agx_optimizer.c revision 7ec681f3
1/* 2 * Copyright (C) 2021 Alyssa Rosenzweig <alyssa@rosenzweig.io> 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 * SOFTWARE. 22 */ 23 24#include "agx_compiler.h" 25#include "agx_minifloat.h" 26 27/* AGX peephole optimizer responsible for instruction combining. It operates in 28 * a forward direction and a backward direction, in each case traversing in 29 * source order. SSA means the forward pass satisfies the invariant: 30 * 31 * Every def is visited before any of its uses. 32 * 33 * Dually, the backend pass satisfies the invariant: 34 * 35 * Every use of a def is visited before the def. 36 * 37 * This means the forward pass can propagate modifiers forward, whereas the 38 * backwards pass propagates modifiers backward. Consider an example: 39 * 40 * 1 = fabs 0 41 * 2 = fround 1 42 * 3 = fsat 1 43 * 44 * The forwards pass would propagate the fabs to the fround (since we can 45 * lookup the fabs from the fround source and do the replacement). By contrast 46 * the backwards pass would propagate the fsat back to the fround (since when 47 * we see the fround we know it has only a single user, fsat). Propagatable 48 * instruction have natural directions (like pushforwards and pullbacks). 49 * 50 * We are careful to update the tracked state whenever we modify an instruction 51 * to ensure the passes are linear-time and converge in a single iteration. 52 * 53 * Size conversions are worth special discussion. Consider the snippet: 54 * 55 * 2 = fadd 0, 1 56 * 3 = f2f16 2 57 * 4 = fround 3 58 * 59 * A priori, we can move the f2f16 in either direction. But it's not equal -- 60 * if we move it up to the fadd, we get FP16 for two instructions, whereas if 61 * we push it into the fround, we effectively get FP32 for two instructions. So 62 * f2f16 is backwards. Likewise, consider 63 * 64 * 2 = fadd 0, 1 65 * 3 = f2f32 1 66 * 4 = fround 3 67 * 68 * This time if we move f2f32 up to the fadd, we get FP32 for two, but if we 69 * move it down to the fround, we get FP16 to too. So f2f32 is backwards. 70 */ 71 72static bool 73agx_is_fmov(agx_instr *def) 74{ 75 return (def->op == AGX_OPCODE_FADD) 76 && agx_is_equiv(def->src[1], agx_negzero()); 77} 78 79/* Compose floating-point modifiers with floating-point sources */ 80 81static agx_index 82agx_compose_float_src(agx_index to, agx_index from) 83{ 84 if (to.abs) 85 from.neg = false; 86 87 from.abs |= to.abs; 88 from.neg |= to.neg; 89 90 return from; 91} 92 93static void 94agx_optimizer_fmov(agx_instr **defs, agx_instr *ins, unsigned srcs) 95{ 96 for (unsigned s = 0; s < srcs; ++s) { 97 agx_index src = ins->src[s]; 98 if (src.type != AGX_INDEX_NORMAL) continue; 99 100 agx_instr *def = defs[src.value]; 101 if (!agx_is_fmov(def)) continue; 102 if (def->saturate) continue; 103 104 ins->src[s] = agx_compose_float_src(src, def->src[0]); 105 } 106} 107 108static void 109agx_optimizer_inline_imm(agx_instr **defs, agx_instr *I, 110 unsigned srcs, bool is_float) 111{ 112 for (unsigned s = 0; s < srcs; ++s) { 113 agx_index src = I->src[s]; 114 if (src.type != AGX_INDEX_NORMAL) continue; 115 116 agx_instr *def = defs[src.value]; 117 if (def->op != AGX_OPCODE_MOV_IMM) continue; 118 119 uint8_t value = def->imm; 120 bool float_src = is_float; 121 122 /* cmpselsrc takes integer immediates only */ 123 if (s >= 2 && I->op == AGX_OPCODE_FCMPSEL) float_src = false; 124 125 if (float_src) { 126 bool fp16 = (def->dest[0].size == AGX_SIZE_16); 127 assert(fp16 || (def->dest[0].size == AGX_SIZE_32)); 128 129 float f = fp16 ? _mesa_half_to_float(def->imm) : uif(def->imm); 130 if (!agx_minifloat_exact(f)) continue; 131 132 value = agx_minifloat_encode(f); 133 } else if (value != def->imm) { 134 continue; 135 } 136 137 I->src[s].type = AGX_INDEX_IMMEDIATE; 138 I->src[s].value = value; 139 } 140} 141 142static bool 143agx_optimizer_fmov_rev(agx_instr *I, agx_instr *use) 144{ 145 if (!agx_is_fmov(use)) return false; 146 if (use->src[0].neg || use->src[0].abs) return false; 147 148 /* saturate(saturate(x)) = saturate(x) */ 149 I->saturate |= use->saturate; 150 I->dest[0] = use->dest[0]; 151 return true; 152} 153 154static void 155agx_optimizer_forward(agx_context *ctx) 156{ 157 agx_instr **defs = calloc(ctx->alloc, sizeof(*defs)); 158 159 agx_foreach_instr_global(ctx, I) { 160 struct agx_opcode_info info = agx_opcodes_info[I->op]; 161 162 for (unsigned d = 0; d < info.nr_dests; ++d) { 163 if (I->dest[d].type == AGX_INDEX_NORMAL) 164 defs[I->dest[d].value] = I; 165 } 166 167 /* Propagate fmov down */ 168 if (info.is_float) 169 agx_optimizer_fmov(defs, I, info.nr_srcs); 170 171 /* Inline immediates if we can. TODO: systematic */ 172 if (I->op != AGX_OPCODE_ST_VARY && I->op != AGX_OPCODE_ST_TILE && I->op != AGX_OPCODE_P_EXTRACT && I->op != AGX_OPCODE_P_COMBINE) 173 agx_optimizer_inline_imm(defs, I, info.nr_srcs, info.is_float); 174 } 175 176 free(defs); 177} 178 179static void 180agx_optimizer_backward(agx_context *ctx) 181{ 182 agx_instr **uses = calloc(ctx->alloc, sizeof(*uses)); 183 BITSET_WORD *multiple = calloc(BITSET_WORDS(ctx->alloc), sizeof(*multiple)); 184 185 agx_foreach_instr_global_rev(ctx, I) { 186 struct agx_opcode_info info = agx_opcodes_info[I->op]; 187 188 for (unsigned s = 0; s < info.nr_srcs; ++s) { 189 if (I->src[s].type == AGX_INDEX_NORMAL) { 190 unsigned v = I->src[s].value; 191 192 if (uses[v]) 193 BITSET_SET(multiple, v); 194 else 195 uses[v] = I; 196 } 197 } 198 199 if (info.nr_dests != 1) 200 continue; 201 202 if (I->dest[0].type != AGX_INDEX_NORMAL) 203 continue; 204 205 agx_instr *use = uses[I->dest[0].value]; 206 207 if (!use || BITSET_TEST(multiple, I->dest[0].value)) 208 continue; 209 210 /* Destination has a single use, try to propagate */ 211 if (info.is_float && agx_optimizer_fmov_rev(I, use)) { 212 agx_remove_instruction(use); 213 continue; 214 } 215 } 216 217 free(uses); 218 free(multiple); 219} 220 221void 222agx_optimizer(agx_context *ctx) 223{ 224 agx_optimizer_backward(ctx); 225 agx_optimizer_forward(ctx); 226} 227