radv_shader.c revision ed98bd31
1/* 2 * Copyright © 2016 Red Hat. 3 * Copyright © 2016 Bas Nieuwenhuizen 4 * 5 * based in part on anv driver which is: 6 * Copyright © 2015 Intel Corporation 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a 9 * copy of this software and associated documentation files (the "Software"), 10 * to deal in the Software without restriction, including without limitation 11 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 12 * and/or sell copies of the Software, and to permit persons to whom the 13 * Software is furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the next 16 * paragraph) shall be included in all copies or substantial portions of the 17 * Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 24 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 25 * IN THE SOFTWARE. 26 */ 27 28#include "util/mesa-sha1.h" 29#include "util/u_atomic.h" 30#include "radv_debug.h" 31#include "radv_private.h" 32#include "radv_shader.h" 33#include "radv_shader_helper.h" 34#include "nir/nir.h" 35#include "nir/nir_builder.h" 36#include "spirv/nir_spirv.h" 37 38#include <llvm-c/Core.h> 39#include <llvm-c/TargetMachine.h> 40#include <llvm-c/Support.h> 41 42#include "sid.h" 43#include "gfx9d.h" 44#include "ac_binary.h" 45#include "ac_llvm_util.h" 46#include "ac_nir_to_llvm.h" 47#include "vk_format.h" 48#include "util/debug.h" 49#include "ac_exp_param.h" 50 51#include "util/string_buffer.h" 52 53static const struct nir_shader_compiler_options nir_options = { 54 .vertex_id_zero_based = true, 55 .lower_scmp = true, 56 .lower_flrp16 = true, 57 .lower_flrp32 = true, 58 .lower_flrp64 = true, 59 .lower_device_index_to_zero = true, 60 .lower_fsat = true, 61 .lower_fdiv = true, 62 .lower_sub = true, 63 .lower_pack_snorm_2x16 = true, 64 .lower_pack_snorm_4x8 = true, 65 .lower_pack_unorm_2x16 = true, 66 .lower_pack_unorm_4x8 = true, 67 .lower_unpack_snorm_2x16 = true, 68 .lower_unpack_snorm_4x8 = true, 69 .lower_unpack_unorm_2x16 = true, 70 .lower_unpack_unorm_4x8 = true, 71 .lower_extract_byte = true, 72 .lower_extract_word = true, 73 .lower_ffma = true, 74 .lower_fpow = true, 75 .lower_mul_2x32_64 = true, 76 .max_unroll_iterations = 32 77}; 78 79VkResult radv_CreateShaderModule( 80 VkDevice _device, 81 const VkShaderModuleCreateInfo* pCreateInfo, 82 const VkAllocationCallbacks* pAllocator, 83 VkShaderModule* pShaderModule) 84{ 85 RADV_FROM_HANDLE(radv_device, device, _device); 86 struct radv_shader_module *module; 87 88 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO); 89 assert(pCreateInfo->flags == 0); 90 91 module = vk_alloc2(&device->alloc, pAllocator, 92 sizeof(*module) + pCreateInfo->codeSize, 8, 93 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); 94 if (module == NULL) 95 return vk_error(device->instance, VK_ERROR_OUT_OF_HOST_MEMORY); 96 97 module->nir = NULL; 98 module->size = pCreateInfo->codeSize; 99 memcpy(module->data, pCreateInfo->pCode, module->size); 100 101 _mesa_sha1_compute(module->data, module->size, module->sha1); 102 103 *pShaderModule = radv_shader_module_to_handle(module); 104 105 return VK_SUCCESS; 106} 107 108void radv_DestroyShaderModule( 109 VkDevice _device, 110 VkShaderModule _module, 111 const VkAllocationCallbacks* pAllocator) 112{ 113 RADV_FROM_HANDLE(radv_device, device, _device); 114 RADV_FROM_HANDLE(radv_shader_module, module, _module); 115 116 if (!module) 117 return; 118 119 vk_free2(&device->alloc, pAllocator, module); 120} 121 122void 123radv_optimize_nir(struct nir_shader *shader, bool optimize_conservatively, 124 bool allow_copies) 125{ 126 bool progress; 127 128 do { 129 progress = false; 130 131 NIR_PASS(progress, shader, nir_split_array_vars, nir_var_function_temp); 132 NIR_PASS(progress, shader, nir_shrink_vec_array_vars, nir_var_function_temp); 133 134 NIR_PASS_V(shader, nir_lower_vars_to_ssa); 135 NIR_PASS_V(shader, nir_lower_pack); 136 137 if (allow_copies) { 138 /* Only run this pass in the first call to 139 * radv_optimize_nir. Later calls assume that we've 140 * lowered away any copy_deref instructions and we 141 * don't want to introduce any more. 142 */ 143 NIR_PASS(progress, shader, nir_opt_find_array_copies); 144 } 145 146 NIR_PASS(progress, shader, nir_opt_copy_prop_vars); 147 NIR_PASS(progress, shader, nir_opt_dead_write_vars); 148 149 NIR_PASS_V(shader, nir_lower_alu_to_scalar); 150 NIR_PASS_V(shader, nir_lower_phis_to_scalar); 151 152 NIR_PASS(progress, shader, nir_copy_prop); 153 NIR_PASS(progress, shader, nir_opt_remove_phis); 154 NIR_PASS(progress, shader, nir_opt_dce); 155 if (nir_opt_trivial_continues(shader)) { 156 progress = true; 157 NIR_PASS(progress, shader, nir_copy_prop); 158 NIR_PASS(progress, shader, nir_opt_remove_phis); 159 NIR_PASS(progress, shader, nir_opt_dce); 160 } 161 NIR_PASS(progress, shader, nir_opt_if, true); 162 NIR_PASS(progress, shader, nir_opt_dead_cf); 163 NIR_PASS(progress, shader, nir_opt_cse); 164 NIR_PASS(progress, shader, nir_opt_peephole_select, 8, true, true); 165 NIR_PASS(progress, shader, nir_opt_algebraic); 166 NIR_PASS(progress, shader, nir_opt_constant_folding); 167 NIR_PASS(progress, shader, nir_opt_undef); 168 NIR_PASS(progress, shader, nir_opt_conditional_discard); 169 if (shader->options->max_unroll_iterations) { 170 NIR_PASS(progress, shader, nir_opt_loop_unroll, 0); 171 } 172 } while (progress && !optimize_conservatively); 173 174 NIR_PASS(progress, shader, nir_opt_shrink_load); 175 NIR_PASS(progress, shader, nir_opt_move_load_ubo); 176} 177 178nir_shader * 179radv_shader_compile_to_nir(struct radv_device *device, 180 struct radv_shader_module *module, 181 const char *entrypoint_name, 182 gl_shader_stage stage, 183 const VkSpecializationInfo *spec_info, 184 const VkPipelineCreateFlags flags, 185 const struct radv_pipeline_layout *layout) 186{ 187 nir_shader *nir; 188 nir_function *entry_point; 189 if (module->nir) { 190 /* Some things such as our meta clear/blit code will give us a NIR 191 * shader directly. In that case, we just ignore the SPIR-V entirely 192 * and just use the NIR shader */ 193 nir = module->nir; 194 nir->options = &nir_options; 195 nir_validate_shader(nir, "in internal shader"); 196 197 assert(exec_list_length(&nir->functions) == 1); 198 struct exec_node *node = exec_list_get_head(&nir->functions); 199 entry_point = exec_node_data(nir_function, node, node); 200 } else { 201 uint32_t *spirv = (uint32_t *) module->data; 202 assert(module->size % 4 == 0); 203 204 if (device->instance->debug_flags & RADV_DEBUG_DUMP_SPIRV) 205 radv_print_spirv(spirv, module->size, stderr); 206 207 uint32_t num_spec_entries = 0; 208 struct nir_spirv_specialization *spec_entries = NULL; 209 if (spec_info && spec_info->mapEntryCount > 0) { 210 num_spec_entries = spec_info->mapEntryCount; 211 spec_entries = malloc(num_spec_entries * sizeof(*spec_entries)); 212 for (uint32_t i = 0; i < num_spec_entries; i++) { 213 VkSpecializationMapEntry entry = spec_info->pMapEntries[i]; 214 const void *data = spec_info->pData + entry.offset; 215 assert(data + entry.size <= spec_info->pData + spec_info->dataSize); 216 217 spec_entries[i].id = spec_info->pMapEntries[i].constantID; 218 if (spec_info->dataSize == 8) 219 spec_entries[i].data64 = *(const uint64_t *)data; 220 else 221 spec_entries[i].data32 = *(const uint32_t *)data; 222 } 223 } 224 const struct spirv_to_nir_options spirv_options = { 225 .lower_ubo_ssbo_access_to_offsets = true, 226 .caps = { 227 .derivative_group = true, 228 .descriptor_array_dynamic_indexing = true, 229 .descriptor_array_non_uniform_indexing = true, 230 .descriptor_indexing = true, 231 .device_group = true, 232 .draw_parameters = true, 233 .float16 = true, 234 .float64 = true, 235 .gcn_shader = true, 236 .geometry_streams = true, 237 .image_read_without_format = true, 238 .image_write_without_format = true, 239 .int8 = true, 240 .int16 = true, 241 .int64 = true, 242 .int64_atomics = true, 243 .multiview = true, 244 .physical_storage_buffer_address = true, 245 .runtime_descriptor_array = true, 246 .shader_viewport_index_layer = true, 247 .stencil_export = true, 248 .storage_8bit = true, 249 .storage_16bit = true, 250 .storage_image_ms = true, 251 .subgroup_arithmetic = true, 252 .subgroup_ballot = true, 253 .subgroup_basic = true, 254 .subgroup_quad = true, 255 .subgroup_shuffle = true, 256 .subgroup_vote = true, 257 .tessellation = true, 258 .transform_feedback = true, 259 .trinary_minmax = true, 260 .variable_pointers = true, 261 }, 262 .ubo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2), 263 .ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT, 2), 264 .phys_ssbo_ptr_type = glsl_vector_type(GLSL_TYPE_UINT64, 1), 265 .push_const_ptr_type = glsl_uint_type(), 266 .shared_ptr_type = glsl_uint_type(), 267 }; 268 entry_point = spirv_to_nir(spirv, module->size / 4, 269 spec_entries, num_spec_entries, 270 stage, entrypoint_name, 271 &spirv_options, &nir_options); 272 nir = entry_point->shader; 273 assert(nir->info.stage == stage); 274 nir_validate_shader(nir, "after spirv_to_nir"); 275 276 free(spec_entries); 277 278 /* We have to lower away local constant initializers right before we 279 * inline functions. That way they get properly initialized at the top 280 * of the function and not at the top of its caller. 281 */ 282 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_function_temp); 283 NIR_PASS_V(nir, nir_lower_returns); 284 NIR_PASS_V(nir, nir_inline_functions); 285 NIR_PASS_V(nir, nir_opt_deref); 286 287 /* Pick off the single entrypoint that we want */ 288 foreach_list_typed_safe(nir_function, func, node, &nir->functions) { 289 if (func != entry_point) 290 exec_node_remove(&func->node); 291 } 292 assert(exec_list_length(&nir->functions) == 1); 293 entry_point->name = ralloc_strdup(entry_point, "main"); 294 295 /* Make sure we lower constant initializers on output variables so that 296 * nir_remove_dead_variables below sees the corresponding stores 297 */ 298 NIR_PASS_V(nir, nir_lower_constant_initializers, nir_var_shader_out); 299 300 /* Now that we've deleted all but the main function, we can go ahead and 301 * lower the rest of the constant initializers. 302 */ 303 NIR_PASS_V(nir, nir_lower_constant_initializers, ~0); 304 305 /* Split member structs. We do this before lower_io_to_temporaries so that 306 * it doesn't lower system values to temporaries by accident. 307 */ 308 NIR_PASS_V(nir, nir_split_var_copies); 309 NIR_PASS_V(nir, nir_split_per_member_structs); 310 311 NIR_PASS_V(nir, nir_remove_dead_variables, 312 nir_var_shader_in | nir_var_shader_out | nir_var_system_value); 313 314 NIR_PASS_V(nir, nir_propagate_invariant); 315 316 NIR_PASS_V(nir, nir_lower_system_values); 317 NIR_PASS_V(nir, nir_lower_clip_cull_distance_arrays); 318 NIR_PASS_V(nir, radv_nir_lower_ycbcr_textures, layout); 319 } 320 321 /* Vulkan uses the separate-shader linking model */ 322 nir->info.separate_shader = true; 323 324 nir_shader_gather_info(nir, entry_point->impl); 325 326 static const nir_lower_tex_options tex_options = { 327 .lower_txp = ~0, 328 .lower_tg4_offsets = true, 329 }; 330 331 nir_lower_tex(nir, &tex_options); 332 333 nir_lower_vars_to_ssa(nir); 334 335 if (nir->info.stage == MESA_SHADER_VERTEX || 336 nir->info.stage == MESA_SHADER_GEOMETRY) { 337 NIR_PASS_V(nir, nir_lower_io_to_temporaries, 338 nir_shader_get_entrypoint(nir), true, true); 339 } else if (nir->info.stage == MESA_SHADER_TESS_EVAL|| 340 nir->info.stage == MESA_SHADER_FRAGMENT) { 341 NIR_PASS_V(nir, nir_lower_io_to_temporaries, 342 nir_shader_get_entrypoint(nir), true, false); 343 } 344 345 nir_split_var_copies(nir); 346 347 nir_lower_global_vars_to_local(nir); 348 nir_remove_dead_variables(nir, nir_var_function_temp); 349 nir_lower_subgroups(nir, &(struct nir_lower_subgroups_options) { 350 .subgroup_size = 64, 351 .ballot_bit_size = 64, 352 .lower_to_scalar = 1, 353 .lower_subgroup_masks = 1, 354 .lower_shuffle = 1, 355 .lower_shuffle_to_32bit = 1, 356 .lower_vote_eq_to_ballot = 1, 357 }); 358 359 nir_lower_load_const_to_scalar(nir); 360 361 if (!(flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT)) 362 radv_optimize_nir(nir, false, true); 363 364 /* We call nir_lower_var_copies() after the first radv_optimize_nir() 365 * to remove any copies introduced by nir_opt_find_array_copies(). 366 */ 367 nir_lower_var_copies(nir); 368 369 /* Indirect lowering must be called after the radv_optimize_nir() loop 370 * has been called at least once. Otherwise indirect lowering can 371 * bloat the instruction count of the loop and cause it to be 372 * considered too large for unrolling. 373 */ 374 ac_lower_indirect_derefs(nir, device->physical_device->rad_info.chip_class); 375 radv_optimize_nir(nir, flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT, false); 376 377 return nir; 378} 379 380void * 381radv_alloc_shader_memory(struct radv_device *device, 382 struct radv_shader_variant *shader) 383{ 384 mtx_lock(&device->shader_slab_mutex); 385 list_for_each_entry(struct radv_shader_slab, slab, &device->shader_slabs, slabs) { 386 uint64_t offset = 0; 387 list_for_each_entry(struct radv_shader_variant, s, &slab->shaders, slab_list) { 388 if (s->bo_offset - offset >= shader->code_size) { 389 shader->bo = slab->bo; 390 shader->bo_offset = offset; 391 list_addtail(&shader->slab_list, &s->slab_list); 392 mtx_unlock(&device->shader_slab_mutex); 393 return slab->ptr + offset; 394 } 395 offset = align_u64(s->bo_offset + s->code_size, 256); 396 } 397 if (slab->size - offset >= shader->code_size) { 398 shader->bo = slab->bo; 399 shader->bo_offset = offset; 400 list_addtail(&shader->slab_list, &slab->shaders); 401 mtx_unlock(&device->shader_slab_mutex); 402 return slab->ptr + offset; 403 } 404 } 405 406 mtx_unlock(&device->shader_slab_mutex); 407 struct radv_shader_slab *slab = calloc(1, sizeof(struct radv_shader_slab)); 408 409 slab->size = 256 * 1024; 410 slab->bo = device->ws->buffer_create(device->ws, slab->size, 256, 411 RADEON_DOMAIN_VRAM, 412 RADEON_FLAG_NO_INTERPROCESS_SHARING | 413 (device->physical_device->cpdma_prefetch_writes_memory ? 414 0 : RADEON_FLAG_READ_ONLY), 415 RADV_BO_PRIORITY_SHADER); 416 slab->ptr = (char*)device->ws->buffer_map(slab->bo); 417 list_inithead(&slab->shaders); 418 419 mtx_lock(&device->shader_slab_mutex); 420 list_add(&slab->slabs, &device->shader_slabs); 421 422 shader->bo = slab->bo; 423 shader->bo_offset = 0; 424 list_add(&shader->slab_list, &slab->shaders); 425 mtx_unlock(&device->shader_slab_mutex); 426 return slab->ptr; 427} 428 429void 430radv_destroy_shader_slabs(struct radv_device *device) 431{ 432 list_for_each_entry_safe(struct radv_shader_slab, slab, &device->shader_slabs, slabs) { 433 device->ws->buffer_destroy(slab->bo); 434 free(slab); 435 } 436 mtx_destroy(&device->shader_slab_mutex); 437} 438 439/* For the UMR disassembler. */ 440#define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */ 441#define DEBUGGER_NUM_MARKERS 5 442 443static unsigned 444radv_get_shader_binary_size(struct ac_shader_binary *binary) 445{ 446 return binary->code_size + DEBUGGER_NUM_MARKERS * 4; 447} 448 449static void 450radv_fill_shader_variant(struct radv_device *device, 451 struct radv_shader_variant *variant, 452 struct ac_shader_binary *binary, 453 gl_shader_stage stage) 454{ 455 bool scratch_enabled = variant->config.scratch_bytes_per_wave > 0; 456 struct radv_shader_info *info = &variant->info.info; 457 unsigned vgpr_comp_cnt = 0; 458 459 variant->code_size = radv_get_shader_binary_size(binary); 460 variant->rsrc2 = S_00B12C_USER_SGPR(variant->info.num_user_sgprs) | 461 S_00B12C_USER_SGPR_MSB(variant->info.num_user_sgprs >> 5) | 462 S_00B12C_SCRATCH_EN(scratch_enabled) | 463 S_00B12C_SO_BASE0_EN(!!info->so.strides[0]) | 464 S_00B12C_SO_BASE1_EN(!!info->so.strides[1]) | 465 S_00B12C_SO_BASE2_EN(!!info->so.strides[2]) | 466 S_00B12C_SO_BASE3_EN(!!info->so.strides[3]) | 467 S_00B12C_SO_EN(!!info->so.num_outputs); 468 469 variant->rsrc1 = S_00B848_VGPRS((variant->config.num_vgprs - 1) / 4) | 470 S_00B848_SGPRS((variant->config.num_sgprs - 1) / 8) | 471 S_00B848_DX10_CLAMP(1) | 472 S_00B848_FLOAT_MODE(variant->config.float_mode); 473 474 switch (stage) { 475 case MESA_SHADER_TESS_EVAL: 476 vgpr_comp_cnt = 3; 477 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1); 478 break; 479 case MESA_SHADER_TESS_CTRL: 480 if (device->physical_device->rad_info.chip_class >= GFX9) { 481 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt; 482 } else { 483 variant->rsrc2 |= S_00B12C_OC_LDS_EN(1); 484 } 485 break; 486 case MESA_SHADER_VERTEX: 487 case MESA_SHADER_GEOMETRY: 488 vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt; 489 break; 490 case MESA_SHADER_FRAGMENT: 491 break; 492 case MESA_SHADER_COMPUTE: 493 variant->rsrc2 |= 494 S_00B84C_TGID_X_EN(info->cs.uses_block_id[0]) | 495 S_00B84C_TGID_Y_EN(info->cs.uses_block_id[1]) | 496 S_00B84C_TGID_Z_EN(info->cs.uses_block_id[2]) | 497 S_00B84C_TIDIG_COMP_CNT(info->cs.uses_thread_id[2] ? 2 : 498 info->cs.uses_thread_id[1] ? 1 : 0) | 499 S_00B84C_TG_SIZE_EN(info->cs.uses_local_invocation_idx) | 500 S_00B84C_LDS_SIZE(variant->config.lds_size); 501 break; 502 default: 503 unreachable("unsupported shader type"); 504 break; 505 } 506 507 if (device->physical_device->rad_info.chip_class >= GFX9 && 508 stage == MESA_SHADER_GEOMETRY) { 509 unsigned es_type = variant->info.gs.es_type; 510 unsigned gs_vgpr_comp_cnt, es_vgpr_comp_cnt; 511 512 if (es_type == MESA_SHADER_VERTEX) { 513 es_vgpr_comp_cnt = variant->info.vs.vgpr_comp_cnt; 514 } else if (es_type == MESA_SHADER_TESS_EVAL) { 515 es_vgpr_comp_cnt = 3; 516 } else { 517 unreachable("invalid shader ES type"); 518 } 519 520 /* If offsets 4, 5 are used, GS_VGPR_COMP_CNT is ignored and 521 * VGPR[0:4] are always loaded. 522 */ 523 if (info->uses_invocation_id) { 524 gs_vgpr_comp_cnt = 3; /* VGPR3 contains InvocationID. */ 525 } else if (info->uses_prim_id) { 526 gs_vgpr_comp_cnt = 2; /* VGPR2 contains PrimitiveID. */ 527 } else if (variant->info.gs.vertices_in >= 3) { 528 gs_vgpr_comp_cnt = 1; /* VGPR1 contains offsets 2, 3 */ 529 } else { 530 gs_vgpr_comp_cnt = 0; /* VGPR0 contains offsets 0, 1 */ 531 } 532 533 variant->rsrc1 |= S_00B228_GS_VGPR_COMP_CNT(gs_vgpr_comp_cnt); 534 variant->rsrc2 |= S_00B22C_ES_VGPR_COMP_CNT(es_vgpr_comp_cnt) | 535 S_00B22C_OC_LDS_EN(es_type == MESA_SHADER_TESS_EVAL); 536 } else if (device->physical_device->rad_info.chip_class >= GFX9 && 537 stage == MESA_SHADER_TESS_CTRL) { 538 variant->rsrc1 |= S_00B428_LS_VGPR_COMP_CNT(vgpr_comp_cnt); 539 } else { 540 variant->rsrc1 |= S_00B128_VGPR_COMP_CNT(vgpr_comp_cnt); 541 } 542 543 void *ptr = radv_alloc_shader_memory(device, variant); 544 memcpy(ptr, binary->code, binary->code_size); 545 546 /* Add end-of-code markers for the UMR disassembler. */ 547 uint32_t *ptr32 = (uint32_t *)ptr + binary->code_size / 4; 548 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++) 549 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER; 550 551} 552 553static void radv_init_llvm_target() 554{ 555 LLVMInitializeAMDGPUTargetInfo(); 556 LLVMInitializeAMDGPUTarget(); 557 LLVMInitializeAMDGPUTargetMC(); 558 LLVMInitializeAMDGPUAsmPrinter(); 559 560 /* For inline assembly. */ 561 LLVMInitializeAMDGPUAsmParser(); 562 563 /* Workaround for bug in llvm 4.0 that causes image intrinsics 564 * to disappear. 565 * https://reviews.llvm.org/D26348 566 * 567 * Workaround for bug in llvm that causes the GPU to hang in presence 568 * of nested loops because there is an exec mask issue. The proper 569 * solution is to fix LLVM but this might require a bunch of work. 570 * https://bugs.llvm.org/show_bug.cgi?id=37744 571 * 572 * "mesa" is the prefix for error messages. 573 */ 574 if (HAVE_LLVM >= 0x0800) { 575 const char *argv[2] = { "mesa", "-simplifycfg-sink-common=false" }; 576 LLVMParseCommandLineOptions(2, argv, NULL); 577 578 } else { 579 const char *argv[3] = { "mesa", "-simplifycfg-sink-common=false", 580 "-amdgpu-skip-threshold=1" }; 581 LLVMParseCommandLineOptions(3, argv, NULL); 582 } 583} 584 585static once_flag radv_init_llvm_target_once_flag = ONCE_FLAG_INIT; 586 587static void radv_init_llvm_once(void) 588{ 589 call_once(&radv_init_llvm_target_once_flag, radv_init_llvm_target); 590} 591 592static struct radv_shader_variant * 593shader_variant_create(struct radv_device *device, 594 struct radv_shader_module *module, 595 struct nir_shader * const *shaders, 596 int shader_count, 597 gl_shader_stage stage, 598 struct radv_nir_compiler_options *options, 599 bool gs_copy_shader, 600 void **code_out, 601 unsigned *code_size_out) 602{ 603 enum radeon_family chip_family = device->physical_device->rad_info.family; 604 enum ac_target_machine_options tm_options = 0; 605 struct radv_shader_variant *variant; 606 struct ac_shader_binary binary; 607 struct ac_llvm_compiler ac_llvm; 608 bool thread_compiler; 609 variant = calloc(1, sizeof(struct radv_shader_variant)); 610 if (!variant) 611 return NULL; 612 613 options->family = chip_family; 614 options->chip_class = device->physical_device->rad_info.chip_class; 615 options->dump_shader = radv_can_dump_shader(device, module, gs_copy_shader); 616 options->dump_preoptir = options->dump_shader && 617 device->instance->debug_flags & RADV_DEBUG_PREOPTIR; 618 options->record_llvm_ir = device->keep_shader_info; 619 options->check_ir = device->instance->debug_flags & RADV_DEBUG_CHECKIR; 620 options->tess_offchip_block_dw_size = device->tess_offchip_block_dw_size; 621 options->address32_hi = device->physical_device->rad_info.address32_hi; 622 623 if (options->supports_spill) 624 tm_options |= AC_TM_SUPPORTS_SPILL; 625 if (device->instance->perftest_flags & RADV_PERFTEST_SISCHED) 626 tm_options |= AC_TM_SISCHED; 627 if (options->check_ir) 628 tm_options |= AC_TM_CHECK_IR; 629 if (device->instance->debug_flags & RADV_DEBUG_NO_LOAD_STORE_OPT) 630 tm_options |= AC_TM_NO_LOAD_STORE_OPT; 631 632 thread_compiler = !(device->instance->debug_flags & RADV_DEBUG_NOTHREADLLVM); 633 radv_init_llvm_once(); 634 radv_init_llvm_compiler(&ac_llvm, 635 thread_compiler, 636 chip_family, tm_options); 637 if (gs_copy_shader) { 638 assert(shader_count == 1); 639 radv_compile_gs_copy_shader(&ac_llvm, *shaders, &binary, 640 &variant->config, &variant->info, 641 options); 642 } else { 643 radv_compile_nir_shader(&ac_llvm, &binary, &variant->config, 644 &variant->info, shaders, shader_count, 645 options); 646 } 647 648 radv_destroy_llvm_compiler(&ac_llvm, thread_compiler); 649 650 radv_fill_shader_variant(device, variant, &binary, stage); 651 652 if (code_out) { 653 *code_out = binary.code; 654 *code_size_out = binary.code_size; 655 } else 656 free(binary.code); 657 free(binary.config); 658 free(binary.rodata); 659 free(binary.global_symbol_offsets); 660 free(binary.relocs); 661 variant->ref_count = 1; 662 663 if (device->keep_shader_info) { 664 variant->disasm_string = binary.disasm_string; 665 variant->llvm_ir_string = binary.llvm_ir_string; 666 if (!gs_copy_shader && !module->nir) { 667 variant->nir = *shaders; 668 variant->spirv = (uint32_t *)module->data; 669 variant->spirv_size = module->size; 670 } 671 } else { 672 free(binary.disasm_string); 673 } 674 675 return variant; 676} 677 678struct radv_shader_variant * 679radv_shader_variant_create(struct radv_device *device, 680 struct radv_shader_module *module, 681 struct nir_shader *const *shaders, 682 int shader_count, 683 struct radv_pipeline_layout *layout, 684 const struct radv_shader_variant_key *key, 685 void **code_out, 686 unsigned *code_size_out) 687{ 688 struct radv_nir_compiler_options options = {0}; 689 690 options.layout = layout; 691 if (key) 692 options.key = *key; 693 694 options.unsafe_math = !!(device->instance->debug_flags & RADV_DEBUG_UNSAFE_MATH); 695 options.supports_spill = true; 696 697 return shader_variant_create(device, module, shaders, shader_count, shaders[shader_count - 1]->info.stage, 698 &options, false, code_out, code_size_out); 699} 700 701struct radv_shader_variant * 702radv_create_gs_copy_shader(struct radv_device *device, 703 struct nir_shader *shader, 704 void **code_out, 705 unsigned *code_size_out, 706 bool multiview) 707{ 708 struct radv_nir_compiler_options options = {0}; 709 710 options.key.has_multiview_view_index = multiview; 711 712 return shader_variant_create(device, NULL, &shader, 1, MESA_SHADER_VERTEX, 713 &options, true, code_out, code_size_out); 714} 715 716void 717radv_shader_variant_destroy(struct radv_device *device, 718 struct radv_shader_variant *variant) 719{ 720 if (!p_atomic_dec_zero(&variant->ref_count)) 721 return; 722 723 mtx_lock(&device->shader_slab_mutex); 724 list_del(&variant->slab_list); 725 mtx_unlock(&device->shader_slab_mutex); 726 727 ralloc_free(variant->nir); 728 free(variant->disasm_string); 729 free(variant->llvm_ir_string); 730 free(variant); 731} 732 733const char * 734radv_get_shader_name(struct radv_shader_variant *var, gl_shader_stage stage) 735{ 736 switch (stage) { 737 case MESA_SHADER_VERTEX: return var->info.vs.as_ls ? "Vertex Shader as LS" : var->info.vs.as_es ? "Vertex Shader as ES" : "Vertex Shader as VS"; 738 case MESA_SHADER_GEOMETRY: return "Geometry Shader"; 739 case MESA_SHADER_FRAGMENT: return "Pixel Shader"; 740 case MESA_SHADER_COMPUTE: return "Compute Shader"; 741 case MESA_SHADER_TESS_CTRL: return "Tessellation Control Shader"; 742 case MESA_SHADER_TESS_EVAL: return var->info.tes.as_es ? "Tessellation Evaluation Shader as ES" : "Tessellation Evaluation Shader as VS"; 743 default: 744 return "Unknown shader"; 745 }; 746} 747 748static void 749generate_shader_stats(struct radv_device *device, 750 struct radv_shader_variant *variant, 751 gl_shader_stage stage, 752 struct _mesa_string_buffer *buf) 753{ 754 enum chip_class chip_class = device->physical_device->rad_info.chip_class; 755 unsigned lds_increment = chip_class >= CIK ? 512 : 256; 756 struct ac_shader_config *conf; 757 unsigned max_simd_waves; 758 unsigned lds_per_wave = 0; 759 760 max_simd_waves = ac_get_max_simd_waves(device->physical_device->rad_info.family); 761 762 conf = &variant->config; 763 764 if (stage == MESA_SHADER_FRAGMENT) { 765 lds_per_wave = conf->lds_size * lds_increment + 766 align(variant->info.fs.num_interp * 48, 767 lds_increment); 768 } else if (stage == MESA_SHADER_COMPUTE) { 769 unsigned max_workgroup_size = 770 radv_nir_get_max_workgroup_size(chip_class, stage, variant->nir); 771 lds_per_wave = (conf->lds_size * lds_increment) / 772 DIV_ROUND_UP(max_workgroup_size, 64); 773 } 774 775 if (conf->num_sgprs) 776 max_simd_waves = 777 MIN2(max_simd_waves, 778 ac_get_num_physical_sgprs(chip_class) / conf->num_sgprs); 779 780 if (conf->num_vgprs) 781 max_simd_waves = 782 MIN2(max_simd_waves, 783 RADV_NUM_PHYSICAL_VGPRS / conf->num_vgprs); 784 785 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD 786 * that PS can use. 787 */ 788 if (lds_per_wave) 789 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave); 790 791 if (stage == MESA_SHADER_FRAGMENT) { 792 _mesa_string_buffer_printf(buf, "*** SHADER CONFIG ***\n" 793 "SPI_PS_INPUT_ADDR = 0x%04x\n" 794 "SPI_PS_INPUT_ENA = 0x%04x\n", 795 conf->spi_ps_input_addr, conf->spi_ps_input_ena); 796 } 797 798 _mesa_string_buffer_printf(buf, "*** SHADER STATS ***\n" 799 "SGPRS: %d\n" 800 "VGPRS: %d\n" 801 "Spilled SGPRs: %d\n" 802 "Spilled VGPRs: %d\n" 803 "PrivMem VGPRS: %d\n" 804 "Code Size: %d bytes\n" 805 "LDS: %d blocks\n" 806 "Scratch: %d bytes per wave\n" 807 "Max Waves: %d\n" 808 "********************\n\n\n", 809 conf->num_sgprs, conf->num_vgprs, 810 conf->spilled_sgprs, conf->spilled_vgprs, 811 variant->info.private_mem_vgprs, variant->code_size, 812 conf->lds_size, conf->scratch_bytes_per_wave, 813 max_simd_waves); 814} 815 816void 817radv_shader_dump_stats(struct radv_device *device, 818 struct radv_shader_variant *variant, 819 gl_shader_stage stage, 820 FILE *file) 821{ 822 struct _mesa_string_buffer *buf = _mesa_string_buffer_create(NULL, 256); 823 824 generate_shader_stats(device, variant, stage, buf); 825 826 fprintf(file, "\n%s:\n", radv_get_shader_name(variant, stage)); 827 fprintf(file, "%s", buf->buf); 828 829 _mesa_string_buffer_destroy(buf); 830} 831 832VkResult 833radv_GetShaderInfoAMD(VkDevice _device, 834 VkPipeline _pipeline, 835 VkShaderStageFlagBits shaderStage, 836 VkShaderInfoTypeAMD infoType, 837 size_t* pInfoSize, 838 void* pInfo) 839{ 840 RADV_FROM_HANDLE(radv_device, device, _device); 841 RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline); 842 gl_shader_stage stage = vk_to_mesa_shader_stage(shaderStage); 843 struct radv_shader_variant *variant = pipeline->shaders[stage]; 844 struct _mesa_string_buffer *buf; 845 VkResult result = VK_SUCCESS; 846 847 /* Spec doesn't indicate what to do if the stage is invalid, so just 848 * return no info for this. */ 849 if (!variant) 850 return vk_error(device->instance, VK_ERROR_FEATURE_NOT_PRESENT); 851 852 switch (infoType) { 853 case VK_SHADER_INFO_TYPE_STATISTICS_AMD: 854 if (!pInfo) { 855 *pInfoSize = sizeof(VkShaderStatisticsInfoAMD); 856 } else { 857 unsigned lds_multiplier = device->physical_device->rad_info.chip_class >= CIK ? 512 : 256; 858 struct ac_shader_config *conf = &variant->config; 859 860 VkShaderStatisticsInfoAMD statistics = {}; 861 statistics.shaderStageMask = shaderStage; 862 statistics.numPhysicalVgprs = RADV_NUM_PHYSICAL_VGPRS; 863 statistics.numPhysicalSgprs = ac_get_num_physical_sgprs(device->physical_device->rad_info.chip_class); 864 statistics.numAvailableSgprs = statistics.numPhysicalSgprs; 865 866 if (stage == MESA_SHADER_COMPUTE) { 867 unsigned *local_size = variant->nir->info.cs.local_size; 868 unsigned workgroup_size = local_size[0] * local_size[1] * local_size[2]; 869 870 statistics.numAvailableVgprs = statistics.numPhysicalVgprs / 871 ceil((double)workgroup_size / statistics.numPhysicalVgprs); 872 873 statistics.computeWorkGroupSize[0] = local_size[0]; 874 statistics.computeWorkGroupSize[1] = local_size[1]; 875 statistics.computeWorkGroupSize[2] = local_size[2]; 876 } else { 877 statistics.numAvailableVgprs = statistics.numPhysicalVgprs; 878 } 879 880 statistics.resourceUsage.numUsedVgprs = conf->num_vgprs; 881 statistics.resourceUsage.numUsedSgprs = conf->num_sgprs; 882 statistics.resourceUsage.ldsSizePerLocalWorkGroup = 32768; 883 statistics.resourceUsage.ldsUsageSizeInBytes = conf->lds_size * lds_multiplier; 884 statistics.resourceUsage.scratchMemUsageInBytes = conf->scratch_bytes_per_wave; 885 886 size_t size = *pInfoSize; 887 *pInfoSize = sizeof(statistics); 888 889 memcpy(pInfo, &statistics, MIN2(size, *pInfoSize)); 890 891 if (size < *pInfoSize) 892 result = VK_INCOMPLETE; 893 } 894 895 break; 896 case VK_SHADER_INFO_TYPE_DISASSEMBLY_AMD: 897 buf = _mesa_string_buffer_create(NULL, 1024); 898 899 _mesa_string_buffer_printf(buf, "%s:\n", radv_get_shader_name(variant, stage)); 900 _mesa_string_buffer_printf(buf, "%s\n\n", variant->llvm_ir_string); 901 _mesa_string_buffer_printf(buf, "%s\n\n", variant->disasm_string); 902 generate_shader_stats(device, variant, stage, buf); 903 904 /* Need to include the null terminator. */ 905 size_t length = buf->length + 1; 906 907 if (!pInfo) { 908 *pInfoSize = length; 909 } else { 910 size_t size = *pInfoSize; 911 *pInfoSize = length; 912 913 memcpy(pInfo, buf->buf, MIN2(size, length)); 914 915 if (size < length) 916 result = VK_INCOMPLETE; 917 } 918 919 _mesa_string_buffer_destroy(buf); 920 break; 921 default: 922 /* VK_SHADER_INFO_TYPE_BINARY_AMD unimplemented for now. */ 923 result = VK_ERROR_FEATURE_NOT_PRESENT; 924 break; 925 } 926 927 return result; 928} 929