hash_table.c revision b8e80941
1/* 2 * Copyright © 2009,2012 Intel Corporation 3 * Copyright © 1988-2004 Keith Packard and Bart Massey. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22 * IN THE SOFTWARE. 23 * 24 * Except as contained in this notice, the names of the authors 25 * or their institutions shall not be used in advertising or 26 * otherwise to promote the sale, use or other dealings in this 27 * Software without prior written authorization from the 28 * authors. 29 * 30 * Authors: 31 * Eric Anholt <eric@anholt.net> 32 * Keith Packard <keithp@keithp.com> 33 */ 34 35/** 36 * Implements an open-addressing, linear-reprobing hash table. 37 * 38 * For more information, see: 39 * 40 * http://cgit.freedesktop.org/~anholt/hash_table/tree/README 41 */ 42 43#include <stdlib.h> 44#include <string.h> 45#include <assert.h> 46 47#include "hash_table.h" 48#include "ralloc.h" 49#include "macros.h" 50#include "main/hash.h" 51 52static const uint32_t deleted_key_value; 53 54/** 55 * From Knuth -- a good choice for hash/rehash values is p, p-2 where 56 * p and p-2 are both prime. These tables are sized to have an extra 10% 57 * free to avoid exponential performance degradation as the hash table fills 58 */ 59static const struct { 60 uint32_t max_entries, size, rehash; 61} hash_sizes[] = { 62 { 2, 5, 3 }, 63 { 4, 7, 5 }, 64 { 8, 13, 11 }, 65 { 16, 19, 17 }, 66 { 32, 43, 41 }, 67 { 64, 73, 71 }, 68 { 128, 151, 149 }, 69 { 256, 283, 281 }, 70 { 512, 571, 569 }, 71 { 1024, 1153, 1151 }, 72 { 2048, 2269, 2267 }, 73 { 4096, 4519, 4517 }, 74 { 8192, 9013, 9011 }, 75 { 16384, 18043, 18041 }, 76 { 32768, 36109, 36107 }, 77 { 65536, 72091, 72089 }, 78 { 131072, 144409, 144407 }, 79 { 262144, 288361, 288359 }, 80 { 524288, 576883, 576881 }, 81 { 1048576, 1153459, 1153457 }, 82 { 2097152, 2307163, 2307161 }, 83 { 4194304, 4613893, 4613891 }, 84 { 8388608, 9227641, 9227639 }, 85 { 16777216, 18455029, 18455027 }, 86 { 33554432, 36911011, 36911009 }, 87 { 67108864, 73819861, 73819859 }, 88 { 134217728, 147639589, 147639587 }, 89 { 268435456, 295279081, 295279079 }, 90 { 536870912, 590559793, 590559791 }, 91 { 1073741824, 1181116273, 1181116271}, 92 { 2147483648ul, 2362232233ul, 2362232231ul} 93}; 94 95static int 96entry_is_free(const struct hash_entry *entry) 97{ 98 return entry->key == NULL; 99} 100 101static int 102entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry) 103{ 104 return entry->key == ht->deleted_key; 105} 106 107static int 108entry_is_present(const struct hash_table *ht, struct hash_entry *entry) 109{ 110 return entry->key != NULL && entry->key != ht->deleted_key; 111} 112 113bool 114_mesa_hash_table_init(struct hash_table *ht, 115 void *mem_ctx, 116 uint32_t (*key_hash_function)(const void *key), 117 bool (*key_equals_function)(const void *a, 118 const void *b)) 119{ 120 ht->size_index = 0; 121 ht->size = hash_sizes[ht->size_index].size; 122 ht->rehash = hash_sizes[ht->size_index].rehash; 123 ht->max_entries = hash_sizes[ht->size_index].max_entries; 124 ht->key_hash_function = key_hash_function; 125 ht->key_equals_function = key_equals_function; 126 ht->table = rzalloc_array(mem_ctx, struct hash_entry, ht->size); 127 ht->entries = 0; 128 ht->deleted_entries = 0; 129 ht->deleted_key = &deleted_key_value; 130 131 return ht->table != NULL; 132} 133 134struct hash_table * 135_mesa_hash_table_create(void *mem_ctx, 136 uint32_t (*key_hash_function)(const void *key), 137 bool (*key_equals_function)(const void *a, 138 const void *b)) 139{ 140 struct hash_table *ht; 141 142 /* mem_ctx is used to allocate the hash table, but the hash table is used 143 * to allocate all of the suballocations. 144 */ 145 ht = ralloc(mem_ctx, struct hash_table); 146 if (ht == NULL) 147 return NULL; 148 149 if (!_mesa_hash_table_init(ht, ht, key_hash_function, key_equals_function)) { 150 ralloc_free(ht); 151 return NULL; 152 } 153 154 return ht; 155} 156 157struct hash_table * 158_mesa_hash_table_clone(struct hash_table *src, void *dst_mem_ctx) 159{ 160 struct hash_table *ht; 161 162 ht = ralloc(dst_mem_ctx, struct hash_table); 163 if (ht == NULL) 164 return NULL; 165 166 memcpy(ht, src, sizeof(struct hash_table)); 167 168 ht->table = ralloc_array(ht, struct hash_entry, ht->size); 169 if (ht->table == NULL) { 170 ralloc_free(ht); 171 return NULL; 172 } 173 174 memcpy(ht->table, src->table, ht->size * sizeof(struct hash_entry)); 175 176 return ht; 177} 178 179/** 180 * Frees the given hash table. 181 * 182 * If delete_function is passed, it gets called on each entry present before 183 * freeing. 184 */ 185void 186_mesa_hash_table_destroy(struct hash_table *ht, 187 void (*delete_function)(struct hash_entry *entry)) 188{ 189 if (!ht) 190 return; 191 192 if (delete_function) { 193 hash_table_foreach(ht, entry) { 194 delete_function(entry); 195 } 196 } 197 ralloc_free(ht); 198} 199 200/** 201 * Deletes all entries of the given hash table without deleting the table 202 * itself or changing its structure. 203 * 204 * If delete_function is passed, it gets called on each entry present. 205 */ 206void 207_mesa_hash_table_clear(struct hash_table *ht, 208 void (*delete_function)(struct hash_entry *entry)) 209{ 210 struct hash_entry *entry; 211 212 for (entry = ht->table; entry != ht->table + ht->size; entry++) { 213 if (entry->key == NULL) 214 continue; 215 216 if (delete_function != NULL && entry->key != ht->deleted_key) 217 delete_function(entry); 218 219 entry->key = NULL; 220 } 221 222 ht->entries = 0; 223 ht->deleted_entries = 0; 224} 225 226/** Sets the value of the key pointer used for deleted entries in the table. 227 * 228 * The assumption is that usually keys are actual pointers, so we use a 229 * default value of a pointer to an arbitrary piece of storage in the library. 230 * But in some cases a consumer wants to store some other sort of value in the 231 * table, like a uint32_t, in which case that pointer may conflict with one of 232 * their valid keys. This lets that user select a safe value. 233 * 234 * This must be called before any keys are actually deleted from the table. 235 */ 236void 237_mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key) 238{ 239 ht->deleted_key = deleted_key; 240} 241 242static struct hash_entry * 243hash_table_search(struct hash_table *ht, uint32_t hash, const void *key) 244{ 245 uint32_t start_hash_address = hash % ht->size; 246 uint32_t hash_address = start_hash_address; 247 248 do { 249 uint32_t double_hash; 250 251 struct hash_entry *entry = ht->table + hash_address; 252 253 if (entry_is_free(entry)) { 254 return NULL; 255 } else if (entry_is_present(ht, entry) && entry->hash == hash) { 256 if (ht->key_equals_function(key, entry->key)) { 257 return entry; 258 } 259 } 260 261 double_hash = 1 + hash % ht->rehash; 262 263 hash_address = (hash_address + double_hash) % ht->size; 264 } while (hash_address != start_hash_address); 265 266 return NULL; 267} 268 269/** 270 * Finds a hash table entry with the given key and hash of that key. 271 * 272 * Returns NULL if no entry is found. Note that the data pointer may be 273 * modified by the user. 274 */ 275struct hash_entry * 276_mesa_hash_table_search(struct hash_table *ht, const void *key) 277{ 278 assert(ht->key_hash_function); 279 return hash_table_search(ht, ht->key_hash_function(key), key); 280} 281 282struct hash_entry * 283_mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash, 284 const void *key) 285{ 286 assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key)); 287 return hash_table_search(ht, hash, key); 288} 289 290static struct hash_entry * 291hash_table_insert(struct hash_table *ht, uint32_t hash, 292 const void *key, void *data); 293 294static void 295_mesa_hash_table_rehash(struct hash_table *ht, unsigned new_size_index) 296{ 297 struct hash_table old_ht; 298 struct hash_entry *table; 299 300 if (new_size_index >= ARRAY_SIZE(hash_sizes)) 301 return; 302 303 table = rzalloc_array(ralloc_parent(ht->table), struct hash_entry, 304 hash_sizes[new_size_index].size); 305 if (table == NULL) 306 return; 307 308 old_ht = *ht; 309 310 ht->table = table; 311 ht->size_index = new_size_index; 312 ht->size = hash_sizes[ht->size_index].size; 313 ht->rehash = hash_sizes[ht->size_index].rehash; 314 ht->max_entries = hash_sizes[ht->size_index].max_entries; 315 ht->entries = 0; 316 ht->deleted_entries = 0; 317 318 hash_table_foreach(&old_ht, entry) { 319 hash_table_insert(ht, entry->hash, entry->key, entry->data); 320 } 321 322 ralloc_free(old_ht.table); 323} 324 325static struct hash_entry * 326hash_table_insert(struct hash_table *ht, uint32_t hash, 327 const void *key, void *data) 328{ 329 uint32_t start_hash_address, hash_address; 330 struct hash_entry *available_entry = NULL; 331 332 assert(key != NULL); 333 334 if (ht->entries >= ht->max_entries) { 335 _mesa_hash_table_rehash(ht, ht->size_index + 1); 336 } else if (ht->deleted_entries + ht->entries >= ht->max_entries) { 337 _mesa_hash_table_rehash(ht, ht->size_index); 338 } 339 340 start_hash_address = hash % ht->size; 341 hash_address = start_hash_address; 342 do { 343 struct hash_entry *entry = ht->table + hash_address; 344 uint32_t double_hash; 345 346 if (!entry_is_present(ht, entry)) { 347 /* Stash the first available entry we find */ 348 if (available_entry == NULL) 349 available_entry = entry; 350 if (entry_is_free(entry)) 351 break; 352 } 353 354 /* Implement replacement when another insert happens 355 * with a matching key. This is a relatively common 356 * feature of hash tables, with the alternative 357 * generally being "insert the new value as well, and 358 * return it first when the key is searched for". 359 * 360 * Note that the hash table doesn't have a delete 361 * callback. If freeing of old data pointers is 362 * required to avoid memory leaks, perform a search 363 * before inserting. 364 */ 365 if (!entry_is_deleted(ht, entry) && 366 entry->hash == hash && 367 ht->key_equals_function(key, entry->key)) { 368 entry->key = key; 369 entry->data = data; 370 return entry; 371 } 372 373 374 double_hash = 1 + hash % ht->rehash; 375 376 hash_address = (hash_address + double_hash) % ht->size; 377 } while (hash_address != start_hash_address); 378 379 if (available_entry) { 380 if (entry_is_deleted(ht, available_entry)) 381 ht->deleted_entries--; 382 available_entry->hash = hash; 383 available_entry->key = key; 384 available_entry->data = data; 385 ht->entries++; 386 return available_entry; 387 } 388 389 /* We could hit here if a required resize failed. An unchecked-malloc 390 * application could ignore this result. 391 */ 392 return NULL; 393} 394 395/** 396 * Inserts the key with the given hash into the table. 397 * 398 * Note that insertion may rearrange the table on a resize or rehash, 399 * so previously found hash_entries are no longer valid after this function. 400 */ 401struct hash_entry * 402_mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data) 403{ 404 assert(ht->key_hash_function); 405 return hash_table_insert(ht, ht->key_hash_function(key), key, data); 406} 407 408struct hash_entry * 409_mesa_hash_table_insert_pre_hashed(struct hash_table *ht, uint32_t hash, 410 const void *key, void *data) 411{ 412 assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key)); 413 return hash_table_insert(ht, hash, key, data); 414} 415 416/** 417 * This function deletes the given hash table entry. 418 * 419 * Note that deletion doesn't otherwise modify the table, so an iteration over 420 * the table deleting entries is safe. 421 */ 422void 423_mesa_hash_table_remove(struct hash_table *ht, 424 struct hash_entry *entry) 425{ 426 if (!entry) 427 return; 428 429 entry->key = ht->deleted_key; 430 ht->entries--; 431 ht->deleted_entries++; 432} 433 434/** 435 * Removes the entry with the corresponding key, if exists. 436 */ 437void _mesa_hash_table_remove_key(struct hash_table *ht, 438 const void *key) 439{ 440 _mesa_hash_table_remove(ht, _mesa_hash_table_search(ht, key)); 441} 442 443/** 444 * This function is an iterator over the hash table. 445 * 446 * Pass in NULL for the first entry, as in the start of a for loop. Note that 447 * an iteration over the table is O(table_size) not O(entries). 448 */ 449struct hash_entry * 450_mesa_hash_table_next_entry(struct hash_table *ht, 451 struct hash_entry *entry) 452{ 453 if (entry == NULL) 454 entry = ht->table; 455 else 456 entry = entry + 1; 457 458 for (; entry != ht->table + ht->size; entry++) { 459 if (entry_is_present(ht, entry)) { 460 return entry; 461 } 462 } 463 464 return NULL; 465} 466 467/** 468 * Returns a random entry from the hash table. 469 * 470 * This may be useful in implementing random replacement (as opposed 471 * to just removing everything) in caches based on this hash table 472 * implementation. @predicate may be used to filter entries, or may 473 * be set to NULL for no filtering. 474 */ 475struct hash_entry * 476_mesa_hash_table_random_entry(struct hash_table *ht, 477 bool (*predicate)(struct hash_entry *entry)) 478{ 479 struct hash_entry *entry; 480 uint32_t i = rand() % ht->size; 481 482 if (ht->entries == 0) 483 return NULL; 484 485 for (entry = ht->table + i; entry != ht->table + ht->size; entry++) { 486 if (entry_is_present(ht, entry) && 487 (!predicate || predicate(entry))) { 488 return entry; 489 } 490 } 491 492 for (entry = ht->table; entry != ht->table + i; entry++) { 493 if (entry_is_present(ht, entry) && 494 (!predicate || predicate(entry))) { 495 return entry; 496 } 497 } 498 499 return NULL; 500} 501 502 503/** 504 * Quick FNV-1a hash implementation based on: 505 * http://www.isthe.com/chongo/tech/comp/fnv/ 506 * 507 * FNV-1a is not be the best hash out there -- Jenkins's lookup3 is supposed 508 * to be quite good, and it probably beats FNV. But FNV has the advantage 509 * that it involves almost no code. For an improvement on both, see Paul 510 * Hsieh's http://www.azillionmonkeys.com/qed/hash.html 511 */ 512uint32_t 513_mesa_hash_data(const void *data, size_t size) 514{ 515 return _mesa_fnv32_1a_accumulate_block(_mesa_fnv32_1a_offset_bias, 516 data, size); 517} 518 519/** FNV-1a string hash implementation */ 520uint32_t 521_mesa_hash_string(const void *_key) 522{ 523 uint32_t hash = _mesa_fnv32_1a_offset_bias; 524 const char *key = _key; 525 526 while (*key != 0) { 527 hash = _mesa_fnv32_1a_accumulate(hash, *key); 528 key++; 529 } 530 531 return hash; 532} 533 534/** 535 * String compare function for use as the comparison callback in 536 * _mesa_hash_table_create(). 537 */ 538bool 539_mesa_key_string_equal(const void *a, const void *b) 540{ 541 return strcmp(a, b) == 0; 542} 543 544bool 545_mesa_key_pointer_equal(const void *a, const void *b) 546{ 547 return a == b; 548} 549 550/** 551 * Helper to create a hash table with pointer keys. 552 */ 553struct hash_table * 554_mesa_pointer_hash_table_create(void *mem_ctx) 555{ 556 return _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer, 557 _mesa_key_pointer_equal); 558} 559 560/** 561 * Hash table wrapper which supports 64-bit keys. 562 * 563 * TODO: unify all hash table implementations. 564 */ 565 566struct hash_key_u64 { 567 uint64_t value; 568}; 569 570static uint32_t 571key_u64_hash(const void *key) 572{ 573 return _mesa_hash_data(key, sizeof(struct hash_key_u64)); 574} 575 576static bool 577key_u64_equals(const void *a, const void *b) 578{ 579 const struct hash_key_u64 *aa = a; 580 const struct hash_key_u64 *bb = b; 581 582 return aa->value == bb->value; 583} 584 585struct hash_table_u64 * 586_mesa_hash_table_u64_create(void *mem_ctx) 587{ 588 struct hash_table_u64 *ht; 589 590 ht = CALLOC_STRUCT(hash_table_u64); 591 if (!ht) 592 return NULL; 593 594 if (sizeof(void *) == 8) { 595 ht->table = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer, 596 _mesa_key_pointer_equal); 597 } else { 598 ht->table = _mesa_hash_table_create(mem_ctx, key_u64_hash, 599 key_u64_equals); 600 } 601 602 if (ht->table) 603 _mesa_hash_table_set_deleted_key(ht->table, uint_key(DELETED_KEY_VALUE)); 604 605 return ht; 606} 607 608void 609_mesa_hash_table_u64_destroy(struct hash_table_u64 *ht, 610 void (*delete_function)(struct hash_entry *entry)) 611{ 612 if (!ht) 613 return; 614 615 if (ht->deleted_key_data) { 616 if (delete_function) { 617 struct hash_table *table = ht->table; 618 struct hash_entry deleted_entry; 619 620 /* Create a fake entry for the delete function. */ 621 deleted_entry.hash = table->key_hash_function(table->deleted_key); 622 deleted_entry.key = table->deleted_key; 623 deleted_entry.data = ht->deleted_key_data; 624 625 delete_function(&deleted_entry); 626 } 627 ht->deleted_key_data = NULL; 628 } 629 630 _mesa_hash_table_destroy(ht->table, delete_function); 631 free(ht); 632} 633 634void 635_mesa_hash_table_u64_insert(struct hash_table_u64 *ht, uint64_t key, 636 void *data) 637{ 638 if (key == DELETED_KEY_VALUE) { 639 ht->deleted_key_data = data; 640 return; 641 } 642 643 if (sizeof(void *) == 8) { 644 _mesa_hash_table_insert(ht->table, (void *)(uintptr_t)key, data); 645 } else { 646 struct hash_key_u64 *_key = CALLOC_STRUCT(hash_key_u64); 647 648 if (!_key) 649 return; 650 _key->value = key; 651 652 _mesa_hash_table_insert(ht->table, _key, data); 653 } 654} 655 656static struct hash_entry * 657hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key) 658{ 659 if (sizeof(void *) == 8) { 660 return _mesa_hash_table_search(ht->table, (void *)(uintptr_t)key); 661 } else { 662 struct hash_key_u64 _key = { .value = key }; 663 return _mesa_hash_table_search(ht->table, &_key); 664 } 665} 666 667void * 668_mesa_hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key) 669{ 670 struct hash_entry *entry; 671 672 if (key == DELETED_KEY_VALUE) 673 return ht->deleted_key_data; 674 675 entry = hash_table_u64_search(ht, key); 676 if (!entry) 677 return NULL; 678 679 return entry->data; 680} 681 682void 683_mesa_hash_table_u64_remove(struct hash_table_u64 *ht, uint64_t key) 684{ 685 struct hash_entry *entry; 686 687 if (key == DELETED_KEY_VALUE) { 688 ht->deleted_key_data = NULL; 689 return; 690 } 691 692 entry = hash_table_u64_search(ht, key); 693 if (!entry) 694 return; 695 696 if (sizeof(void *) == 8) { 697 _mesa_hash_table_remove(ht->table, entry); 698 } else { 699 struct hash_key *_key = (struct hash_key *)entry->key; 700 701 _mesa_hash_table_remove(ht->table, entry); 702 free(_key); 703 } 704} 705