ir.h revision 993e1d59
1/* -*- c++ -*- */
2/*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25#ifndef IR_H
26#define IR_H
27
28#include <stdio.h>
29#include <stdlib.h>
30
31#include "util/ralloc.h"
32#include "compiler/glsl_types.h"
33#include "list.h"
34#include "ir_visitor.h"
35#include "ir_hierarchical_visitor.h"
36
37#ifdef __cplusplus
38
39/**
40 * \defgroup IR Intermediate representation nodes
41 *
42 * @{
43 */
44
45/**
46 * Class tags
47 *
48 * Each concrete class derived from \c ir_instruction has a value in this
49 * enumerant.  The value for the type is stored in \c ir_instruction::ir_type
50 * by the constructor.  While using type tags is not very C++, it is extremely
51 * convenient.  For example, during debugging you can simply inspect
52 * \c ir_instruction::ir_type to find out the actual type of the object.
53 *
54 * In addition, it is possible to use a switch-statement based on \c
55 * \c ir_instruction::ir_type to select different behavior for different object
56 * types.  For functions that have only slight differences for several object
57 * types, this allows writing very straightforward, readable code.
58 */
59enum ir_node_type {
60   ir_type_dereference_array,
61   ir_type_dereference_record,
62   ir_type_dereference_variable,
63   ir_type_constant,
64   ir_type_expression,
65   ir_type_swizzle,
66   ir_type_texture,
67   ir_type_variable,
68   ir_type_assignment,
69   ir_type_call,
70   ir_type_function,
71   ir_type_function_signature,
72   ir_type_if,
73   ir_type_loop,
74   ir_type_loop_jump,
75   ir_type_return,
76   ir_type_discard,
77   ir_type_emit_vertex,
78   ir_type_end_primitive,
79   ir_type_barrier,
80   ir_type_max, /**< maximum ir_type enum number, for validation */
81   ir_type_unset = ir_type_max
82};
83
84
85/**
86 * Base class of all IR instructions
87 */
88class ir_instruction : public exec_node {
89public:
90   enum ir_node_type ir_type;
91
92   /**
93    * GCC 4.7+ and clang warn when deleting an ir_instruction unless
94    * there's a virtual destructor present.  Because we almost
95    * universally use ralloc for our memory management of
96    * ir_instructions, the destructor doesn't need to do any work.
97    */
98   virtual ~ir_instruction()
99   {
100   }
101
102   /** ir_print_visitor helper for debugging. */
103   void print(void) const;
104   void fprint(FILE *f) const;
105
106   virtual void accept(ir_visitor *) = 0;
107   virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
108   virtual ir_instruction *clone(void *mem_ctx,
109				 struct hash_table *ht) const = 0;
110
111   bool is_rvalue() const
112   {
113      return ir_type == ir_type_dereference_array ||
114             ir_type == ir_type_dereference_record ||
115             ir_type == ir_type_dereference_variable ||
116             ir_type == ir_type_constant ||
117             ir_type == ir_type_expression ||
118             ir_type == ir_type_swizzle ||
119             ir_type == ir_type_texture;
120   }
121
122   bool is_dereference() const
123   {
124      return ir_type == ir_type_dereference_array ||
125             ir_type == ir_type_dereference_record ||
126             ir_type == ir_type_dereference_variable;
127   }
128
129   bool is_jump() const
130   {
131      return ir_type == ir_type_loop_jump ||
132             ir_type == ir_type_return ||
133             ir_type == ir_type_discard;
134   }
135
136   /**
137    * \name IR instruction downcast functions
138    *
139    * These functions either cast the object to a derived class or return
140    * \c NULL if the object's type does not match the specified derived class.
141    * Additional downcast functions will be added as needed.
142    */
143   /*@{*/
144   #define AS_BASE(TYPE)                                \
145   class ir_##TYPE *as_##TYPE()                         \
146   {                                                    \
147      assume(this != NULL);                             \
148      return is_##TYPE() ? (ir_##TYPE *) this : NULL;   \
149   }                                                    \
150   const class ir_##TYPE *as_##TYPE() const             \
151   {                                                    \
152      assume(this != NULL);                             \
153      return is_##TYPE() ? (ir_##TYPE *) this : NULL;   \
154   }
155
156   AS_BASE(rvalue)
157   AS_BASE(dereference)
158   AS_BASE(jump)
159   #undef AS_BASE
160
161   #define AS_CHILD(TYPE) \
162   class ir_##TYPE * as_##TYPE() \
163   { \
164      assume(this != NULL);                                         \
165      return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
166   }                                                                      \
167   const class ir_##TYPE * as_##TYPE() const                              \
168   {                                                                      \
169      assume(this != NULL);                                               \
170      return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
171   }
172   AS_CHILD(variable)
173   AS_CHILD(function)
174   AS_CHILD(dereference_array)
175   AS_CHILD(dereference_variable)
176   AS_CHILD(dereference_record)
177   AS_CHILD(expression)
178   AS_CHILD(loop)
179   AS_CHILD(assignment)
180   AS_CHILD(call)
181   AS_CHILD(return)
182   AS_CHILD(if)
183   AS_CHILD(swizzle)
184   AS_CHILD(texture)
185   AS_CHILD(constant)
186   AS_CHILD(discard)
187   #undef AS_CHILD
188   /*@}*/
189
190   /**
191    * IR equality method: Return true if the referenced instruction would
192    * return the same value as this one.
193    *
194    * This intended to be used for CSE and algebraic optimizations, on rvalues
195    * in particular.  No support for other instruction types (assignments,
196    * jumps, calls, etc.) is planned.
197    */
198   virtual bool equals(const ir_instruction *ir,
199                       enum ir_node_type ignore = ir_type_unset) const;
200
201protected:
202   ir_instruction(enum ir_node_type t)
203      : ir_type(t)
204   {
205   }
206
207private:
208   ir_instruction()
209   {
210      assert(!"Should not get here.");
211   }
212};
213
214
215/**
216 * The base class for all "values"/expression trees.
217 */
218class ir_rvalue : public ir_instruction {
219public:
220   const struct glsl_type *type;
221
222   virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
223
224   virtual void accept(ir_visitor *v)
225   {
226      v->visit(this);
227   }
228
229   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
230
231   virtual ir_constant *constant_expression_value(void *mem_ctx,
232                                                  struct hash_table *variable_context = NULL);
233
234   ir_rvalue *as_rvalue_to_saturate();
235
236   virtual bool is_lvalue(const struct _mesa_glsl_parse_state *state = NULL) const
237   {
238      return false;
239   }
240
241   /**
242    * Get the variable that is ultimately referenced by an r-value
243    */
244   virtual ir_variable *variable_referenced() const
245   {
246      return NULL;
247   }
248
249
250   /**
251    * If an r-value is a reference to a whole variable, get that variable
252    *
253    * \return
254    * Pointer to a variable that is completely dereferenced by the r-value.  If
255    * the r-value is not a dereference or the dereference does not access the
256    * entire variable (i.e., it's just one array element, struct field), \c NULL
257    * is returned.
258    */
259   virtual ir_variable *whole_variable_referenced()
260   {
261      return NULL;
262   }
263
264   /**
265    * Determine if an r-value has the value zero
266    *
267    * The base implementation of this function always returns \c false.  The
268    * \c ir_constant class over-rides this function to return \c true \b only
269    * for vector and scalar types that have all elements set to the value
270    * zero (or \c false for booleans).
271    *
272    * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
273    */
274   virtual bool is_zero() const;
275
276   /**
277    * Determine if an r-value has the value one
278    *
279    * The base implementation of this function always returns \c false.  The
280    * \c ir_constant class over-rides this function to return \c true \b only
281    * for vector and scalar types that have all elements set to the value
282    * one (or \c true for booleans).
283    *
284    * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
285    */
286   virtual bool is_one() const;
287
288   /**
289    * Determine if an r-value has the value negative one
290    *
291    * The base implementation of this function always returns \c false.  The
292    * \c ir_constant class over-rides this function to return \c true \b only
293    * for vector and scalar types that have all elements set to the value
294    * negative one.  For boolean types, the result is always \c false.
295    *
296    * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
297    */
298   virtual bool is_negative_one() const;
299
300   /**
301    * Determine if an r-value is an unsigned integer constant which can be
302    * stored in 16 bits.
303    *
304    * \sa ir_constant::is_uint16_constant.
305    */
306   virtual bool is_uint16_constant() const { return false; }
307
308   /**
309    * Return a generic value of error_type.
310    *
311    * Allocation will be performed with 'mem_ctx' as ralloc owner.
312    */
313   static ir_rvalue *error_value(void *mem_ctx);
314
315protected:
316   ir_rvalue(enum ir_node_type t);
317};
318
319
320/**
321 * Variable storage classes
322 */
323enum ir_variable_mode {
324   ir_var_auto = 0,             /**< Function local variables and globals. */
325   ir_var_uniform,              /**< Variable declared as a uniform. */
326   ir_var_shader_storage,       /**< Variable declared as an ssbo. */
327   ir_var_shader_shared,        /**< Variable declared as shared. */
328   ir_var_shader_in,
329   ir_var_shader_out,
330   ir_var_function_in,
331   ir_var_function_out,
332   ir_var_function_inout,
333   ir_var_const_in,             /**< "in" param that must be a constant expression */
334   ir_var_system_value,         /**< Ex: front-face, instance-id, etc. */
335   ir_var_temporary,            /**< Temporary variable generated during compilation. */
336   ir_var_mode_count            /**< Number of variable modes */
337};
338
339/**
340 * Enum keeping track of how a variable was declared.  For error checking of
341 * the gl_PerVertex redeclaration rules.
342 */
343enum ir_var_declaration_type {
344   /**
345    * Normal declaration (for most variables, this means an explicit
346    * declaration.  Exception: temporaries are always implicitly declared, but
347    * they still use ir_var_declared_normally).
348    *
349    * Note: an ir_variable that represents a named interface block uses
350    * ir_var_declared_normally.
351    */
352   ir_var_declared_normally = 0,
353
354   /**
355    * Variable was explicitly declared (or re-declared) in an unnamed
356    * interface block.
357    */
358   ir_var_declared_in_block,
359
360   /**
361    * Variable is an implicitly declared built-in that has not been explicitly
362    * re-declared by the shader.
363    */
364   ir_var_declared_implicitly,
365
366   /**
367    * Variable is implicitly generated by the compiler and should not be
368    * visible via the API.
369    */
370   ir_var_hidden,
371};
372
373/**
374 * \brief Layout qualifiers for gl_FragDepth.
375 *
376 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
377 * with a layout qualifier.
378 */
379enum ir_depth_layout {
380    ir_depth_layout_none, /**< No depth layout is specified. */
381    ir_depth_layout_any,
382    ir_depth_layout_greater,
383    ir_depth_layout_less,
384    ir_depth_layout_unchanged
385};
386
387/**
388 * \brief Convert depth layout qualifier to string.
389 */
390const char*
391depth_layout_string(ir_depth_layout layout);
392
393/**
394 * Description of built-in state associated with a uniform
395 *
396 * \sa ir_variable::state_slots
397 */
398struct ir_state_slot {
399   gl_state_index16 tokens[STATE_LENGTH];
400   int swizzle;
401};
402
403
404/**
405 * Get the string value for an interpolation qualifier
406 *
407 * \return The string that would be used in a shader to specify \c
408 * mode will be returned.
409 *
410 * This function is used to generate error messages of the form "shader
411 * uses %s interpolation qualifier", so in the case where there is no
412 * interpolation qualifier, it returns "no".
413 *
414 * This function should only be used on a shader input or output variable.
415 */
416const char *interpolation_string(unsigned interpolation);
417
418
419class ir_variable : public ir_instruction {
420public:
421   ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
422
423   virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
424
425   virtual void accept(ir_visitor *v)
426   {
427      v->visit(this);
428   }
429
430   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
431
432
433   /**
434    * Determine whether or not a variable is part of a uniform or
435    * shader storage block.
436    */
437   inline bool is_in_buffer_block() const
438   {
439      return (this->data.mode == ir_var_uniform ||
440              this->data.mode == ir_var_shader_storage) &&
441             this->interface_type != NULL;
442   }
443
444   /**
445    * Determine whether or not a variable is part of a shader storage block.
446    */
447   inline bool is_in_shader_storage_block() const
448   {
449      return this->data.mode == ir_var_shader_storage &&
450             this->interface_type != NULL;
451   }
452
453   /**
454    * Determine whether or not a variable is the declaration of an interface
455    * block
456    *
457    * For the first declaration below, there will be an \c ir_variable named
458    * "instance" whose type and whose instance_type will be the same
459    * \c glsl_type.  For the second declaration, there will be an \c ir_variable
460    * named "f" whose type is float and whose instance_type is B2.
461    *
462    * "instance" is an interface instance variable, but "f" is not.
463    *
464    * uniform B1 {
465    *     float f;
466    * } instance;
467    *
468    * uniform B2 {
469    *     float f;
470    * };
471    */
472   inline bool is_interface_instance() const
473   {
474      return this->type->without_array() == this->interface_type;
475   }
476
477   /**
478    * Return whether this variable contains a bindless sampler/image.
479    */
480   inline bool contains_bindless() const
481   {
482      if (!this->type->contains_sampler() && !this->type->contains_image())
483         return false;
484
485      return this->data.bindless || this->data.mode != ir_var_uniform;
486   }
487
488   /**
489    * Set this->interface_type on a newly created variable.
490    */
491   void init_interface_type(const struct glsl_type *type)
492   {
493      assert(this->interface_type == NULL);
494      this->interface_type = type;
495      if (this->is_interface_instance()) {
496         this->u.max_ifc_array_access =
497            ralloc_array(this, int, type->length);
498         for (unsigned i = 0; i < type->length; i++) {
499            this->u.max_ifc_array_access[i] = -1;
500         }
501      }
502   }
503
504   /**
505    * Change this->interface_type on a variable that previously had a
506    * different, but compatible, interface_type.  This is used during linking
507    * to set the size of arrays in interface blocks.
508    */
509   void change_interface_type(const struct glsl_type *type)
510   {
511      if (this->u.max_ifc_array_access != NULL) {
512         /* max_ifc_array_access has already been allocated, so make sure the
513          * new interface has the same number of fields as the old one.
514          */
515         assert(this->interface_type->length == type->length);
516      }
517      this->interface_type = type;
518   }
519
520   /**
521    * Change this->interface_type on a variable that previously had a
522    * different, and incompatible, interface_type. This is used during
523    * compilation to handle redeclaration of the built-in gl_PerVertex
524    * interface block.
525    */
526   void reinit_interface_type(const struct glsl_type *type)
527   {
528      if (this->u.max_ifc_array_access != NULL) {
529#ifndef NDEBUG
530         /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
531          * it defines have been accessed yet; so it's safe to throw away the
532          * old max_ifc_array_access pointer, since all of its values are
533          * zero.
534          */
535         for (unsigned i = 0; i < this->interface_type->length; i++)
536            assert(this->u.max_ifc_array_access[i] == -1);
537#endif
538         ralloc_free(this->u.max_ifc_array_access);
539         this->u.max_ifc_array_access = NULL;
540      }
541      this->interface_type = NULL;
542      init_interface_type(type);
543   }
544
545   const glsl_type *get_interface_type() const
546   {
547      return this->interface_type;
548   }
549
550   enum glsl_interface_packing get_interface_type_packing() const
551   {
552     return this->interface_type->get_interface_packing();
553   }
554   /**
555    * Get the max_ifc_array_access pointer
556    *
557    * A "set" function is not needed because the array is dynmically allocated
558    * as necessary.
559    */
560   inline int *get_max_ifc_array_access()
561   {
562      assert(this->data._num_state_slots == 0);
563      return this->u.max_ifc_array_access;
564   }
565
566   inline unsigned get_num_state_slots() const
567   {
568      assert(!this->is_interface_instance()
569             || this->data._num_state_slots == 0);
570      return this->data._num_state_slots;
571   }
572
573   inline void set_num_state_slots(unsigned n)
574   {
575      assert(!this->is_interface_instance()
576             || n == 0);
577      this->data._num_state_slots = n;
578   }
579
580   inline ir_state_slot *get_state_slots()
581   {
582      return this->is_interface_instance() ? NULL : this->u.state_slots;
583   }
584
585   inline const ir_state_slot *get_state_slots() const
586   {
587      return this->is_interface_instance() ? NULL : this->u.state_slots;
588   }
589
590   inline ir_state_slot *allocate_state_slots(unsigned n)
591   {
592      assert(!this->is_interface_instance());
593
594      this->u.state_slots = ralloc_array(this, ir_state_slot, n);
595      this->data._num_state_slots = 0;
596
597      if (this->u.state_slots != NULL)
598         this->data._num_state_slots = n;
599
600      return this->u.state_slots;
601   }
602
603   inline bool is_interpolation_flat() const
604   {
605      return this->data.interpolation == INTERP_MODE_FLAT ||
606             this->type->contains_integer() ||
607             this->type->contains_double();
608   }
609
610   inline bool is_name_ralloced() const
611   {
612      return this->name != ir_variable::tmp_name &&
613             this->name != this->name_storage;
614   }
615
616   /**
617    * Enable emitting extension warnings for this variable
618    */
619   void enable_extension_warning(const char *extension);
620
621   /**
622    * Get the extension warning string for this variable
623    *
624    * If warnings are not enabled, \c NULL is returned.
625    */
626   const char *get_extension_warning() const;
627
628   /**
629    * Declared type of the variable
630    */
631   const struct glsl_type *type;
632
633   /**
634    * Declared name of the variable
635    */
636   const char *name;
637
638private:
639   /**
640    * If the name length fits into name_storage, it's used, otherwise
641    * the name is ralloc'd. shader-db mining showed that 70% of variables
642    * fit here. This is a win over ralloc where only ralloc_header has
643    * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
644    */
645   char name_storage[16];
646
647public:
648   struct ir_variable_data {
649
650      /**
651       * Is the variable read-only?
652       *
653       * This is set for variables declared as \c const, shader inputs,
654       * and uniforms.
655       */
656      unsigned read_only:1;
657      unsigned centroid:1;
658      unsigned sample:1;
659      unsigned patch:1;
660      /**
661       * Was an 'invariant' qualifier explicitly set in the shader?
662       *
663       * This is used to cross validate qualifiers.
664       */
665      unsigned explicit_invariant:1;
666      /**
667       * Is the variable invariant?
668       *
669       * It can happen either by having the 'invariant' qualifier
670       * explicitly set in the shader or by being used in calculations
671       * of other invariant variables.
672       */
673      unsigned invariant:1;
674      unsigned precise:1;
675
676      /**
677       * Has this variable been used for reading or writing?
678       *
679       * Several GLSL semantic checks require knowledge of whether or not a
680       * variable has been used.  For example, it is an error to redeclare a
681       * variable as invariant after it has been used.
682       *
683       * This is maintained in the ast_to_hir.cpp path and during linking,
684       * but not in Mesa's fixed function or ARB program paths.
685       */
686      unsigned used:1;
687
688      /**
689       * Has this variable been statically assigned?
690       *
691       * This answers whether the variable was assigned in any path of
692       * the shader during ast_to_hir.  This doesn't answer whether it is
693       * still written after dead code removal, nor is it maintained in
694       * non-ast_to_hir.cpp (GLSL parsing) paths.
695       */
696      unsigned assigned:1;
697
698      /**
699       * When separate shader programs are enabled, only input/outputs between
700       * the stages of a multi-stage separate program can be safely removed
701       * from the shader interface. Other input/outputs must remains active.
702       */
703      unsigned always_active_io:1;
704
705      /**
706       * Enum indicating how the variable was declared.  See
707       * ir_var_declaration_type.
708       *
709       * This is used to detect certain kinds of illegal variable redeclarations.
710       */
711      unsigned how_declared:2;
712
713      /**
714       * Storage class of the variable.
715       *
716       * \sa ir_variable_mode
717       */
718      unsigned mode:4;
719
720      /**
721       * Interpolation mode for shader inputs / outputs
722       *
723       * \sa glsl_interp_mode
724       */
725      unsigned interpolation:2;
726
727      /**
728       * \name ARB_fragment_coord_conventions
729       * @{
730       */
731      unsigned origin_upper_left:1;
732      unsigned pixel_center_integer:1;
733      /*@}*/
734
735      /**
736       * Was the location explicitly set in the shader?
737       *
738       * If the location is explicitly set in the shader, it \b cannot be changed
739       * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
740       * no effect).
741       */
742      unsigned explicit_location:1;
743      unsigned explicit_index:1;
744
745      /**
746       * Was an initial binding explicitly set in the shader?
747       *
748       * If so, constant_value contains an integer ir_constant representing the
749       * initial binding point.
750       */
751      unsigned explicit_binding:1;
752
753      /**
754       * Was an initial component explicitly set in the shader?
755       */
756      unsigned explicit_component:1;
757
758      /**
759       * Does this variable have an initializer?
760       *
761       * This is used by the linker to cross-validiate initializers of global
762       * variables.
763       */
764      unsigned has_initializer:1;
765
766      /**
767       * Is this variable a generic output or input that has not yet been matched
768       * up to a variable in another stage of the pipeline?
769       *
770       * This is used by the linker as scratch storage while assigning locations
771       * to generic inputs and outputs.
772       */
773      unsigned is_unmatched_generic_inout:1;
774
775      /**
776       * Is this varying used only by transform feedback?
777       *
778       * This is used by the linker to decide if its safe to pack the varying.
779       */
780      unsigned is_xfb_only:1;
781
782      /**
783       * Was a transfor feedback buffer set in the shader?
784       */
785      unsigned explicit_xfb_buffer:1;
786
787      /**
788       * Was a transfor feedback offset set in the shader?
789       */
790      unsigned explicit_xfb_offset:1;
791
792      /**
793       * Was a transfor feedback stride set in the shader?
794       */
795      unsigned explicit_xfb_stride:1;
796
797      /**
798       * If non-zero, then this variable may be packed along with other variables
799       * into a single varying slot, so this offset should be applied when
800       * accessing components.  For example, an offset of 1 means that the x
801       * component of this variable is actually stored in component y of the
802       * location specified by \c location.
803       */
804      unsigned location_frac:2;
805
806      /**
807       * Layout of the matrix.  Uses glsl_matrix_layout values.
808       */
809      unsigned matrix_layout:2;
810
811      /**
812       * Non-zero if this variable was created by lowering a named interface
813       * block.
814       */
815      unsigned from_named_ifc_block:1;
816
817      /**
818       * Non-zero if the variable must be a shader input. This is useful for
819       * constraints on function parameters.
820       */
821      unsigned must_be_shader_input:1;
822
823      /**
824       * Output index for dual source blending.
825       *
826       * \note
827       * The GLSL spec only allows the values 0 or 1 for the index in \b dual
828       * source blending.
829       */
830      unsigned index:1;
831
832      /**
833       * Precision qualifier.
834       *
835       * In desktop GLSL we do not care about precision qualifiers at all, in
836       * fact, the spec says that precision qualifiers are ignored.
837       *
838       * To make things easy, we make it so that this field is always
839       * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
840       * have the same precision value and the checks we add in the compiler
841       * for this field will never break a desktop shader compile.
842       */
843      unsigned precision:2;
844
845      /**
846       * \brief Layout qualifier for gl_FragDepth.
847       *
848       * This is not equal to \c ir_depth_layout_none if and only if this
849       * variable is \c gl_FragDepth and a layout qualifier is specified.
850       */
851      ir_depth_layout depth_layout:3;
852
853      /**
854       * Memory qualifiers.
855       */
856      unsigned memory_read_only:1; /**< "readonly" qualifier. */
857      unsigned memory_write_only:1; /**< "writeonly" qualifier. */
858      unsigned memory_coherent:1;
859      unsigned memory_volatile:1;
860      unsigned memory_restrict:1;
861
862      /**
863       * ARB_shader_storage_buffer_object
864       */
865      unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
866
867      unsigned implicit_sized_array:1;
868
869      /**
870       * Whether this is a fragment shader output implicitly initialized with
871       * the previous contents of the specified render target at the
872       * framebuffer location corresponding to this shader invocation.
873       */
874      unsigned fb_fetch_output:1;
875
876      /**
877       * Non-zero if this variable is considered bindless as defined by
878       * ARB_bindless_texture.
879       */
880      unsigned bindless:1;
881
882      /**
883       * Non-zero if this variable is considered bound as defined by
884       * ARB_bindless_texture.
885       */
886      unsigned bound:1;
887
888      /**
889       * Emit a warning if this variable is accessed.
890       */
891   private:
892      uint8_t warn_extension_index;
893
894   public:
895      /** Image internal format if specified explicitly, otherwise GL_NONE. */
896      uint16_t image_format;
897
898   private:
899      /**
900       * Number of state slots used
901       *
902       * \note
903       * This could be stored in as few as 7-bits, if necessary.  If it is made
904       * smaller, add an assertion to \c ir_variable::allocate_state_slots to
905       * be safe.
906       */
907      uint16_t _num_state_slots;
908
909   public:
910      /**
911       * Initial binding point for a sampler, atomic, or UBO.
912       *
913       * For array types, this represents the binding point for the first element.
914       */
915      int16_t binding;
916
917      /**
918       * Storage location of the base of this variable
919       *
920       * The precise meaning of this field depends on the nature of the variable.
921       *
922       *   - Vertex shader input: one of the values from \c gl_vert_attrib.
923       *   - Vertex shader output: one of the values from \c gl_varying_slot.
924       *   - Geometry shader input: one of the values from \c gl_varying_slot.
925       *   - Geometry shader output: one of the values from \c gl_varying_slot.
926       *   - Fragment shader input: one of the values from \c gl_varying_slot.
927       *   - Fragment shader output: one of the values from \c gl_frag_result.
928       *   - Uniforms: Per-stage uniform slot number for default uniform block.
929       *   - Uniforms: Index within the uniform block definition for UBO members.
930       *   - Non-UBO Uniforms: explicit location until linking then reused to
931       *     store uniform slot number.
932       *   - Other: This field is not currently used.
933       *
934       * If the variable is a uniform, shader input, or shader output, and the
935       * slot has not been assigned, the value will be -1.
936       */
937      int location;
938
939      /**
940       * for glsl->tgsi/mesa IR we need to store the index into the
941       * parameters for uniforms, initially the code overloaded location
942       * but this causes problems with indirect samplers and AoA.
943       * This is assigned in _mesa_generate_parameters_list_for_uniforms.
944       */
945      int param_index;
946
947      /**
948       * Vertex stream output identifier.
949       *
950       * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
951       * stream of the i-th component.
952       */
953      unsigned stream;
954
955      /**
956       * Atomic, transform feedback or block member offset.
957       */
958      unsigned offset;
959
960      /**
961       * Highest element accessed with a constant expression array index
962       *
963       * Not used for non-array variables. -1 is never accessed.
964       */
965      int max_array_access;
966
967      /**
968       * Transform feedback buffer.
969       */
970      unsigned xfb_buffer;
971
972      /**
973       * Transform feedback stride.
974       */
975      unsigned xfb_stride;
976
977      /**
978       * Allow (only) ir_variable direct access private members.
979       */
980      friend class ir_variable;
981   } data;
982
983   /**
984    * Value assigned in the initializer of a variable declared "const"
985    */
986   ir_constant *constant_value;
987
988   /**
989    * Constant expression assigned in the initializer of the variable
990    *
991    * \warning
992    * This field and \c ::constant_value are distinct.  Even if the two fields
993    * refer to constants with the same value, they must point to separate
994    * objects.
995    */
996   ir_constant *constant_initializer;
997
998private:
999   static const char *const warn_extension_table[];
1000
1001   union {
1002      /**
1003       * For variables which satisfy the is_interface_instance() predicate,
1004       * this points to an array of integers such that if the ith member of
1005       * the interface block is an array, max_ifc_array_access[i] is the
1006       * maximum array element of that member that has been accessed.  If the
1007       * ith member of the interface block is not an array,
1008       * max_ifc_array_access[i] is unused.
1009       *
1010       * For variables whose type is not an interface block, this pointer is
1011       * NULL.
1012       */
1013      int *max_ifc_array_access;
1014
1015      /**
1016       * Built-in state that backs this uniform
1017       *
1018       * Once set at variable creation, \c state_slots must remain invariant.
1019       *
1020       * If the variable is not a uniform, \c _num_state_slots will be zero
1021       * and \c state_slots will be \c NULL.
1022       */
1023      ir_state_slot *state_slots;
1024   } u;
1025
1026   /**
1027    * For variables that are in an interface block or are an instance of an
1028    * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1029    *
1030    * \sa ir_variable::location
1031    */
1032   const glsl_type *interface_type;
1033
1034   /**
1035    * Name used for anonymous compiler temporaries
1036    */
1037   static const char tmp_name[];
1038
1039public:
1040   /**
1041    * Should the construct keep names for ir_var_temporary variables?
1042    *
1043    * When this global is false, names passed to the constructor for
1044    * \c ir_var_temporary variables will be dropped.  Instead, the variable will
1045    * be named "compiler_temp".  This name will be in static storage.
1046    *
1047    * \warning
1048    * \b NEVER change the mode of an \c ir_var_temporary.
1049    *
1050    * \warning
1051    * This variable is \b not thread-safe.  It is global, \b not
1052    * per-context. It begins life false.  A context can, at some point, make
1053    * it true.  From that point on, it will be true forever.  This should be
1054    * okay since it will only be set true while debugging.
1055    */
1056   static bool temporaries_allocate_names;
1057};
1058
1059/**
1060 * A function that returns whether a built-in function is available in the
1061 * current shading language (based on version, ES or desktop, and extensions).
1062 */
1063typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1064
1065#define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1066   ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1067
1068#define MAP_INTRINSIC_TO_TYPE(i, t) \
1069   ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1070
1071enum ir_intrinsic_id {
1072   ir_intrinsic_invalid = 0,
1073
1074   /**
1075    * \name Generic intrinsics
1076    *
1077    * Each of these intrinsics has a specific version for shared variables and
1078    * SSBOs.
1079    */
1080   /*@{*/
1081   ir_intrinsic_generic_load,
1082   ir_intrinsic_generic_store,
1083   ir_intrinsic_generic_atomic_add,
1084   ir_intrinsic_generic_atomic_and,
1085   ir_intrinsic_generic_atomic_or,
1086   ir_intrinsic_generic_atomic_xor,
1087   ir_intrinsic_generic_atomic_min,
1088   ir_intrinsic_generic_atomic_max,
1089   ir_intrinsic_generic_atomic_exchange,
1090   ir_intrinsic_generic_atomic_comp_swap,
1091   /*@}*/
1092
1093   ir_intrinsic_atomic_counter_read,
1094   ir_intrinsic_atomic_counter_increment,
1095   ir_intrinsic_atomic_counter_predecrement,
1096   ir_intrinsic_atomic_counter_add,
1097   ir_intrinsic_atomic_counter_and,
1098   ir_intrinsic_atomic_counter_or,
1099   ir_intrinsic_atomic_counter_xor,
1100   ir_intrinsic_atomic_counter_min,
1101   ir_intrinsic_atomic_counter_max,
1102   ir_intrinsic_atomic_counter_exchange,
1103   ir_intrinsic_atomic_counter_comp_swap,
1104
1105   ir_intrinsic_image_load,
1106   ir_intrinsic_image_store,
1107   ir_intrinsic_image_atomic_add,
1108   ir_intrinsic_image_atomic_and,
1109   ir_intrinsic_image_atomic_or,
1110   ir_intrinsic_image_atomic_xor,
1111   ir_intrinsic_image_atomic_min,
1112   ir_intrinsic_image_atomic_max,
1113   ir_intrinsic_image_atomic_exchange,
1114   ir_intrinsic_image_atomic_comp_swap,
1115   ir_intrinsic_image_size,
1116   ir_intrinsic_image_samples,
1117
1118   ir_intrinsic_ssbo_load,
1119   ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1120   ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1121   ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1122   ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1123   ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1124   ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1125   ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1126   ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1127   ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1128
1129   ir_intrinsic_memory_barrier,
1130   ir_intrinsic_shader_clock,
1131   ir_intrinsic_group_memory_barrier,
1132   ir_intrinsic_memory_barrier_atomic_counter,
1133   ir_intrinsic_memory_barrier_buffer,
1134   ir_intrinsic_memory_barrier_image,
1135   ir_intrinsic_memory_barrier_shared,
1136   ir_intrinsic_begin_invocation_interlock,
1137   ir_intrinsic_end_invocation_interlock,
1138
1139   ir_intrinsic_vote_all,
1140   ir_intrinsic_vote_any,
1141   ir_intrinsic_vote_eq,
1142   ir_intrinsic_ballot,
1143   ir_intrinsic_read_invocation,
1144   ir_intrinsic_read_first_invocation,
1145
1146   ir_intrinsic_shared_load,
1147   ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1148   ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1149   ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1150   ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1151   ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1152   ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1153   ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1154   ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1155   ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1156};
1157
1158/*@{*/
1159/**
1160 * The representation of a function instance; may be the full definition or
1161 * simply a prototype.
1162 */
1163class ir_function_signature : public ir_instruction {
1164   /* An ir_function_signature will be part of the list of signatures in
1165    * an ir_function.
1166    */
1167public:
1168   ir_function_signature(const glsl_type *return_type,
1169                         builtin_available_predicate builtin_avail = NULL);
1170
1171   virtual ir_function_signature *clone(void *mem_ctx,
1172					struct hash_table *ht) const;
1173   ir_function_signature *clone_prototype(void *mem_ctx,
1174					  struct hash_table *ht) const;
1175
1176   virtual void accept(ir_visitor *v)
1177   {
1178      v->visit(this);
1179   }
1180
1181   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1182
1183   /**
1184    * Attempt to evaluate this function as a constant expression,
1185    * given a list of the actual parameters and the variable context.
1186    * Returns NULL for non-built-ins.
1187    */
1188   ir_constant *constant_expression_value(void *mem_ctx,
1189                                          exec_list *actual_parameters,
1190                                          struct hash_table *variable_context);
1191
1192   /**
1193    * Get the name of the function for which this is a signature
1194    */
1195   const char *function_name() const;
1196
1197   /**
1198    * Get a handle to the function for which this is a signature
1199    *
1200    * There is no setter function, this function returns a \c const pointer,
1201    * and \c ir_function_signature::_function is private for a reason.  The
1202    * only way to make a connection between a function and function signature
1203    * is via \c ir_function::add_signature.  This helps ensure that certain
1204    * invariants (i.e., a function signature is in the list of signatures for
1205    * its \c _function) are met.
1206    *
1207    * \sa ir_function::add_signature
1208    */
1209   inline const class ir_function *function() const
1210   {
1211      return this->_function;
1212   }
1213
1214   /**
1215    * Check whether the qualifiers match between this signature's parameters
1216    * and the supplied parameter list.  If not, returns the name of the first
1217    * parameter with mismatched qualifiers (for use in error messages).
1218    */
1219   const char *qualifiers_match(exec_list *params);
1220
1221   /**
1222    * Replace the current parameter list with the given one.  This is useful
1223    * if the current information came from a prototype, and either has invalid
1224    * or missing parameter names.
1225    */
1226   void replace_parameters(exec_list *new_params);
1227
1228   /**
1229    * Function return type.
1230    *
1231    * \note This discards the optional precision qualifier.
1232    */
1233   const struct glsl_type *return_type;
1234
1235   /**
1236    * List of ir_variable of function parameters.
1237    *
1238    * This represents the storage.  The paramaters passed in a particular
1239    * call will be in ir_call::actual_paramaters.
1240    */
1241   struct exec_list parameters;
1242
1243   /** Whether or not this function has a body (which may be empty). */
1244   unsigned is_defined:1;
1245
1246   /** Whether or not this function signature is a built-in. */
1247   bool is_builtin() const;
1248
1249   /**
1250    * Whether or not this function is an intrinsic to be implemented
1251    * by the driver.
1252    */
1253   inline bool is_intrinsic() const
1254   {
1255      return intrinsic_id != ir_intrinsic_invalid;
1256   }
1257
1258   /** Indentifier for this intrinsic. */
1259   enum ir_intrinsic_id intrinsic_id;
1260
1261   /** Whether or not a built-in is available for this shader. */
1262   bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1263
1264   /** Body of instructions in the function. */
1265   struct exec_list body;
1266
1267private:
1268   /**
1269    * A function pointer to a predicate that answers whether a built-in
1270    * function is available in the current shader.  NULL if not a built-in.
1271    */
1272   builtin_available_predicate builtin_avail;
1273
1274   /** Function of which this signature is one overload. */
1275   class ir_function *_function;
1276
1277   /** Function signature of which this one is a prototype clone */
1278   const ir_function_signature *origin;
1279
1280   friend class ir_function;
1281
1282   /**
1283    * Helper function to run a list of instructions for constant
1284    * expression evaluation.
1285    *
1286    * The hash table represents the values of the visible variables.
1287    * There are no scoping issues because the table is indexed on
1288    * ir_variable pointers, not variable names.
1289    *
1290    * Returns false if the expression is not constant, true otherwise,
1291    * and the value in *result if result is non-NULL.
1292    */
1293   bool constant_expression_evaluate_expression_list(void *mem_ctx,
1294                                                     const struct exec_list &body,
1295						     struct hash_table *variable_context,
1296						     ir_constant **result);
1297};
1298
1299
1300/**
1301 * Header for tracking multiple overloaded functions with the same name.
1302 * Contains a list of ir_function_signatures representing each of the
1303 * actual functions.
1304 */
1305class ir_function : public ir_instruction {
1306public:
1307   ir_function(const char *name);
1308
1309   virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1310
1311   virtual void accept(ir_visitor *v)
1312   {
1313      v->visit(this);
1314   }
1315
1316   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1317
1318   void add_signature(ir_function_signature *sig)
1319   {
1320      sig->_function = this;
1321      this->signatures.push_tail(sig);
1322   }
1323
1324   /**
1325    * Find a signature that matches a set of actual parameters, taking implicit
1326    * conversions into account.  Also flags whether the match was exact.
1327    */
1328   ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1329                                             const exec_list *actual_param,
1330                                             bool allow_builtins,
1331					     bool *match_is_exact);
1332
1333   /**
1334    * Find a signature that matches a set of actual parameters, taking implicit
1335    * conversions into account.
1336    */
1337   ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1338                                             const exec_list *actual_param,
1339                                             bool allow_builtins);
1340
1341   /**
1342    * Find a signature that exactly matches a set of actual parameters without
1343    * any implicit type conversions.
1344    */
1345   ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1346                                                   const exec_list *actual_ps);
1347
1348   /**
1349    * Name of the function.
1350    */
1351   const char *name;
1352
1353   /** Whether or not this function has a signature that isn't a built-in. */
1354   bool has_user_signature();
1355
1356   /**
1357    * List of ir_function_signature for each overloaded function with this name.
1358    */
1359   struct exec_list signatures;
1360
1361   /**
1362    * is this function a subroutine type declaration
1363    * e.g. subroutine void type1(float arg1);
1364    */
1365   bool is_subroutine;
1366
1367   /**
1368    * is this function associated to a subroutine type
1369    * e.g. subroutine (type1, type2) function_name { function_body };
1370    * would have num_subroutine_types 2,
1371    * and pointers to the type1 and type2 types.
1372    */
1373   int num_subroutine_types;
1374   const struct glsl_type **subroutine_types;
1375
1376   int subroutine_index;
1377};
1378
1379inline const char *ir_function_signature::function_name() const
1380{
1381   return this->_function->name;
1382}
1383/*@}*/
1384
1385
1386/**
1387 * IR instruction representing high-level if-statements
1388 */
1389class ir_if : public ir_instruction {
1390public:
1391   ir_if(ir_rvalue *condition)
1392      : ir_instruction(ir_type_if), condition(condition)
1393   {
1394   }
1395
1396   virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1397
1398   virtual void accept(ir_visitor *v)
1399   {
1400      v->visit(this);
1401   }
1402
1403   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1404
1405   ir_rvalue *condition;
1406   /** List of ir_instruction for the body of the then branch */
1407   exec_list  then_instructions;
1408   /** List of ir_instruction for the body of the else branch */
1409   exec_list  else_instructions;
1410};
1411
1412
1413/**
1414 * IR instruction representing a high-level loop structure.
1415 */
1416class ir_loop : public ir_instruction {
1417public:
1418   ir_loop();
1419
1420   virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1421
1422   virtual void accept(ir_visitor *v)
1423   {
1424      v->visit(this);
1425   }
1426
1427   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1428
1429   /** List of ir_instruction that make up the body of the loop. */
1430   exec_list body_instructions;
1431};
1432
1433
1434class ir_assignment : public ir_instruction {
1435public:
1436   ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1437
1438   /**
1439    * Construct an assignment with an explicit write mask
1440    *
1441    * \note
1442    * Since a write mask is supplied, the LHS must already be a bare
1443    * \c ir_dereference.  The cannot be any swizzles in the LHS.
1444    */
1445   ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1446		 unsigned write_mask);
1447
1448   virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1449
1450   virtual ir_constant *constant_expression_value(void *mem_ctx,
1451                                                  struct hash_table *variable_context = NULL);
1452
1453   virtual void accept(ir_visitor *v)
1454   {
1455      v->visit(this);
1456   }
1457
1458   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1459
1460   /**
1461    * Get a whole variable written by an assignment
1462    *
1463    * If the LHS of the assignment writes a whole variable, the variable is
1464    * returned.  Otherwise \c NULL is returned.  Examples of whole-variable
1465    * assignment are:
1466    *
1467    *  - Assigning to a scalar
1468    *  - Assigning to all components of a vector
1469    *  - Whole array (or matrix) assignment
1470    *  - Whole structure assignment
1471    */
1472   ir_variable *whole_variable_written();
1473
1474   /**
1475    * Set the LHS of an assignment
1476    */
1477   void set_lhs(ir_rvalue *lhs);
1478
1479   /**
1480    * Left-hand side of the assignment.
1481    *
1482    * This should be treated as read only.  If you need to set the LHS of an
1483    * assignment, use \c ir_assignment::set_lhs.
1484    */
1485   ir_dereference *lhs;
1486
1487   /**
1488    * Value being assigned
1489    */
1490   ir_rvalue *rhs;
1491
1492   /**
1493    * Optional condition for the assignment.
1494    */
1495   ir_rvalue *condition;
1496
1497
1498   /**
1499    * Component mask written
1500    *
1501    * For non-vector types in the LHS, this field will be zero.  For vector
1502    * types, a bit will be set for each component that is written.  Note that
1503    * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1504    *
1505    * A partially-set write mask means that each enabled channel gets
1506    * the value from a consecutive channel of the rhs.  For example,
1507    * to write just .xyw of gl_FrontColor with color:
1508    *
1509    * (assign (constant bool (1)) (xyw)
1510    *     (var_ref gl_FragColor)
1511    *     (swiz xyw (var_ref color)))
1512    */
1513   unsigned write_mask:4;
1514};
1515
1516#include "ir_expression_operation.h"
1517
1518extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1519extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1520
1521class ir_expression : public ir_rvalue {
1522public:
1523   ir_expression(int op, const struct glsl_type *type,
1524                 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1525                 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1526
1527   /**
1528    * Constructor for unary operation expressions
1529    */
1530   ir_expression(int op, ir_rvalue *);
1531
1532   /**
1533    * Constructor for binary operation expressions
1534    */
1535   ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1536
1537   /**
1538    * Constructor for ternary operation expressions
1539    */
1540   ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1541
1542   virtual bool equals(const ir_instruction *ir,
1543                       enum ir_node_type ignore = ir_type_unset) const;
1544
1545   virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1546
1547   /**
1548    * Attempt to constant-fold the expression
1549    *
1550    * The "variable_context" hash table links ir_variable * to ir_constant *
1551    * that represent the variables' values.  \c NULL represents an empty
1552    * context.
1553    *
1554    * If the expression cannot be constant folded, this method will return
1555    * \c NULL.
1556    */
1557   virtual ir_constant *constant_expression_value(void *mem_ctx,
1558                                                  struct hash_table *variable_context = NULL);
1559
1560   /**
1561    * This is only here for ir_reader to used for testing purposes please use
1562    * the precomputed num_operands field if you need the number of operands.
1563    */
1564   static unsigned get_num_operands(ir_expression_operation);
1565
1566   /**
1567    * Return whether the expression operates on vectors horizontally.
1568    */
1569   bool is_horizontal() const
1570   {
1571      return operation == ir_binop_all_equal ||
1572             operation == ir_binop_any_nequal ||
1573             operation == ir_binop_dot ||
1574             operation == ir_binop_vector_extract ||
1575             operation == ir_triop_vector_insert ||
1576             operation == ir_binop_ubo_load ||
1577             operation == ir_quadop_vector;
1578   }
1579
1580   /**
1581    * Do a reverse-lookup to translate the given string into an operator.
1582    */
1583   static ir_expression_operation get_operator(const char *);
1584
1585   virtual void accept(ir_visitor *v)
1586   {
1587      v->visit(this);
1588   }
1589
1590   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1591
1592   virtual ir_variable *variable_referenced() const;
1593
1594   /**
1595    * Determine the number of operands used by an expression
1596    */
1597   void init_num_operands()
1598   {
1599      if (operation == ir_quadop_vector) {
1600         num_operands = this->type->vector_elements;
1601      } else {
1602         num_operands = get_num_operands(operation);
1603      }
1604   }
1605
1606   ir_expression_operation operation;
1607   ir_rvalue *operands[4];
1608   uint8_t num_operands;
1609};
1610
1611
1612/**
1613 * HIR instruction representing a high-level function call, containing a list
1614 * of parameters and returning a value in the supplied temporary.
1615 */
1616class ir_call : public ir_instruction {
1617public:
1618   ir_call(ir_function_signature *callee,
1619	   ir_dereference_variable *return_deref,
1620	   exec_list *actual_parameters)
1621      : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1622   {
1623      assert(callee->return_type != NULL);
1624      actual_parameters->move_nodes_to(& this->actual_parameters);
1625   }
1626
1627   ir_call(ir_function_signature *callee,
1628	   ir_dereference_variable *return_deref,
1629	   exec_list *actual_parameters,
1630	   ir_variable *var, ir_rvalue *array_idx)
1631      : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1632   {
1633      assert(callee->return_type != NULL);
1634      actual_parameters->move_nodes_to(& this->actual_parameters);
1635   }
1636
1637   virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1638
1639   virtual ir_constant *constant_expression_value(void *mem_ctx,
1640                                                  struct hash_table *variable_context = NULL);
1641
1642   virtual void accept(ir_visitor *v)
1643   {
1644      v->visit(this);
1645   }
1646
1647   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1648
1649   /**
1650    * Get the name of the function being called.
1651    */
1652   const char *callee_name() const
1653   {
1654      return callee->function_name();
1655   }
1656
1657   /**
1658    * Generates an inline version of the function before @ir,
1659    * storing the return value in return_deref.
1660    */
1661   void generate_inline(ir_instruction *ir);
1662
1663   /**
1664    * Storage for the function's return value.
1665    * This must be NULL if the return type is void.
1666    */
1667   ir_dereference_variable *return_deref;
1668
1669   /**
1670    * The specific function signature being called.
1671    */
1672   ir_function_signature *callee;
1673
1674   /* List of ir_rvalue of paramaters passed in this call. */
1675   exec_list actual_parameters;
1676
1677   /*
1678    * ARB_shader_subroutine support -
1679    * the subroutine uniform variable and array index
1680    * rvalue to be used in the lowering pass later.
1681    */
1682   ir_variable *sub_var;
1683   ir_rvalue *array_idx;
1684};
1685
1686
1687/**
1688 * \name Jump-like IR instructions.
1689 *
1690 * These include \c break, \c continue, \c return, and \c discard.
1691 */
1692/*@{*/
1693class ir_jump : public ir_instruction {
1694protected:
1695   ir_jump(enum ir_node_type t)
1696      : ir_instruction(t)
1697   {
1698   }
1699};
1700
1701class ir_return : public ir_jump {
1702public:
1703   ir_return()
1704      : ir_jump(ir_type_return), value(NULL)
1705   {
1706   }
1707
1708   ir_return(ir_rvalue *value)
1709      : ir_jump(ir_type_return), value(value)
1710   {
1711   }
1712
1713   virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1714
1715   ir_rvalue *get_value() const
1716   {
1717      return value;
1718   }
1719
1720   virtual void accept(ir_visitor *v)
1721   {
1722      v->visit(this);
1723   }
1724
1725   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1726
1727   ir_rvalue *value;
1728};
1729
1730
1731/**
1732 * Jump instructions used inside loops
1733 *
1734 * These include \c break and \c continue.  The \c break within a loop is
1735 * different from the \c break within a switch-statement.
1736 *
1737 * \sa ir_switch_jump
1738 */
1739class ir_loop_jump : public ir_jump {
1740public:
1741   enum jump_mode {
1742      jump_break,
1743      jump_continue
1744   };
1745
1746   ir_loop_jump(jump_mode mode)
1747      : ir_jump(ir_type_loop_jump)
1748   {
1749      this->mode = mode;
1750   }
1751
1752   virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1753
1754   virtual void accept(ir_visitor *v)
1755   {
1756      v->visit(this);
1757   }
1758
1759   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1760
1761   bool is_break() const
1762   {
1763      return mode == jump_break;
1764   }
1765
1766   bool is_continue() const
1767   {
1768      return mode == jump_continue;
1769   }
1770
1771   /** Mode selector for the jump instruction. */
1772   enum jump_mode mode;
1773};
1774
1775/**
1776 * IR instruction representing discard statements.
1777 */
1778class ir_discard : public ir_jump {
1779public:
1780   ir_discard()
1781      : ir_jump(ir_type_discard)
1782   {
1783      this->condition = NULL;
1784   }
1785
1786   ir_discard(ir_rvalue *cond)
1787      : ir_jump(ir_type_discard)
1788   {
1789      this->condition = cond;
1790   }
1791
1792   virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1793
1794   virtual void accept(ir_visitor *v)
1795   {
1796      v->visit(this);
1797   }
1798
1799   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1800
1801   ir_rvalue *condition;
1802};
1803/*@}*/
1804
1805
1806/**
1807 * Texture sampling opcodes used in ir_texture
1808 */
1809enum ir_texture_opcode {
1810   ir_tex,		/**< Regular texture look-up */
1811   ir_txb,		/**< Texture look-up with LOD bias */
1812   ir_txl,		/**< Texture look-up with explicit LOD */
1813   ir_txd,		/**< Texture look-up with partial derivatvies */
1814   ir_txf,		/**< Texel fetch with explicit LOD */
1815   ir_txf_ms,           /**< Multisample texture fetch */
1816   ir_txs,		/**< Texture size */
1817   ir_lod,		/**< Texture lod query */
1818   ir_tg4,		/**< Texture gather */
1819   ir_query_levels,     /**< Texture levels query */
1820   ir_texture_samples,  /**< Texture samples query */
1821   ir_samples_identical, /**< Query whether all samples are definitely identical. */
1822};
1823
1824
1825/**
1826 * IR instruction to sample a texture
1827 *
1828 * The specific form of the IR instruction depends on the \c mode value
1829 * selected from \c ir_texture_opcodes.  In the printed IR, these will
1830 * appear as:
1831 *
1832 *                                    Texel offset (0 or an expression)
1833 *                                    | Projection divisor
1834 *                                    | |  Shadow comparator
1835 *                                    | |  |
1836 *                                    v v  v
1837 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1838 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1839 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1840 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1841 * (txf <type> <sampler> <coordinate> 0       <lod>)
1842 * (txf_ms
1843 *      <type> <sampler> <coordinate>         <sample_index>)
1844 * (txs <type> <sampler> <lod>)
1845 * (lod <type> <sampler> <coordinate>)
1846 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1847 * (query_levels <type> <sampler>)
1848 * (samples_identical <sampler> <coordinate>)
1849 */
1850class ir_texture : public ir_rvalue {
1851public:
1852   ir_texture(enum ir_texture_opcode op)
1853      : ir_rvalue(ir_type_texture),
1854        op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1855        shadow_comparator(NULL), offset(NULL)
1856   {
1857      memset(&lod_info, 0, sizeof(lod_info));
1858   }
1859
1860   virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1861
1862   virtual ir_constant *constant_expression_value(void *mem_ctx,
1863                                                  struct hash_table *variable_context = NULL);
1864
1865   virtual void accept(ir_visitor *v)
1866   {
1867      v->visit(this);
1868   }
1869
1870   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1871
1872   virtual bool equals(const ir_instruction *ir,
1873                       enum ir_node_type ignore = ir_type_unset) const;
1874
1875   /**
1876    * Return a string representing the ir_texture_opcode.
1877    */
1878   const char *opcode_string();
1879
1880   /** Set the sampler and type. */
1881   void set_sampler(ir_dereference *sampler, const glsl_type *type);
1882
1883   /**
1884    * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1885    */
1886   static ir_texture_opcode get_opcode(const char *);
1887
1888   enum ir_texture_opcode op;
1889
1890   /** Sampler to use for the texture access. */
1891   ir_dereference *sampler;
1892
1893   /** Texture coordinate to sample */
1894   ir_rvalue *coordinate;
1895
1896   /**
1897    * Value used for projective divide.
1898    *
1899    * If there is no projective divide (the common case), this will be
1900    * \c NULL.  Optimization passes should check for this to point to a constant
1901    * of 1.0 and replace that with \c NULL.
1902    */
1903   ir_rvalue *projector;
1904
1905   /**
1906    * Coordinate used for comparison on shadow look-ups.
1907    *
1908    * If there is no shadow comparison, this will be \c NULL.  For the
1909    * \c ir_txf opcode, this *must* be \c NULL.
1910    */
1911   ir_rvalue *shadow_comparator;
1912
1913   /** Texel offset. */
1914   ir_rvalue *offset;
1915
1916   union {
1917      ir_rvalue *lod;		/**< Floating point LOD */
1918      ir_rvalue *bias;		/**< Floating point LOD bias */
1919      ir_rvalue *sample_index;  /**< MSAA sample index */
1920      ir_rvalue *component;     /**< Gather component selector */
1921      struct {
1922	 ir_rvalue *dPdx;	/**< Partial derivative of coordinate wrt X */
1923	 ir_rvalue *dPdy;	/**< Partial derivative of coordinate wrt Y */
1924      } grad;
1925   } lod_info;
1926};
1927
1928
1929struct ir_swizzle_mask {
1930   unsigned x:2;
1931   unsigned y:2;
1932   unsigned z:2;
1933   unsigned w:2;
1934
1935   /**
1936    * Number of components in the swizzle.
1937    */
1938   unsigned num_components:3;
1939
1940   /**
1941    * Does the swizzle contain duplicate components?
1942    *
1943    * L-value swizzles cannot contain duplicate components.
1944    */
1945   unsigned has_duplicates:1;
1946};
1947
1948
1949class ir_swizzle : public ir_rvalue {
1950public:
1951   ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1952              unsigned count);
1953
1954   ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1955
1956   ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1957
1958   virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1959
1960   virtual ir_constant *constant_expression_value(void *mem_ctx,
1961                                                  struct hash_table *variable_context = NULL);
1962
1963   /**
1964    * Construct an ir_swizzle from the textual representation.  Can fail.
1965    */
1966   static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1967
1968   virtual void accept(ir_visitor *v)
1969   {
1970      v->visit(this);
1971   }
1972
1973   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1974
1975   virtual bool equals(const ir_instruction *ir,
1976                       enum ir_node_type ignore = ir_type_unset) const;
1977
1978   bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
1979   {
1980      return val->is_lvalue(state) && !mask.has_duplicates;
1981   }
1982
1983   /**
1984    * Get the variable that is ultimately referenced by an r-value
1985    */
1986   virtual ir_variable *variable_referenced() const;
1987
1988   ir_rvalue *val;
1989   ir_swizzle_mask mask;
1990
1991private:
1992   /**
1993    * Initialize the mask component of a swizzle
1994    *
1995    * This is used by the \c ir_swizzle constructors.
1996    */
1997   void init_mask(const unsigned *components, unsigned count);
1998};
1999
2000
2001class ir_dereference : public ir_rvalue {
2002public:
2003   virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2004
2005   bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
2006
2007   /**
2008    * Get the variable that is ultimately referenced by an r-value
2009    */
2010   virtual ir_variable *variable_referenced() const = 0;
2011
2012protected:
2013   ir_dereference(enum ir_node_type t)
2014      : ir_rvalue(t)
2015   {
2016   }
2017};
2018
2019
2020class ir_dereference_variable : public ir_dereference {
2021public:
2022   ir_dereference_variable(ir_variable *var);
2023
2024   virtual ir_dereference_variable *clone(void *mem_ctx,
2025					  struct hash_table *) const;
2026
2027   virtual ir_constant *constant_expression_value(void *mem_ctx,
2028                                                  struct hash_table *variable_context = NULL);
2029
2030   virtual bool equals(const ir_instruction *ir,
2031                       enum ir_node_type ignore = ir_type_unset) const;
2032
2033   /**
2034    * Get the variable that is ultimately referenced by an r-value
2035    */
2036   virtual ir_variable *variable_referenced() const
2037   {
2038      return this->var;
2039   }
2040
2041   virtual ir_variable *whole_variable_referenced()
2042   {
2043      /* ir_dereference_variable objects always dereference the entire
2044       * variable.  However, if this dereference is dereferenced by anything
2045       * else, the complete deferefernce chain is not a whole-variable
2046       * dereference.  This method should only be called on the top most
2047       * ir_rvalue in a dereference chain.
2048       */
2049      return this->var;
2050   }
2051
2052   virtual void accept(ir_visitor *v)
2053   {
2054      v->visit(this);
2055   }
2056
2057   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2058
2059   /**
2060    * Object being dereferenced.
2061    */
2062   ir_variable *var;
2063};
2064
2065
2066class ir_dereference_array : public ir_dereference {
2067public:
2068   ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2069
2070   ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2071
2072   virtual ir_dereference_array *clone(void *mem_ctx,
2073				       struct hash_table *) const;
2074
2075   virtual ir_constant *constant_expression_value(void *mem_ctx,
2076                                                  struct hash_table *variable_context = NULL);
2077
2078   virtual bool equals(const ir_instruction *ir,
2079                       enum ir_node_type ignore = ir_type_unset) const;
2080
2081   /**
2082    * Get the variable that is ultimately referenced by an r-value
2083    */
2084   virtual ir_variable *variable_referenced() const
2085   {
2086      return this->array->variable_referenced();
2087   }
2088
2089   virtual void accept(ir_visitor *v)
2090   {
2091      v->visit(this);
2092   }
2093
2094   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2095
2096   ir_rvalue *array;
2097   ir_rvalue *array_index;
2098
2099private:
2100   void set_array(ir_rvalue *value);
2101};
2102
2103
2104class ir_dereference_record : public ir_dereference {
2105public:
2106   ir_dereference_record(ir_rvalue *value, const char *field);
2107
2108   ir_dereference_record(ir_variable *var, const char *field);
2109
2110   virtual ir_dereference_record *clone(void *mem_ctx,
2111					struct hash_table *) const;
2112
2113   virtual ir_constant *constant_expression_value(void *mem_ctx,
2114                                                  struct hash_table *variable_context = NULL);
2115
2116   /**
2117    * Get the variable that is ultimately referenced by an r-value
2118    */
2119   virtual ir_variable *variable_referenced() const
2120   {
2121      return this->record->variable_referenced();
2122   }
2123
2124   virtual void accept(ir_visitor *v)
2125   {
2126      v->visit(this);
2127   }
2128
2129   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2130
2131   ir_rvalue *record;
2132   int field_idx;
2133};
2134
2135
2136/**
2137 * Data stored in an ir_constant
2138 */
2139union ir_constant_data {
2140      unsigned u[16];
2141      int i[16];
2142      float f[16];
2143      bool b[16];
2144      double d[16];
2145      uint64_t u64[16];
2146      int64_t i64[16];
2147};
2148
2149
2150class ir_constant : public ir_rvalue {
2151public:
2152   ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2153   ir_constant(bool b, unsigned vector_elements=1);
2154   ir_constant(unsigned int u, unsigned vector_elements=1);
2155   ir_constant(int i, unsigned vector_elements=1);
2156   ir_constant(float f, unsigned vector_elements=1);
2157   ir_constant(double d, unsigned vector_elements=1);
2158   ir_constant(uint64_t u64, unsigned vector_elements=1);
2159   ir_constant(int64_t i64, unsigned vector_elements=1);
2160
2161   /**
2162    * Construct an ir_constant from a list of ir_constant values
2163    */
2164   ir_constant(const struct glsl_type *type, exec_list *values);
2165
2166   /**
2167    * Construct an ir_constant from a scalar component of another ir_constant
2168    *
2169    * The new \c ir_constant inherits the type of the component from the
2170    * source constant.
2171    *
2172    * \note
2173    * In the case of a matrix constant, the new constant is a scalar, \b not
2174    * a vector.
2175    */
2176   ir_constant(const ir_constant *c, unsigned i);
2177
2178   /**
2179    * Return a new ir_constant of the specified type containing all zeros.
2180    */
2181   static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2182
2183   virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2184
2185   virtual ir_constant *constant_expression_value(void *mem_ctx,
2186                                                  struct hash_table *variable_context = NULL);
2187
2188   virtual void accept(ir_visitor *v)
2189   {
2190      v->visit(this);
2191   }
2192
2193   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2194
2195   virtual bool equals(const ir_instruction *ir,
2196                       enum ir_node_type ignore = ir_type_unset) const;
2197
2198   /**
2199    * Get a particular component of a constant as a specific type
2200    *
2201    * This is useful, for example, to get a value from an integer constant
2202    * as a float or bool.  This appears frequently when constructors are
2203    * called with all constant parameters.
2204    */
2205   /*@{*/
2206   bool get_bool_component(unsigned i) const;
2207   float get_float_component(unsigned i) const;
2208   double get_double_component(unsigned i) const;
2209   int get_int_component(unsigned i) const;
2210   unsigned get_uint_component(unsigned i) const;
2211   int64_t get_int64_component(unsigned i) const;
2212   uint64_t get_uint64_component(unsigned i) const;
2213   /*@}*/
2214
2215   ir_constant *get_array_element(unsigned i) const;
2216
2217   ir_constant *get_record_field(int idx);
2218
2219   /**
2220    * Copy the values on another constant at a given offset.
2221    *
2222    * The offset is ignored for array or struct copies, it's only for
2223    * scalars or vectors into vectors or matrices.
2224    *
2225    * With identical types on both sides and zero offset it's clone()
2226    * without creating a new object.
2227    */
2228
2229   void copy_offset(ir_constant *src, int offset);
2230
2231   /**
2232    * Copy the values on another constant at a given offset and
2233    * following an assign-like mask.
2234    *
2235    * The mask is ignored for scalars.
2236    *
2237    * Note that this function only handles what assign can handle,
2238    * i.e. at most a vector as source and a column of a matrix as
2239    * destination.
2240    */
2241
2242   void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2243
2244   /**
2245    * Determine whether a constant has the same value as another constant
2246    *
2247    * \sa ir_constant::is_zero, ir_constant::is_one,
2248    * ir_constant::is_negative_one
2249    */
2250   bool has_value(const ir_constant *) const;
2251
2252   /**
2253    * Return true if this ir_constant represents the given value.
2254    *
2255    * For vectors, this checks that each component is the given value.
2256    */
2257   virtual bool is_value(float f, int i) const;
2258   virtual bool is_zero() const;
2259   virtual bool is_one() const;
2260   virtual bool is_negative_one() const;
2261
2262   /**
2263    * Return true for constants that could be stored as 16-bit unsigned values.
2264    *
2265    * Note that this will return true even for signed integer ir_constants, as
2266    * long as the value is non-negative and fits in 16-bits.
2267    */
2268   virtual bool is_uint16_constant() const;
2269
2270   /**
2271    * Value of the constant.
2272    *
2273    * The field used to back the values supplied by the constant is determined
2274    * by the type associated with the \c ir_instruction.  Constants may be
2275    * scalars, vectors, or matrices.
2276    */
2277   union ir_constant_data value;
2278
2279   /* Array elements and structure fields */
2280   ir_constant **const_elements;
2281
2282private:
2283   /**
2284    * Parameterless constructor only used by the clone method
2285    */
2286   ir_constant(void);
2287};
2288
2289/**
2290 * IR instruction to emit a vertex in a geometry shader.
2291 */
2292class ir_emit_vertex : public ir_instruction {
2293public:
2294   ir_emit_vertex(ir_rvalue *stream)
2295      : ir_instruction(ir_type_emit_vertex),
2296        stream(stream)
2297   {
2298      assert(stream);
2299   }
2300
2301   virtual void accept(ir_visitor *v)
2302   {
2303      v->visit(this);
2304   }
2305
2306   virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2307   {
2308      return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2309   }
2310
2311   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2312
2313   int stream_id() const
2314   {
2315      return stream->as_constant()->value.i[0];
2316   }
2317
2318   ir_rvalue *stream;
2319};
2320
2321/**
2322 * IR instruction to complete the current primitive and start a new one in a
2323 * geometry shader.
2324 */
2325class ir_end_primitive : public ir_instruction {
2326public:
2327   ir_end_primitive(ir_rvalue *stream)
2328      : ir_instruction(ir_type_end_primitive),
2329        stream(stream)
2330   {
2331      assert(stream);
2332   }
2333
2334   virtual void accept(ir_visitor *v)
2335   {
2336      v->visit(this);
2337   }
2338
2339   virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2340   {
2341      return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2342   }
2343
2344   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2345
2346   int stream_id() const
2347   {
2348      return stream->as_constant()->value.i[0];
2349   }
2350
2351   ir_rvalue *stream;
2352};
2353
2354/**
2355 * IR instruction for tessellation control and compute shader barrier.
2356 */
2357class ir_barrier : public ir_instruction {
2358public:
2359   ir_barrier()
2360      : ir_instruction(ir_type_barrier)
2361   {
2362   }
2363
2364   virtual void accept(ir_visitor *v)
2365   {
2366      v->visit(this);
2367   }
2368
2369   virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2370   {
2371      return new(mem_ctx) ir_barrier();
2372   }
2373
2374   virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2375};
2376
2377/*@}*/
2378
2379/**
2380 * Apply a visitor to each IR node in a list
2381 */
2382void
2383visit_exec_list(exec_list *list, ir_visitor *visitor);
2384
2385/**
2386 * Validate invariants on each IR node in a list
2387 */
2388void validate_ir_tree(exec_list *instructions);
2389
2390struct _mesa_glsl_parse_state;
2391struct gl_shader_program;
2392
2393/**
2394 * Detect whether an unlinked shader contains static recursion
2395 *
2396 * If the list of instructions is determined to contain static recursion,
2397 * \c _mesa_glsl_error will be called to emit error messages for each function
2398 * that is in the recursion cycle.
2399 */
2400void
2401detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2402			  exec_list *instructions);
2403
2404/**
2405 * Detect whether a linked shader contains static recursion
2406 *
2407 * If the list of instructions is determined to contain static recursion,
2408 * \c link_error_printf will be called to emit error messages for each function
2409 * that is in the recursion cycle.  In addition,
2410 * \c gl_shader_program::LinkStatus will be set to false.
2411 */
2412void
2413detect_recursion_linked(struct gl_shader_program *prog,
2414			exec_list *instructions);
2415
2416/**
2417 * Make a clone of each IR instruction in a list
2418 *
2419 * \param in   List of IR instructions that are to be cloned
2420 * \param out  List to hold the cloned instructions
2421 */
2422void
2423clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2424
2425extern void
2426_mesa_glsl_initialize_variables(exec_list *instructions,
2427				struct _mesa_glsl_parse_state *state);
2428
2429extern void
2430reparent_ir(exec_list *list, void *mem_ctx);
2431
2432extern void
2433do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2434                      gl_shader_stage shader_stage);
2435
2436extern char *
2437prototype_string(const glsl_type *return_type, const char *name,
2438		 exec_list *parameters);
2439
2440const char *
2441mode_string(const ir_variable *var);
2442
2443/**
2444 * Built-in / reserved GL variables names start with "gl_"
2445 */
2446static inline bool
2447is_gl_identifier(const char *s)
2448{
2449   return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2450}
2451
2452extern "C" {
2453#endif /* __cplusplus */
2454
2455extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2456                           struct _mesa_glsl_parse_state *state);
2457
2458extern void
2459fprint_ir(FILE *f, const void *instruction);
2460
2461extern const struct gl_builtin_uniform_desc *
2462_mesa_glsl_get_builtin_uniform_desc(const char *name);
2463
2464#ifdef __cplusplus
2465} /* extern "C" */
2466#endif
2467
2468unsigned
2469vertices_per_prim(GLenum prim);
2470
2471#endif /* IR_H */
2472