radv_meta_clear.c revision 7ec681f3
1/*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "nir/nir_builder.h"
25#include "radv_debug.h"
26#include "radv_meta.h"
27#include "radv_private.h"
28
29#include "util/format_rgb9e5.h"
30#include "vk_format.h"
31
32enum { DEPTH_CLEAR_SLOW, DEPTH_CLEAR_FAST };
33
34static void
35build_color_shaders(struct nir_shader **out_vs, struct nir_shader **out_fs, uint32_t frag_output)
36{
37   nir_builder vs_b =
38      nir_builder_init_simple_shader(MESA_SHADER_VERTEX, NULL, "meta_clear_color_vs");
39   nir_builder fs_b =
40      nir_builder_init_simple_shader(MESA_SHADER_FRAGMENT, NULL, "meta_clear_color_fs");
41
42   const struct glsl_type *position_type = glsl_vec4_type();
43   const struct glsl_type *color_type = glsl_vec4_type();
44
45   nir_variable *vs_out_pos =
46      nir_variable_create(vs_b.shader, nir_var_shader_out, position_type, "gl_Position");
47   vs_out_pos->data.location = VARYING_SLOT_POS;
48
49   nir_ssa_def *in_color_load =
50      nir_load_push_constant(&fs_b, 4, 32, nir_imm_int(&fs_b, 0), .range = 16);
51
52   nir_variable *fs_out_color =
53      nir_variable_create(fs_b.shader, nir_var_shader_out, color_type, "f_color");
54   fs_out_color->data.location = FRAG_RESULT_DATA0 + frag_output;
55
56   nir_store_var(&fs_b, fs_out_color, in_color_load, 0xf);
57
58   nir_ssa_def *outvec = radv_meta_gen_rect_vertices(&vs_b);
59   nir_store_var(&vs_b, vs_out_pos, outvec, 0xf);
60
61   const struct glsl_type *layer_type = glsl_int_type();
62   nir_variable *vs_out_layer =
63      nir_variable_create(vs_b.shader, nir_var_shader_out, layer_type, "v_layer");
64   vs_out_layer->data.location = VARYING_SLOT_LAYER;
65   vs_out_layer->data.interpolation = INTERP_MODE_FLAT;
66   nir_ssa_def *inst_id = nir_load_instance_id(&vs_b);
67   nir_ssa_def *base_instance = nir_load_base_instance(&vs_b);
68
69   nir_ssa_def *layer_id = nir_iadd(&vs_b, inst_id, base_instance);
70   nir_store_var(&vs_b, vs_out_layer, layer_id, 0x1);
71
72   *out_vs = vs_b.shader;
73   *out_fs = fs_b.shader;
74}
75
76static VkResult
77create_pipeline(struct radv_device *device, struct radv_render_pass *render_pass, uint32_t samples,
78                struct nir_shader *vs_nir, struct nir_shader *fs_nir,
79                const VkPipelineVertexInputStateCreateInfo *vi_state,
80                const VkPipelineDepthStencilStateCreateInfo *ds_state,
81                const VkPipelineColorBlendStateCreateInfo *cb_state, const VkPipelineLayout layout,
82                const struct radv_graphics_pipeline_create_info *extra,
83                const VkAllocationCallbacks *alloc, VkPipeline *pipeline)
84{
85   VkDevice device_h = radv_device_to_handle(device);
86   VkResult result;
87
88   result = radv_graphics_pipeline_create(
89      device_h, radv_pipeline_cache_to_handle(&device->meta_state.cache),
90      &(VkGraphicsPipelineCreateInfo){
91         .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
92         .stageCount = fs_nir ? 2 : 1,
93         .pStages =
94            (VkPipelineShaderStageCreateInfo[]){
95               {
96                  .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
97                  .stage = VK_SHADER_STAGE_VERTEX_BIT,
98                  .module = vk_shader_module_handle_from_nir(vs_nir),
99                  .pName = "main",
100               },
101               {
102                  .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
103                  .stage = VK_SHADER_STAGE_FRAGMENT_BIT,
104                  .module = vk_shader_module_handle_from_nir(fs_nir),
105                  .pName = "main",
106               },
107            },
108         .pVertexInputState = vi_state,
109         .pInputAssemblyState =
110            &(VkPipelineInputAssemblyStateCreateInfo){
111               .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
112               .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
113               .primitiveRestartEnable = false,
114            },
115         .pViewportState =
116            &(VkPipelineViewportStateCreateInfo){
117               .sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
118               .viewportCount = 1,
119               .scissorCount = 1,
120            },
121         .pRasterizationState =
122            &(VkPipelineRasterizationStateCreateInfo){
123               .sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
124               .rasterizerDiscardEnable = false,
125               .polygonMode = VK_POLYGON_MODE_FILL,
126               .cullMode = VK_CULL_MODE_NONE,
127               .frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE,
128               .depthBiasEnable = false,
129            },
130         .pMultisampleState =
131            &(VkPipelineMultisampleStateCreateInfo){
132               .sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
133               .rasterizationSamples = samples,
134               .sampleShadingEnable = false,
135               .pSampleMask = NULL,
136               .alphaToCoverageEnable = false,
137               .alphaToOneEnable = false,
138            },
139         .pDepthStencilState = ds_state,
140         .pColorBlendState = cb_state,
141         .pDynamicState =
142            &(VkPipelineDynamicStateCreateInfo){
143               /* The meta clear pipeline declares all state as dynamic.
144                * As a consequence, vkCmdBindPipeline writes no dynamic state
145                * to the cmd buffer. Therefore, at the end of the meta clear,
146                * we need only restore dynamic state was vkCmdSet.
147                */
148               .sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
149               .dynamicStateCount = 8,
150               .pDynamicStates =
151                  (VkDynamicState[]){
152                     /* Everything except stencil write mask */
153                     VK_DYNAMIC_STATE_VIEWPORT,
154                     VK_DYNAMIC_STATE_SCISSOR,
155                     VK_DYNAMIC_STATE_LINE_WIDTH,
156                     VK_DYNAMIC_STATE_DEPTH_BIAS,
157                     VK_DYNAMIC_STATE_BLEND_CONSTANTS,
158                     VK_DYNAMIC_STATE_DEPTH_BOUNDS,
159                     VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK,
160                     VK_DYNAMIC_STATE_STENCIL_REFERENCE,
161                  },
162            },
163         .layout = layout,
164         .flags = 0,
165         .renderPass = radv_render_pass_to_handle(render_pass),
166         .subpass = 0,
167      },
168      extra, alloc, pipeline);
169
170   ralloc_free(vs_nir);
171   ralloc_free(fs_nir);
172
173   return result;
174}
175
176static VkResult
177create_color_renderpass(struct radv_device *device, VkFormat vk_format, uint32_t samples,
178                        VkRenderPass *pass)
179{
180   mtx_lock(&device->meta_state.mtx);
181   if (*pass) {
182      mtx_unlock(&device->meta_state.mtx);
183      return VK_SUCCESS;
184   }
185
186   VkResult result = radv_CreateRenderPass2(
187      radv_device_to_handle(device),
188      &(VkRenderPassCreateInfo2){
189         .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2,
190         .attachmentCount = 1,
191         .pAttachments =
192            &(VkAttachmentDescription2){
193               .sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2,
194               .format = vk_format,
195               .samples = samples,
196               .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
197               .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
198               .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
199               .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
200            },
201         .subpassCount = 1,
202         .pSubpasses =
203            &(VkSubpassDescription2){
204               .sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2,
205               .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
206               .inputAttachmentCount = 0,
207               .colorAttachmentCount = 1,
208               .pColorAttachments =
209                  &(VkAttachmentReference2){
210                     .sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
211                     .attachment = 0,
212                     .layout = VK_IMAGE_LAYOUT_GENERAL,
213                  },
214               .pResolveAttachments = NULL,
215               .pDepthStencilAttachment =
216                  &(VkAttachmentReference2){
217                     .sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
218                     .attachment = VK_ATTACHMENT_UNUSED,
219                     .layout = VK_IMAGE_LAYOUT_GENERAL,
220                  },
221               .preserveAttachmentCount = 0,
222               .pPreserveAttachments = NULL,
223            },
224         .dependencyCount = 2,
225         .pDependencies =
226            (VkSubpassDependency2[]){{.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
227                                      .srcSubpass = VK_SUBPASS_EXTERNAL,
228                                      .dstSubpass = 0,
229                                      .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
230                                      .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
231                                      .srcAccessMask = 0,
232                                      .dstAccessMask = 0,
233                                      .dependencyFlags = 0},
234                                     {.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
235                                      .srcSubpass = 0,
236                                      .dstSubpass = VK_SUBPASS_EXTERNAL,
237                                      .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
238                                      .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
239                                      .srcAccessMask = 0,
240                                      .dstAccessMask = 0,
241                                      .dependencyFlags = 0}},
242      },
243      &device->meta_state.alloc, pass);
244   mtx_unlock(&device->meta_state.mtx);
245   return result;
246}
247
248static VkResult
249create_color_pipeline(struct radv_device *device, uint32_t samples, uint32_t frag_output,
250                      VkPipeline *pipeline, VkRenderPass pass)
251{
252   struct nir_shader *vs_nir;
253   struct nir_shader *fs_nir;
254   VkResult result;
255
256   mtx_lock(&device->meta_state.mtx);
257   if (*pipeline) {
258      mtx_unlock(&device->meta_state.mtx);
259      return VK_SUCCESS;
260   }
261
262   build_color_shaders(&vs_nir, &fs_nir, frag_output);
263
264   const VkPipelineVertexInputStateCreateInfo vi_state = {
265      .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
266      .vertexBindingDescriptionCount = 0,
267      .vertexAttributeDescriptionCount = 0,
268   };
269
270   const VkPipelineDepthStencilStateCreateInfo ds_state = {
271      .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
272      .depthTestEnable = false,
273      .depthWriteEnable = false,
274      .depthBoundsTestEnable = false,
275      .stencilTestEnable = false,
276   };
277
278   VkPipelineColorBlendAttachmentState blend_attachment_state[MAX_RTS] = {0};
279   blend_attachment_state[frag_output] = (VkPipelineColorBlendAttachmentState){
280      .blendEnable = false,
281      .colorWriteMask = VK_COLOR_COMPONENT_A_BIT | VK_COLOR_COMPONENT_R_BIT |
282                        VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT,
283   };
284
285   const VkPipelineColorBlendStateCreateInfo cb_state = {
286      .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
287      .logicOpEnable = false,
288      .attachmentCount = MAX_RTS,
289      .pAttachments = blend_attachment_state};
290
291   struct radv_graphics_pipeline_create_info extra = {
292      .use_rectlist = true,
293   };
294   result =
295      create_pipeline(device, radv_render_pass_from_handle(pass), samples, vs_nir, fs_nir,
296                      &vi_state, &ds_state, &cb_state, device->meta_state.clear_color_p_layout,
297                      &extra, &device->meta_state.alloc, pipeline);
298
299   mtx_unlock(&device->meta_state.mtx);
300   return result;
301}
302
303static void
304finish_meta_clear_htile_mask_state(struct radv_device *device)
305{
306   struct radv_meta_state *state = &device->meta_state;
307
308   radv_DestroyPipeline(radv_device_to_handle(device), state->clear_htile_mask_pipeline,
309                        &state->alloc);
310   radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_htile_mask_p_layout,
311                              &state->alloc);
312   radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->clear_htile_mask_ds_layout,
313                                   &state->alloc);
314}
315
316static void
317finish_meta_clear_dcc_comp_to_single_state(struct radv_device *device)
318{
319   struct radv_meta_state *state = &device->meta_state;
320
321   for (uint32_t i = 0; i < 2; i++) {
322      radv_DestroyPipeline(radv_device_to_handle(device),
323                           state->clear_dcc_comp_to_single_pipeline[i], &state->alloc);
324   }
325   radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_dcc_comp_to_single_p_layout,
326                              &state->alloc);
327   radv_DestroyDescriptorSetLayout(radv_device_to_handle(device), state->clear_dcc_comp_to_single_ds_layout,
328                                   &state->alloc);
329}
330
331void
332radv_device_finish_meta_clear_state(struct radv_device *device)
333{
334   struct radv_meta_state *state = &device->meta_state;
335
336   for (uint32_t i = 0; i < ARRAY_SIZE(state->clear); ++i) {
337      for (uint32_t j = 0; j < ARRAY_SIZE(state->clear[i].color_pipelines); ++j) {
338         radv_DestroyPipeline(radv_device_to_handle(device), state->clear[i].color_pipelines[j],
339                              &state->alloc);
340         radv_DestroyRenderPass(radv_device_to_handle(device), state->clear[i].render_pass[j],
341                                &state->alloc);
342      }
343
344      for (uint32_t j = 0; j < NUM_DEPTH_CLEAR_PIPELINES; j++) {
345         radv_DestroyPipeline(radv_device_to_handle(device), state->clear[i].depth_only_pipeline[j],
346                              &state->alloc);
347         radv_DestroyPipeline(radv_device_to_handle(device),
348                              state->clear[i].stencil_only_pipeline[j], &state->alloc);
349         radv_DestroyPipeline(radv_device_to_handle(device),
350                              state->clear[i].depthstencil_pipeline[j], &state->alloc);
351
352         radv_DestroyPipeline(radv_device_to_handle(device),
353                              state->clear[i].depth_only_unrestricted_pipeline[j], &state->alloc);
354         radv_DestroyPipeline(radv_device_to_handle(device),
355                              state->clear[i].stencil_only_unrestricted_pipeline[j], &state->alloc);
356         radv_DestroyPipeline(radv_device_to_handle(device),
357                              state->clear[i].depthstencil_unrestricted_pipeline[j], &state->alloc);
358      }
359      radv_DestroyRenderPass(radv_device_to_handle(device), state->clear[i].depthstencil_rp,
360                             &state->alloc);
361   }
362   radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_color_p_layout,
363                              &state->alloc);
364   radv_DestroyPipelineLayout(radv_device_to_handle(device), state->clear_depth_p_layout,
365                              &state->alloc);
366   radv_DestroyPipelineLayout(radv_device_to_handle(device),
367                              state->clear_depth_unrestricted_p_layout, &state->alloc);
368
369   finish_meta_clear_htile_mask_state(device);
370   finish_meta_clear_dcc_comp_to_single_state(device);
371}
372
373static void
374emit_color_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att,
375                 const VkClearRect *clear_rect, uint32_t view_mask)
376{
377   struct radv_device *device = cmd_buffer->device;
378   const struct radv_subpass *subpass = cmd_buffer->state.subpass;
379   const uint32_t subpass_att = clear_att->colorAttachment;
380   const uint32_t pass_att = subpass->color_attachments[subpass_att].attachment;
381   const struct radv_image_view *iview =
382      cmd_buffer->state.attachments ? cmd_buffer->state.attachments[pass_att].iview : NULL;
383   uint32_t samples, samples_log2;
384   VkFormat format;
385   unsigned fs_key;
386   VkClearColorValue clear_value = clear_att->clearValue.color;
387   VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
388   VkPipeline pipeline;
389
390   /* When a framebuffer is bound to the current command buffer, get the
391    * number of samples from it. Otherwise, get the number of samples from
392    * the render pass because it's likely a secondary command buffer.
393    */
394   if (iview) {
395      samples = iview->image->info.samples;
396      format = iview->vk_format;
397   } else {
398      samples = cmd_buffer->state.pass->attachments[pass_att].samples;
399      format = cmd_buffer->state.pass->attachments[pass_att].format;
400   }
401
402   samples_log2 = ffs(samples) - 1;
403   fs_key = radv_format_meta_fs_key(device, format);
404   assert(fs_key != -1);
405
406   if (device->meta_state.clear[samples_log2].render_pass[fs_key] == VK_NULL_HANDLE) {
407      VkResult ret =
408         create_color_renderpass(device, radv_fs_key_format_exemplars[fs_key], samples,
409                                 &device->meta_state.clear[samples_log2].render_pass[fs_key]);
410      if (ret != VK_SUCCESS) {
411         cmd_buffer->record_result = ret;
412         return;
413      }
414   }
415
416   if (device->meta_state.clear[samples_log2].color_pipelines[fs_key] == VK_NULL_HANDLE) {
417      VkResult ret = create_color_pipeline(
418         device, samples, 0, &device->meta_state.clear[samples_log2].color_pipelines[fs_key],
419         device->meta_state.clear[samples_log2].render_pass[fs_key]);
420      if (ret != VK_SUCCESS) {
421         cmd_buffer->record_result = ret;
422         return;
423      }
424   }
425
426   pipeline = device->meta_state.clear[samples_log2].color_pipelines[fs_key];
427
428   assert(samples_log2 < ARRAY_SIZE(device->meta_state.clear));
429   assert(pipeline);
430   assert(clear_att->aspectMask == VK_IMAGE_ASPECT_COLOR_BIT);
431   assert(clear_att->colorAttachment < subpass->color_count);
432
433   radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
434                         device->meta_state.clear_color_p_layout, VK_SHADER_STAGE_FRAGMENT_BIT, 0,
435                         16, &clear_value);
436
437   struct radv_subpass clear_subpass = {
438      .color_count = 1,
439      .color_attachments =
440         (struct radv_subpass_attachment[]){subpass->color_attachments[clear_att->colorAttachment]},
441      .depth_stencil_attachment = NULL,
442   };
443
444   radv_cmd_buffer_set_subpass(cmd_buffer, &clear_subpass);
445
446   radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
447
448   radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
449                       &(VkViewport){.x = clear_rect->rect.offset.x,
450                                     .y = clear_rect->rect.offset.y,
451                                     .width = clear_rect->rect.extent.width,
452                                     .height = clear_rect->rect.extent.height,
453                                     .minDepth = 0.0f,
454                                     .maxDepth = 1.0f});
455
456   radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &clear_rect->rect);
457
458   if (view_mask) {
459      u_foreach_bit(i, view_mask) radv_CmdDraw(cmd_buffer_h, 3, 1, 0, i);
460   } else {
461      radv_CmdDraw(cmd_buffer_h, 3, clear_rect->layerCount, 0, clear_rect->baseArrayLayer);
462   }
463
464   radv_cmd_buffer_restore_subpass(cmd_buffer, subpass);
465}
466
467static void
468build_depthstencil_shader(struct nir_shader **out_vs, struct nir_shader **out_fs, bool unrestricted)
469{
470   nir_builder vs_b = nir_builder_init_simple_shader(
471      MESA_SHADER_VERTEX, NULL,
472      unrestricted ? "meta_clear_depthstencil_unrestricted_vs" : "meta_clear_depthstencil_vs");
473   nir_builder fs_b = nir_builder_init_simple_shader(
474      MESA_SHADER_FRAGMENT, NULL,
475      unrestricted ? "meta_clear_depthstencil_unrestricted_fs" : "meta_clear_depthstencil_fs");
476
477   const struct glsl_type *position_out_type = glsl_vec4_type();
478
479   nir_variable *vs_out_pos =
480      nir_variable_create(vs_b.shader, nir_var_shader_out, position_out_type, "gl_Position");
481   vs_out_pos->data.location = VARYING_SLOT_POS;
482
483   nir_ssa_def *z;
484   if (unrestricted) {
485      nir_ssa_def *in_color_load =
486         nir_load_push_constant(&fs_b, 1, 32, nir_imm_int(&fs_b, 0), .range = 4);
487
488      nir_variable *fs_out_depth =
489         nir_variable_create(fs_b.shader, nir_var_shader_out, glsl_int_type(), "f_depth");
490      fs_out_depth->data.location = FRAG_RESULT_DEPTH;
491      nir_store_var(&fs_b, fs_out_depth, in_color_load, 0x1);
492
493      z = nir_imm_float(&vs_b, 0.0);
494   } else {
495      z = nir_load_push_constant(&vs_b, 1, 32, nir_imm_int(&vs_b, 0), .range = 4);
496   }
497
498   nir_ssa_def *outvec = radv_meta_gen_rect_vertices_comp2(&vs_b, z);
499   nir_store_var(&vs_b, vs_out_pos, outvec, 0xf);
500
501   const struct glsl_type *layer_type = glsl_int_type();
502   nir_variable *vs_out_layer =
503      nir_variable_create(vs_b.shader, nir_var_shader_out, layer_type, "v_layer");
504   vs_out_layer->data.location = VARYING_SLOT_LAYER;
505   vs_out_layer->data.interpolation = INTERP_MODE_FLAT;
506   nir_ssa_def *inst_id = nir_load_instance_id(&vs_b);
507   nir_ssa_def *base_instance = nir_load_base_instance(&vs_b);
508
509   nir_ssa_def *layer_id = nir_iadd(&vs_b, inst_id, base_instance);
510   nir_store_var(&vs_b, vs_out_layer, layer_id, 0x1);
511
512   *out_vs = vs_b.shader;
513   *out_fs = fs_b.shader;
514}
515
516static VkResult
517create_depthstencil_renderpass(struct radv_device *device, uint32_t samples,
518                               VkRenderPass *render_pass)
519{
520   mtx_lock(&device->meta_state.mtx);
521   if (*render_pass) {
522      mtx_unlock(&device->meta_state.mtx);
523      return VK_SUCCESS;
524   }
525
526   VkResult result = radv_CreateRenderPass2(
527      radv_device_to_handle(device),
528      &(VkRenderPassCreateInfo2){
529         .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2,
530         .attachmentCount = 1,
531         .pAttachments =
532            &(VkAttachmentDescription2){
533               .sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2,
534               .format = VK_FORMAT_D32_SFLOAT_S8_UINT,
535               .samples = samples,
536               .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
537               .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
538               .initialLayout = VK_IMAGE_LAYOUT_GENERAL,
539               .finalLayout = VK_IMAGE_LAYOUT_GENERAL,
540            },
541         .subpassCount = 1,
542         .pSubpasses =
543            &(VkSubpassDescription2){
544               .sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2,
545               .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
546               .inputAttachmentCount = 0,
547               .colorAttachmentCount = 0,
548               .pColorAttachments = NULL,
549               .pResolveAttachments = NULL,
550               .pDepthStencilAttachment =
551                  &(VkAttachmentReference2){
552                     .sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
553                     .attachment = 0,
554                     .layout = VK_IMAGE_LAYOUT_GENERAL,
555                  },
556               .preserveAttachmentCount = 0,
557               .pPreserveAttachments = NULL,
558            },
559         .dependencyCount = 2,
560         .pDependencies =
561            (VkSubpassDependency2[]){{.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
562                                      .srcSubpass = VK_SUBPASS_EXTERNAL,
563                                      .dstSubpass = 0,
564                                      .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
565                                      .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
566                                      .srcAccessMask = 0,
567                                      .dstAccessMask = 0,
568                                      .dependencyFlags = 0},
569                                     {.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
570                                      .srcSubpass = 0,
571                                      .dstSubpass = VK_SUBPASS_EXTERNAL,
572                                      .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
573                                      .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
574                                      .srcAccessMask = 0,
575                                      .dstAccessMask = 0,
576                                      .dependencyFlags = 0}}},
577      &device->meta_state.alloc, render_pass);
578   mtx_unlock(&device->meta_state.mtx);
579   return result;
580}
581
582static VkResult
583create_depthstencil_pipeline(struct radv_device *device, VkImageAspectFlags aspects,
584                             uint32_t samples, int index, bool unrestricted, VkPipeline *pipeline,
585                             VkRenderPass render_pass)
586{
587   struct nir_shader *vs_nir, *fs_nir;
588   VkResult result;
589
590   mtx_lock(&device->meta_state.mtx);
591   if (*pipeline) {
592      mtx_unlock(&device->meta_state.mtx);
593      return VK_SUCCESS;
594   }
595
596   build_depthstencil_shader(&vs_nir, &fs_nir, unrestricted);
597
598   const VkPipelineVertexInputStateCreateInfo vi_state = {
599      .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
600      .vertexBindingDescriptionCount = 0,
601      .vertexAttributeDescriptionCount = 0,
602   };
603
604   const VkPipelineDepthStencilStateCreateInfo ds_state = {
605      .sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
606      .depthTestEnable = !!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT),
607      .depthCompareOp = VK_COMPARE_OP_ALWAYS,
608      .depthWriteEnable = !!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT),
609      .depthBoundsTestEnable = false,
610      .stencilTestEnable = !!(aspects & VK_IMAGE_ASPECT_STENCIL_BIT),
611      .front =
612         {
613            .passOp = VK_STENCIL_OP_REPLACE,
614            .compareOp = VK_COMPARE_OP_ALWAYS,
615            .writeMask = UINT32_MAX,
616            .reference = 0, /* dynamic */
617         },
618      .back = {0 /* dont care */},
619   };
620
621   const VkPipelineColorBlendStateCreateInfo cb_state = {
622      .sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
623      .logicOpEnable = false,
624      .attachmentCount = 0,
625      .pAttachments = NULL,
626   };
627
628   struct radv_graphics_pipeline_create_info extra = {
629      .use_rectlist = true,
630   };
631
632   if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
633      extra.db_depth_clear = index == DEPTH_CLEAR_SLOW ? false : true;
634   }
635   if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
636      extra.db_stencil_clear = index == DEPTH_CLEAR_SLOW ? false : true;
637   }
638   result =
639      create_pipeline(device, radv_render_pass_from_handle(render_pass), samples, vs_nir, fs_nir,
640                      &vi_state, &ds_state, &cb_state, device->meta_state.clear_depth_p_layout,
641                      &extra, &device->meta_state.alloc, pipeline);
642
643   mtx_unlock(&device->meta_state.mtx);
644   return result;
645}
646
647static bool
648depth_view_can_fast_clear(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
649                          VkImageAspectFlags aspects, VkImageLayout layout, bool in_render_loop,
650                          const VkClearRect *clear_rect, VkClearDepthStencilValue clear_value)
651{
652   if (!iview)
653      return false;
654
655   uint32_t queue_mask = radv_image_queue_family_mask(iview->image, cmd_buffer->queue_family_index,
656                                                      cmd_buffer->queue_family_index);
657   if (clear_rect->rect.offset.x || clear_rect->rect.offset.y ||
658       clear_rect->rect.extent.width != iview->extent.width ||
659       clear_rect->rect.extent.height != iview->extent.height)
660      return false;
661   if (radv_image_is_tc_compat_htile(iview->image) &&
662       (((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && clear_value.depth != 0.0 &&
663         clear_value.depth != 1.0) ||
664        ((aspects & VK_IMAGE_ASPECT_STENCIL_BIT) && clear_value.stencil != 0)))
665      return false;
666   if (radv_htile_enabled(iview->image, iview->base_mip) && iview->base_mip == 0 &&
667       iview->base_layer == 0 && iview->layer_count == iview->image->info.array_size &&
668       radv_layout_is_htile_compressed(cmd_buffer->device, iview->image, layout, in_render_loop,
669                                       queue_mask) &&
670       radv_image_extent_compare(iview->image, &iview->extent))
671      return true;
672   return false;
673}
674
675static VkPipeline
676pick_depthstencil_pipeline(struct radv_cmd_buffer *cmd_buffer, struct radv_meta_state *meta_state,
677                           const struct radv_image_view *iview, int samples_log2,
678                           VkImageAspectFlags aspects, VkImageLayout layout, bool in_render_loop,
679                           const VkClearRect *clear_rect, VkClearDepthStencilValue clear_value)
680{
681   bool fast = depth_view_can_fast_clear(cmd_buffer, iview, aspects, layout, in_render_loop,
682                                         clear_rect, clear_value);
683   bool unrestricted = cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted;
684   int index = fast ? DEPTH_CLEAR_FAST : DEPTH_CLEAR_SLOW;
685   VkPipeline *pipeline;
686
687   switch (aspects) {
688   case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
689      pipeline = unrestricted
690                    ? &meta_state->clear[samples_log2].depthstencil_unrestricted_pipeline[index]
691                    : &meta_state->clear[samples_log2].depthstencil_pipeline[index];
692      break;
693   case VK_IMAGE_ASPECT_DEPTH_BIT:
694      pipeline = unrestricted
695                    ? &meta_state->clear[samples_log2].depth_only_unrestricted_pipeline[index]
696                    : &meta_state->clear[samples_log2].depth_only_pipeline[index];
697      break;
698   case VK_IMAGE_ASPECT_STENCIL_BIT:
699      pipeline = unrestricted
700                    ? &meta_state->clear[samples_log2].stencil_only_unrestricted_pipeline[index]
701                    : &meta_state->clear[samples_log2].stencil_only_pipeline[index];
702      break;
703   default:
704      unreachable("expected depth or stencil aspect");
705   }
706
707   if (cmd_buffer->device->meta_state.clear[samples_log2].depthstencil_rp == VK_NULL_HANDLE) {
708      VkResult ret = create_depthstencil_renderpass(
709         cmd_buffer->device, 1u << samples_log2,
710         &cmd_buffer->device->meta_state.clear[samples_log2].depthstencil_rp);
711      if (ret != VK_SUCCESS) {
712         cmd_buffer->record_result = ret;
713         return VK_NULL_HANDLE;
714      }
715   }
716
717   if (*pipeline == VK_NULL_HANDLE) {
718      VkResult ret = create_depthstencil_pipeline(
719         cmd_buffer->device, aspects, 1u << samples_log2, index, unrestricted, pipeline,
720         cmd_buffer->device->meta_state.clear[samples_log2].depthstencil_rp);
721      if (ret != VK_SUCCESS) {
722         cmd_buffer->record_result = ret;
723         return VK_NULL_HANDLE;
724      }
725   }
726   return *pipeline;
727}
728
729static void
730emit_depthstencil_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att,
731                        const VkClearRect *clear_rect, struct radv_subpass_attachment *ds_att,
732                        uint32_t view_mask)
733{
734   struct radv_device *device = cmd_buffer->device;
735   struct radv_meta_state *meta_state = &device->meta_state;
736   const struct radv_subpass *subpass = cmd_buffer->state.subpass;
737   const uint32_t pass_att = ds_att->attachment;
738   VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil;
739   VkImageAspectFlags aspects = clear_att->aspectMask;
740   const struct radv_image_view *iview =
741      cmd_buffer->state.attachments ? cmd_buffer->state.attachments[pass_att].iview : NULL;
742   uint32_t samples, samples_log2;
743   VkCommandBuffer cmd_buffer_h = radv_cmd_buffer_to_handle(cmd_buffer);
744
745   /* When a framebuffer is bound to the current command buffer, get the
746    * number of samples from it. Otherwise, get the number of samples from
747    * the render pass because it's likely a secondary command buffer.
748    */
749   if (iview) {
750      samples = iview->image->info.samples;
751   } else {
752      samples = cmd_buffer->state.pass->attachments[pass_att].samples;
753   }
754
755   samples_log2 = ffs(samples) - 1;
756
757   assert(pass_att != VK_ATTACHMENT_UNUSED);
758
759   if (!(aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
760      clear_value.depth = 1.0f;
761
762   if (cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted) {
763      radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
764                            device->meta_state.clear_depth_unrestricted_p_layout,
765                            VK_SHADER_STAGE_FRAGMENT_BIT, 0, 4, &clear_value.depth);
766   } else {
767      radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
768                            device->meta_state.clear_depth_p_layout, VK_SHADER_STAGE_VERTEX_BIT, 0,
769                            4, &clear_value.depth);
770   }
771
772   uint32_t prev_reference = cmd_buffer->state.dynamic.stencil_reference.front;
773   if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
774      radv_CmdSetStencilReference(cmd_buffer_h, VK_STENCIL_FACE_FRONT_BIT, clear_value.stencil);
775   }
776
777   VkPipeline pipeline =
778      pick_depthstencil_pipeline(cmd_buffer, meta_state, iview, samples_log2, aspects,
779                                 ds_att->layout, ds_att->in_render_loop, clear_rect, clear_value);
780   if (!pipeline)
781      return;
782
783   struct radv_subpass clear_subpass = {
784      .color_count = 0,
785      .color_attachments = NULL,
786      .depth_stencil_attachment = ds_att,
787   };
788
789   radv_cmd_buffer_set_subpass(cmd_buffer, &clear_subpass);
790
791   radv_CmdBindPipeline(cmd_buffer_h, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
792
793   if (depth_view_can_fast_clear(cmd_buffer, iview, aspects, ds_att->layout, ds_att->in_render_loop,
794                                 clear_rect, clear_value))
795      radv_update_ds_clear_metadata(cmd_buffer, iview, clear_value, aspects);
796
797   radv_CmdSetViewport(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1,
798                       &(VkViewport){.x = clear_rect->rect.offset.x,
799                                     .y = clear_rect->rect.offset.y,
800                                     .width = clear_rect->rect.extent.width,
801                                     .height = clear_rect->rect.extent.height,
802                                     .minDepth = 0.0f,
803                                     .maxDepth = 1.0f});
804
805   radv_CmdSetScissor(radv_cmd_buffer_to_handle(cmd_buffer), 0, 1, &clear_rect->rect);
806
807   if (view_mask) {
808      u_foreach_bit(i, view_mask) radv_CmdDraw(cmd_buffer_h, 3, 1, 0, i);
809   } else {
810      radv_CmdDraw(cmd_buffer_h, 3, clear_rect->layerCount, 0, clear_rect->baseArrayLayer);
811   }
812
813   if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
814      radv_CmdSetStencilReference(cmd_buffer_h, VK_STENCIL_FACE_FRONT_BIT, prev_reference);
815   }
816
817   radv_cmd_buffer_restore_subpass(cmd_buffer, subpass);
818}
819
820static uint32_t
821clear_htile_mask(struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image,
822                 struct radeon_winsys_bo *bo, uint64_t offset, uint64_t size, uint32_t htile_value,
823                 uint32_t htile_mask)
824{
825   struct radv_device *device = cmd_buffer->device;
826   struct radv_meta_state *state = &device->meta_state;
827   uint64_t block_count = round_up_u64(size, 1024);
828   struct radv_meta_saved_state saved_state;
829   struct radv_buffer dst_buffer;
830
831   radv_meta_save(
832      &saved_state, cmd_buffer,
833      RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS);
834
835   radv_buffer_init(&dst_buffer, device, bo, size, offset);
836
837   radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
838                        state->clear_htile_mask_pipeline);
839
840   radv_meta_push_descriptor_set(
841      cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, state->clear_htile_mask_p_layout, 0, /* set */
842      1, /* descriptorWriteCount */
843      (VkWriteDescriptorSet[]){
844         {.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
845          .dstBinding = 0,
846          .dstArrayElement = 0,
847          .descriptorCount = 1,
848          .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
849          .pBufferInfo = &(VkDescriptorBufferInfo){.buffer = radv_buffer_to_handle(&dst_buffer),
850                                                   .offset = 0,
851                                                   .range = size}}});
852
853   const unsigned constants[2] = {
854      htile_value & htile_mask,
855      ~htile_mask,
856   };
857
858   radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer), state->clear_htile_mask_p_layout,
859                         VK_SHADER_STAGE_COMPUTE_BIT, 0, 8, constants);
860
861   radv_CmdDispatch(radv_cmd_buffer_to_handle(cmd_buffer), block_count, 1, 1);
862
863   radv_buffer_finish(&dst_buffer);
864
865   radv_meta_restore(&saved_state, cmd_buffer);
866
867   return RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
868          radv_src_access_flush(cmd_buffer, VK_ACCESS_SHADER_WRITE_BIT, image);
869}
870
871static uint32_t
872radv_get_htile_fast_clear_value(const struct radv_device *device, const struct radv_image *image,
873                                VkClearDepthStencilValue value)
874{
875   uint32_t max_zval = 0x3fff; /* maximum 14-bit value. */
876   uint32_t zmask = 0, smem = 0;
877   uint32_t htile_value;
878   uint32_t zmin, zmax;
879
880   /* Convert the depth value to 14-bit zmin/zmax values. */
881   zmin = lroundf(value.depth * max_zval);
882   zmax = zmin;
883
884   if (radv_image_tile_stencil_disabled(device, image)) {
885      /* Z only (no stencil):
886       *
887       * |31     18|17      4|3     0|
888       * +---------+---------+-------+
889       * |  Max Z  |  Min Z  | ZMask |
890       */
891      htile_value = (((zmax  & 0x3fff) << 18) |
892                     ((zmin  & 0x3fff) <<  4) |
893                     ((zmask &    0xf) <<  0));
894   } else {
895
896      /* Z and stencil:
897       *
898       * |31       12|11 10|9    8|7   6|5   4|3     0|
899       * +-----------+-----+------+-----+-----+-------+
900       * |  Z Range  |     | SMem | SR1 | SR0 | ZMask |
901       *
902       * Z, stencil, 4 bit VRS encoding:
903       * |31       12| 11      10 |9    8|7         6 |5   4|3     0|
904       * +-----------+------------+------+------------+-----+-------+
905       * |  Z Range  | VRS Y-rate | SMem | VRS X-rate | SR0 | ZMask |
906       */
907      uint32_t delta = 0;
908      uint32_t zrange = ((zmax << 6) | delta);
909      uint32_t sresults = 0xf; /* SR0/SR1 both as 0x3. */
910
911      if (radv_image_has_vrs_htile(device, image))
912         sresults = 0x3;
913
914      htile_value = (((zrange   & 0xfffff) << 12) |
915                     ((smem     & 0x3)     <<  8) |
916                     ((sresults & 0xf)     <<  4) |
917                     ((zmask    & 0xf)     <<  0));
918   }
919
920   return htile_value;
921}
922
923static uint32_t
924radv_get_htile_mask(const struct radv_device *device, const struct radv_image *image,
925                    VkImageAspectFlags aspects)
926{
927   uint32_t mask = 0;
928
929   if (radv_image_tile_stencil_disabled(device, image)) {
930      /* All the HTILE buffer is used when there is no stencil. */
931      mask = UINT32_MAX;
932   } else {
933      if (aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
934         mask |= 0xfffffc0f;
935      if (aspects & VK_IMAGE_ASPECT_STENCIL_BIT)
936         mask |= 0x000003f0;
937   }
938
939   return mask;
940}
941
942static bool
943radv_is_fast_clear_depth_allowed(VkClearDepthStencilValue value)
944{
945   return value.depth == 1.0f || value.depth == 0.0f;
946}
947
948static bool
949radv_is_fast_clear_stencil_allowed(VkClearDepthStencilValue value)
950{
951   return value.stencil == 0;
952}
953
954static bool
955radv_can_fast_clear_depth(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
956                          VkImageLayout image_layout, bool in_render_loop,
957                          VkImageAspectFlags aspects, const VkClearRect *clear_rect,
958                          const VkClearDepthStencilValue clear_value, uint32_t view_mask)
959{
960   if (!iview || !iview->support_fast_clear)
961      return false;
962
963   if (!radv_layout_is_htile_compressed(
964          cmd_buffer->device, iview->image, image_layout, in_render_loop,
965          radv_image_queue_family_mask(iview->image, cmd_buffer->queue_family_index,
966                                       cmd_buffer->queue_family_index)))
967      return false;
968
969   if (clear_rect->rect.offset.x || clear_rect->rect.offset.y ||
970       clear_rect->rect.extent.width != iview->image->info.width ||
971       clear_rect->rect.extent.height != iview->image->info.height)
972      return false;
973
974   if (view_mask && (iview->image->info.array_size >= 32 ||
975                     (1u << iview->image->info.array_size) - 1u != view_mask))
976      return false;
977   if (!view_mask && clear_rect->baseArrayLayer != 0)
978      return false;
979   if (!view_mask && clear_rect->layerCount != iview->image->info.array_size)
980      return false;
981
982   if (cmd_buffer->device->vk.enabled_extensions.EXT_depth_range_unrestricted &&
983       (aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
984       (clear_value.depth < 0.0 || clear_value.depth > 1.0))
985      return false;
986
987   if (radv_image_is_tc_compat_htile(iview->image) &&
988       (((aspects & VK_IMAGE_ASPECT_DEPTH_BIT) && !radv_is_fast_clear_depth_allowed(clear_value)) ||
989        ((aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
990         !radv_is_fast_clear_stencil_allowed(clear_value))))
991      return false;
992
993   if (iview->image->info.levels > 1) {
994      uint32_t last_level = iview->base_mip + iview->level_count - 1;
995      if (last_level >= iview->image->planes[0].surface.num_meta_levels) {
996         /* Do not fast clears if one level can't be fast cleared. */
997         return false;
998      }
999   }
1000
1001   return true;
1002}
1003
1004static void
1005radv_fast_clear_depth(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
1006                      const VkClearAttachment *clear_att, enum radv_cmd_flush_bits *pre_flush,
1007                      enum radv_cmd_flush_bits *post_flush)
1008{
1009   VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil;
1010   VkImageAspectFlags aspects = clear_att->aspectMask;
1011   uint32_t clear_word, flush_bits;
1012
1013   clear_word = radv_get_htile_fast_clear_value(cmd_buffer->device, iview->image, clear_value);
1014
1015   if (pre_flush) {
1016      enum radv_cmd_flush_bits bits =
1017         radv_src_access_flush(cmd_buffer, VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
1018                               iview->image) |
1019         radv_dst_access_flush(cmd_buffer, VK_ACCESS_SHADER_WRITE_BIT |
1020                                           VK_ACCESS_SHADER_READ_BIT, iview->image);
1021      cmd_buffer->state.flush_bits |= bits & ~*pre_flush;
1022      *pre_flush |= cmd_buffer->state.flush_bits;
1023   }
1024
1025   VkImageSubresourceRange range = {
1026      .aspectMask = aspects,
1027      .baseMipLevel = iview->base_mip,
1028      .levelCount = iview->level_count,
1029      .baseArrayLayer = iview->base_layer,
1030      .layerCount = iview->layer_count,
1031   };
1032
1033   flush_bits = radv_clear_htile(cmd_buffer, iview->image, &range, clear_word);
1034
1035   if (iview->image->planes[0].surface.has_stencil &&
1036       !(aspects == (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT))) {
1037      /* Synchronize after performing a depth-only or a stencil-only
1038       * fast clear because the driver uses an optimized path which
1039       * performs a read-modify-write operation, and the two separate
1040       * aspects might use the same HTILE memory.
1041       */
1042      cmd_buffer->state.flush_bits |= flush_bits;
1043   }
1044
1045   radv_update_ds_clear_metadata(cmd_buffer, iview, clear_value, aspects);
1046   if (post_flush) {
1047      *post_flush |= flush_bits;
1048   }
1049}
1050
1051static nir_shader *
1052build_clear_htile_mask_shader()
1053{
1054   nir_builder b =
1055      nir_builder_init_simple_shader(MESA_SHADER_COMPUTE, NULL, "meta_clear_htile_mask");
1056   b.shader->info.workgroup_size[0] = 64;
1057   b.shader->info.workgroup_size[1] = 1;
1058   b.shader->info.workgroup_size[2] = 1;
1059
1060   nir_ssa_def *global_id = get_global_ids(&b, 1);
1061
1062   nir_ssa_def *offset = nir_imul(&b, global_id, nir_imm_int(&b, 16));
1063   offset = nir_channel(&b, offset, 0);
1064
1065   nir_ssa_def *buf = radv_meta_load_descriptor(&b, 0, 0);
1066
1067   nir_ssa_def *constants = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), .range = 8);
1068
1069   nir_ssa_def *load = nir_load_ssbo(&b, 4, 32, buf, offset, .align_mul = 16);
1070
1071   /* data = (data & ~htile_mask) | (htile_value & htile_mask) */
1072   nir_ssa_def *data = nir_iand(&b, load, nir_channel(&b, constants, 1));
1073   data = nir_ior(&b, data, nir_channel(&b, constants, 0));
1074
1075   nir_store_ssbo(&b, data, buf, offset, .write_mask = 0xf, .access = ACCESS_NON_READABLE,
1076                  .align_mul = 16);
1077
1078   return b.shader;
1079}
1080
1081static VkResult
1082init_meta_clear_htile_mask_state(struct radv_device *device)
1083{
1084   struct radv_meta_state *state = &device->meta_state;
1085   VkResult result;
1086   nir_shader *cs = build_clear_htile_mask_shader();
1087
1088   VkDescriptorSetLayoutCreateInfo ds_layout_info = {
1089      .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
1090      .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
1091      .bindingCount = 1,
1092      .pBindings = (VkDescriptorSetLayoutBinding[]){
1093         {.binding = 0,
1094          .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
1095          .descriptorCount = 1,
1096          .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
1097          .pImmutableSamplers = NULL},
1098      }};
1099
1100   result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_layout_info,
1101                                           &state->alloc, &state->clear_htile_mask_ds_layout);
1102   if (result != VK_SUCCESS)
1103      goto fail;
1104
1105   VkPipelineLayoutCreateInfo p_layout_info = {
1106      .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
1107      .setLayoutCount = 1,
1108      .pSetLayouts = &state->clear_htile_mask_ds_layout,
1109      .pushConstantRangeCount = 1,
1110      .pPushConstantRanges =
1111         &(VkPushConstantRange){
1112            VK_SHADER_STAGE_COMPUTE_BIT,
1113            0,
1114            8,
1115         },
1116   };
1117
1118   result = radv_CreatePipelineLayout(radv_device_to_handle(device), &p_layout_info, &state->alloc,
1119                                      &state->clear_htile_mask_p_layout);
1120   if (result != VK_SUCCESS)
1121      goto fail;
1122
1123   VkPipelineShaderStageCreateInfo shader_stage = {
1124      .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
1125      .stage = VK_SHADER_STAGE_COMPUTE_BIT,
1126      .module = vk_shader_module_handle_from_nir(cs),
1127      .pName = "main",
1128      .pSpecializationInfo = NULL,
1129   };
1130
1131   VkComputePipelineCreateInfo pipeline_info = {
1132      .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
1133      .stage = shader_stage,
1134      .flags = 0,
1135      .layout = state->clear_htile_mask_p_layout,
1136   };
1137
1138   result = radv_CreateComputePipelines(radv_device_to_handle(device),
1139                                        radv_pipeline_cache_to_handle(&state->cache), 1,
1140                                        &pipeline_info, NULL, &state->clear_htile_mask_pipeline);
1141
1142   ralloc_free(cs);
1143   return result;
1144fail:
1145   ralloc_free(cs);
1146   return result;
1147}
1148
1149/* Clear DCC using comp-to-single by storing the clear value at the beginning of every 256B block.
1150 * For MSAA images, clearing the first sample should be enough as long as CMASK is also cleared.
1151 */
1152static nir_shader *
1153build_clear_dcc_comp_to_single_shader(bool is_msaa)
1154{
1155   enum glsl_sampler_dim dim = is_msaa ? GLSL_SAMPLER_DIM_MS : GLSL_SAMPLER_DIM_2D;
1156   const struct glsl_type *img_type = glsl_image_type(dim, true, GLSL_TYPE_FLOAT);
1157
1158   nir_builder b =
1159      nir_builder_init_simple_shader(MESA_SHADER_COMPUTE, NULL, "meta_clear_dcc_comp_to_single-%s",
1160                                     is_msaa ? "multisampled" : "singlesampled");
1161   b.shader->info.workgroup_size[0] = 8;
1162   b.shader->info.workgroup_size[1] = 8;
1163   b.shader->info.workgroup_size[2] = 1;
1164
1165   nir_ssa_def *global_id = get_global_ids(&b, 3);
1166
1167   /* Load the dimensions in pixels of a block that gets compressed to one DCC byte. */
1168   nir_ssa_def *dcc_block_size = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 0), .range = 8);
1169
1170   /* Compute the coordinates. */
1171   nir_ssa_def *coord = nir_channels(&b, global_id, 0x3);
1172   coord = nir_imul(&b, coord, dcc_block_size);
1173   coord = nir_vec4(&b, nir_channel(&b, coord, 0),
1174                        nir_channel(&b, coord, 1),
1175                        nir_channel(&b, global_id, 2),
1176                        nir_ssa_undef(&b, 1, 32));
1177
1178   nir_variable *output_img = nir_variable_create(b.shader, nir_var_uniform, img_type, "out_img");
1179   output_img->data.descriptor_set = 0;
1180   output_img->data.binding = 0;
1181
1182   /* Load the clear color values. */
1183   nir_ssa_def *clear_values = nir_load_push_constant(&b, 2, 32, nir_imm_int(&b, 8), .range = 8);
1184
1185   nir_ssa_def *data = nir_vec4(&b, nir_channel(&b, clear_values, 0),
1186                                    nir_channel(&b, clear_values, 1),
1187                                    nir_channel(&b, clear_values, 1),
1188                                    nir_channel(&b, clear_values, 1));
1189
1190   /* Store the clear color values. */
1191   nir_ssa_def *sample_id = is_msaa ? nir_imm_int(&b, 0) : nir_ssa_undef(&b, 1, 32);
1192   nir_image_deref_store(&b, &nir_build_deref_var(&b, output_img)->dest.ssa, coord,
1193                         sample_id, data, nir_imm_int(&b, 0),
1194                         .image_dim = dim, .image_array = true);
1195
1196   return b.shader;
1197}
1198
1199static VkResult
1200create_dcc_comp_to_single_pipeline(struct radv_device *device, bool is_msaa, VkPipeline *pipeline)
1201{
1202   struct radv_meta_state *state = &device->meta_state;
1203   VkResult result;
1204   nir_shader *cs = build_clear_dcc_comp_to_single_shader(is_msaa);
1205
1206   VkPipelineShaderStageCreateInfo shader_stage = {
1207      .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
1208      .stage = VK_SHADER_STAGE_COMPUTE_BIT,
1209      .module = vk_shader_module_handle_from_nir(cs),
1210      .pName = "main",
1211      .pSpecializationInfo = NULL,
1212   };
1213
1214   VkComputePipelineCreateInfo pipeline_info = {
1215      .sType = VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO,
1216      .stage = shader_stage,
1217      .flags = 0,
1218      .layout = state->clear_dcc_comp_to_single_p_layout,
1219   };
1220
1221   result = radv_CreateComputePipelines(radv_device_to_handle(device),
1222                                        radv_pipeline_cache_to_handle(&state->cache), 1,
1223                                        &pipeline_info, NULL, pipeline);
1224
1225   ralloc_free(cs);
1226   return result;
1227}
1228
1229static VkResult
1230init_meta_clear_dcc_comp_to_single_state(struct radv_device *device)
1231{
1232   struct radv_meta_state *state = &device->meta_state;
1233   VkResult result;
1234
1235   VkDescriptorSetLayoutCreateInfo ds_layout_info = {
1236      .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
1237      .flags = VK_DESCRIPTOR_SET_LAYOUT_CREATE_PUSH_DESCRIPTOR_BIT_KHR,
1238      .bindingCount = 1,
1239      .pBindings = (VkDescriptorSetLayoutBinding[]){
1240         {.binding = 0,
1241          .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
1242          .descriptorCount = 1,
1243          .stageFlags = VK_SHADER_STAGE_COMPUTE_BIT,
1244          .pImmutableSamplers = NULL},
1245      }};
1246
1247   result = radv_CreateDescriptorSetLayout(radv_device_to_handle(device), &ds_layout_info,
1248                                           &state->alloc, &state->clear_dcc_comp_to_single_ds_layout);
1249   if (result != VK_SUCCESS)
1250      goto fail;
1251
1252   VkPipelineLayoutCreateInfo p_layout_info = {
1253      .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
1254      .setLayoutCount = 1,
1255      .pSetLayouts = &state->clear_dcc_comp_to_single_ds_layout,
1256      .pushConstantRangeCount = 1,
1257      .pPushConstantRanges =
1258         &(VkPushConstantRange){
1259            VK_SHADER_STAGE_COMPUTE_BIT,
1260            0,
1261            16,
1262         },
1263   };
1264
1265   result = radv_CreatePipelineLayout(radv_device_to_handle(device), &p_layout_info, &state->alloc,
1266                                      &state->clear_dcc_comp_to_single_p_layout);
1267   if (result != VK_SUCCESS)
1268      goto fail;
1269
1270   for (uint32_t i = 0; i < 2; i++) {
1271      result = create_dcc_comp_to_single_pipeline(device, !!i,
1272                                                  &state->clear_dcc_comp_to_single_pipeline[i]);
1273      if (result != VK_SUCCESS)
1274         goto fail;
1275   }
1276
1277fail:
1278   return result;
1279}
1280
1281VkResult
1282radv_device_init_meta_clear_state(struct radv_device *device, bool on_demand)
1283{
1284   VkResult res;
1285   struct radv_meta_state *state = &device->meta_state;
1286
1287   VkPipelineLayoutCreateInfo pl_color_create_info = {
1288      .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
1289      .setLayoutCount = 0,
1290      .pushConstantRangeCount = 1,
1291      .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 16},
1292   };
1293
1294   res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_color_create_info,
1295                                   &device->meta_state.alloc,
1296                                   &device->meta_state.clear_color_p_layout);
1297   if (res != VK_SUCCESS)
1298      goto fail;
1299
1300   VkPipelineLayoutCreateInfo pl_depth_create_info = {
1301      .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
1302      .setLayoutCount = 0,
1303      .pushConstantRangeCount = 1,
1304      .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_VERTEX_BIT, 0, 4},
1305   };
1306
1307   res = radv_CreatePipelineLayout(radv_device_to_handle(device), &pl_depth_create_info,
1308                                   &device->meta_state.alloc,
1309                                   &device->meta_state.clear_depth_p_layout);
1310   if (res != VK_SUCCESS)
1311      goto fail;
1312
1313   VkPipelineLayoutCreateInfo pl_depth_unrestricted_create_info = {
1314      .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
1315      .setLayoutCount = 0,
1316      .pushConstantRangeCount = 1,
1317      .pPushConstantRanges = &(VkPushConstantRange){VK_SHADER_STAGE_FRAGMENT_BIT, 0, 4},
1318   };
1319
1320   res = radv_CreatePipelineLayout(radv_device_to_handle(device),
1321                                   &pl_depth_unrestricted_create_info, &device->meta_state.alloc,
1322                                   &device->meta_state.clear_depth_unrestricted_p_layout);
1323   if (res != VK_SUCCESS)
1324      goto fail;
1325
1326   res = init_meta_clear_htile_mask_state(device);
1327   if (res != VK_SUCCESS)
1328      goto fail;
1329
1330   res = init_meta_clear_dcc_comp_to_single_state(device);
1331   if (res != VK_SUCCESS)
1332      goto fail;
1333
1334   if (on_demand)
1335      return VK_SUCCESS;
1336
1337   for (uint32_t i = 0; i < ARRAY_SIZE(state->clear); ++i) {
1338      uint32_t samples = 1 << i;
1339      for (uint32_t j = 0; j < NUM_META_FS_KEYS; ++j) {
1340         VkFormat format = radv_fs_key_format_exemplars[j];
1341         unsigned fs_key = radv_format_meta_fs_key(device, format);
1342         assert(!state->clear[i].color_pipelines[fs_key]);
1343
1344         res =
1345            create_color_renderpass(device, format, samples, &state->clear[i].render_pass[fs_key]);
1346         if (res != VK_SUCCESS)
1347            goto fail;
1348
1349         res = create_color_pipeline(device, samples, 0, &state->clear[i].color_pipelines[fs_key],
1350                                     state->clear[i].render_pass[fs_key]);
1351         if (res != VK_SUCCESS)
1352            goto fail;
1353      }
1354
1355      res = create_depthstencil_renderpass(device, samples, &state->clear[i].depthstencil_rp);
1356      if (res != VK_SUCCESS)
1357         goto fail;
1358
1359      for (uint32_t j = 0; j < NUM_DEPTH_CLEAR_PIPELINES; j++) {
1360         res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, samples, j, false,
1361                                            &state->clear[i].depth_only_pipeline[j],
1362                                            state->clear[i].depthstencil_rp);
1363         if (res != VK_SUCCESS)
1364            goto fail;
1365
1366         res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, false,
1367                                            &state->clear[i].stencil_only_pipeline[j],
1368                                            state->clear[i].depthstencil_rp);
1369         if (res != VK_SUCCESS)
1370            goto fail;
1371
1372         res = create_depthstencil_pipeline(
1373            device, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, false,
1374            &state->clear[i].depthstencil_pipeline[j], state->clear[i].depthstencil_rp);
1375         if (res != VK_SUCCESS)
1376            goto fail;
1377
1378         res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_DEPTH_BIT, samples, j, true,
1379                                            &state->clear[i].depth_only_unrestricted_pipeline[j],
1380                                            state->clear[i].depthstencil_rp);
1381         if (res != VK_SUCCESS)
1382            goto fail;
1383
1384         res = create_depthstencil_pipeline(device, VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, true,
1385                                            &state->clear[i].stencil_only_unrestricted_pipeline[j],
1386                                            state->clear[i].depthstencil_rp);
1387         if (res != VK_SUCCESS)
1388            goto fail;
1389
1390         res = create_depthstencil_pipeline(
1391            device, VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, samples, j, true,
1392            &state->clear[i].depthstencil_unrestricted_pipeline[j],
1393            state->clear[i].depthstencil_rp);
1394         if (res != VK_SUCCESS)
1395            goto fail;
1396      }
1397   }
1398   return VK_SUCCESS;
1399
1400fail:
1401   radv_device_finish_meta_clear_state(device);
1402   return res;
1403}
1404
1405static uint32_t
1406radv_get_cmask_fast_clear_value(const struct radv_image *image)
1407{
1408   uint32_t value = 0; /* Default value when no DCC. */
1409
1410   /* The fast-clear value is different for images that have both DCC and
1411    * CMASK metadata.
1412    */
1413   if (radv_image_has_dcc(image)) {
1414      /* DCC fast clear with MSAA should clear CMASK to 0xC. */
1415      return image->info.samples > 1 ? 0xcccccccc : 0xffffffff;
1416   }
1417
1418   return value;
1419}
1420
1421uint32_t
1422radv_clear_cmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
1423                 const VkImageSubresourceRange *range, uint32_t value)
1424{
1425   uint64_t offset = image->offset + image->planes[0].surface.cmask_offset;
1426   uint64_t size;
1427
1428   if (cmd_buffer->device->physical_device->rad_info.chip_class == GFX9) {
1429      /* TODO: clear layers. */
1430      size = image->planes[0].surface.cmask_size;
1431   } else {
1432      unsigned slice_size = image->planes[0].surface.cmask_slice_size;
1433
1434      offset += slice_size * range->baseArrayLayer;
1435      size = slice_size * radv_get_layerCount(image, range);
1436   }
1437
1438   return radv_fill_buffer(cmd_buffer, image, image->bo, offset, size, value);
1439}
1440
1441uint32_t
1442radv_clear_fmask(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
1443                 const VkImageSubresourceRange *range, uint32_t value)
1444{
1445   uint64_t offset = image->offset + image->planes[0].surface.fmask_offset;
1446   unsigned slice_size = image->planes[0].surface.fmask_slice_size;
1447   uint64_t size;
1448
1449   /* MSAA images do not support mipmap levels. */
1450   assert(range->baseMipLevel == 0 && radv_get_levelCount(image, range) == 1);
1451
1452   offset += slice_size * range->baseArrayLayer;
1453   size = slice_size * radv_get_layerCount(image, range);
1454
1455   return radv_fill_buffer(cmd_buffer, image, image->bo, offset, size, value);
1456}
1457
1458uint32_t
1459radv_clear_dcc(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
1460               const VkImageSubresourceRange *range, uint32_t value)
1461{
1462   uint32_t level_count = radv_get_levelCount(image, range);
1463   uint32_t layer_count = radv_get_layerCount(image, range);
1464   uint32_t flush_bits = 0;
1465
1466   /* Mark the image as being compressed. */
1467   radv_update_dcc_metadata(cmd_buffer, image, range, true);
1468
1469   for (uint32_t l = 0; l < level_count; l++) {
1470      uint64_t offset = image->offset + image->planes[0].surface.meta_offset;
1471      uint32_t level = range->baseMipLevel + l;
1472      uint64_t size;
1473
1474      if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10) {
1475         /* DCC for mipmaps+layers is currently disabled. */
1476         offset += image->planes[0].surface.meta_slice_size * range->baseArrayLayer +
1477                   image->planes[0].surface.u.gfx9.meta_levels[level].offset;
1478         size = image->planes[0].surface.u.gfx9.meta_levels[level].size * layer_count;
1479      } else if (cmd_buffer->device->physical_device->rad_info.chip_class == GFX9) {
1480         /* Mipmap levels and layers aren't implemented. */
1481         assert(level == 0);
1482         size = image->planes[0].surface.meta_size;
1483      } else {
1484         const struct legacy_surf_dcc_level *dcc_level =
1485            &image->planes[0].surface.u.legacy.color.dcc_level[level];
1486
1487         /* If dcc_fast_clear_size is 0 (which might happens for
1488          * mipmaps) the fill buffer operation below is a no-op.
1489          * This can only happen during initialization as the
1490          * fast clear path fallbacks to slow clears if one
1491          * level can't be fast cleared.
1492          */
1493         offset +=
1494            dcc_level->dcc_offset + dcc_level->dcc_slice_fast_clear_size * range->baseArrayLayer;
1495         size = dcc_level->dcc_slice_fast_clear_size * radv_get_layerCount(image, range);
1496      }
1497
1498      /* Do not clear this level if it can't be compressed. */
1499      if (!size)
1500         continue;
1501
1502      flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bo, offset, size, value);
1503   }
1504
1505   return flush_bits;
1506}
1507
1508static uint32_t
1509radv_clear_dcc_comp_to_single(struct radv_cmd_buffer *cmd_buffer,
1510                              struct radv_image *image,
1511                              const VkImageSubresourceRange *range,
1512                              uint32_t color_values[2])
1513{
1514   struct radv_device *device = cmd_buffer->device;
1515   unsigned bytes_per_pixel = vk_format_get_blocksize(image->vk_format);
1516   unsigned layer_count = radv_get_layerCount(image, range);
1517   struct radv_meta_saved_state saved_state;
1518   bool is_msaa = image->info.samples > 1;
1519   struct radv_image_view iview;
1520   VkFormat format;
1521
1522   switch (bytes_per_pixel) {
1523   case 1:
1524      format = VK_FORMAT_R8_UINT;
1525      break;
1526   case 2:
1527      format = VK_FORMAT_R16_UINT;
1528      break;
1529   case 4:
1530      format = VK_FORMAT_R32_UINT;
1531      break;
1532   case 8:
1533      format = VK_FORMAT_R32G32_UINT;
1534      break;
1535   case 16:
1536      format = VK_FORMAT_R32G32B32A32_UINT;
1537      break;
1538   default:
1539      unreachable("Unsupported number of bytes per pixel");
1540   }
1541
1542   radv_meta_save(
1543      &saved_state, cmd_buffer,
1544      RADV_META_SAVE_DESCRIPTORS | RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS);
1545
1546   VkPipeline pipeline = device->meta_state.clear_dcc_comp_to_single_pipeline[is_msaa];
1547
1548   radv_CmdBindPipeline(radv_cmd_buffer_to_handle(cmd_buffer), VK_PIPELINE_BIND_POINT_COMPUTE,
1549                        pipeline);
1550
1551   for (uint32_t l = 0; l < radv_get_levelCount(image, range); l++) {
1552      uint32_t width, height;
1553
1554      /* Do not write the clear color value for levels without DCC. */
1555      if (!radv_dcc_enabled(image, range->baseMipLevel + l))
1556         continue;
1557
1558      width = radv_minify(image->info.width, range->baseMipLevel + l);
1559      height = radv_minify(image->info.height, range->baseMipLevel + l);
1560
1561      radv_image_view_init(
1562         &iview, cmd_buffer->device,
1563         &(VkImageViewCreateInfo){
1564            .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
1565            .image = radv_image_to_handle(image),
1566            .viewType = VK_IMAGE_VIEW_TYPE_2D,
1567            .format = format,
1568            .subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
1569                                 .baseMipLevel = range->baseMipLevel + l,
1570                                 .levelCount = 1,
1571                                 .baseArrayLayer = range->baseArrayLayer,
1572                                 .layerCount = layer_count},
1573         },
1574         &(struct radv_image_view_extra_create_info){.disable_compression = true});
1575
1576      radv_meta_push_descriptor_set(
1577         cmd_buffer, VK_PIPELINE_BIND_POINT_COMPUTE,
1578         device->meta_state.clear_dcc_comp_to_single_p_layout, 0,
1579         1,
1580         (VkWriteDescriptorSet[]){{.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET,
1581                                   .dstBinding = 0,
1582                                   .dstArrayElement = 0,
1583                                   .descriptorCount = 1,
1584                                   .descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_IMAGE,
1585                                   .pImageInfo =
1586                                      (VkDescriptorImageInfo[]){
1587                                         {
1588                                            .sampler = VK_NULL_HANDLE,
1589                                            .imageView = radv_image_view_to_handle(&iview),
1590                                            .imageLayout = VK_IMAGE_LAYOUT_GENERAL,
1591                                         },
1592                                      }}});
1593
1594      unsigned dcc_width =
1595         DIV_ROUND_UP(width, image->planes[0].surface.u.gfx9.color.dcc_block_width);
1596      unsigned dcc_height =
1597         DIV_ROUND_UP(height, image->planes[0].surface.u.gfx9.color.dcc_block_height);
1598
1599      const unsigned constants[4] = {
1600         image->planes[0].surface.u.gfx9.color.dcc_block_width,
1601         image->planes[0].surface.u.gfx9.color.dcc_block_height,
1602         color_values[0],
1603         color_values[1],
1604      };
1605
1606      radv_CmdPushConstants(radv_cmd_buffer_to_handle(cmd_buffer),
1607                            device->meta_state.clear_dcc_comp_to_single_p_layout,
1608                            VK_SHADER_STAGE_COMPUTE_BIT, 0, 16, constants);
1609
1610      radv_unaligned_dispatch(cmd_buffer, dcc_width, dcc_height, layer_count);
1611
1612      radv_image_view_finish(&iview);
1613   }
1614
1615   radv_meta_restore(&saved_state, cmd_buffer);
1616
1617   return RADV_CMD_FLAG_CS_PARTIAL_FLUSH |
1618          radv_src_access_flush(cmd_buffer, VK_ACCESS_SHADER_WRITE_BIT, image);
1619}
1620
1621uint32_t
1622radv_clear_htile(struct radv_cmd_buffer *cmd_buffer, const struct radv_image *image,
1623                 const VkImageSubresourceRange *range, uint32_t value)
1624{
1625   uint32_t level_count = radv_get_levelCount(image, range);
1626   uint32_t flush_bits = 0;
1627   uint32_t htile_mask;
1628
1629   htile_mask = radv_get_htile_mask(cmd_buffer->device, image, range->aspectMask);
1630
1631   if (level_count != image->info.levels) {
1632      assert(cmd_buffer->device->physical_device->rad_info.chip_class >= GFX10);
1633
1634      /* Clear individuals levels separately. */
1635      for (uint32_t l = 0; l < level_count; l++) {
1636         uint32_t level = range->baseMipLevel + l;
1637         uint64_t offset = image->offset + image->planes[0].surface.meta_offset +
1638                           image->planes[0].surface.u.gfx9.meta_levels[level].offset;
1639         uint32_t size = image->planes[0].surface.u.gfx9.meta_levels[level].size;
1640
1641         /* Do not clear this level if it can be compressed. */
1642         if (!size)
1643            continue;
1644
1645         if (htile_mask == UINT_MAX) {
1646            /* Clear the whole HTILE buffer. */
1647            flush_bits |= radv_fill_buffer(cmd_buffer, image, image->bo, offset, size, value);
1648         } else {
1649            /* Only clear depth or stencil bytes in the HTILE buffer. */
1650            flush_bits |=
1651               clear_htile_mask(cmd_buffer, image, image->bo, offset, size, value, htile_mask);
1652         }
1653      }
1654   } else {
1655      unsigned layer_count = radv_get_layerCount(image, range);
1656      uint64_t size = image->planes[0].surface.meta_slice_size * layer_count;
1657      uint64_t offset = image->offset + image->planes[0].surface.meta_offset +
1658                        image->planes[0].surface.meta_slice_size * range->baseArrayLayer;
1659
1660      if (htile_mask == UINT_MAX) {
1661         /* Clear the whole HTILE buffer. */
1662         flush_bits = radv_fill_buffer(cmd_buffer, image, image->bo, offset, size, value);
1663      } else {
1664         /* Only clear depth or stencil bytes in the HTILE buffer. */
1665         flush_bits =
1666            clear_htile_mask(cmd_buffer, image, image->bo, offset, size, value, htile_mask);
1667      }
1668   }
1669
1670   return flush_bits;
1671}
1672
1673enum {
1674   RADV_DCC_CLEAR_0000 = 0x00000000U,
1675   RADV_DCC_CLEAR_0001 = 0x40404040U,
1676   RADV_DCC_CLEAR_1110 = 0x80808080U,
1677   RADV_DCC_CLEAR_1111 = 0xC0C0C0C0U,
1678   RADV_DCC_CLEAR_REG = 0x20202020U,
1679   RADV_DCC_CLEAR_SINGLE = 0x10101010U,
1680};
1681
1682static void
1683vi_get_fast_clear_parameters(struct radv_device *device, const struct radv_image_view *iview,
1684                             const VkClearColorValue *clear_value,
1685                             uint32_t *reset_value, bool *can_avoid_fast_clear_elim)
1686{
1687   bool values[4] = {0};
1688   int extra_channel;
1689   bool main_value = false;
1690   bool extra_value = false;
1691   bool has_color = false;
1692   bool has_alpha = false;
1693
1694   /* comp-to-single allows to perform DCC fast clears without requiring a FCE. */
1695   if (iview->image->support_comp_to_single) {
1696      *reset_value = RADV_DCC_CLEAR_SINGLE;
1697      *can_avoid_fast_clear_elim = true;
1698   } else {
1699      *reset_value = RADV_DCC_CLEAR_REG;
1700      *can_avoid_fast_clear_elim = false;
1701   }
1702
1703   const struct util_format_description *desc = vk_format_description(iview->vk_format);
1704   if (iview->vk_format == VK_FORMAT_B10G11R11_UFLOAT_PACK32 ||
1705       iview->vk_format == VK_FORMAT_R5G6B5_UNORM_PACK16 || iview->vk_format == VK_FORMAT_B5G6R5_UNORM_PACK16)
1706      extra_channel = -1;
1707   else if (desc->layout == UTIL_FORMAT_LAYOUT_PLAIN) {
1708      if (vi_alpha_is_on_msb(device, iview->vk_format))
1709         extra_channel = desc->nr_channels - 1;
1710      else
1711         extra_channel = 0;
1712   } else
1713      return;
1714
1715   for (int i = 0; i < 4; i++) {
1716      int index = desc->swizzle[i] - PIPE_SWIZZLE_X;
1717      if (desc->swizzle[i] < PIPE_SWIZZLE_X || desc->swizzle[i] > PIPE_SWIZZLE_W)
1718         continue;
1719
1720      if (desc->channel[i].pure_integer && desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
1721         /* Use the maximum value for clamping the clear color. */
1722         int max = u_bit_consecutive(0, desc->channel[i].size - 1);
1723
1724         values[i] = clear_value->int32[i] != 0;
1725         if (clear_value->int32[i] != 0 && MIN2(clear_value->int32[i], max) != max)
1726            return;
1727      } else if (desc->channel[i].pure_integer &&
1728                 desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED) {
1729         /* Use the maximum value for clamping the clear color. */
1730         unsigned max = u_bit_consecutive(0, desc->channel[i].size);
1731
1732         values[i] = clear_value->uint32[i] != 0U;
1733         if (clear_value->uint32[i] != 0U && MIN2(clear_value->uint32[i], max) != max)
1734            return;
1735      } else {
1736         values[i] = clear_value->float32[i] != 0.0F;
1737         if (clear_value->float32[i] != 0.0F && clear_value->float32[i] != 1.0F)
1738            return;
1739      }
1740
1741      if (index == extra_channel) {
1742         extra_value = values[i];
1743         has_alpha = true;
1744      } else {
1745         main_value = values[i];
1746         has_color = true;
1747      }
1748   }
1749
1750   /* If alpha isn't present, make it the same as color, and vice versa. */
1751   if (!has_alpha)
1752      extra_value = main_value;
1753   else if (!has_color)
1754      main_value = extra_value;
1755
1756   for (int i = 0; i < 4; ++i)
1757      if (values[i] != main_value && desc->swizzle[i] - PIPE_SWIZZLE_X != extra_channel &&
1758          desc->swizzle[i] >= PIPE_SWIZZLE_X && desc->swizzle[i] <= PIPE_SWIZZLE_W)
1759         return;
1760
1761   /* Only DCC clear code 0000 is allowed for signed<->unsigned formats. */
1762   if ((main_value || extra_value) && iview->image->dcc_sign_reinterpret)
1763      return;
1764
1765   *can_avoid_fast_clear_elim = true;
1766
1767   if (main_value) {
1768      if (extra_value)
1769         *reset_value = RADV_DCC_CLEAR_1111;
1770      else
1771         *reset_value = RADV_DCC_CLEAR_1110;
1772   } else {
1773      if (extra_value)
1774         *reset_value = RADV_DCC_CLEAR_0001;
1775      else
1776         *reset_value = RADV_DCC_CLEAR_0000;
1777   }
1778}
1779
1780static bool
1781radv_can_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
1782                          VkImageLayout image_layout, bool in_render_loop,
1783                          const VkClearRect *clear_rect, VkClearColorValue clear_value,
1784                          uint32_t view_mask)
1785{
1786   uint32_t clear_color[2];
1787
1788   if (!iview || !iview->support_fast_clear)
1789      return false;
1790
1791   if (!radv_layout_can_fast_clear(
1792          cmd_buffer->device, iview->image, iview->base_mip, image_layout, in_render_loop,
1793          radv_image_queue_family_mask(iview->image, cmd_buffer->queue_family_index,
1794                                       cmd_buffer->queue_family_index)))
1795      return false;
1796
1797   if (clear_rect->rect.offset.x || clear_rect->rect.offset.y ||
1798       clear_rect->rect.extent.width != iview->image->info.width ||
1799       clear_rect->rect.extent.height != iview->image->info.height)
1800      return false;
1801
1802   if (view_mask && (iview->image->info.array_size >= 32 ||
1803                     (1u << iview->image->info.array_size) - 1u != view_mask))
1804      return false;
1805   if (!view_mask && clear_rect->baseArrayLayer != 0)
1806      return false;
1807   if (!view_mask && clear_rect->layerCount != iview->image->info.array_size)
1808      return false;
1809
1810   /* DCC */
1811   if (!radv_format_pack_clear_color(iview->vk_format, clear_color, &clear_value))
1812      return false;
1813
1814   if (!radv_image_has_clear_value(iview->image) && (clear_color[0] != 0 || clear_color[1] != 0))
1815      return false;
1816
1817   if (radv_dcc_enabled(iview->image, iview->base_mip)) {
1818      bool can_avoid_fast_clear_elim;
1819      uint32_t reset_value;
1820
1821      vi_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value,
1822                                   &can_avoid_fast_clear_elim);
1823
1824      if (iview->image->info.levels > 1) {
1825         if (cmd_buffer->device->physical_device->rad_info.chip_class >= GFX9) {
1826            uint32_t last_level = iview->base_mip + iview->level_count - 1;
1827            if (last_level >= iview->image->planes[0].surface.num_meta_levels) {
1828               /* Do not fast clears if one level can't be fast cleard. */
1829               return false;
1830            }
1831         } else {
1832            for (uint32_t l = 0; l < iview->level_count; l++) {
1833               uint32_t level = iview->base_mip + l;
1834               struct legacy_surf_dcc_level *dcc_level =
1835                  &iview->image->planes[0].surface.u.legacy.color.dcc_level[level];
1836
1837               /* Do not fast clears if one level can't be
1838                * fast cleared.
1839                */
1840               if (!dcc_level->dcc_fast_clear_size)
1841                  return false;
1842            }
1843         }
1844      }
1845   }
1846
1847   return true;
1848}
1849
1850static void
1851radv_fast_clear_color(struct radv_cmd_buffer *cmd_buffer, const struct radv_image_view *iview,
1852                      const VkClearAttachment *clear_att, uint32_t subpass_att,
1853                      enum radv_cmd_flush_bits *pre_flush, enum radv_cmd_flush_bits *post_flush)
1854{
1855   VkClearColorValue clear_value = clear_att->clearValue.color;
1856   uint32_t clear_color[2], flush_bits = 0;
1857   uint32_t cmask_clear_value;
1858   VkImageSubresourceRange range = {
1859      .aspectMask = iview->aspect_mask,
1860      .baseMipLevel = iview->base_mip,
1861      .levelCount = iview->level_count,
1862      .baseArrayLayer = iview->base_layer,
1863      .layerCount = iview->layer_count,
1864   };
1865
1866   if (pre_flush) {
1867      enum radv_cmd_flush_bits bits =
1868         radv_src_access_flush(cmd_buffer, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, iview->image) |
1869         radv_dst_access_flush(cmd_buffer, VK_ACCESS_SHADER_WRITE_BIT, iview->image);
1870      cmd_buffer->state.flush_bits |= bits & ~*pre_flush;
1871      *pre_flush |= cmd_buffer->state.flush_bits;
1872   }
1873
1874   /* DCC */
1875   radv_format_pack_clear_color(iview->vk_format, clear_color, &clear_value);
1876
1877   cmask_clear_value = radv_get_cmask_fast_clear_value(iview->image);
1878
1879   /* clear cmask buffer */
1880   bool need_decompress_pass = false;
1881   if (radv_dcc_enabled(iview->image, iview->base_mip)) {
1882      uint32_t reset_value;
1883      bool can_avoid_fast_clear_elim;
1884
1885      vi_get_fast_clear_parameters(cmd_buffer->device, iview, &clear_value, &reset_value,
1886                                   &can_avoid_fast_clear_elim);
1887
1888      if (radv_image_has_cmask(iview->image)) {
1889         flush_bits = radv_clear_cmask(cmd_buffer, iview->image, &range, cmask_clear_value);
1890      }
1891
1892      if (!can_avoid_fast_clear_elim)
1893         need_decompress_pass = true;
1894
1895      flush_bits |= radv_clear_dcc(cmd_buffer, iview->image, &range, reset_value);
1896
1897      if (reset_value == RADV_DCC_CLEAR_SINGLE) {
1898         /* Write the clear color to the first byte of each 256B block when the image supports DCC
1899          * fast clears with comp-to-single.
1900          */
1901         flush_bits |= radv_clear_dcc_comp_to_single(cmd_buffer, iview->image, &range, clear_color);
1902      }
1903   } else {
1904      flush_bits = radv_clear_cmask(cmd_buffer, iview->image, &range, cmask_clear_value);
1905
1906      /* Fast clearing with CMASK should always be eliminated. */
1907      need_decompress_pass = true;
1908   }
1909
1910   if (post_flush) {
1911      *post_flush |= flush_bits;
1912   }
1913
1914   /* Update the FCE predicate to perform a fast-clear eliminate. */
1915   radv_update_fce_metadata(cmd_buffer, iview->image, &range, need_decompress_pass);
1916
1917   radv_update_color_clear_metadata(cmd_buffer, iview, subpass_att, clear_color);
1918}
1919
1920/**
1921 * The parameters mean that same as those in vkCmdClearAttachments.
1922 */
1923static void
1924emit_clear(struct radv_cmd_buffer *cmd_buffer, const VkClearAttachment *clear_att,
1925           const VkClearRect *clear_rect, enum radv_cmd_flush_bits *pre_flush,
1926           enum radv_cmd_flush_bits *post_flush, uint32_t view_mask, bool ds_resolve_clear)
1927{
1928   const struct radv_framebuffer *fb = cmd_buffer->state.framebuffer;
1929   const struct radv_subpass *subpass = cmd_buffer->state.subpass;
1930   VkImageAspectFlags aspects = clear_att->aspectMask;
1931
1932   if (aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
1933      const uint32_t subpass_att = clear_att->colorAttachment;
1934      assert(subpass_att < subpass->color_count);
1935      const uint32_t pass_att = subpass->color_attachments[subpass_att].attachment;
1936      if (pass_att == VK_ATTACHMENT_UNUSED)
1937         return;
1938
1939      VkImageLayout image_layout = subpass->color_attachments[subpass_att].layout;
1940      bool in_render_loop = subpass->color_attachments[subpass_att].in_render_loop;
1941      const struct radv_image_view *iview =
1942         fb ? cmd_buffer->state.attachments[pass_att].iview : NULL;
1943      VkClearColorValue clear_value = clear_att->clearValue.color;
1944
1945      if (radv_can_fast_clear_color(cmd_buffer, iview, image_layout, in_render_loop, clear_rect,
1946                                    clear_value, view_mask)) {
1947         radv_fast_clear_color(cmd_buffer, iview, clear_att, subpass_att, pre_flush, post_flush);
1948      } else {
1949         emit_color_clear(cmd_buffer, clear_att, clear_rect, view_mask);
1950      }
1951   } else {
1952      struct radv_subpass_attachment *ds_att = subpass->depth_stencil_attachment;
1953
1954      if (ds_resolve_clear)
1955         ds_att = subpass->ds_resolve_attachment;
1956
1957      if (!ds_att || ds_att->attachment == VK_ATTACHMENT_UNUSED)
1958         return;
1959
1960      VkImageLayout image_layout = ds_att->layout;
1961      bool in_render_loop = ds_att->in_render_loop;
1962      const struct radv_image_view *iview =
1963         fb ? cmd_buffer->state.attachments[ds_att->attachment].iview : NULL;
1964      VkClearDepthStencilValue clear_value = clear_att->clearValue.depthStencil;
1965
1966      assert(aspects & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
1967
1968      if (radv_can_fast_clear_depth(cmd_buffer, iview, image_layout, in_render_loop, aspects,
1969                                    clear_rect, clear_value, view_mask)) {
1970         radv_fast_clear_depth(cmd_buffer, iview, clear_att, pre_flush, post_flush);
1971      } else {
1972         emit_depthstencil_clear(cmd_buffer, clear_att, clear_rect, ds_att, view_mask);
1973      }
1974   }
1975}
1976
1977static inline bool
1978radv_attachment_needs_clear(struct radv_cmd_state *cmd_state, uint32_t a)
1979{
1980   uint32_t view_mask = cmd_state->subpass->view_mask;
1981   return (a != VK_ATTACHMENT_UNUSED && cmd_state->attachments[a].pending_clear_aspects &&
1982           (!view_mask || (view_mask & ~cmd_state->attachments[a].cleared_views)));
1983}
1984
1985static bool
1986radv_subpass_needs_clear(struct radv_cmd_buffer *cmd_buffer)
1987{
1988   struct radv_cmd_state *cmd_state = &cmd_buffer->state;
1989   uint32_t a;
1990
1991   if (!cmd_state->subpass)
1992      return false;
1993
1994   for (uint32_t i = 0; i < cmd_state->subpass->color_count; ++i) {
1995      a = cmd_state->subpass->color_attachments[i].attachment;
1996      if (radv_attachment_needs_clear(cmd_state, a))
1997         return true;
1998   }
1999
2000   if (cmd_state->subpass->depth_stencil_attachment) {
2001      a = cmd_state->subpass->depth_stencil_attachment->attachment;
2002      if (radv_attachment_needs_clear(cmd_state, a))
2003         return true;
2004   }
2005
2006   if (!cmd_state->subpass->ds_resolve_attachment)
2007      return false;
2008
2009   a = cmd_state->subpass->ds_resolve_attachment->attachment;
2010   return radv_attachment_needs_clear(cmd_state, a);
2011}
2012
2013static void
2014radv_subpass_clear_attachment(struct radv_cmd_buffer *cmd_buffer,
2015                              struct radv_attachment_state *attachment,
2016                              const VkClearAttachment *clear_att,
2017                              enum radv_cmd_flush_bits *pre_flush,
2018                              enum radv_cmd_flush_bits *post_flush, bool ds_resolve_clear)
2019{
2020   struct radv_cmd_state *cmd_state = &cmd_buffer->state;
2021   uint32_t view_mask = cmd_state->subpass->view_mask;
2022
2023   VkClearRect clear_rect = {
2024      .rect = cmd_state->render_area,
2025      .baseArrayLayer = 0,
2026      .layerCount = cmd_state->framebuffer->layers,
2027   };
2028
2029   radv_describe_begin_render_pass_clear(cmd_buffer, clear_att->aspectMask);
2030
2031   emit_clear(cmd_buffer, clear_att, &clear_rect, pre_flush, post_flush,
2032              view_mask & ~attachment->cleared_views, ds_resolve_clear);
2033   if (view_mask)
2034      attachment->cleared_views |= view_mask;
2035   else
2036      attachment->pending_clear_aspects = 0;
2037
2038   radv_describe_end_render_pass_clear(cmd_buffer);
2039}
2040
2041/**
2042 * Emit any pending attachment clears for the current subpass.
2043 *
2044 * @see radv_attachment_state::pending_clear_aspects
2045 */
2046void
2047radv_cmd_buffer_clear_subpass(struct radv_cmd_buffer *cmd_buffer)
2048{
2049   struct radv_cmd_state *cmd_state = &cmd_buffer->state;
2050   struct radv_meta_saved_state saved_state;
2051   enum radv_cmd_flush_bits pre_flush = 0;
2052   enum radv_cmd_flush_bits post_flush = 0;
2053
2054   if (!radv_subpass_needs_clear(cmd_buffer))
2055      return;
2056
2057   radv_meta_save(&saved_state, cmd_buffer,
2058                  RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS);
2059
2060   for (uint32_t i = 0; i < cmd_state->subpass->color_count; ++i) {
2061      uint32_t a = cmd_state->subpass->color_attachments[i].attachment;
2062
2063      if (!radv_attachment_needs_clear(cmd_state, a))
2064         continue;
2065
2066      assert(cmd_state->attachments[a].pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
2067
2068      VkClearAttachment clear_att = {
2069         .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
2070         .colorAttachment = i, /* Use attachment index relative to subpass */
2071         .clearValue = cmd_state->attachments[a].clear_value,
2072      };
2073
2074      radv_subpass_clear_attachment(cmd_buffer, &cmd_state->attachments[a], &clear_att, &pre_flush,
2075                                    &post_flush, false);
2076   }
2077
2078   if (cmd_state->subpass->depth_stencil_attachment) {
2079      uint32_t ds = cmd_state->subpass->depth_stencil_attachment->attachment;
2080      if (radv_attachment_needs_clear(cmd_state, ds)) {
2081         VkClearAttachment clear_att = {
2082            .aspectMask = cmd_state->attachments[ds].pending_clear_aspects,
2083            .clearValue = cmd_state->attachments[ds].clear_value,
2084         };
2085
2086         radv_subpass_clear_attachment(cmd_buffer, &cmd_state->attachments[ds], &clear_att,
2087                                       &pre_flush, &post_flush, false);
2088      }
2089   }
2090
2091   if (cmd_state->subpass->ds_resolve_attachment) {
2092      uint32_t ds_resolve = cmd_state->subpass->ds_resolve_attachment->attachment;
2093      if (radv_attachment_needs_clear(cmd_state, ds_resolve)) {
2094         VkClearAttachment clear_att = {
2095            .aspectMask = cmd_state->attachments[ds_resolve].pending_clear_aspects,
2096            .clearValue = cmd_state->attachments[ds_resolve].clear_value,
2097         };
2098
2099         radv_subpass_clear_attachment(cmd_buffer, &cmd_state->attachments[ds_resolve], &clear_att,
2100                                       &pre_flush, &post_flush, true);
2101      }
2102   }
2103
2104   radv_meta_restore(&saved_state, cmd_buffer);
2105   cmd_buffer->state.flush_bits |= post_flush;
2106}
2107
2108static void
2109radv_clear_image_layer(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
2110                       VkImageLayout image_layout, const VkImageSubresourceRange *range,
2111                       VkFormat format, int level, unsigned layer_count,
2112                       const VkClearValue *clear_val)
2113{
2114   VkDevice device_h = radv_device_to_handle(cmd_buffer->device);
2115   struct radv_image_view iview;
2116   uint32_t width = radv_minify(image->info.width, range->baseMipLevel + level);
2117   uint32_t height = radv_minify(image->info.height, range->baseMipLevel + level);
2118
2119   radv_image_view_init(&iview, cmd_buffer->device,
2120                        &(VkImageViewCreateInfo){
2121                           .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
2122                           .image = radv_image_to_handle(image),
2123                           .viewType = radv_meta_get_view_type(image),
2124                           .format = format,
2125                           .subresourceRange = {.aspectMask = range->aspectMask,
2126                                                .baseMipLevel = range->baseMipLevel + level,
2127                                                .levelCount = 1,
2128                                                .baseArrayLayer = range->baseArrayLayer,
2129                                                .layerCount = layer_count},
2130                        },
2131                        NULL);
2132
2133   VkFramebuffer fb;
2134   radv_CreateFramebuffer(
2135      device_h,
2136      &(VkFramebufferCreateInfo){.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
2137                                 .attachmentCount = 1,
2138                                 .pAttachments =
2139                                    (VkImageView[]){
2140                                       radv_image_view_to_handle(&iview),
2141                                    },
2142                                 .width = width,
2143                                 .height = height,
2144                                 .layers = layer_count},
2145      &cmd_buffer->pool->alloc, &fb);
2146
2147   VkAttachmentDescription2 att_desc = {
2148      .sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2,
2149      .format = iview.vk_format,
2150      .loadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
2151      .storeOp = VK_ATTACHMENT_STORE_OP_STORE,
2152      .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD,
2153      .stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE,
2154      .initialLayout = image_layout,
2155      .finalLayout = image_layout,
2156   };
2157
2158   VkSubpassDescription2 subpass_desc = {
2159      .sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2,
2160      .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
2161      .inputAttachmentCount = 0,
2162      .colorAttachmentCount = 0,
2163      .pColorAttachments = NULL,
2164      .pResolveAttachments = NULL,
2165      .pDepthStencilAttachment = NULL,
2166      .preserveAttachmentCount = 0,
2167      .pPreserveAttachments = NULL,
2168   };
2169
2170   const VkAttachmentReference2 att_ref = {
2171      .sType = VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2,
2172      .attachment = 0,
2173      .layout = image_layout,
2174   };
2175
2176   if (range->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
2177      subpass_desc.colorAttachmentCount = 1;
2178      subpass_desc.pColorAttachments = &att_ref;
2179   } else {
2180      subpass_desc.pDepthStencilAttachment = &att_ref;
2181   }
2182
2183   VkRenderPass pass;
2184   radv_CreateRenderPass2(
2185      device_h,
2186      &(VkRenderPassCreateInfo2){
2187         .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2,
2188         .attachmentCount = 1,
2189         .pAttachments = &att_desc,
2190         .subpassCount = 1,
2191         .pSubpasses = &subpass_desc,
2192         .dependencyCount = 2,
2193         .pDependencies =
2194            (VkSubpassDependency2[]){{.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
2195                                      .srcSubpass = VK_SUBPASS_EXTERNAL,
2196                                      .dstSubpass = 0,
2197                                      .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
2198                                      .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
2199                                      .srcAccessMask = 0,
2200                                      .dstAccessMask = 0,
2201                                      .dependencyFlags = 0},
2202                                     {.sType = VK_STRUCTURE_TYPE_SUBPASS_DEPENDENCY_2,
2203                                      .srcSubpass = 0,
2204                                      .dstSubpass = VK_SUBPASS_EXTERNAL,
2205                                      .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
2206                                      .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
2207                                      .srcAccessMask = 0,
2208                                      .dstAccessMask = 0,
2209                                      .dependencyFlags = 0}}},
2210      &cmd_buffer->pool->alloc, &pass);
2211
2212   radv_cmd_buffer_begin_render_pass(cmd_buffer,
2213                                     &(VkRenderPassBeginInfo){
2214                                        .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
2215                                        .renderArea =
2216                                           {
2217                                              .offset =
2218                                                 {
2219                                                    0,
2220                                                    0,
2221                                                 },
2222                                              .extent =
2223                                                 {
2224                                                    .width = width,
2225                                                    .height = height,
2226                                                 },
2227                                           },
2228                                        .renderPass = pass,
2229                                        .framebuffer = fb,
2230                                        .clearValueCount = 0,
2231                                        .pClearValues = NULL,
2232                                     },
2233                                     NULL);
2234
2235   radv_cmd_buffer_set_subpass(cmd_buffer, &cmd_buffer->state.pass->subpasses[0]);
2236
2237   VkClearAttachment clear_att = {
2238      .aspectMask = range->aspectMask,
2239      .colorAttachment = 0,
2240      .clearValue = *clear_val,
2241   };
2242
2243   VkClearRect clear_rect = {
2244      .rect =
2245         {
2246            .offset = {0, 0},
2247            .extent = {width, height},
2248         },
2249      .baseArrayLayer = 0,
2250      .layerCount = layer_count,
2251   };
2252
2253   emit_clear(cmd_buffer, &clear_att, &clear_rect, NULL, NULL, 0, false);
2254
2255   radv_image_view_finish(&iview);
2256   radv_cmd_buffer_end_render_pass(cmd_buffer);
2257   radv_DestroyRenderPass(device_h, pass, &cmd_buffer->pool->alloc);
2258   radv_DestroyFramebuffer(device_h, fb, &cmd_buffer->pool->alloc);
2259}
2260
2261/**
2262 * Return TRUE if a fast color or depth clear has been performed.
2263 */
2264static bool
2265radv_fast_clear_range(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image, VkFormat format,
2266                      VkImageLayout image_layout, bool in_render_loop,
2267                      const VkImageSubresourceRange *range, const VkClearValue *clear_val)
2268{
2269   struct radv_image_view iview;
2270   bool fast_cleared = false;
2271
2272   radv_image_view_init(&iview, cmd_buffer->device,
2273                        &(VkImageViewCreateInfo){
2274                           .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
2275                           .image = radv_image_to_handle(image),
2276                           .viewType = radv_meta_get_view_type(image),
2277                           .format = image->vk_format,
2278                           .subresourceRange =
2279                              {
2280                                 .aspectMask = range->aspectMask,
2281                                 .baseMipLevel = range->baseMipLevel,
2282                                 .levelCount = range->levelCount,
2283                                 .baseArrayLayer = range->baseArrayLayer,
2284                                 .layerCount = range->layerCount,
2285                              },
2286                        },
2287                        NULL);
2288
2289   VkClearRect clear_rect = {
2290      .rect =
2291         {
2292            .offset = {0, 0},
2293            .extent =
2294               {
2295                  radv_minify(image->info.width, range->baseMipLevel),
2296                  radv_minify(image->info.height, range->baseMipLevel),
2297               },
2298         },
2299      .baseArrayLayer = range->baseArrayLayer,
2300      .layerCount = range->layerCount,
2301   };
2302
2303   VkClearAttachment clear_att = {
2304      .aspectMask = range->aspectMask,
2305      .colorAttachment = 0,
2306      .clearValue = *clear_val,
2307   };
2308
2309   if (vk_format_is_color(format)) {
2310      if (radv_can_fast_clear_color(cmd_buffer, &iview, image_layout, in_render_loop, &clear_rect,
2311                                    clear_att.clearValue.color, 0)) {
2312         radv_fast_clear_color(cmd_buffer, &iview, &clear_att, clear_att.colorAttachment, NULL,
2313                               NULL);
2314         fast_cleared = true;
2315      }
2316   } else {
2317      if (radv_can_fast_clear_depth(cmd_buffer, &iview, image_layout, in_render_loop,
2318                                    range->aspectMask, &clear_rect,
2319                                    clear_att.clearValue.depthStencil, 0)) {
2320         radv_fast_clear_depth(cmd_buffer, &iview, &clear_att, NULL, NULL);
2321         fast_cleared = true;
2322      }
2323   }
2324
2325   radv_image_view_finish(&iview);
2326   return fast_cleared;
2327}
2328
2329static void
2330radv_cmd_clear_image(struct radv_cmd_buffer *cmd_buffer, struct radv_image *image,
2331                     VkImageLayout image_layout, const VkClearValue *clear_value,
2332                     uint32_t range_count, const VkImageSubresourceRange *ranges, bool cs)
2333{
2334   VkFormat format = image->vk_format;
2335   VkClearValue internal_clear_value;
2336
2337   if (ranges->aspectMask & VK_IMAGE_ASPECT_COLOR_BIT)
2338      internal_clear_value.color = clear_value->color;
2339   else
2340      internal_clear_value.depthStencil = clear_value->depthStencil;
2341
2342   bool disable_compression = false;
2343
2344   if (format == VK_FORMAT_E5B9G9R9_UFLOAT_PACK32) {
2345      bool blendable;
2346      if (cs ? !radv_is_storage_image_format_supported(cmd_buffer->device->physical_device, format)
2347             : !radv_is_colorbuffer_format_supported(cmd_buffer->device->physical_device, format,
2348                                                     &blendable)) {
2349         format = VK_FORMAT_R32_UINT;
2350         internal_clear_value.color.uint32[0] = float3_to_rgb9e5(clear_value->color.float32);
2351
2352         uint32_t queue_mask = radv_image_queue_family_mask(image, cmd_buffer->queue_family_index,
2353                                                            cmd_buffer->queue_family_index);
2354
2355         for (uint32_t r = 0; r < range_count; r++) {
2356            const VkImageSubresourceRange *range = &ranges[r];
2357
2358            /* Don't use compressed image stores because they will use an incompatible format. */
2359            if (radv_layout_dcc_compressed(cmd_buffer->device, image, range->baseMipLevel,
2360                                           image_layout, false, queue_mask)) {
2361               disable_compression = cs;
2362               break;
2363            }
2364         }
2365      }
2366   }
2367
2368   if (format == VK_FORMAT_R4G4_UNORM_PACK8) {
2369      uint8_t r, g;
2370      format = VK_FORMAT_R8_UINT;
2371      r = float_to_ubyte(clear_value->color.float32[0]) >> 4;
2372      g = float_to_ubyte(clear_value->color.float32[1]) >> 4;
2373      internal_clear_value.color.uint32[0] = (r << 4) | (g & 0xf);
2374   }
2375
2376   for (uint32_t r = 0; r < range_count; r++) {
2377      const VkImageSubresourceRange *range = &ranges[r];
2378
2379      /* Try to perform a fast clear first, otherwise fallback to
2380       * the legacy path.
2381       */
2382      if (!cs && radv_fast_clear_range(cmd_buffer, image, format, image_layout, false, range,
2383                                       &internal_clear_value)) {
2384         continue;
2385      }
2386
2387      for (uint32_t l = 0; l < radv_get_levelCount(image, range); ++l) {
2388         const uint32_t layer_count = image->type == VK_IMAGE_TYPE_3D
2389                                         ? radv_minify(image->info.depth, range->baseMipLevel + l)
2390                                         : radv_get_layerCount(image, range);
2391
2392         if (cs) {
2393            for (uint32_t s = 0; s < layer_count; ++s) {
2394               struct radv_meta_blit2d_surf surf;
2395               surf.format = format;
2396               surf.image = image;
2397               surf.level = range->baseMipLevel + l;
2398               surf.layer = range->baseArrayLayer + s;
2399               surf.aspect_mask = range->aspectMask;
2400               surf.disable_compression = disable_compression;
2401               radv_meta_clear_image_cs(cmd_buffer, &surf, &internal_clear_value.color);
2402            }
2403         } else {
2404            assert(!disable_compression);
2405            radv_clear_image_layer(cmd_buffer, image, image_layout, range, format, l, layer_count,
2406                                   &internal_clear_value);
2407         }
2408      }
2409   }
2410
2411   if (disable_compression) {
2412      enum radv_cmd_flush_bits flush_bits = 0;
2413      for (unsigned i = 0; i < range_count; i++) {
2414         if (radv_dcc_enabled(image, ranges[i].baseMipLevel))
2415            flush_bits |= radv_clear_dcc(cmd_buffer, image, &ranges[i], 0xffffffffu);
2416      }
2417      cmd_buffer->state.flush_bits |= flush_bits;
2418   }
2419}
2420
2421void
2422radv_CmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image_h, VkImageLayout imageLayout,
2423                        const VkClearColorValue *pColor, uint32_t rangeCount,
2424                        const VkImageSubresourceRange *pRanges)
2425{
2426   RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
2427   RADV_FROM_HANDLE(radv_image, image, image_h);
2428   struct radv_meta_saved_state saved_state;
2429   bool cs;
2430
2431   cs = cmd_buffer->queue_family_index == RADV_QUEUE_COMPUTE ||
2432        !radv_image_is_renderable(cmd_buffer->device, image);
2433
2434   if (cs) {
2435      radv_meta_save(
2436         &saved_state, cmd_buffer,
2437         RADV_META_SAVE_COMPUTE_PIPELINE | RADV_META_SAVE_CONSTANTS | RADV_META_SAVE_DESCRIPTORS);
2438   } else {
2439      radv_meta_save(&saved_state, cmd_buffer,
2440                     RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS);
2441   }
2442
2443   radv_cmd_clear_image(cmd_buffer, image, imageLayout, (const VkClearValue *)pColor, rangeCount,
2444                        pRanges, cs);
2445
2446   radv_meta_restore(&saved_state, cmd_buffer);
2447}
2448
2449void
2450radv_CmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image_h,
2451                               VkImageLayout imageLayout,
2452                               const VkClearDepthStencilValue *pDepthStencil, uint32_t rangeCount,
2453                               const VkImageSubresourceRange *pRanges)
2454{
2455   RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
2456   RADV_FROM_HANDLE(radv_image, image, image_h);
2457   struct radv_meta_saved_state saved_state;
2458
2459   radv_meta_save(&saved_state, cmd_buffer,
2460                  RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS);
2461
2462   radv_cmd_clear_image(cmd_buffer, image, imageLayout, (const VkClearValue *)pDepthStencil,
2463                        rangeCount, pRanges, false);
2464
2465   radv_meta_restore(&saved_state, cmd_buffer);
2466}
2467
2468void
2469radv_CmdClearAttachments(VkCommandBuffer commandBuffer, uint32_t attachmentCount,
2470                         const VkClearAttachment *pAttachments, uint32_t rectCount,
2471                         const VkClearRect *pRects)
2472{
2473   RADV_FROM_HANDLE(radv_cmd_buffer, cmd_buffer, commandBuffer);
2474   struct radv_meta_saved_state saved_state;
2475   enum radv_cmd_flush_bits pre_flush = 0;
2476   enum radv_cmd_flush_bits post_flush = 0;
2477
2478   if (!cmd_buffer->state.subpass)
2479      return;
2480
2481   radv_meta_save(&saved_state, cmd_buffer,
2482                  RADV_META_SAVE_GRAPHICS_PIPELINE | RADV_META_SAVE_CONSTANTS);
2483
2484   /* FINISHME: We can do better than this dumb loop. It thrashes too much
2485    * state.
2486    */
2487   for (uint32_t a = 0; a < attachmentCount; ++a) {
2488      for (uint32_t r = 0; r < rectCount; ++r) {
2489         emit_clear(cmd_buffer, &pAttachments[a], &pRects[r], &pre_flush, &post_flush,
2490                    cmd_buffer->state.subpass->view_mask, false);
2491      }
2492   }
2493
2494   radv_meta_restore(&saved_state, cmd_buffer);
2495   cmd_buffer->state.flush_bits |= post_flush;
2496}
2497