ir.h revision 01e04c3f
1/* -*- c++ -*- */
2/*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25#ifndef IR_H
26#define IR_H
27
28#include <stdio.h>
29#include <stdlib.h>
30
31#include "util/ralloc.h"
32#include "compiler/glsl_types.h"
33#include "list.h"
34#include "ir_visitor.h"
35#include "ir_hierarchical_visitor.h"
36
37#ifdef __cplusplus
38
39/**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45/**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant.  The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor.  While using type tags is not very C++, it is extremely
51 * convenient.  For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types.  For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59enum ir_node_type {
60   ir_type_dereference_array,
61   ir_type_dereference_record,
62   ir_type_dereference_variable,
63   ir_type_constant,
64   ir_type_expression,
65   ir_type_swizzle,
66   ir_type_texture,
67   ir_type_variable,
68   ir_type_assignment,
69   ir_type_call,
70   ir_type_function,
71   ir_type_function_signature,
72   ir_type_if,
73   ir_type_loop,
74   ir_type_loop_jump,
75   ir_type_return,
76   ir_type_discard,
77   ir_type_emit_vertex,
78   ir_type_end_primitive,
79   ir_type_barrier,
80   ir_type_max, /**< maximum ir_type enum number, for validation */
81   ir_type_unset = ir_type_max
82};
83
84
85/**
86 * Base class of all IR instructions
87 */
88class ir_instruction : public exec_node {
89public:
90   enum ir_node_type ir_type;
91
92   /**
93    * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94    * there's a virtual destructor present.  Because we almost
95    * universally use ralloc for our memory management of
96    * ir_instructions, the destructor doesn't need to do any work.
97    */
98   virtual ~ir_instruction()
99   {
100   }
101
102   /** ir_print_visitor helper for debugging. */
103   void print(void) const;
104   void fprint(FILE *f) const;
105
106   virtual void accept(ir_visitor *) = 0;
107   virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
108   virtual ir_instruction *clone(void *mem_ctx,
109				 struct hash_table *ht) const = 0;
110
111   bool is_rvalue() const
112   {
113      return ir_type == ir_type_dereference_array ||
114             ir_type == ir_type_dereference_record ||
115             ir_type == ir_type_dereference_variable ||
116             ir_type == ir_type_constant ||
117             ir_type == ir_type_expression ||
118             ir_type == ir_type_swizzle ||
119             ir_type == ir_type_texture;
120   }
121
122   bool is_dereference() const
123   {
124      return ir_type == ir_type_dereference_array ||
125             ir_type == ir_type_dereference_record ||
126             ir_type == ir_type_dereference_variable;
127   }
128
129   bool is_jump() const
130   {
131      return ir_type == ir_type_loop_jump ||
132             ir_type == ir_type_return ||
133             ir_type == ir_type_discard;
134   }
135
136   /**
137    * \name IR instruction downcast functions
138    *
139    * These functions either cast the object to a derived class or return
140    * \c NULL if the object's type does not match the specified derived class.
141    * Additional downcast functions will be added as needed.
142    */
143   /*@{*/
144   #define AS_BASE(TYPE)                                \
145   class ir_##TYPE *as_##TYPE()                         \
146   {                                                    \
147      assume(this != NULL);                             \
148      return is_##TYPE() ? (ir_##TYPE *) this : NULL;   \
149   }                                                    \
150   const class ir_##TYPE *as_##TYPE() const             \
151   {                                                    \
152      assume(this != NULL);                             \
153      return is_##TYPE() ? (ir_##TYPE *) this : NULL;   \
154   }
155
156   AS_BASE(rvalue)
157   AS_BASE(dereference)
158   AS_BASE(jump)
159   #undef AS_BASE
160
161   #define AS_CHILD(TYPE) \
162   class ir_##TYPE * as_##TYPE() \
163   { \
164      assume(this != NULL);                                         \
165      return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
166   }                                                                      \
167   const class ir_##TYPE * as_##TYPE() const                              \
168   {                                                                      \
169      assume(this != NULL);                                               \
170      return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
171   }
172   AS_CHILD(variable)
173   AS_CHILD(function)
174   AS_CHILD(dereference_array)
175   AS_CHILD(dereference_variable)
176   AS_CHILD(dereference_record)
177   AS_CHILD(expression)
178   AS_CHILD(loop)
179   AS_CHILD(assignment)
180   AS_CHILD(call)
181   AS_CHILD(return)
182   AS_CHILD(if)
183   AS_CHILD(swizzle)
184   AS_CHILD(texture)
185   AS_CHILD(constant)
186   AS_CHILD(discard)
187   #undef AS_CHILD
188   /*@}*/
189
190   /**
191    * IR equality method: Return true if the referenced instruction would
192    * return the same value as this one.
193    *
194    * This intended to be used for CSE and algebraic optimizations, on rvalues
195    * in particular.  No support for other instruction types (assignments,
196    * jumps, calls, etc.) is planned.
197    */
198   virtual bool equals(const ir_instruction *ir,
199                       enum ir_node_type ignore = ir_type_unset) const;
200
201protected:
202   ir_instruction(enum ir_node_type t)
203      : ir_type(t)
204   {
205   }
206
207private:
208   ir_instruction()
209   {
210      assert(!"Should not get here.");
211   }
212};
213
214
215/**
216 * The base class for all "values"/expression trees.
217 */
218class ir_rvalue : public ir_instruction {
219public:
220   const struct glsl_type *type;
221
222   virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
223
224   virtual void accept(ir_visitor *v)
225   {
226      v->visit(this);
227   }
228
229   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
230
231   virtual ir_constant *constant_expression_value(void *mem_ctx,
232                                                  struct hash_table *variable_context = NULL);
233
234   ir_rvalue *as_rvalue_to_saturate();
235
236   virtual bool is_lvalue(const struct _mesa_glsl_parse_state *state = NULL) const
237   {
238      return false;
239   }
240
241   /**
242    * Get the variable that is ultimately referenced by an r-value
243    */
244   virtual ir_variable *variable_referenced() const
245   {
246      return NULL;
247   }
248
249
250   /**
251    * If an r-value is a reference to a whole variable, get that variable
252    *
253    * \return
254    * Pointer to a variable that is completely dereferenced by the r-value.  If
255    * the r-value is not a dereference or the dereference does not access the
256    * entire variable (i.e., it's just one array element, struct field), \c NULL
257    * is returned.
258    */
259   virtual ir_variable *whole_variable_referenced()
260   {
261      return NULL;
262   }
263
264   /**
265    * Determine if an r-value has the value zero
266    *
267    * The base implementation of this function always returns \c false.  The
268    * \c ir_constant class over-rides this function to return \c true \b only
269    * for vector and scalar types that have all elements set to the value
270    * zero (or \c false for booleans).
271    *
272    * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
273    */
274   virtual bool is_zero() const;
275
276   /**
277    * Determine if an r-value has the value one
278    *
279    * The base implementation of this function always returns \c false.  The
280    * \c ir_constant class over-rides this function to return \c true \b only
281    * for vector and scalar types that have all elements set to the value
282    * one (or \c true for booleans).
283    *
284    * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
285    */
286   virtual bool is_one() const;
287
288   /**
289    * Determine if an r-value has the value negative one
290    *
291    * The base implementation of this function always returns \c false.  The
292    * \c ir_constant class over-rides this function to return \c true \b only
293    * for vector and scalar types that have all elements set to the value
294    * negative one.  For boolean types, the result is always \c false.
295    *
296    * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
297    */
298   virtual bool is_negative_one() const;
299
300   /**
301    * Determine if an r-value is an unsigned integer constant which can be
302    * stored in 16 bits.
303    *
304    * \sa ir_constant::is_uint16_constant.
305    */
306   virtual bool is_uint16_constant() const { return false; }
307
308   /**
309    * Return a generic value of error_type.
310    *
311    * Allocation will be performed with 'mem_ctx' as ralloc owner.
312    */
313   static ir_rvalue *error_value(void *mem_ctx);
314
315protected:
316   ir_rvalue(enum ir_node_type t);
317};
318
319
320/**
321 * Variable storage classes
322 */
323enum ir_variable_mode {
324   ir_var_auto = 0,             /**< Function local variables and globals. */
325   ir_var_uniform,              /**< Variable declared as a uniform. */
326   ir_var_shader_storage,       /**< Variable declared as an ssbo. */
327   ir_var_shader_shared,        /**< Variable declared as shared. */
328   ir_var_shader_in,
329   ir_var_shader_out,
330   ir_var_function_in,
331   ir_var_function_out,
332   ir_var_function_inout,
333   ir_var_const_in,             /**< "in" param that must be a constant expression */
334   ir_var_system_value,         /**< Ex: front-face, instance-id, etc. */
335   ir_var_temporary,            /**< Temporary variable generated during compilation. */
336   ir_var_mode_count            /**< Number of variable modes */
337};
338
339/**
340 * Enum keeping track of how a variable was declared.  For error checking of
341 * the gl_PerVertex redeclaration rules.
342 */
343enum ir_var_declaration_type {
344   /**
345    * Normal declaration (for most variables, this means an explicit
346    * declaration.  Exception: temporaries are always implicitly declared, but
347    * they still use ir_var_declared_normally).
348    *
349    * Note: an ir_variable that represents a named interface block uses
350    * ir_var_declared_normally.
351    */
352   ir_var_declared_normally = 0,
353
354   /**
355    * Variable was explicitly declared (or re-declared) in an unnamed
356    * interface block.
357    */
358   ir_var_declared_in_block,
359
360   /**
361    * Variable is an implicitly declared built-in that has not been explicitly
362    * re-declared by the shader.
363    */
364   ir_var_declared_implicitly,
365
366   /**
367    * Variable is implicitly generated by the compiler and should not be
368    * visible via the API.
369    */
370   ir_var_hidden,
371};
372
373/**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379enum ir_depth_layout {
380    ir_depth_layout_none, /**< No depth layout is specified. */
381    ir_depth_layout_any,
382    ir_depth_layout_greater,
383    ir_depth_layout_less,
384    ir_depth_layout_unchanged
385};
386
387/**
388 * \brief Convert depth layout qualifier to string.
389 */
390const char*
391depth_layout_string(ir_depth_layout layout);
392
393/**
394 * Description of built-in state associated with a uniform
395 *
396 * \sa ir_variable::state_slots
397 */
398struct ir_state_slot {
399   gl_state_index16 tokens[STATE_LENGTH];
400   int swizzle;
401};
402
403
404/**
405 * Get the string value for an interpolation qualifier
406 *
407 * \return The string that would be used in a shader to specify \c
408 * mode will be returned.
409 *
410 * This function is used to generate error messages of the form "shader
411 * uses %s interpolation qualifier", so in the case where there is no
412 * interpolation qualifier, it returns "no".
413 *
414 * This function should only be used on a shader input or output variable.
415 */
416const char *interpolation_string(unsigned interpolation);
417
418
419class ir_variable : public ir_instruction {
420public:
421   ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
422
423   virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
424
425   virtual void accept(ir_visitor *v)
426   {
427      v->visit(this);
428   }
429
430   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
431
432
433   /**
434    * Determine whether or not a variable is part of a uniform or
435    * shader storage block.
436    */
437   inline bool is_in_buffer_block() const
438   {
439      return (this->data.mode == ir_var_uniform ||
440              this->data.mode == ir_var_shader_storage) &&
441             this->interface_type != NULL;
442   }
443
444   /**
445    * Determine whether or not a variable is part of a shader storage block.
446    */
447   inline bool is_in_shader_storage_block() const
448   {
449      return this->data.mode == ir_var_shader_storage &&
450             this->interface_type != NULL;
451   }
452
453   /**
454    * Determine whether or not a variable is the declaration of an interface
455    * block
456    *
457    * For the first declaration below, there will be an \c ir_variable named
458    * "instance" whose type and whose instance_type will be the same
459    * \c glsl_type.  For the second declaration, there will be an \c ir_variable
460    * named "f" whose type is float and whose instance_type is B2.
461    *
462    * "instance" is an interface instance variable, but "f" is not.
463    *
464    * uniform B1 {
465    *     float f;
466    * } instance;
467    *
468    * uniform B2 {
469    *     float f;
470    * };
471    */
472   inline bool is_interface_instance() const
473   {
474      return this->type->without_array() == this->interface_type;
475   }
476
477   /**
478    * Return whether this variable contains a bindless sampler/image.
479    */
480   inline bool contains_bindless() const
481   {
482      if (!this->type->contains_sampler() && !this->type->contains_image())
483         return false;
484
485      return this->data.bindless || this->data.mode != ir_var_uniform;
486   }
487
488   /**
489    * Set this->interface_type on a newly created variable.
490    */
491   void init_interface_type(const struct glsl_type *type)
492   {
493      assert(this->interface_type == NULL);
494      this->interface_type = type;
495      if (this->is_interface_instance()) {
496         this->u.max_ifc_array_access =
497            ralloc_array(this, int, type->length);
498         for (unsigned i = 0; i < type->length; i++) {
499            this->u.max_ifc_array_access[i] = -1;
500         }
501      }
502   }
503
504   /**
505    * Change this->interface_type on a variable that previously had a
506    * different, but compatible, interface_type.  This is used during linking
507    * to set the size of arrays in interface blocks.
508    */
509   void change_interface_type(const struct glsl_type *type)
510   {
511      if (this->u.max_ifc_array_access != NULL) {
512         /* max_ifc_array_access has already been allocated, so make sure the
513          * new interface has the same number of fields as the old one.
514          */
515         assert(this->interface_type->length == type->length);
516      }
517      this->interface_type = type;
518   }
519
520   /**
521    * Change this->interface_type on a variable that previously had a
522    * different, and incompatible, interface_type. This is used during
523    * compilation to handle redeclaration of the built-in gl_PerVertex
524    * interface block.
525    */
526   void reinit_interface_type(const struct glsl_type *type)
527   {
528      if (this->u.max_ifc_array_access != NULL) {
529#ifndef NDEBUG
530         /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
531          * it defines have been accessed yet; so it's safe to throw away the
532          * old max_ifc_array_access pointer, since all of its values are
533          * zero.
534          */
535         for (unsigned i = 0; i < this->interface_type->length; i++)
536            assert(this->u.max_ifc_array_access[i] == -1);
537#endif
538         ralloc_free(this->u.max_ifc_array_access);
539         this->u.max_ifc_array_access = NULL;
540      }
541      this->interface_type = NULL;
542      init_interface_type(type);
543   }
544
545   const glsl_type *get_interface_type() const
546   {
547      return this->interface_type;
548   }
549
550   enum glsl_interface_packing get_interface_type_packing() const
551   {
552     return this->interface_type->get_interface_packing();
553   }
554   /**
555    * Get the max_ifc_array_access pointer
556    *
557    * A "set" function is not needed because the array is dynmically allocated
558    * as necessary.
559    */
560   inline int *get_max_ifc_array_access()
561   {
562      assert(this->data._num_state_slots == 0);
563      return this->u.max_ifc_array_access;
564   }
565
566   inline unsigned get_num_state_slots() const
567   {
568      assert(!this->is_interface_instance()
569             || this->data._num_state_slots == 0);
570      return this->data._num_state_slots;
571   }
572
573   inline void set_num_state_slots(unsigned n)
574   {
575      assert(!this->is_interface_instance()
576             || n == 0);
577      this->data._num_state_slots = n;
578   }
579
580   inline ir_state_slot *get_state_slots()
581   {
582      return this->is_interface_instance() ? NULL : this->u.state_slots;
583   }
584
585   inline const ir_state_slot *get_state_slots() const
586   {
587      return this->is_interface_instance() ? NULL : this->u.state_slots;
588   }
589
590   inline ir_state_slot *allocate_state_slots(unsigned n)
591   {
592      assert(!this->is_interface_instance());
593
594      this->u.state_slots = ralloc_array(this, ir_state_slot, n);
595      this->data._num_state_slots = 0;
596
597      if (this->u.state_slots != NULL)
598         this->data._num_state_slots = n;
599
600      return this->u.state_slots;
601   }
602
603   inline bool is_interpolation_flat() const
604   {
605      return this->data.interpolation == INTERP_MODE_FLAT ||
606             this->type->contains_integer() ||
607             this->type->contains_double();
608   }
609
610   inline bool is_name_ralloced() const
611   {
612      return this->name != ir_variable::tmp_name &&
613             this->name != this->name_storage;
614   }
615
616   /**
617    * Enable emitting extension warnings for this variable
618    */
619   void enable_extension_warning(const char *extension);
620
621   /**
622    * Get the extension warning string for this variable
623    *
624    * If warnings are not enabled, \c NULL is returned.
625    */
626   const char *get_extension_warning() const;
627
628   /**
629    * Declared type of the variable
630    */
631   const struct glsl_type *type;
632
633   /**
634    * Declared name of the variable
635    */
636   const char *name;
637
638private:
639   /**
640    * If the name length fits into name_storage, it's used, otherwise
641    * the name is ralloc'd. shader-db mining showed that 70% of variables
642    * fit here. This is a win over ralloc where only ralloc_header has
643    * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
644    */
645   char name_storage[16];
646
647public:
648   struct ir_variable_data {
649
650      /**
651       * Is the variable read-only?
652       *
653       * This is set for variables declared as \c const, shader inputs,
654       * and uniforms.
655       */
656      unsigned read_only:1;
657      unsigned centroid:1;
658      unsigned sample:1;
659      unsigned patch:1;
660      unsigned invariant:1;
661      unsigned precise:1;
662
663      /**
664       * Has this variable been used for reading or writing?
665       *
666       * Several GLSL semantic checks require knowledge of whether or not a
667       * variable has been used.  For example, it is an error to redeclare a
668       * variable as invariant after it has been used.
669       *
670       * This is maintained in the ast_to_hir.cpp path and during linking,
671       * but not in Mesa's fixed function or ARB program paths.
672       */
673      unsigned used:1;
674
675      /**
676       * Has this variable been statically assigned?
677       *
678       * This answers whether the variable was assigned in any path of
679       * the shader during ast_to_hir.  This doesn't answer whether it is
680       * still written after dead code removal, nor is it maintained in
681       * non-ast_to_hir.cpp (GLSL parsing) paths.
682       */
683      unsigned assigned:1;
684
685      /**
686       * When separate shader programs are enabled, only input/outputs between
687       * the stages of a multi-stage separate program can be safely removed
688       * from the shader interface. Other input/outputs must remains active.
689       */
690      unsigned always_active_io:1;
691
692      /**
693       * Enum indicating how the variable was declared.  See
694       * ir_var_declaration_type.
695       *
696       * This is used to detect certain kinds of illegal variable redeclarations.
697       */
698      unsigned how_declared:2;
699
700      /**
701       * Storage class of the variable.
702       *
703       * \sa ir_variable_mode
704       */
705      unsigned mode:4;
706
707      /**
708       * Interpolation mode for shader inputs / outputs
709       *
710       * \sa glsl_interp_mode
711       */
712      unsigned interpolation:2;
713
714      /**
715       * \name ARB_fragment_coord_conventions
716       * @{
717       */
718      unsigned origin_upper_left:1;
719      unsigned pixel_center_integer:1;
720      /*@}*/
721
722      /**
723       * Was the location explicitly set in the shader?
724       *
725       * If the location is explicitly set in the shader, it \b cannot be changed
726       * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
727       * no effect).
728       */
729      unsigned explicit_location:1;
730      unsigned explicit_index:1;
731
732      /**
733       * Was an initial binding explicitly set in the shader?
734       *
735       * If so, constant_value contains an integer ir_constant representing the
736       * initial binding point.
737       */
738      unsigned explicit_binding:1;
739
740      /**
741       * Was an initial component explicitly set in the shader?
742       */
743      unsigned explicit_component:1;
744
745      /**
746       * Does this variable have an initializer?
747       *
748       * This is used by the linker to cross-validiate initializers of global
749       * variables.
750       */
751      unsigned has_initializer:1;
752
753      /**
754       * Is this variable a generic output or input that has not yet been matched
755       * up to a variable in another stage of the pipeline?
756       *
757       * This is used by the linker as scratch storage while assigning locations
758       * to generic inputs and outputs.
759       */
760      unsigned is_unmatched_generic_inout:1;
761
762      /**
763       * Is this varying used only by transform feedback?
764       *
765       * This is used by the linker to decide if its safe to pack the varying.
766       */
767      unsigned is_xfb_only:1;
768
769      /**
770       * Was a transfor feedback buffer set in the shader?
771       */
772      unsigned explicit_xfb_buffer:1;
773
774      /**
775       * Was a transfor feedback offset set in the shader?
776       */
777      unsigned explicit_xfb_offset:1;
778
779      /**
780       * Was a transfor feedback stride set in the shader?
781       */
782      unsigned explicit_xfb_stride:1;
783
784      /**
785       * If non-zero, then this variable may be packed along with other variables
786       * into a single varying slot, so this offset should be applied when
787       * accessing components.  For example, an offset of 1 means that the x
788       * component of this variable is actually stored in component y of the
789       * location specified by \c location.
790       */
791      unsigned location_frac:2;
792
793      /**
794       * Layout of the matrix.  Uses glsl_matrix_layout values.
795       */
796      unsigned matrix_layout:2;
797
798      /**
799       * Non-zero if this variable was created by lowering a named interface
800       * block.
801       */
802      unsigned from_named_ifc_block:1;
803
804      /**
805       * Non-zero if the variable must be a shader input. This is useful for
806       * constraints on function parameters.
807       */
808      unsigned must_be_shader_input:1;
809
810      /**
811       * Output index for dual source blending.
812       *
813       * \note
814       * The GLSL spec only allows the values 0 or 1 for the index in \b dual
815       * source blending.
816       */
817      unsigned index:1;
818
819      /**
820       * Precision qualifier.
821       *
822       * In desktop GLSL we do not care about precision qualifiers at all, in
823       * fact, the spec says that precision qualifiers are ignored.
824       *
825       * To make things easy, we make it so that this field is always
826       * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
827       * have the same precision value and the checks we add in the compiler
828       * for this field will never break a desktop shader compile.
829       */
830      unsigned precision:2;
831
832      /**
833       * \brief Layout qualifier for gl_FragDepth.
834       *
835       * This is not equal to \c ir_depth_layout_none if and only if this
836       * variable is \c gl_FragDepth and a layout qualifier is specified.
837       */
838      ir_depth_layout depth_layout:3;
839
840      /**
841       * Memory qualifiers.
842       */
843      unsigned memory_read_only:1; /**< "readonly" qualifier. */
844      unsigned memory_write_only:1; /**< "writeonly" qualifier. */
845      unsigned memory_coherent:1;
846      unsigned memory_volatile:1;
847      unsigned memory_restrict:1;
848
849      /**
850       * ARB_shader_storage_buffer_object
851       */
852      unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
853
854      unsigned implicit_sized_array:1;
855
856      /**
857       * Whether this is a fragment shader output implicitly initialized with
858       * the previous contents of the specified render target at the
859       * framebuffer location corresponding to this shader invocation.
860       */
861      unsigned fb_fetch_output:1;
862
863      /**
864       * Non-zero if this variable is considered bindless as defined by
865       * ARB_bindless_texture.
866       */
867      unsigned bindless:1;
868
869      /**
870       * Non-zero if this variable is considered bound as defined by
871       * ARB_bindless_texture.
872       */
873      unsigned bound:1;
874
875      /**
876       * Emit a warning if this variable is accessed.
877       */
878   private:
879      uint8_t warn_extension_index;
880
881   public:
882      /** Image internal format if specified explicitly, otherwise GL_NONE. */
883      uint16_t image_format;
884
885   private:
886      /**
887       * Number of state slots used
888       *
889       * \note
890       * This could be stored in as few as 7-bits, if necessary.  If it is made
891       * smaller, add an assertion to \c ir_variable::allocate_state_slots to
892       * be safe.
893       */
894      uint16_t _num_state_slots;
895
896   public:
897      /**
898       * Initial binding point for a sampler, atomic, or UBO.
899       *
900       * For array types, this represents the binding point for the first element.
901       */
902      int16_t binding;
903
904      /**
905       * Storage location of the base of this variable
906       *
907       * The precise meaning of this field depends on the nature of the variable.
908       *
909       *   - Vertex shader input: one of the values from \c gl_vert_attrib.
910       *   - Vertex shader output: one of the values from \c gl_varying_slot.
911       *   - Geometry shader input: one of the values from \c gl_varying_slot.
912       *   - Geometry shader output: one of the values from \c gl_varying_slot.
913       *   - Fragment shader input: one of the values from \c gl_varying_slot.
914       *   - Fragment shader output: one of the values from \c gl_frag_result.
915       *   - Uniforms: Per-stage uniform slot number for default uniform block.
916       *   - Uniforms: Index within the uniform block definition for UBO members.
917       *   - Non-UBO Uniforms: explicit location until linking then reused to
918       *     store uniform slot number.
919       *   - Other: This field is not currently used.
920       *
921       * If the variable is a uniform, shader input, or shader output, and the
922       * slot has not been assigned, the value will be -1.
923       */
924      int location;
925
926      /**
927       * for glsl->tgsi/mesa IR we need to store the index into the
928       * parameters for uniforms, initially the code overloaded location
929       * but this causes problems with indirect samplers and AoA.
930       * This is assigned in _mesa_generate_parameters_list_for_uniforms.
931       */
932      int param_index;
933
934      /**
935       * Vertex stream output identifier.
936       *
937       * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
938       * stream of the i-th component.
939       */
940      unsigned stream;
941
942      /**
943       * Atomic, transform feedback or block member offset.
944       */
945      unsigned offset;
946
947      /**
948       * Highest element accessed with a constant expression array index
949       *
950       * Not used for non-array variables. -1 is never accessed.
951       */
952      int max_array_access;
953
954      /**
955       * Transform feedback buffer.
956       */
957      unsigned xfb_buffer;
958
959      /**
960       * Transform feedback stride.
961       */
962      unsigned xfb_stride;
963
964      /**
965       * Allow (only) ir_variable direct access private members.
966       */
967      friend class ir_variable;
968   } data;
969
970   /**
971    * Value assigned in the initializer of a variable declared "const"
972    */
973   ir_constant *constant_value;
974
975   /**
976    * Constant expression assigned in the initializer of the variable
977    *
978    * \warning
979    * This field and \c ::constant_value are distinct.  Even if the two fields
980    * refer to constants with the same value, they must point to separate
981    * objects.
982    */
983   ir_constant *constant_initializer;
984
985private:
986   static const char *const warn_extension_table[];
987
988   union {
989      /**
990       * For variables which satisfy the is_interface_instance() predicate,
991       * this points to an array of integers such that if the ith member of
992       * the interface block is an array, max_ifc_array_access[i] is the
993       * maximum array element of that member that has been accessed.  If the
994       * ith member of the interface block is not an array,
995       * max_ifc_array_access[i] is unused.
996       *
997       * For variables whose type is not an interface block, this pointer is
998       * NULL.
999       */
1000      int *max_ifc_array_access;
1001
1002      /**
1003       * Built-in state that backs this uniform
1004       *
1005       * Once set at variable creation, \c state_slots must remain invariant.
1006       *
1007       * If the variable is not a uniform, \c _num_state_slots will be zero
1008       * and \c state_slots will be \c NULL.
1009       */
1010      ir_state_slot *state_slots;
1011   } u;
1012
1013   /**
1014    * For variables that are in an interface block or are an instance of an
1015    * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1016    *
1017    * \sa ir_variable::location
1018    */
1019   const glsl_type *interface_type;
1020
1021   /**
1022    * Name used for anonymous compiler temporaries
1023    */
1024   static const char tmp_name[];
1025
1026public:
1027   /**
1028    * Should the construct keep names for ir_var_temporary variables?
1029    *
1030    * When this global is false, names passed to the constructor for
1031    * \c ir_var_temporary variables will be dropped.  Instead, the variable will
1032    * be named "compiler_temp".  This name will be in static storage.
1033    *
1034    * \warning
1035    * \b NEVER change the mode of an \c ir_var_temporary.
1036    *
1037    * \warning
1038    * This variable is \b not thread-safe.  It is global, \b not
1039    * per-context. It begins life false.  A context can, at some point, make
1040    * it true.  From that point on, it will be true forever.  This should be
1041    * okay since it will only be set true while debugging.
1042    */
1043   static bool temporaries_allocate_names;
1044};
1045
1046/**
1047 * A function that returns whether a built-in function is available in the
1048 * current shading language (based on version, ES or desktop, and extensions).
1049 */
1050typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1051
1052#define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1053   ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1054
1055#define MAP_INTRINSIC_TO_TYPE(i, t) \
1056   ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1057
1058enum ir_intrinsic_id {
1059   ir_intrinsic_invalid = 0,
1060
1061   /**
1062    * \name Generic intrinsics
1063    *
1064    * Each of these intrinsics has a specific version for shared variables and
1065    * SSBOs.
1066    */
1067   /*@{*/
1068   ir_intrinsic_generic_load,
1069   ir_intrinsic_generic_store,
1070   ir_intrinsic_generic_atomic_add,
1071   ir_intrinsic_generic_atomic_and,
1072   ir_intrinsic_generic_atomic_or,
1073   ir_intrinsic_generic_atomic_xor,
1074   ir_intrinsic_generic_atomic_min,
1075   ir_intrinsic_generic_atomic_max,
1076   ir_intrinsic_generic_atomic_exchange,
1077   ir_intrinsic_generic_atomic_comp_swap,
1078   /*@}*/
1079
1080   ir_intrinsic_atomic_counter_read,
1081   ir_intrinsic_atomic_counter_increment,
1082   ir_intrinsic_atomic_counter_predecrement,
1083   ir_intrinsic_atomic_counter_add,
1084   ir_intrinsic_atomic_counter_and,
1085   ir_intrinsic_atomic_counter_or,
1086   ir_intrinsic_atomic_counter_xor,
1087   ir_intrinsic_atomic_counter_min,
1088   ir_intrinsic_atomic_counter_max,
1089   ir_intrinsic_atomic_counter_exchange,
1090   ir_intrinsic_atomic_counter_comp_swap,
1091
1092   ir_intrinsic_image_load,
1093   ir_intrinsic_image_store,
1094   ir_intrinsic_image_atomic_add,
1095   ir_intrinsic_image_atomic_and,
1096   ir_intrinsic_image_atomic_or,
1097   ir_intrinsic_image_atomic_xor,
1098   ir_intrinsic_image_atomic_min,
1099   ir_intrinsic_image_atomic_max,
1100   ir_intrinsic_image_atomic_exchange,
1101   ir_intrinsic_image_atomic_comp_swap,
1102   ir_intrinsic_image_size,
1103   ir_intrinsic_image_samples,
1104
1105   ir_intrinsic_ssbo_load,
1106   ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1107   ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1108   ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1109   ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1110   ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1111   ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1112   ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1113   ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1114   ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1115
1116   ir_intrinsic_memory_barrier,
1117   ir_intrinsic_shader_clock,
1118   ir_intrinsic_group_memory_barrier,
1119   ir_intrinsic_memory_barrier_atomic_counter,
1120   ir_intrinsic_memory_barrier_buffer,
1121   ir_intrinsic_memory_barrier_image,
1122   ir_intrinsic_memory_barrier_shared,
1123   ir_intrinsic_begin_invocation_interlock,
1124   ir_intrinsic_end_invocation_interlock,
1125
1126   ir_intrinsic_vote_all,
1127   ir_intrinsic_vote_any,
1128   ir_intrinsic_vote_eq,
1129   ir_intrinsic_ballot,
1130   ir_intrinsic_read_invocation,
1131   ir_intrinsic_read_first_invocation,
1132
1133   ir_intrinsic_shared_load,
1134   ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1135   ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1136   ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1137   ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1138   ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1139   ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1140   ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1141   ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1142   ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1143};
1144
1145/*@{*/
1146/**
1147 * The representation of a function instance; may be the full definition or
1148 * simply a prototype.
1149 */
1150class ir_function_signature : public ir_instruction {
1151   /* An ir_function_signature will be part of the list of signatures in
1152    * an ir_function.
1153    */
1154public:
1155   ir_function_signature(const glsl_type *return_type,
1156                         builtin_available_predicate builtin_avail = NULL);
1157
1158   virtual ir_function_signature *clone(void *mem_ctx,
1159					struct hash_table *ht) const;
1160   ir_function_signature *clone_prototype(void *mem_ctx,
1161					  struct hash_table *ht) const;
1162
1163   virtual void accept(ir_visitor *v)
1164   {
1165      v->visit(this);
1166   }
1167
1168   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1169
1170   /**
1171    * Attempt to evaluate this function as a constant expression,
1172    * given a list of the actual parameters and the variable context.
1173    * Returns NULL for non-built-ins.
1174    */
1175   ir_constant *constant_expression_value(void *mem_ctx,
1176                                          exec_list *actual_parameters,
1177                                          struct hash_table *variable_context);
1178
1179   /**
1180    * Get the name of the function for which this is a signature
1181    */
1182   const char *function_name() const;
1183
1184   /**
1185    * Get a handle to the function for which this is a signature
1186    *
1187    * There is no setter function, this function returns a \c const pointer,
1188    * and \c ir_function_signature::_function is private for a reason.  The
1189    * only way to make a connection between a function and function signature
1190    * is via \c ir_function::add_signature.  This helps ensure that certain
1191    * invariants (i.e., a function signature is in the list of signatures for
1192    * its \c _function) are met.
1193    *
1194    * \sa ir_function::add_signature
1195    */
1196   inline const class ir_function *function() const
1197   {
1198      return this->_function;
1199   }
1200
1201   /**
1202    * Check whether the qualifiers match between this signature's parameters
1203    * and the supplied parameter list.  If not, returns the name of the first
1204    * parameter with mismatched qualifiers (for use in error messages).
1205    */
1206   const char *qualifiers_match(exec_list *params);
1207
1208   /**
1209    * Replace the current parameter list with the given one.  This is useful
1210    * if the current information came from a prototype, and either has invalid
1211    * or missing parameter names.
1212    */
1213   void replace_parameters(exec_list *new_params);
1214
1215   /**
1216    * Function return type.
1217    *
1218    * \note This discards the optional precision qualifier.
1219    */
1220   const struct glsl_type *return_type;
1221
1222   /**
1223    * List of ir_variable of function parameters.
1224    *
1225    * This represents the storage.  The paramaters passed in a particular
1226    * call will be in ir_call::actual_paramaters.
1227    */
1228   struct exec_list parameters;
1229
1230   /** Whether or not this function has a body (which may be empty). */
1231   unsigned is_defined:1;
1232
1233   /** Whether or not this function signature is a built-in. */
1234   bool is_builtin() const;
1235
1236   /**
1237    * Whether or not this function is an intrinsic to be implemented
1238    * by the driver.
1239    */
1240   inline bool is_intrinsic() const
1241   {
1242      return intrinsic_id != ir_intrinsic_invalid;
1243   }
1244
1245   /** Indentifier for this intrinsic. */
1246   enum ir_intrinsic_id intrinsic_id;
1247
1248   /** Whether or not a built-in is available for this shader. */
1249   bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1250
1251   /** Body of instructions in the function. */
1252   struct exec_list body;
1253
1254private:
1255   /**
1256    * A function pointer to a predicate that answers whether a built-in
1257    * function is available in the current shader.  NULL if not a built-in.
1258    */
1259   builtin_available_predicate builtin_avail;
1260
1261   /** Function of which this signature is one overload. */
1262   class ir_function *_function;
1263
1264   /** Function signature of which this one is a prototype clone */
1265   const ir_function_signature *origin;
1266
1267   friend class ir_function;
1268
1269   /**
1270    * Helper function to run a list of instructions for constant
1271    * expression evaluation.
1272    *
1273    * The hash table represents the values of the visible variables.
1274    * There are no scoping issues because the table is indexed on
1275    * ir_variable pointers, not variable names.
1276    *
1277    * Returns false if the expression is not constant, true otherwise,
1278    * and the value in *result if result is non-NULL.
1279    */
1280   bool constant_expression_evaluate_expression_list(void *mem_ctx,
1281                                                     const struct exec_list &body,
1282						     struct hash_table *variable_context,
1283						     ir_constant **result);
1284};
1285
1286
1287/**
1288 * Header for tracking multiple overloaded functions with the same name.
1289 * Contains a list of ir_function_signatures representing each of the
1290 * actual functions.
1291 */
1292class ir_function : public ir_instruction {
1293public:
1294   ir_function(const char *name);
1295
1296   virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1297
1298   virtual void accept(ir_visitor *v)
1299   {
1300      v->visit(this);
1301   }
1302
1303   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1304
1305   void add_signature(ir_function_signature *sig)
1306   {
1307      sig->_function = this;
1308      this->signatures.push_tail(sig);
1309   }
1310
1311   /**
1312    * Find a signature that matches a set of actual parameters, taking implicit
1313    * conversions into account.  Also flags whether the match was exact.
1314    */
1315   ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1316                                             const exec_list *actual_param,
1317                                             bool allow_builtins,
1318					     bool *match_is_exact);
1319
1320   /**
1321    * Find a signature that matches a set of actual parameters, taking implicit
1322    * conversions into account.
1323    */
1324   ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1325                                             const exec_list *actual_param,
1326                                             bool allow_builtins);
1327
1328   /**
1329    * Find a signature that exactly matches a set of actual parameters without
1330    * any implicit type conversions.
1331    */
1332   ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1333                                                   const exec_list *actual_ps);
1334
1335   /**
1336    * Name of the function.
1337    */
1338   const char *name;
1339
1340   /** Whether or not this function has a signature that isn't a built-in. */
1341   bool has_user_signature();
1342
1343   /**
1344    * List of ir_function_signature for each overloaded function with this name.
1345    */
1346   struct exec_list signatures;
1347
1348   /**
1349    * is this function a subroutine type declaration
1350    * e.g. subroutine void type1(float arg1);
1351    */
1352   bool is_subroutine;
1353
1354   /**
1355    * is this function associated to a subroutine type
1356    * e.g. subroutine (type1, type2) function_name { function_body };
1357    * would have num_subroutine_types 2,
1358    * and pointers to the type1 and type2 types.
1359    */
1360   int num_subroutine_types;
1361   const struct glsl_type **subroutine_types;
1362
1363   int subroutine_index;
1364};
1365
1366inline const char *ir_function_signature::function_name() const
1367{
1368   return this->_function->name;
1369}
1370/*@}*/
1371
1372
1373/**
1374 * IR instruction representing high-level if-statements
1375 */
1376class ir_if : public ir_instruction {
1377public:
1378   ir_if(ir_rvalue *condition)
1379      : ir_instruction(ir_type_if), condition(condition)
1380   {
1381   }
1382
1383   virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1384
1385   virtual void accept(ir_visitor *v)
1386   {
1387      v->visit(this);
1388   }
1389
1390   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1391
1392   ir_rvalue *condition;
1393   /** List of ir_instruction for the body of the then branch */
1394   exec_list  then_instructions;
1395   /** List of ir_instruction for the body of the else branch */
1396   exec_list  else_instructions;
1397};
1398
1399
1400/**
1401 * IR instruction representing a high-level loop structure.
1402 */
1403class ir_loop : public ir_instruction {
1404public:
1405   ir_loop();
1406
1407   virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1408
1409   virtual void accept(ir_visitor *v)
1410   {
1411      v->visit(this);
1412   }
1413
1414   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1415
1416   /** List of ir_instruction that make up the body of the loop. */
1417   exec_list body_instructions;
1418};
1419
1420
1421class ir_assignment : public ir_instruction {
1422public:
1423   ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1424
1425   /**
1426    * Construct an assignment with an explicit write mask
1427    *
1428    * \note
1429    * Since a write mask is supplied, the LHS must already be a bare
1430    * \c ir_dereference.  The cannot be any swizzles in the LHS.
1431    */
1432   ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1433		 unsigned write_mask);
1434
1435   virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1436
1437   virtual ir_constant *constant_expression_value(void *mem_ctx,
1438                                                  struct hash_table *variable_context = NULL);
1439
1440   virtual void accept(ir_visitor *v)
1441   {
1442      v->visit(this);
1443   }
1444
1445   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1446
1447   /**
1448    * Get a whole variable written by an assignment
1449    *
1450    * If the LHS of the assignment writes a whole variable, the variable is
1451    * returned.  Otherwise \c NULL is returned.  Examples of whole-variable
1452    * assignment are:
1453    *
1454    *  - Assigning to a scalar
1455    *  - Assigning to all components of a vector
1456    *  - Whole array (or matrix) assignment
1457    *  - Whole structure assignment
1458    */
1459   ir_variable *whole_variable_written();
1460
1461   /**
1462    * Set the LHS of an assignment
1463    */
1464   void set_lhs(ir_rvalue *lhs);
1465
1466   /**
1467    * Left-hand side of the assignment.
1468    *
1469    * This should be treated as read only.  If you need to set the LHS of an
1470    * assignment, use \c ir_assignment::set_lhs.
1471    */
1472   ir_dereference *lhs;
1473
1474   /**
1475    * Value being assigned
1476    */
1477   ir_rvalue *rhs;
1478
1479   /**
1480    * Optional condition for the assignment.
1481    */
1482   ir_rvalue *condition;
1483
1484
1485   /**
1486    * Component mask written
1487    *
1488    * For non-vector types in the LHS, this field will be zero.  For vector
1489    * types, a bit will be set for each component that is written.  Note that
1490    * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1491    *
1492    * A partially-set write mask means that each enabled channel gets
1493    * the value from a consecutive channel of the rhs.  For example,
1494    * to write just .xyw of gl_FrontColor with color:
1495    *
1496    * (assign (constant bool (1)) (xyw)
1497    *     (var_ref gl_FragColor)
1498    *     (swiz xyw (var_ref color)))
1499    */
1500   unsigned write_mask:4;
1501};
1502
1503#include "ir_expression_operation.h"
1504
1505extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1506extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1507
1508class ir_expression : public ir_rvalue {
1509public:
1510   ir_expression(int op, const struct glsl_type *type,
1511                 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1512                 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1513
1514   /**
1515    * Constructor for unary operation expressions
1516    */
1517   ir_expression(int op, ir_rvalue *);
1518
1519   /**
1520    * Constructor for binary operation expressions
1521    */
1522   ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1523
1524   /**
1525    * Constructor for ternary operation expressions
1526    */
1527   ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1528
1529   virtual bool equals(const ir_instruction *ir,
1530                       enum ir_node_type ignore = ir_type_unset) const;
1531
1532   virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1533
1534   /**
1535    * Attempt to constant-fold the expression
1536    *
1537    * The "variable_context" hash table links ir_variable * to ir_constant *
1538    * that represent the variables' values.  \c NULL represents an empty
1539    * context.
1540    *
1541    * If the expression cannot be constant folded, this method will return
1542    * \c NULL.
1543    */
1544   virtual ir_constant *constant_expression_value(void *mem_ctx,
1545                                                  struct hash_table *variable_context = NULL);
1546
1547   /**
1548    * This is only here for ir_reader to used for testing purposes please use
1549    * the precomputed num_operands field if you need the number of operands.
1550    */
1551   static unsigned get_num_operands(ir_expression_operation);
1552
1553   /**
1554    * Return whether the expression operates on vectors horizontally.
1555    */
1556   bool is_horizontal() const
1557   {
1558      return operation == ir_binop_all_equal ||
1559             operation == ir_binop_any_nequal ||
1560             operation == ir_binop_dot ||
1561             operation == ir_binop_vector_extract ||
1562             operation == ir_triop_vector_insert ||
1563             operation == ir_binop_ubo_load ||
1564             operation == ir_quadop_vector;
1565   }
1566
1567   /**
1568    * Do a reverse-lookup to translate the given string into an operator.
1569    */
1570   static ir_expression_operation get_operator(const char *);
1571
1572   virtual void accept(ir_visitor *v)
1573   {
1574      v->visit(this);
1575   }
1576
1577   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1578
1579   virtual ir_variable *variable_referenced() const;
1580
1581   /**
1582    * Determine the number of operands used by an expression
1583    */
1584   void init_num_operands()
1585   {
1586      if (operation == ir_quadop_vector) {
1587         num_operands = this->type->vector_elements;
1588      } else {
1589         num_operands = get_num_operands(operation);
1590      }
1591   }
1592
1593   ir_expression_operation operation;
1594   ir_rvalue *operands[4];
1595   uint8_t num_operands;
1596};
1597
1598
1599/**
1600 * HIR instruction representing a high-level function call, containing a list
1601 * of parameters and returning a value in the supplied temporary.
1602 */
1603class ir_call : public ir_instruction {
1604public:
1605   ir_call(ir_function_signature *callee,
1606	   ir_dereference_variable *return_deref,
1607	   exec_list *actual_parameters)
1608      : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1609   {
1610      assert(callee->return_type != NULL);
1611      actual_parameters->move_nodes_to(& this->actual_parameters);
1612   }
1613
1614   ir_call(ir_function_signature *callee,
1615	   ir_dereference_variable *return_deref,
1616	   exec_list *actual_parameters,
1617	   ir_variable *var, ir_rvalue *array_idx)
1618      : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1619   {
1620      assert(callee->return_type != NULL);
1621      actual_parameters->move_nodes_to(& this->actual_parameters);
1622   }
1623
1624   virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1625
1626   virtual ir_constant *constant_expression_value(void *mem_ctx,
1627                                                  struct hash_table *variable_context = NULL);
1628
1629   virtual void accept(ir_visitor *v)
1630   {
1631      v->visit(this);
1632   }
1633
1634   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1635
1636   /**
1637    * Get the name of the function being called.
1638    */
1639   const char *callee_name() const
1640   {
1641      return callee->function_name();
1642   }
1643
1644   /**
1645    * Generates an inline version of the function before @ir,
1646    * storing the return value in return_deref.
1647    */
1648   void generate_inline(ir_instruction *ir);
1649
1650   /**
1651    * Storage for the function's return value.
1652    * This must be NULL if the return type is void.
1653    */
1654   ir_dereference_variable *return_deref;
1655
1656   /**
1657    * The specific function signature being called.
1658    */
1659   ir_function_signature *callee;
1660
1661   /* List of ir_rvalue of paramaters passed in this call. */
1662   exec_list actual_parameters;
1663
1664   /*
1665    * ARB_shader_subroutine support -
1666    * the subroutine uniform variable and array index
1667    * rvalue to be used in the lowering pass later.
1668    */
1669   ir_variable *sub_var;
1670   ir_rvalue *array_idx;
1671};
1672
1673
1674/**
1675 * \name Jump-like IR instructions.
1676 *
1677 * These include \c break, \c continue, \c return, and \c discard.
1678 */
1679/*@{*/
1680class ir_jump : public ir_instruction {
1681protected:
1682   ir_jump(enum ir_node_type t)
1683      : ir_instruction(t)
1684   {
1685   }
1686};
1687
1688class ir_return : public ir_jump {
1689public:
1690   ir_return()
1691      : ir_jump(ir_type_return), value(NULL)
1692   {
1693   }
1694
1695   ir_return(ir_rvalue *value)
1696      : ir_jump(ir_type_return), value(value)
1697   {
1698   }
1699
1700   virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1701
1702   ir_rvalue *get_value() const
1703   {
1704      return value;
1705   }
1706
1707   virtual void accept(ir_visitor *v)
1708   {
1709      v->visit(this);
1710   }
1711
1712   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1713
1714   ir_rvalue *value;
1715};
1716
1717
1718/**
1719 * Jump instructions used inside loops
1720 *
1721 * These include \c break and \c continue.  The \c break within a loop is
1722 * different from the \c break within a switch-statement.
1723 *
1724 * \sa ir_switch_jump
1725 */
1726class ir_loop_jump : public ir_jump {
1727public:
1728   enum jump_mode {
1729      jump_break,
1730      jump_continue
1731   };
1732
1733   ir_loop_jump(jump_mode mode)
1734      : ir_jump(ir_type_loop_jump)
1735   {
1736      this->mode = mode;
1737   }
1738
1739   virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1740
1741   virtual void accept(ir_visitor *v)
1742   {
1743      v->visit(this);
1744   }
1745
1746   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1747
1748   bool is_break() const
1749   {
1750      return mode == jump_break;
1751   }
1752
1753   bool is_continue() const
1754   {
1755      return mode == jump_continue;
1756   }
1757
1758   /** Mode selector for the jump instruction. */
1759   enum jump_mode mode;
1760};
1761
1762/**
1763 * IR instruction representing discard statements.
1764 */
1765class ir_discard : public ir_jump {
1766public:
1767   ir_discard()
1768      : ir_jump(ir_type_discard)
1769   {
1770      this->condition = NULL;
1771   }
1772
1773   ir_discard(ir_rvalue *cond)
1774      : ir_jump(ir_type_discard)
1775   {
1776      this->condition = cond;
1777   }
1778
1779   virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1780
1781   virtual void accept(ir_visitor *v)
1782   {
1783      v->visit(this);
1784   }
1785
1786   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1787
1788   ir_rvalue *condition;
1789};
1790/*@}*/
1791
1792
1793/**
1794 * Texture sampling opcodes used in ir_texture
1795 */
1796enum ir_texture_opcode {
1797   ir_tex,		/**< Regular texture look-up */
1798   ir_txb,		/**< Texture look-up with LOD bias */
1799   ir_txl,		/**< Texture look-up with explicit LOD */
1800   ir_txd,		/**< Texture look-up with partial derivatvies */
1801   ir_txf,		/**< Texel fetch with explicit LOD */
1802   ir_txf_ms,           /**< Multisample texture fetch */
1803   ir_txs,		/**< Texture size */
1804   ir_lod,		/**< Texture lod query */
1805   ir_tg4,		/**< Texture gather */
1806   ir_query_levels,     /**< Texture levels query */
1807   ir_texture_samples,  /**< Texture samples query */
1808   ir_samples_identical, /**< Query whether all samples are definitely identical. */
1809};
1810
1811
1812/**
1813 * IR instruction to sample a texture
1814 *
1815 * The specific form of the IR instruction depends on the \c mode value
1816 * selected from \c ir_texture_opcodes.  In the printed IR, these will
1817 * appear as:
1818 *
1819 *                                    Texel offset (0 or an expression)
1820 *                                    | Projection divisor
1821 *                                    | |  Shadow comparator
1822 *                                    | |  |
1823 *                                    v v  v
1824 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1825 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1826 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1827 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1828 * (txf <type> <sampler> <coordinate> 0       <lod>)
1829 * (txf_ms
1830 *      <type> <sampler> <coordinate>         <sample_index>)
1831 * (txs <type> <sampler> <lod>)
1832 * (lod <type> <sampler> <coordinate>)
1833 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1834 * (query_levels <type> <sampler>)
1835 * (samples_identical <sampler> <coordinate>)
1836 */
1837class ir_texture : public ir_rvalue {
1838public:
1839   ir_texture(enum ir_texture_opcode op)
1840      : ir_rvalue(ir_type_texture),
1841        op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1842        shadow_comparator(NULL), offset(NULL)
1843   {
1844      memset(&lod_info, 0, sizeof(lod_info));
1845   }
1846
1847   virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1848
1849   virtual ir_constant *constant_expression_value(void *mem_ctx,
1850                                                  struct hash_table *variable_context = NULL);
1851
1852   virtual void accept(ir_visitor *v)
1853   {
1854      v->visit(this);
1855   }
1856
1857   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1858
1859   virtual bool equals(const ir_instruction *ir,
1860                       enum ir_node_type ignore = ir_type_unset) const;
1861
1862   /**
1863    * Return a string representing the ir_texture_opcode.
1864    */
1865   const char *opcode_string();
1866
1867   /** Set the sampler and type. */
1868   void set_sampler(ir_dereference *sampler, const glsl_type *type);
1869
1870   /**
1871    * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1872    */
1873   static ir_texture_opcode get_opcode(const char *);
1874
1875   enum ir_texture_opcode op;
1876
1877   /** Sampler to use for the texture access. */
1878   ir_dereference *sampler;
1879
1880   /** Texture coordinate to sample */
1881   ir_rvalue *coordinate;
1882
1883   /**
1884    * Value used for projective divide.
1885    *
1886    * If there is no projective divide (the common case), this will be
1887    * \c NULL.  Optimization passes should check for this to point to a constant
1888    * of 1.0 and replace that with \c NULL.
1889    */
1890   ir_rvalue *projector;
1891
1892   /**
1893    * Coordinate used for comparison on shadow look-ups.
1894    *
1895    * If there is no shadow comparison, this will be \c NULL.  For the
1896    * \c ir_txf opcode, this *must* be \c NULL.
1897    */
1898   ir_rvalue *shadow_comparator;
1899
1900   /** Texel offset. */
1901   ir_rvalue *offset;
1902
1903   union {
1904      ir_rvalue *lod;		/**< Floating point LOD */
1905      ir_rvalue *bias;		/**< Floating point LOD bias */
1906      ir_rvalue *sample_index;  /**< MSAA sample index */
1907      ir_rvalue *component;     /**< Gather component selector */
1908      struct {
1909	 ir_rvalue *dPdx;	/**< Partial derivative of coordinate wrt X */
1910	 ir_rvalue *dPdy;	/**< Partial derivative of coordinate wrt Y */
1911      } grad;
1912   } lod_info;
1913};
1914
1915
1916struct ir_swizzle_mask {
1917   unsigned x:2;
1918   unsigned y:2;
1919   unsigned z:2;
1920   unsigned w:2;
1921
1922   /**
1923    * Number of components in the swizzle.
1924    */
1925   unsigned num_components:3;
1926
1927   /**
1928    * Does the swizzle contain duplicate components?
1929    *
1930    * L-value swizzles cannot contain duplicate components.
1931    */
1932   unsigned has_duplicates:1;
1933};
1934
1935
1936class ir_swizzle : public ir_rvalue {
1937public:
1938   ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1939              unsigned count);
1940
1941   ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1942
1943   ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1944
1945   virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1946
1947   virtual ir_constant *constant_expression_value(void *mem_ctx,
1948                                                  struct hash_table *variable_context = NULL);
1949
1950   /**
1951    * Construct an ir_swizzle from the textual representation.  Can fail.
1952    */
1953   static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1954
1955   virtual void accept(ir_visitor *v)
1956   {
1957      v->visit(this);
1958   }
1959
1960   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1961
1962   virtual bool equals(const ir_instruction *ir,
1963                       enum ir_node_type ignore = ir_type_unset) const;
1964
1965   bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
1966   {
1967      return val->is_lvalue(state) && !mask.has_duplicates;
1968   }
1969
1970   /**
1971    * Get the variable that is ultimately referenced by an r-value
1972    */
1973   virtual ir_variable *variable_referenced() const;
1974
1975   ir_rvalue *val;
1976   ir_swizzle_mask mask;
1977
1978private:
1979   /**
1980    * Initialize the mask component of a swizzle
1981    *
1982    * This is used by the \c ir_swizzle constructors.
1983    */
1984   void init_mask(const unsigned *components, unsigned count);
1985};
1986
1987
1988class ir_dereference : public ir_rvalue {
1989public:
1990   virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1991
1992   bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
1993
1994   /**
1995    * Get the variable that is ultimately referenced by an r-value
1996    */
1997   virtual ir_variable *variable_referenced() const = 0;
1998
1999protected:
2000   ir_dereference(enum ir_node_type t)
2001      : ir_rvalue(t)
2002   {
2003   }
2004};
2005
2006
2007class ir_dereference_variable : public ir_dereference {
2008public:
2009   ir_dereference_variable(ir_variable *var);
2010
2011   virtual ir_dereference_variable *clone(void *mem_ctx,
2012					  struct hash_table *) const;
2013
2014   virtual ir_constant *constant_expression_value(void *mem_ctx,
2015                                                  struct hash_table *variable_context = NULL);
2016
2017   virtual bool equals(const ir_instruction *ir,
2018                       enum ir_node_type ignore = ir_type_unset) const;
2019
2020   /**
2021    * Get the variable that is ultimately referenced by an r-value
2022    */
2023   virtual ir_variable *variable_referenced() const
2024   {
2025      return this->var;
2026   }
2027
2028   virtual ir_variable *whole_variable_referenced()
2029   {
2030      /* ir_dereference_variable objects always dereference the entire
2031       * variable.  However, if this dereference is dereferenced by anything
2032       * else, the complete deferefernce chain is not a whole-variable
2033       * dereference.  This method should only be called on the top most
2034       * ir_rvalue in a dereference chain.
2035       */
2036      return this->var;
2037   }
2038
2039   virtual void accept(ir_visitor *v)
2040   {
2041      v->visit(this);
2042   }
2043
2044   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2045
2046   /**
2047    * Object being dereferenced.
2048    */
2049   ir_variable *var;
2050};
2051
2052
2053class ir_dereference_array : public ir_dereference {
2054public:
2055   ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2056
2057   ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2058
2059   virtual ir_dereference_array *clone(void *mem_ctx,
2060				       struct hash_table *) const;
2061
2062   virtual ir_constant *constant_expression_value(void *mem_ctx,
2063                                                  struct hash_table *variable_context = NULL);
2064
2065   virtual bool equals(const ir_instruction *ir,
2066                       enum ir_node_type ignore = ir_type_unset) const;
2067
2068   /**
2069    * Get the variable that is ultimately referenced by an r-value
2070    */
2071   virtual ir_variable *variable_referenced() const
2072   {
2073      return this->array->variable_referenced();
2074   }
2075
2076   virtual void accept(ir_visitor *v)
2077   {
2078      v->visit(this);
2079   }
2080
2081   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2082
2083   ir_rvalue *array;
2084   ir_rvalue *array_index;
2085
2086private:
2087   void set_array(ir_rvalue *value);
2088};
2089
2090
2091class ir_dereference_record : public ir_dereference {
2092public:
2093   ir_dereference_record(ir_rvalue *value, const char *field);
2094
2095   ir_dereference_record(ir_variable *var, const char *field);
2096
2097   virtual ir_dereference_record *clone(void *mem_ctx,
2098					struct hash_table *) const;
2099
2100   virtual ir_constant *constant_expression_value(void *mem_ctx,
2101                                                  struct hash_table *variable_context = NULL);
2102
2103   /**
2104    * Get the variable that is ultimately referenced by an r-value
2105    */
2106   virtual ir_variable *variable_referenced() const
2107   {
2108      return this->record->variable_referenced();
2109   }
2110
2111   virtual void accept(ir_visitor *v)
2112   {
2113      v->visit(this);
2114   }
2115
2116   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2117
2118   ir_rvalue *record;
2119   int field_idx;
2120};
2121
2122
2123/**
2124 * Data stored in an ir_constant
2125 */
2126union ir_constant_data {
2127      unsigned u[16];
2128      int i[16];
2129      float f[16];
2130      bool b[16];
2131      double d[16];
2132      uint64_t u64[16];
2133      int64_t i64[16];
2134};
2135
2136
2137class ir_constant : public ir_rvalue {
2138public:
2139   ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2140   ir_constant(bool b, unsigned vector_elements=1);
2141   ir_constant(unsigned int u, unsigned vector_elements=1);
2142   ir_constant(int i, unsigned vector_elements=1);
2143   ir_constant(float f, unsigned vector_elements=1);
2144   ir_constant(double d, unsigned vector_elements=1);
2145   ir_constant(uint64_t u64, unsigned vector_elements=1);
2146   ir_constant(int64_t i64, unsigned vector_elements=1);
2147
2148   /**
2149    * Construct an ir_constant from a list of ir_constant values
2150    */
2151   ir_constant(const struct glsl_type *type, exec_list *values);
2152
2153   /**
2154    * Construct an ir_constant from a scalar component of another ir_constant
2155    *
2156    * The new \c ir_constant inherits the type of the component from the
2157    * source constant.
2158    *
2159    * \note
2160    * In the case of a matrix constant, the new constant is a scalar, \b not
2161    * a vector.
2162    */
2163   ir_constant(const ir_constant *c, unsigned i);
2164
2165   /**
2166    * Return a new ir_constant of the specified type containing all zeros.
2167    */
2168   static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2169
2170   virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2171
2172   virtual ir_constant *constant_expression_value(void *mem_ctx,
2173                                                  struct hash_table *variable_context = NULL);
2174
2175   virtual void accept(ir_visitor *v)
2176   {
2177      v->visit(this);
2178   }
2179
2180   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2181
2182   virtual bool equals(const ir_instruction *ir,
2183                       enum ir_node_type ignore = ir_type_unset) const;
2184
2185   /**
2186    * Get a particular component of a constant as a specific type
2187    *
2188    * This is useful, for example, to get a value from an integer constant
2189    * as a float or bool.  This appears frequently when constructors are
2190    * called with all constant parameters.
2191    */
2192   /*@{*/
2193   bool get_bool_component(unsigned i) const;
2194   float get_float_component(unsigned i) const;
2195   double get_double_component(unsigned i) const;
2196   int get_int_component(unsigned i) const;
2197   unsigned get_uint_component(unsigned i) const;
2198   int64_t get_int64_component(unsigned i) const;
2199   uint64_t get_uint64_component(unsigned i) const;
2200   /*@}*/
2201
2202   ir_constant *get_array_element(unsigned i) const;
2203
2204   ir_constant *get_record_field(int idx);
2205
2206   /**
2207    * Copy the values on another constant at a given offset.
2208    *
2209    * The offset is ignored for array or struct copies, it's only for
2210    * scalars or vectors into vectors or matrices.
2211    *
2212    * With identical types on both sides and zero offset it's clone()
2213    * without creating a new object.
2214    */
2215
2216   void copy_offset(ir_constant *src, int offset);
2217
2218   /**
2219    * Copy the values on another constant at a given offset and
2220    * following an assign-like mask.
2221    *
2222    * The mask is ignored for scalars.
2223    *
2224    * Note that this function only handles what assign can handle,
2225    * i.e. at most a vector as source and a column of a matrix as
2226    * destination.
2227    */
2228
2229   void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2230
2231   /**
2232    * Determine whether a constant has the same value as another constant
2233    *
2234    * \sa ir_constant::is_zero, ir_constant::is_one,
2235    * ir_constant::is_negative_one
2236    */
2237   bool has_value(const ir_constant *) const;
2238
2239   /**
2240    * Return true if this ir_constant represents the given value.
2241    *
2242    * For vectors, this checks that each component is the given value.
2243    */
2244   virtual bool is_value(float f, int i) const;
2245   virtual bool is_zero() const;
2246   virtual bool is_one() const;
2247   virtual bool is_negative_one() const;
2248
2249   /**
2250    * Return true for constants that could be stored as 16-bit unsigned values.
2251    *
2252    * Note that this will return true even for signed integer ir_constants, as
2253    * long as the value is non-negative and fits in 16-bits.
2254    */
2255   virtual bool is_uint16_constant() const;
2256
2257   /**
2258    * Value of the constant.
2259    *
2260    * The field used to back the values supplied by the constant is determined
2261    * by the type associated with the \c ir_instruction.  Constants may be
2262    * scalars, vectors, or matrices.
2263    */
2264   union ir_constant_data value;
2265
2266   /* Array elements and structure fields */
2267   ir_constant **const_elements;
2268
2269private:
2270   /**
2271    * Parameterless constructor only used by the clone method
2272    */
2273   ir_constant(void);
2274};
2275
2276/**
2277 * IR instruction to emit a vertex in a geometry shader.
2278 */
2279class ir_emit_vertex : public ir_instruction {
2280public:
2281   ir_emit_vertex(ir_rvalue *stream)
2282      : ir_instruction(ir_type_emit_vertex),
2283        stream(stream)
2284   {
2285      assert(stream);
2286   }
2287
2288   virtual void accept(ir_visitor *v)
2289   {
2290      v->visit(this);
2291   }
2292
2293   virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2294   {
2295      return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2296   }
2297
2298   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2299
2300   int stream_id() const
2301   {
2302      return stream->as_constant()->value.i[0];
2303   }
2304
2305   ir_rvalue *stream;
2306};
2307
2308/**
2309 * IR instruction to complete the current primitive and start a new one in a
2310 * geometry shader.
2311 */
2312class ir_end_primitive : public ir_instruction {
2313public:
2314   ir_end_primitive(ir_rvalue *stream)
2315      : ir_instruction(ir_type_end_primitive),
2316        stream(stream)
2317   {
2318      assert(stream);
2319   }
2320
2321   virtual void accept(ir_visitor *v)
2322   {
2323      v->visit(this);
2324   }
2325
2326   virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2327   {
2328      return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2329   }
2330
2331   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2332
2333   int stream_id() const
2334   {
2335      return stream->as_constant()->value.i[0];
2336   }
2337
2338   ir_rvalue *stream;
2339};
2340
2341/**
2342 * IR instruction for tessellation control and compute shader barrier.
2343 */
2344class ir_barrier : public ir_instruction {
2345public:
2346   ir_barrier()
2347      : ir_instruction(ir_type_barrier)
2348   {
2349   }
2350
2351   virtual void accept(ir_visitor *v)
2352   {
2353      v->visit(this);
2354   }
2355
2356   virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2357   {
2358      return new(mem_ctx) ir_barrier();
2359   }
2360
2361   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2362};
2363
2364/*@}*/
2365
2366/**
2367 * Apply a visitor to each IR node in a list
2368 */
2369void
2370visit_exec_list(exec_list *list, ir_visitor *visitor);
2371
2372/**
2373 * Validate invariants on each IR node in a list
2374 */
2375void validate_ir_tree(exec_list *instructions);
2376
2377struct _mesa_glsl_parse_state;
2378struct gl_shader_program;
2379
2380/**
2381 * Detect whether an unlinked shader contains static recursion
2382 *
2383 * If the list of instructions is determined to contain static recursion,
2384 * \c _mesa_glsl_error will be called to emit error messages for each function
2385 * that is in the recursion cycle.
2386 */
2387void
2388detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2389			  exec_list *instructions);
2390
2391/**
2392 * Detect whether a linked shader contains static recursion
2393 *
2394 * If the list of instructions is determined to contain static recursion,
2395 * \c link_error_printf will be called to emit error messages for each function
2396 * that is in the recursion cycle.  In addition,
2397 * \c gl_shader_program::LinkStatus will be set to false.
2398 */
2399void
2400detect_recursion_linked(struct gl_shader_program *prog,
2401			exec_list *instructions);
2402
2403/**
2404 * Make a clone of each IR instruction in a list
2405 *
2406 * \param in   List of IR instructions that are to be cloned
2407 * \param out  List to hold the cloned instructions
2408 */
2409void
2410clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2411
2412extern void
2413_mesa_glsl_initialize_variables(exec_list *instructions,
2414				struct _mesa_glsl_parse_state *state);
2415
2416extern void
2417reparent_ir(exec_list *list, void *mem_ctx);
2418
2419extern void
2420do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2421                      gl_shader_stage shader_stage);
2422
2423extern char *
2424prototype_string(const glsl_type *return_type, const char *name,
2425		 exec_list *parameters);
2426
2427const char *
2428mode_string(const ir_variable *var);
2429
2430/**
2431 * Built-in / reserved GL variables names start with "gl_"
2432 */
2433static inline bool
2434is_gl_identifier(const char *s)
2435{
2436   return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2437}
2438
2439extern "C" {
2440#endif /* __cplusplus */
2441
2442extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2443                           struct _mesa_glsl_parse_state *state);
2444
2445extern void
2446fprint_ir(FILE *f, const void *instruction);
2447
2448extern const struct gl_builtin_uniform_desc *
2449_mesa_glsl_get_builtin_uniform_desc(const char *name);
2450
2451#ifdef __cplusplus
2452} /* extern "C" */
2453#endif
2454
2455unsigned
2456vertices_per_prim(GLenum prim);
2457
2458#endif /* IR_H */
2459