ir_constant_expression.cpp revision 7e102996
1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24/** 25 * \file ir_constant_expression.cpp 26 * Evaluate and process constant valued expressions 27 * 28 * In GLSL, constant valued expressions are used in several places. These 29 * must be processed and evaluated very early in the compilation process. 30 * 31 * * Sizes of arrays 32 * * Initializers for uniforms 33 * * Initializers for \c const variables 34 */ 35 36#include <math.h> 37#include "util/rounding.h" /* for _mesa_roundeven */ 38#include "util/half_float.h" 39#include "ir.h" 40#include "compiler/glsl_types.h" 41#include "util/hash_table.h" 42#include "util/u_math.h" 43 44static float 45dot_f(ir_constant *op0, ir_constant *op1) 46{ 47 assert(op0->type->is_float() && op1->type->is_float()); 48 49 float result = 0; 50 for (unsigned c = 0; c < op0->type->components(); c++) 51 result += op0->value.f[c] * op1->value.f[c]; 52 53 return result; 54} 55 56static double 57dot_d(ir_constant *op0, ir_constant *op1) 58{ 59 assert(op0->type->is_double() && op1->type->is_double()); 60 61 double result = 0; 62 for (unsigned c = 0; c < op0->type->components(); c++) 63 result += op0->value.d[c] * op1->value.d[c]; 64 65 return result; 66} 67 68/* This method is the only one supported by gcc. Unions in particular 69 * are iffy, and read-through-converted-pointer is killed by strict 70 * aliasing. OTOH, the compiler sees through the memcpy, so the 71 * resulting asm is reasonable. 72 */ 73static float 74bitcast_u2f(unsigned int u) 75{ 76 assert(sizeof(float) == sizeof(unsigned int)); 77 float f; 78 memcpy(&f, &u, sizeof(f)); 79 return f; 80} 81 82static unsigned int 83bitcast_f2u(float f) 84{ 85 assert(sizeof(float) == sizeof(unsigned int)); 86 unsigned int u; 87 memcpy(&u, &f, sizeof(f)); 88 return u; 89} 90 91static double 92bitcast_u642d(uint64_t u) 93{ 94 assert(sizeof(double) == sizeof(uint64_t)); 95 double d; 96 memcpy(&d, &u, sizeof(d)); 97 return d; 98} 99 100static double 101bitcast_i642d(int64_t i) 102{ 103 assert(sizeof(double) == sizeof(int64_t)); 104 double d; 105 memcpy(&d, &i, sizeof(d)); 106 return d; 107} 108 109static double 110bitcast_d2u64(double d) 111{ 112 assert(sizeof(double) == sizeof(uint64_t)); 113 uint64_t u; 114 memcpy(&u, &d, sizeof(d)); 115 return u; 116} 117 118static double 119bitcast_d2i64(double d) 120{ 121 assert(sizeof(double) == sizeof(int64_t)); 122 int64_t i; 123 memcpy(&i, &d, sizeof(d)); 124 return i; 125} 126 127/** 128 * Evaluate one component of a floating-point 4x8 unpacking function. 129 */ 130typedef uint8_t 131(*pack_1x8_func_t)(float); 132 133/** 134 * Evaluate one component of a floating-point 2x16 unpacking function. 135 */ 136typedef uint16_t 137(*pack_1x16_func_t)(float); 138 139/** 140 * Evaluate one component of a floating-point 4x8 unpacking function. 141 */ 142typedef float 143(*unpack_1x8_func_t)(uint8_t); 144 145/** 146 * Evaluate one component of a floating-point 2x16 unpacking function. 147 */ 148typedef float 149(*unpack_1x16_func_t)(uint16_t); 150 151/** 152 * Evaluate a 2x16 floating-point packing function. 153 */ 154static uint32_t 155pack_2x16(pack_1x16_func_t pack_1x16, 156 float x, float y) 157{ 158 /* From section 8.4 of the GLSL ES 3.00 spec: 159 * 160 * packSnorm2x16 161 * ------------- 162 * The first component of the vector will be written to the least 163 * significant bits of the output; the last component will be written to 164 * the most significant bits. 165 * 166 * The specifications for the other packing functions contain similar 167 * language. 168 */ 169 uint32_t u = 0; 170 u |= ((uint32_t) pack_1x16(x) << 0); 171 u |= ((uint32_t) pack_1x16(y) << 16); 172 return u; 173} 174 175/** 176 * Evaluate a 4x8 floating-point packing function. 177 */ 178static uint32_t 179pack_4x8(pack_1x8_func_t pack_1x8, 180 float x, float y, float z, float w) 181{ 182 /* From section 8.4 of the GLSL 4.30 spec: 183 * 184 * packSnorm4x8 185 * ------------ 186 * The first component of the vector will be written to the least 187 * significant bits of the output; the last component will be written to 188 * the most significant bits. 189 * 190 * The specifications for the other packing functions contain similar 191 * language. 192 */ 193 uint32_t u = 0; 194 u |= ((uint32_t) pack_1x8(x) << 0); 195 u |= ((uint32_t) pack_1x8(y) << 8); 196 u |= ((uint32_t) pack_1x8(z) << 16); 197 u |= ((uint32_t) pack_1x8(w) << 24); 198 return u; 199} 200 201/** 202 * Evaluate a 2x16 floating-point unpacking function. 203 */ 204static void 205unpack_2x16(unpack_1x16_func_t unpack_1x16, 206 uint32_t u, 207 float *x, float *y) 208{ 209 /* From section 8.4 of the GLSL ES 3.00 spec: 210 * 211 * unpackSnorm2x16 212 * --------------- 213 * The first component of the returned vector will be extracted from 214 * the least significant bits of the input; the last component will be 215 * extracted from the most significant bits. 216 * 217 * The specifications for the other unpacking functions contain similar 218 * language. 219 */ 220 *x = unpack_1x16((uint16_t) (u & 0xffff)); 221 *y = unpack_1x16((uint16_t) (u >> 16)); 222} 223 224/** 225 * Evaluate a 4x8 floating-point unpacking function. 226 */ 227static void 228unpack_4x8(unpack_1x8_func_t unpack_1x8, uint32_t u, 229 float *x, float *y, float *z, float *w) 230{ 231 /* From section 8.4 of the GLSL 4.30 spec: 232 * 233 * unpackSnorm4x8 234 * -------------- 235 * The first component of the returned vector will be extracted from 236 * the least significant bits of the input; the last component will be 237 * extracted from the most significant bits. 238 * 239 * The specifications for the other unpacking functions contain similar 240 * language. 241 */ 242 *x = unpack_1x8((uint8_t) (u & 0xff)); 243 *y = unpack_1x8((uint8_t) (u >> 8)); 244 *z = unpack_1x8((uint8_t) (u >> 16)); 245 *w = unpack_1x8((uint8_t) (u >> 24)); 246} 247 248/** 249 * Evaluate one component of packSnorm4x8. 250 */ 251static uint8_t 252pack_snorm_1x8(float x) 253{ 254 /* From section 8.4 of the GLSL 4.30 spec: 255 * 256 * packSnorm4x8 257 * ------------ 258 * The conversion for component c of v to fixed point is done as 259 * follows: 260 * 261 * packSnorm4x8: round(clamp(c, -1, +1) * 127.0) 262 */ 263 return (uint8_t) 264 _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 127.0f); 265} 266 267/** 268 * Evaluate one component of packSnorm2x16. 269 */ 270static uint16_t 271pack_snorm_1x16(float x) 272{ 273 /* From section 8.4 of the GLSL ES 3.00 spec: 274 * 275 * packSnorm2x16 276 * ------------- 277 * The conversion for component c of v to fixed point is done as 278 * follows: 279 * 280 * packSnorm2x16: round(clamp(c, -1, +1) * 32767.0) 281 */ 282 return (uint16_t) 283 _mesa_lroundevenf(CLAMP(x, -1.0f, +1.0f) * 32767.0f); 284} 285 286/** 287 * Evaluate one component of unpackSnorm4x8. 288 */ 289static float 290unpack_snorm_1x8(uint8_t u) 291{ 292 /* From section 8.4 of the GLSL 4.30 spec: 293 * 294 * unpackSnorm4x8 295 * -------------- 296 * The conversion for unpacked fixed-point value f to floating point is 297 * done as follows: 298 * 299 * unpackSnorm4x8: clamp(f / 127.0, -1, +1) 300 */ 301 return CLAMP((int8_t) u / 127.0f, -1.0f, +1.0f); 302} 303 304/** 305 * Evaluate one component of unpackSnorm2x16. 306 */ 307static float 308unpack_snorm_1x16(uint16_t u) 309{ 310 /* From section 8.4 of the GLSL ES 3.00 spec: 311 * 312 * unpackSnorm2x16 313 * --------------- 314 * The conversion for unpacked fixed-point value f to floating point is 315 * done as follows: 316 * 317 * unpackSnorm2x16: clamp(f / 32767.0, -1, +1) 318 */ 319 return CLAMP((int16_t) u / 32767.0f, -1.0f, +1.0f); 320} 321 322/** 323 * Evaluate one component packUnorm4x8. 324 */ 325static uint8_t 326pack_unorm_1x8(float x) 327{ 328 /* From section 8.4 of the GLSL 4.30 spec: 329 * 330 * packUnorm4x8 331 * ------------ 332 * The conversion for component c of v to fixed point is done as 333 * follows: 334 * 335 * packUnorm4x8: round(clamp(c, 0, +1) * 255.0) 336 */ 337 return (uint8_t) (int) _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 255.0f); 338} 339 340/** 341 * Evaluate one component packUnorm2x16. 342 */ 343static uint16_t 344pack_unorm_1x16(float x) 345{ 346 /* From section 8.4 of the GLSL ES 3.00 spec: 347 * 348 * packUnorm2x16 349 * ------------- 350 * The conversion for component c of v to fixed point is done as 351 * follows: 352 * 353 * packUnorm2x16: round(clamp(c, 0, +1) * 65535.0) 354 */ 355 return (uint16_t) (int) 356 _mesa_roundevenf(CLAMP(x, 0.0f, 1.0f) * 65535.0f); 357} 358 359/** 360 * Evaluate one component of unpackUnorm4x8. 361 */ 362static float 363unpack_unorm_1x8(uint8_t u) 364{ 365 /* From section 8.4 of the GLSL 4.30 spec: 366 * 367 * unpackUnorm4x8 368 * -------------- 369 * The conversion for unpacked fixed-point value f to floating point is 370 * done as follows: 371 * 372 * unpackUnorm4x8: f / 255.0 373 */ 374 return (float) u / 255.0f; 375} 376 377/** 378 * Evaluate one component of unpackUnorm2x16. 379 */ 380static float 381unpack_unorm_1x16(uint16_t u) 382{ 383 /* From section 8.4 of the GLSL ES 3.00 spec: 384 * 385 * unpackUnorm2x16 386 * --------------- 387 * The conversion for unpacked fixed-point value f to floating point is 388 * done as follows: 389 * 390 * unpackUnorm2x16: f / 65535.0 391 */ 392 return (float) u / 65535.0f; 393} 394 395/** 396 * Evaluate one component of packHalf2x16. 397 */ 398static uint16_t 399pack_half_1x16(float x) 400{ 401 return _mesa_float_to_half(x); 402} 403 404/** 405 * Evaluate one component of unpackHalf2x16. 406 */ 407static float 408unpack_half_1x16(uint16_t u) 409{ 410 return _mesa_half_to_float(u); 411} 412 413/** 414 * Get the constant that is ultimately referenced by an r-value, in a constant 415 * expression evaluation context. 416 * 417 * The offset is used when the reference is to a specific column of a matrix. 418 */ 419static bool 420constant_referenced(const ir_dereference *deref, 421 struct hash_table *variable_context, 422 ir_constant *&store, int &offset) 423{ 424 store = NULL; 425 offset = 0; 426 427 if (variable_context == NULL) 428 return false; 429 430 switch (deref->ir_type) { 431 case ir_type_dereference_array: { 432 const ir_dereference_array *const da = 433 (const ir_dereference_array *) deref; 434 435 ir_constant *const index_c = 436 da->array_index->constant_expression_value(variable_context); 437 438 if (!index_c || !index_c->type->is_scalar() || !index_c->type->is_integer()) 439 break; 440 441 const int index = index_c->type->base_type == GLSL_TYPE_INT ? 442 index_c->get_int_component(0) : 443 index_c->get_uint_component(0); 444 445 ir_constant *substore; 446 int suboffset; 447 448 const ir_dereference *const deref = da->array->as_dereference(); 449 if (!deref) 450 break; 451 452 if (!constant_referenced(deref, variable_context, substore, suboffset)) 453 break; 454 455 const glsl_type *const vt = da->array->type; 456 if (vt->is_array()) { 457 store = substore->get_array_element(index); 458 offset = 0; 459 } else if (vt->is_matrix()) { 460 store = substore; 461 offset = index * vt->vector_elements; 462 } else if (vt->is_vector()) { 463 store = substore; 464 offset = suboffset + index; 465 } 466 467 break; 468 } 469 470 case ir_type_dereference_record: { 471 const ir_dereference_record *const dr = 472 (const ir_dereference_record *) deref; 473 474 const ir_dereference *const deref = dr->record->as_dereference(); 475 if (!deref) 476 break; 477 478 ir_constant *substore; 479 int suboffset; 480 481 if (!constant_referenced(deref, variable_context, substore, suboffset)) 482 break; 483 484 /* Since we're dropping it on the floor... 485 */ 486 assert(suboffset == 0); 487 488 store = substore->get_record_field(dr->field_idx); 489 break; 490 } 491 492 case ir_type_dereference_variable: { 493 const ir_dereference_variable *const dv = 494 (const ir_dereference_variable *) deref; 495 496 hash_entry *entry = _mesa_hash_table_search(variable_context, dv->var); 497 if (entry) 498 store = (ir_constant *) entry->data; 499 break; 500 } 501 502 default: 503 assert(!"Should not get here."); 504 break; 505 } 506 507 return store != NULL; 508} 509 510 511ir_constant * 512ir_rvalue::constant_expression_value(void *, struct hash_table *) 513{ 514 assert(this->type->is_error()); 515 return NULL; 516} 517 518static uint32_t 519bitfield_reverse(uint32_t v) 520{ 521 /* http://graphics.stanford.edu/~seander/bithacks.html#BitReverseObvious */ 522 uint32_t r = v; // r will be reversed bits of v; first get LSB of v 523 int s = sizeof(v) * CHAR_BIT - 1; // extra shift needed at end 524 525 for (v >>= 1; v; v >>= 1) { 526 r <<= 1; 527 r |= v & 1; 528 s--; 529 } 530 r <<= s; // shift when v's highest bits are zero 531 532 return r; 533} 534 535static int 536find_msb_uint(uint32_t v) 537{ 538 int count = 0; 539 540 /* If v == 0, then the loop will terminate when count == 32. In that case 541 * 31-count will produce the -1 result required by GLSL findMSB(). 542 */ 543 while (((v & (1u << 31)) == 0) && count != 32) { 544 count++; 545 v <<= 1; 546 } 547 548 return 31 - count; 549} 550 551static int 552find_msb_int(int32_t v) 553{ 554 /* If v is signed, findMSB() returns the position of the most significant 555 * zero bit. 556 */ 557 return find_msb_uint(v < 0 ? ~v : v); 558} 559 560static float 561ldexpf_flush_subnormal(float x, int exp) 562{ 563 const float result = ldexpf(x, exp); 564 565 /* Flush subnormal values to zero. */ 566 return !isnormal(result) ? copysignf(0.0f, x) : result; 567} 568 569static double 570ldexp_flush_subnormal(double x, int exp) 571{ 572 const double result = ldexp(x, exp); 573 574 /* Flush subnormal values to zero. */ 575 return !isnormal(result) ? copysign(0.0, x) : result; 576} 577 578static uint32_t 579bitfield_extract_uint(uint32_t value, int offset, int bits) 580{ 581 if (bits == 0) 582 return 0; 583 else if (offset < 0 || bits < 0) 584 return 0; /* Undefined, per spec. */ 585 else if (offset + bits > 32) 586 return 0; /* Undefined, per spec. */ 587 else { 588 value <<= 32 - bits - offset; 589 value >>= 32 - bits; 590 return value; 591 } 592} 593 594static int32_t 595bitfield_extract_int(int32_t value, int offset, int bits) 596{ 597 if (bits == 0) 598 return 0; 599 else if (offset < 0 || bits < 0) 600 return 0; /* Undefined, per spec. */ 601 else if (offset + bits > 32) 602 return 0; /* Undefined, per spec. */ 603 else { 604 value <<= 32 - bits - offset; 605 value >>= 32 - bits; 606 return value; 607 } 608} 609 610static uint32_t 611bitfield_insert(uint32_t base, uint32_t insert, int offset, int bits) 612{ 613 if (bits == 0) 614 return base; 615 else if (offset < 0 || bits < 0) 616 return 0; /* Undefined, per spec. */ 617 else if (offset + bits > 32) 618 return 0; /* Undefined, per spec. */ 619 else { 620 unsigned insert_mask = ((1ull << bits) - 1) << offset; 621 622 insert <<= offset; 623 insert &= insert_mask; 624 base &= ~insert_mask; 625 626 return base | insert; 627 } 628} 629 630ir_constant * 631ir_expression::constant_expression_value(void *mem_ctx, 632 struct hash_table *variable_context) 633{ 634 assert(mem_ctx); 635 636 if (this->type->is_error()) 637 return NULL; 638 639 ir_constant *op[ARRAY_SIZE(this->operands)] = { NULL, }; 640 ir_constant_data data; 641 642 memset(&data, 0, sizeof(data)); 643 644 for (unsigned operand = 0; operand < this->num_operands; operand++) { 645 op[operand] = 646 this->operands[operand]->constant_expression_value(mem_ctx, 647 variable_context); 648 if (!op[operand]) 649 return NULL; 650 } 651 652 if (op[1] != NULL) 653 switch (this->operation) { 654 case ir_binop_lshift: 655 case ir_binop_rshift: 656 case ir_binop_ldexp: 657 case ir_binop_interpolate_at_offset: 658 case ir_binop_interpolate_at_sample: 659 case ir_binop_vector_extract: 660 case ir_triop_csel: 661 case ir_triop_bitfield_extract: 662 break; 663 664 default: 665 assert(op[0]->type->base_type == op[1]->type->base_type); 666 break; 667 } 668 669 bool op0_scalar = op[0]->type->is_scalar(); 670 bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar(); 671 672 /* When iterating over a vector or matrix's components, we want to increase 673 * the loop counter. However, for scalars, we want to stay at 0. 674 */ 675 unsigned c0_inc = op0_scalar ? 0 : 1; 676 unsigned c1_inc = op1_scalar ? 0 : 1; 677 unsigned components; 678 if (op1_scalar || !op[1]) { 679 components = op[0]->type->components(); 680 } else { 681 components = op[1]->type->components(); 682 } 683 684 /* Handle array operations here, rather than below. */ 685 if (op[0]->type->is_array()) { 686 assert(op[1] != NULL && op[1]->type->is_array()); 687 switch (this->operation) { 688 case ir_binop_all_equal: 689 return new(mem_ctx) ir_constant(op[0]->has_value(op[1])); 690 case ir_binop_any_nequal: 691 return new(mem_ctx) ir_constant(!op[0]->has_value(op[1])); 692 default: 693 break; 694 } 695 return NULL; 696 } 697 698#include "ir_expression_operation_constant.h" 699 700 return new(mem_ctx) ir_constant(this->type, &data); 701} 702 703 704ir_constant * 705ir_texture::constant_expression_value(void *, struct hash_table *) 706{ 707 /* texture lookups aren't constant expressions */ 708 return NULL; 709} 710 711 712ir_constant * 713ir_swizzle::constant_expression_value(void *mem_ctx, 714 struct hash_table *variable_context) 715{ 716 assert(mem_ctx); 717 718 ir_constant *v = this->val->constant_expression_value(mem_ctx, 719 variable_context); 720 721 if (v != NULL) { 722 ir_constant_data data = { { 0 } }; 723 724 const unsigned swiz_idx[4] = { 725 this->mask.x, this->mask.y, this->mask.z, this->mask.w 726 }; 727 728 for (unsigned i = 0; i < this->mask.num_components; i++) { 729 switch (v->type->base_type) { 730 case GLSL_TYPE_UINT: 731 case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break; 732 case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break; 733 case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break; 734 case GLSL_TYPE_DOUBLE:data.d[i] = v->value.d[swiz_idx[i]]; break; 735 case GLSL_TYPE_UINT64:data.u64[i] = v->value.u64[swiz_idx[i]]; break; 736 case GLSL_TYPE_INT64: data.i64[i] = v->value.i64[swiz_idx[i]]; break; 737 default: assert(!"Should not get here."); break; 738 } 739 } 740 741 return new(mem_ctx) ir_constant(this->type, &data); 742 } 743 return NULL; 744} 745 746 747ir_constant * 748ir_dereference_variable::constant_expression_value(void *mem_ctx, 749 struct hash_table *variable_context) 750{ 751 assert(var); 752 assert(mem_ctx); 753 754 /* Give priority to the context hashtable, if it exists */ 755 if (variable_context) { 756 hash_entry *entry = _mesa_hash_table_search(variable_context, var); 757 758 if(entry) 759 return (ir_constant *) entry->data; 760 } 761 762 /* The constant_value of a uniform variable is its initializer, 763 * not the lifetime constant value of the uniform. 764 */ 765 if (var->data.mode == ir_var_uniform) 766 return NULL; 767 768 if (!var->constant_value) 769 return NULL; 770 771 return var->constant_value->clone(mem_ctx, NULL); 772} 773 774 775ir_constant * 776ir_dereference_array::constant_expression_value(void *mem_ctx, 777 struct hash_table *variable_context) 778{ 779 assert(mem_ctx); 780 781 ir_constant *array = this->array->constant_expression_value(mem_ctx, variable_context); 782 ir_constant *idx = this->array_index->constant_expression_value(mem_ctx, variable_context); 783 784 if ((array != NULL) && (idx != NULL)) { 785 if (array->type->is_matrix()) { 786 /* Array access of a matrix results in a vector. 787 */ 788 const unsigned column = idx->value.u[0]; 789 790 const glsl_type *const column_type = array->type->column_type(); 791 792 /* Offset in the constant matrix to the first element of the column 793 * to be extracted. 794 */ 795 const unsigned mat_idx = column * column_type->vector_elements; 796 797 ir_constant_data data = { { 0 } }; 798 799 switch (column_type->base_type) { 800 case GLSL_TYPE_UINT: 801 case GLSL_TYPE_INT: 802 for (unsigned i = 0; i < column_type->vector_elements; i++) 803 data.u[i] = array->value.u[mat_idx + i]; 804 805 break; 806 807 case GLSL_TYPE_FLOAT: 808 for (unsigned i = 0; i < column_type->vector_elements; i++) 809 data.f[i] = array->value.f[mat_idx + i]; 810 811 break; 812 813 case GLSL_TYPE_DOUBLE: 814 for (unsigned i = 0; i < column_type->vector_elements; i++) 815 data.d[i] = array->value.d[mat_idx + i]; 816 817 break; 818 819 default: 820 assert(!"Should not get here."); 821 break; 822 } 823 824 return new(mem_ctx) ir_constant(column_type, &data); 825 } else if (array->type->is_vector()) { 826 const unsigned component = idx->value.u[0]; 827 828 return new(mem_ctx) ir_constant(array, component); 829 } else if (array->type->is_array()) { 830 const unsigned index = idx->value.u[0]; 831 return array->get_array_element(index)->clone(mem_ctx, NULL); 832 } 833 } 834 return NULL; 835} 836 837 838ir_constant * 839ir_dereference_record::constant_expression_value(void *mem_ctx, 840 struct hash_table *) 841{ 842 assert(mem_ctx); 843 844 ir_constant *v = this->record->constant_expression_value(mem_ctx); 845 846 return (v != NULL) ? v->get_record_field(this->field_idx) : NULL; 847} 848 849 850ir_constant * 851ir_assignment::constant_expression_value(void *, struct hash_table *) 852{ 853 /* FINISHME: Handle CEs involving assignment (return RHS) */ 854 return NULL; 855} 856 857 858ir_constant * 859ir_constant::constant_expression_value(void *, struct hash_table *) 860{ 861 return this; 862} 863 864 865ir_constant * 866ir_call::constant_expression_value(void *mem_ctx, struct hash_table *variable_context) 867{ 868 assert(mem_ctx); 869 870 return this->callee->constant_expression_value(mem_ctx, 871 &this->actual_parameters, 872 variable_context); 873} 874 875 876bool ir_function_signature::constant_expression_evaluate_expression_list(void *mem_ctx, 877 const struct exec_list &body, 878 struct hash_table *variable_context, 879 ir_constant **result) 880{ 881 assert(mem_ctx); 882 883 foreach_in_list(ir_instruction, inst, &body) { 884 switch(inst->ir_type) { 885 886 /* (declare () type symbol) */ 887 case ir_type_variable: { 888 ir_variable *var = inst->as_variable(); 889 _mesa_hash_table_insert(variable_context, var, ir_constant::zero(this, var->type)); 890 break; 891 } 892 893 /* (assign [condition] (write-mask) (ref) (value)) */ 894 case ir_type_assignment: { 895 ir_assignment *asg = inst->as_assignment(); 896 if (asg->condition) { 897 ir_constant *cond = 898 asg->condition->constant_expression_value(mem_ctx, 899 variable_context); 900 if (!cond) 901 return false; 902 if (!cond->get_bool_component(0)) 903 break; 904 } 905 906 ir_constant *store = NULL; 907 int offset = 0; 908 909 if (!constant_referenced(asg->lhs, variable_context, store, offset)) 910 return false; 911 912 ir_constant *value = 913 asg->rhs->constant_expression_value(mem_ctx, variable_context); 914 915 if (!value) 916 return false; 917 918 store->copy_masked_offset(value, offset, asg->write_mask); 919 break; 920 } 921 922 /* (return (expression)) */ 923 case ir_type_return: 924 assert (result); 925 *result = 926 inst->as_return()->value->constant_expression_value(mem_ctx, 927 variable_context); 928 return *result != NULL; 929 930 /* (call name (ref) (params))*/ 931 case ir_type_call: { 932 ir_call *call = inst->as_call(); 933 934 /* Just say no to void functions in constant expressions. We 935 * don't need them at that point. 936 */ 937 938 if (!call->return_deref) 939 return false; 940 941 ir_constant *store = NULL; 942 int offset = 0; 943 944 if (!constant_referenced(call->return_deref, variable_context, 945 store, offset)) 946 return false; 947 948 ir_constant *value = 949 call->constant_expression_value(mem_ctx, variable_context); 950 951 if(!value) 952 return false; 953 954 store->copy_offset(value, offset); 955 break; 956 } 957 958 /* (if condition (then-instructions) (else-instructions)) */ 959 case ir_type_if: { 960 ir_if *iif = inst->as_if(); 961 962 ir_constant *cond = 963 iif->condition->constant_expression_value(mem_ctx, 964 variable_context); 965 if (!cond || !cond->type->is_boolean()) 966 return false; 967 968 exec_list &branch = cond->get_bool_component(0) ? iif->then_instructions : iif->else_instructions; 969 970 *result = NULL; 971 if (!constant_expression_evaluate_expression_list(mem_ctx, branch, 972 variable_context, 973 result)) 974 return false; 975 976 /* If there was a return in the branch chosen, drop out now. */ 977 if (*result) 978 return true; 979 980 break; 981 } 982 983 /* Every other expression type, we drop out. */ 984 default: 985 return false; 986 } 987 } 988 989 /* Reaching the end of the block is not an error condition */ 990 if (result) 991 *result = NULL; 992 993 return true; 994} 995 996ir_constant * 997ir_function_signature::constant_expression_value(void *mem_ctx, 998 exec_list *actual_parameters, 999 struct hash_table *variable_context) 1000{ 1001 assert(mem_ctx); 1002 1003 const glsl_type *type = this->return_type; 1004 if (type == glsl_type::void_type) 1005 return NULL; 1006 1007 /* From the GLSL 1.20 spec, page 23: 1008 * "Function calls to user-defined functions (non-built-in functions) 1009 * cannot be used to form constant expressions." 1010 */ 1011 if (!this->is_builtin()) 1012 return NULL; 1013 1014 /* 1015 * Of the builtin functions, only the texture lookups and the noise 1016 * ones must not be used in constant expressions. They all include 1017 * specific opcodes so they don't need to be special-cased at this 1018 * point. 1019 */ 1020 1021 /* Initialize the table of dereferencable names with the function 1022 * parameters. Verify their const-ness on the way. 1023 * 1024 * We expect the correctness of the number of parameters to have 1025 * been checked earlier. 1026 */ 1027 hash_table *deref_hash = _mesa_pointer_hash_table_create(NULL); 1028 1029 /* If "origin" is non-NULL, then the function body is there. So we 1030 * have to use the variable objects from the object with the body, 1031 * but the parameter instanciation on the current object. 1032 */ 1033 const exec_node *parameter_info = origin ? origin->parameters.get_head_raw() : parameters.get_head_raw(); 1034 1035 foreach_in_list(ir_rvalue, n, actual_parameters) { 1036 ir_constant *constant = 1037 n->constant_expression_value(mem_ctx, variable_context); 1038 if (constant == NULL) { 1039 _mesa_hash_table_destroy(deref_hash, NULL); 1040 return NULL; 1041 } 1042 1043 1044 ir_variable *var = (ir_variable *)parameter_info; 1045 _mesa_hash_table_insert(deref_hash, var, constant); 1046 1047 parameter_info = parameter_info->next; 1048 } 1049 1050 ir_constant *result = NULL; 1051 1052 /* Now run the builtin function until something non-constant 1053 * happens or we get the result. 1054 */ 1055 if (constant_expression_evaluate_expression_list(mem_ctx, origin ? origin->body : body, deref_hash, &result) && 1056 result) 1057 result = result->clone(mem_ctx, NULL); 1058 1059 _mesa_hash_table_destroy(deref_hash, NULL); 1060 1061 return result; 1062} 1063