table_search(struct hash_table *ht, uint32_t hash, const void *key)
244{
245   uint32_t start_hash_address = hash % ht->size;
246   uint32_t hash_address = start_hash_address;
247
248   do {
249      uint32_t double_hash;
250
251      struct hash_entry *entry = ht->table + hash_address;
252
253      if (entry_is_free(entry)) {
254         return NULL;
255      } else if (entry_is_present(ht, entry) && entry->hash == hash) {
256         if (ht->key_equals_function(key, entry->key)) {
257            return entry;
258         }
259      }
260
261      double_hash = 1 + hash % ht->rehash;
262
263      hash_address = (hash_address + double_hash) % ht->size;
264   } while (hash_address != start_hash_address);
265
266   return NULL;
267}
268
269/**
270 * Finds a hash table entry with the given key and hash of that key.
271 *
272 * Returns NULL if no entry is found.  Note that the data pointer may be
273 * modified by the user.
274 */
275struct hash_entry *
276_mesa_hash_table_search(struct hash_table *ht, const void *key)
277{
278   assert(ht->key_hash_function);
279   return hash_table_search(ht, ht->key_hash_function(key), key);
280}
281
282struct hash_entry *
283_mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash,
284                                  const void *key)
285{
286   assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
287   return hash_table_search(ht, hash, key);
288}
289
290static struct hash_entry *
291hash_table_insert(struct hash_table *ht, uint32_t hash,
292                  const void *key, void *data);
293
294static void
295_mesa_hash_table_rehash(struct hash_table *ht, unsigned new_size_index)
296{
297   struct hash_table old_ht;
298   struct hash_entry *table;
299
300   if (new_size_index >= ARRAY_SIZE(hash_sizes))
301      return;
302
303   table = rzalloc_array(ralloc_parent(ht->table), struct hash_entry,
304                         hash_sizes[new_size_index].size);
305   if (table == NULL)
306      return;
307
308   old_ht = *ht;
309
310   ht->table = table;
311   ht->size_index = new_size_index;
312   ht->size = hash_sizes[ht->size_index].size;
313   ht->rehash = hash_sizes[ht->size_index].rehash;
314   ht->max_entries = hash_sizes[ht->size_index].max_entries;
315   ht->entries = 0;
316   ht->deleted_entries = 0;
317
318   hash_table_foreach(&old_ht, entry) {
319      hash_table_insert(ht, entry->hash, entry->key, entry->data);
320   }
321
322   ralloc_free(old_ht.table);
323}
324
325static struct hash_entry *
326hash_table_insert(struct hash_table *ht, uint32_t hash,
327                  const void *key, void *data)
328{
329   uint32_t start_hash_address, hash_address;
330   struct hash_entry *available_entry = NULL;
331
332   assert(key != NULL);
333
334   if (ht->entries >= ht->max_entries) {
335      _mesa_hash_table_rehash(ht, ht->size_index + 1);
336   } else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
337      _mesa_hash_table_rehash(ht, ht->size_index);
338   }
339
340   start_hash_address = hash % ht->size;
341   hash_address = start_hash_address;
342   do {
343      struct hash_entry *entry = ht->table + hash_address;
344      uint32_t double_hash;
345
346      if (!entry_is_present(ht, entry)) {
347         /* Stash the first available entry we find */
348         if (available_entry == NULL)
349            available_entry = entry;
350         if (entry_is_free(entry))
351            break;
352      }
353
354      /* Implement replacement when another insert happens
355       * with a matching key.  This is a relatively common
356       * feature of hash tables, with the alternative
357       * generally being "insert the new value as well, and
358       * return it first when the key is searched for".
359       *
360       * Note that the hash table doesn't have a delete
361       * callback.  If freeing of old data pointers is
362       * required to avoid memory leaks, perform a search
363       * before inserting.
364       */
365      if (!entry_is_deleted(ht, entry) &&
366          entry->hash == hash &&
367          ht->key_equals_function(key, entry->key)) {
368         entry->key = key;
369         entry->data = data;
370         return entry;
371      }
372
373
374      double_hash = 1 + hash % ht->rehash;
375
376      hash_address = (hash_address + double_hash) % ht->size;
377   } while (hash_address != start_hash_address);
378
379   if (available_entry) {
380      if (entry_is_deleted(ht, available_entry))
381         ht->deleted_entries--;
382      available_entry->hash = hash;
383      available_entry->key = key;
384      available_entry->data = data;
385      ht->entries++;
386      return available_entry;
387   }
388
389   /* We could hit here if a required resize failed. An unchecked-malloc
390    * application could ignore this result.
391    */
392   return NULL;
393}
394
395/**
396 * Inserts the key with the given hash into the table.
397 *
398 * Note that insertion may rearrange the table on a resize or rehash,
399 * so previously found hash_entries are no longer valid after this function.
400 */
401struct hash_entry *
402_mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data)
403{
404   assert(ht->key_hash_function);
405   return hash_table_insert(ht, ht->key_hash_function(key), key, data);
406}
407
408struct hash_entry *
409_mesa_hash_table_insert_pre_hashed(struct hash_table *ht, uint32_t hash,
410                                   const void *key, void *data)
411{
412   assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
413   return hash_table_insert(ht, hash, key, data);
414}
415
416/**
417 * This function deletes the given hash table entry.
418 *
419 * Note that deletion doesn't otherwise modify the table, so an iteration over
420 * the table deleting entries is safe.
421 */
422void
423_mesa_hash_table_remove(struct hash_table *ht,
424                        struct hash_entry *entry)
425{
426   if (!entry)
427      return;
428
429   entry->key = ht->deleted_key;
430   ht->entries--;
431   ht->deleted_entries++;
432}
433
434/**
435 * Removes the entry with the corresponding key, if exists.
436 */
437void _mesa_hash_table_remove_key(struct hash_table *ht,
438                                 const void *key)
439{
440   _mesa_hash_table_remove(ht, _mesa_hash_table_search(ht, key));
441}
442
443/**
444 * This function is an iterator over the hash table.
445 *
446 * Pass in NULL for the first entry, as in the start of a for loop.  Note that
447 * an iteration over the table is O(table_size) not O(entries).
448 */
449struct hash_entry *
450_mesa_hash_table_next_entry(struct hash_table *ht,
451                            struct hash_entry *entry)
452{
453   if (entry == NULL)
454      entry = ht->table;
455   else
456      entry = entry + 1;
457
458   for (; entry != ht->table + ht->size; entry++) {
459      if (entry_is_present(ht, entry)) {
460         return entry;
461      }
462   }
463
464   return NULL;
465}
466
467/**
468 * Returns a random entry from the hash table.
469 *
470 * This may be useful in implementing random replacement (as opposed
471 * to just removing everything) in caches based on this hash table
472 * implementation.  @predicate may be used to filter entries, or may
473 * be set to NULL for no filtering.
474 */
475struct hash_entry *
476_mesa_hash_table_random_entry(struct hash_table *ht,
477                              bool (*predicate)(struct hash_entry *entry))
478{
479   struct hash_entry *entry;
480   uint32_t i = rand() % ht->size;
481
482   if (ht->entries == 0)
483      return NULL;
484
485   for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
486      if (entry_is_present(ht, entry) &&
487          (!predicate || predicate(entry))) {
488         return entry;
489      }
490   }
491
492   for (entry = ht->table; entry != ht->table + i; entry++) {
493      if (entry_is_present(ht, entry) &&
494          (!predicate || predicate(entry))) {
495         return entry;
496      }
497   }
498
499   return NULL;
500}
501
502
503/**
504 * Quick FNV-1a hash implementation based on:
505 * http://www.isthe.com/chongo/tech/comp/fnv/
506 *
507 * FNV-1a is not be the best hash out there -- Jenkins's lookup3 is supposed
508 * to be quite good, and it probably beats FNV.  But FNV has the advantage
509 * that it involves almost no code.  For an improvement on both, see Paul
510 * Hsieh's http://www.azillionmonkeys.com/qed/hash.html
511 */
512uint32_t
513_mesa_hash_data(const void *data, size_t size)
514{
515   return _mesa_fnv32_1a_accumulate_block(_mesa_fnv32_1a_offset_bias,
516                                          data, size);
517}
518
519/** FNV-1a string hash implementation */
520uint32_t
521_mesa_hash_string(const void *_key)
522{
523   uint32_t hash = _mesa_fnv32_1a_offset_bias;
524   const char *key = _key;
525
526   while (*key != 0) {
527      hash = _mesa_fnv32_1a_accumulate(hash, *key);
528      key++;
529   }
530
531   return hash;
532}
533
534/**
535 * String compare function for use as the comparison callback in
536 * _mesa_hash_table_create().
537 */
538bool
539_mesa_key_string_equal(const void *a, const void *b)
540{
541   return strcmp(a, b) == 0;
542}
543
544bool
545_mesa_key_pointer_equal(const void *a, const void *b)
546{
547   return a == b;
548}
549
550/**
551 * Helper to create a hash table with pointer keys.
552 */
553struct hash_table *
554_mesa_pointer_hash_table_create(void *mem_ctx)
555{
556   return _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
557                                  _mesa_key_pointer_equal);
558}
559
560/**
561 * Hash table wrapper which supports 64-bit keys.
562 *
563 * TODO: unify all hash table implementations.
564 */
565
566struct hash_key_u64 {
567   uint64_t value;
568};
569
570static uint32_t
571key_u64_hash(const void *key)
572{
573   return _mesa_hash_data(key, sizeof(struct hash_key_u64));
574}
575
576static bool
577key_u64_equals(const void *a, const void *b)
578{
579   const struct hash_key_u64 *aa = a;
580   const struct hash_key_u64 *bb = b;
581
582   return aa->value == bb->value;
583}
584
585struct hash_table_u64 *
586_mesa_hash_table_u64_create(void *mem_ctx)
587{
588   struct hash_table_u64 *ht;
589
590   ht = CALLOC_STRUCT(hash_table_u64);
591   if (!ht)
592      return NULL;
593
594   if (sizeof(void *) == 8) {
595      ht->table = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
596                                          _mesa_key_pointer_equal);
597   } else {
598      ht->table = _mesa_hash_table_create(mem_ctx, key_u64_hash,
599                                          key_u64_equals);
600   }
601
602   if (ht->table)
603      _mesa_hash_table_set_deleted_key(ht->table, uint_key(DELETED_KEY_VALUE));
604
605   return ht;
606}
607
608void
609_mesa_hash_table_u64_destroy(struct hash_table_u64 *ht,
610                             void (*delete_function)(struct hash_entry *entry))
611{
612   if (!ht)
613      return;
614
615   if (ht->deleted_key_data) {
616      if (delete_function) {
617         struct hash_table *table = ht->table;
618         struct hash_entry deleted_entry;
619
620         /* Create a fake entry for the delete function. */
621         deleted_entry.hash = table->key_hash_function(table->deleted_key);
622         deleted_entry.key = table->deleted_key;
623         deleted_entry.data = ht->deleted_key_data;
624
625         delete_function(&deleted_entry);
626      }
627      ht->deleted_key_data = NULL;
628   }
629
630   _mesa_hash_table_destroy(ht->table, delete_function);
631   free(ht);
632}
633
634void
635_mesa_hash_table_u64_insert(struct hash_table_u64 *ht, uint64_t key,
636                            void *data)
637{
638   if (key == DELETED_KEY_VALUE) {
639      ht->deleted_key_data = data;
640      return;
641   }
642
643   if (sizeof(void *) == 8) {
644      _mesa_hash_table_insert(ht->table, (void *)(uintptr_t)key, data);
645   } else {
646      struct hash_key_u64 *_key = CALLOC_STRUCT(hash_key_u64);
647
648      if (!_key)
649         return;
650      _key->value = key;
651
652      _mesa_hash_table_insert(ht->table, _key, data);
653   }
654}
655
656static struct hash_entry *
657hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key)
658{
659   if (sizeof(void *) == 8) {
660      return _mesa_hash_table_search(ht->table, (void *)(uintptr_t)key);
661   } else {
662      struct hash_key_u64 _key = { .value = key };
663      return _mesa_hash_table_search(ht->table, &_key);
664   }
665}
666
667void *
668_mesa_hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key)
669{
670   struct hash_entry *entry;
671
672   if (key == DELETED_KEY_VALUE)
673      return ht->deleted_key_data;
674
675   entry = hash_table_u64_search(ht, key);
676   if (!entry)
677      return NULL;
678
679   return entry->data;
680}
681
682void
683_mesa_hash_table_u64_remove(struct hash_table_u64 *ht, uint64_t key)
684{
685   struct hash_entry *entry;
686
687   if (key == DELETED_KEY_VALUE) {
688      ht->deleted_key_data = NULL;
689      return;
690   }
691
692   entry = hash_table_u64_search(ht, key);
693   if (!entry)
694      return;
695
696   if (sizeof(void *) == 8) {
697      _mesa_hash_table_remove(ht->table, entry);
698   } else {
699      struct hash_key *_key = (struct hash_key *)entry->key;
700
701      _mesa_hash_table_remove(ht->table, entry);
702      free(_key);
703   }
704}
705