link_varyings.cpp revision 993e1d59
1/* 2 * Copyright © 2012 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24/** 25 * \file link_varyings.cpp 26 * 27 * Linker functions related specifically to linking varyings between shader 28 * stages. 29 */ 30 31 32#include "main/errors.h" 33#include "main/mtypes.h" 34#include "glsl_symbol_table.h" 35#include "glsl_parser_extras.h" 36#include "ir_optimization.h" 37#include "linker.h" 38#include "link_varyings.h" 39#include "main/macros.h" 40#include "util/hash_table.h" 41#include "util/u_math.h" 42#include "program.h" 43 44 45/** 46 * Get the varying type stripped of the outermost array if we're processing 47 * a stage whose varyings are arrays indexed by a vertex number (such as 48 * geometry shader inputs). 49 */ 50static const glsl_type * 51get_varying_type(const ir_variable *var, gl_shader_stage stage) 52{ 53 const glsl_type *type = var->type; 54 55 if (!var->data.patch && 56 ((var->data.mode == ir_var_shader_out && 57 stage == MESA_SHADER_TESS_CTRL) || 58 (var->data.mode == ir_var_shader_in && 59 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL || 60 stage == MESA_SHADER_GEOMETRY)))) { 61 assert(type->is_array()); 62 type = type->fields.array; 63 } 64 65 return type; 66} 67 68static void 69create_xfb_varying_names(void *mem_ctx, const glsl_type *t, char **name, 70 size_t name_length, unsigned *count, 71 const char *ifc_member_name, 72 const glsl_type *ifc_member_t, char ***varying_names) 73{ 74 if (t->is_interface()) { 75 size_t new_length = name_length; 76 77 assert(ifc_member_name && ifc_member_t); 78 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", ifc_member_name); 79 80 create_xfb_varying_names(mem_ctx, ifc_member_t, name, new_length, count, 81 NULL, NULL, varying_names); 82 } else if (t->is_record()) { 83 for (unsigned i = 0; i < t->length; i++) { 84 const char *field = t->fields.structure[i].name; 85 size_t new_length = name_length; 86 87 ralloc_asprintf_rewrite_tail(name, &new_length, ".%s", field); 88 89 create_xfb_varying_names(mem_ctx, t->fields.structure[i].type, name, 90 new_length, count, NULL, NULL, 91 varying_names); 92 } 93 } else if (t->without_array()->is_record() || 94 t->without_array()->is_interface() || 95 (t->is_array() && t->fields.array->is_array())) { 96 for (unsigned i = 0; i < t->length; i++) { 97 size_t new_length = name_length; 98 99 /* Append the subscript to the current variable name */ 100 ralloc_asprintf_rewrite_tail(name, &new_length, "[%u]", i); 101 102 create_xfb_varying_names(mem_ctx, t->fields.array, name, new_length, 103 count, ifc_member_name, ifc_member_t, 104 varying_names); 105 } 106 } else { 107 (*varying_names)[(*count)++] = ralloc_strdup(mem_ctx, *name); 108 } 109} 110 111static bool 112process_xfb_layout_qualifiers(void *mem_ctx, const gl_linked_shader *sh, 113 struct gl_shader_program *prog, 114 unsigned *num_tfeedback_decls, 115 char ***varying_names) 116{ 117 bool has_xfb_qualifiers = false; 118 119 /* We still need to enable transform feedback mode even if xfb_stride is 120 * only applied to a global out. Also we don't bother to propagate 121 * xfb_stride to interface block members so this will catch that case also. 122 */ 123 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) { 124 if (prog->TransformFeedback.BufferStride[j]) { 125 has_xfb_qualifiers = true; 126 break; 127 } 128 } 129 130 foreach_in_list(ir_instruction, node, sh->ir) { 131 ir_variable *var = node->as_variable(); 132 if (!var || var->data.mode != ir_var_shader_out) 133 continue; 134 135 /* From the ARB_enhanced_layouts spec: 136 * 137 * "Any shader making any static use (after preprocessing) of any of 138 * these *xfb_* qualifiers will cause the shader to be in a 139 * transform feedback capturing mode and hence responsible for 140 * describing the transform feedback setup. This mode will capture 141 * any output selected by *xfb_offset*, directly or indirectly, to 142 * a transform feedback buffer." 143 */ 144 if (var->data.explicit_xfb_buffer || var->data.explicit_xfb_stride) { 145 has_xfb_qualifiers = true; 146 } 147 148 if (var->data.explicit_xfb_offset) { 149 *num_tfeedback_decls += var->type->varying_count(); 150 has_xfb_qualifiers = true; 151 } 152 } 153 154 if (*num_tfeedback_decls == 0) 155 return has_xfb_qualifiers; 156 157 unsigned i = 0; 158 *varying_names = ralloc_array(mem_ctx, char *, *num_tfeedback_decls); 159 foreach_in_list(ir_instruction, node, sh->ir) { 160 ir_variable *var = node->as_variable(); 161 if (!var || var->data.mode != ir_var_shader_out) 162 continue; 163 164 if (var->data.explicit_xfb_offset) { 165 char *name; 166 const glsl_type *type, *member_type; 167 168 if (var->data.from_named_ifc_block) { 169 type = var->get_interface_type(); 170 171 /* Find the member type before it was altered by lowering */ 172 const glsl_type *type_wa = type->without_array(); 173 member_type = 174 type_wa->fields.structure[type_wa->field_index(var->name)].type; 175 name = ralloc_strdup(NULL, type_wa->name); 176 } else { 177 type = var->type; 178 member_type = NULL; 179 name = ralloc_strdup(NULL, var->name); 180 } 181 create_xfb_varying_names(mem_ctx, type, &name, strlen(name), &i, 182 var->name, member_type, varying_names); 183 ralloc_free(name); 184 } 185 } 186 187 assert(i == *num_tfeedback_decls); 188 return has_xfb_qualifiers; 189} 190 191/** 192 * Validate the types and qualifiers of an output from one stage against the 193 * matching input to another stage. 194 */ 195static void 196cross_validate_types_and_qualifiers(struct gl_context *ctx, 197 struct gl_shader_program *prog, 198 const ir_variable *input, 199 const ir_variable *output, 200 gl_shader_stage consumer_stage, 201 gl_shader_stage producer_stage) 202{ 203 /* Check that the types match between stages. 204 */ 205 const glsl_type *type_to_match = input->type; 206 207 /* VS -> GS, VS -> TCS, VS -> TES, TES -> GS */ 208 const bool extra_array_level = (producer_stage == MESA_SHADER_VERTEX && 209 consumer_stage != MESA_SHADER_FRAGMENT) || 210 consumer_stage == MESA_SHADER_GEOMETRY; 211 if (extra_array_level) { 212 assert(type_to_match->is_array()); 213 type_to_match = type_to_match->fields.array; 214 } 215 216 if (type_to_match != output->type) { 217 /* There is a bit of a special case for gl_TexCoord. This 218 * built-in is unsized by default. Applications that variable 219 * access it must redeclare it with a size. There is some 220 * language in the GLSL spec that implies the fragment shader 221 * and vertex shader do not have to agree on this size. Other 222 * driver behave this way, and one or two applications seem to 223 * rely on it. 224 * 225 * Neither declaration needs to be modified here because the array 226 * sizes are fixed later when update_array_sizes is called. 227 * 228 * From page 48 (page 54 of the PDF) of the GLSL 1.10 spec: 229 * 230 * "Unlike user-defined varying variables, the built-in 231 * varying variables don't have a strict one-to-one 232 * correspondence between the vertex language and the 233 * fragment language." 234 */ 235 if (!output->type->is_array() || !is_gl_identifier(output->name)) { 236 linker_error(prog, 237 "%s shader output `%s' declared as type `%s', " 238 "but %s shader input declared as type `%s'\n", 239 _mesa_shader_stage_to_string(producer_stage), 240 output->name, 241 output->type->name, 242 _mesa_shader_stage_to_string(consumer_stage), 243 input->type->name); 244 return; 245 } 246 } 247 248 /* Check that all of the qualifiers match between stages. 249 */ 250 251 /* According to the OpenGL and OpenGLES GLSL specs, the centroid qualifier 252 * should match until OpenGL 4.3 and OpenGLES 3.1. The OpenGLES 3.0 253 * conformance test suite does not verify that the qualifiers must match. 254 * The deqp test suite expects the opposite (OpenGLES 3.1) behavior for 255 * OpenGLES 3.0 drivers, so we relax the checking in all cases. 256 */ 257 if (false /* always skip the centroid check */ && 258 prog->data->Version < (prog->IsES ? 310 : 430) && 259 input->data.centroid != output->data.centroid) { 260 linker_error(prog, 261 "%s shader output `%s' %s centroid qualifier, " 262 "but %s shader input %s centroid qualifier\n", 263 _mesa_shader_stage_to_string(producer_stage), 264 output->name, 265 (output->data.centroid) ? "has" : "lacks", 266 _mesa_shader_stage_to_string(consumer_stage), 267 (input->data.centroid) ? "has" : "lacks"); 268 return; 269 } 270 271 if (input->data.sample != output->data.sample) { 272 linker_error(prog, 273 "%s shader output `%s' %s sample qualifier, " 274 "but %s shader input %s sample qualifier\n", 275 _mesa_shader_stage_to_string(producer_stage), 276 output->name, 277 (output->data.sample) ? "has" : "lacks", 278 _mesa_shader_stage_to_string(consumer_stage), 279 (input->data.sample) ? "has" : "lacks"); 280 return; 281 } 282 283 if (input->data.patch != output->data.patch) { 284 linker_error(prog, 285 "%s shader output `%s' %s patch qualifier, " 286 "but %s shader input %s patch qualifier\n", 287 _mesa_shader_stage_to_string(producer_stage), 288 output->name, 289 (output->data.patch) ? "has" : "lacks", 290 _mesa_shader_stage_to_string(consumer_stage), 291 (input->data.patch) ? "has" : "lacks"); 292 return; 293 } 294 295 /* The GLSL 4.30 and GLSL ES 3.00 specifications say: 296 * 297 * "As only outputs need be declared with invariant, an output from 298 * one shader stage will still match an input of a subsequent stage 299 * without the input being declared as invariant." 300 * 301 * while GLSL 4.20 says: 302 * 303 * "For variables leaving one shader and coming into another shader, 304 * the invariant keyword has to be used in both shaders, or a link 305 * error will result." 306 * 307 * and GLSL ES 1.00 section 4.6.4 "Invariance and Linking" says: 308 * 309 * "The invariance of varyings that are declared in both the vertex 310 * and fragment shaders must match." 311 */ 312 if (input->data.explicit_invariant != output->data.explicit_invariant && 313 prog->data->Version < (prog->IsES ? 300 : 430)) { 314 linker_error(prog, 315 "%s shader output `%s' %s invariant qualifier, " 316 "but %s shader input %s invariant qualifier\n", 317 _mesa_shader_stage_to_string(producer_stage), 318 output->name, 319 (output->data.explicit_invariant) ? "has" : "lacks", 320 _mesa_shader_stage_to_string(consumer_stage), 321 (input->data.explicit_invariant) ? "has" : "lacks"); 322 return; 323 } 324 325 /* GLSL >= 4.40 removes text requiring interpolation qualifiers 326 * to match cross stage, they must only match within the same stage. 327 * 328 * From page 84 (page 90 of the PDF) of the GLSL 4.40 spec: 329 * 330 * "It is a link-time error if, within the same stage, the interpolation 331 * qualifiers of variables of the same name do not match. 332 * 333 * Section 4.3.9 (Interpolation) of the GLSL ES 3.00 spec says: 334 * 335 * "When no interpolation qualifier is present, smooth interpolation 336 * is used." 337 * 338 * So we match variables where one is smooth and the other has no explicit 339 * qualifier. 340 */ 341 unsigned input_interpolation = input->data.interpolation; 342 unsigned output_interpolation = output->data.interpolation; 343 if (prog->IsES) { 344 if (input_interpolation == INTERP_MODE_NONE) 345 input_interpolation = INTERP_MODE_SMOOTH; 346 if (output_interpolation == INTERP_MODE_NONE) 347 output_interpolation = INTERP_MODE_SMOOTH; 348 } 349 if (input_interpolation != output_interpolation && 350 prog->data->Version < 440) { 351 if (!ctx->Const.AllowGLSLCrossStageInterpolationMismatch) { 352 linker_error(prog, 353 "%s shader output `%s' specifies %s " 354 "interpolation qualifier, " 355 "but %s shader input specifies %s " 356 "interpolation qualifier\n", 357 _mesa_shader_stage_to_string(producer_stage), 358 output->name, 359 interpolation_string(output->data.interpolation), 360 _mesa_shader_stage_to_string(consumer_stage), 361 interpolation_string(input->data.interpolation)); 362 return; 363 } else { 364 linker_warning(prog, 365 "%s shader output `%s' specifies %s " 366 "interpolation qualifier, " 367 "but %s shader input specifies %s " 368 "interpolation qualifier\n", 369 _mesa_shader_stage_to_string(producer_stage), 370 output->name, 371 interpolation_string(output->data.interpolation), 372 _mesa_shader_stage_to_string(consumer_stage), 373 interpolation_string(input->data.interpolation)); 374 } 375 } 376} 377 378/** 379 * Validate front and back color outputs against single color input 380 */ 381static void 382cross_validate_front_and_back_color(struct gl_context *ctx, 383 struct gl_shader_program *prog, 384 const ir_variable *input, 385 const ir_variable *front_color, 386 const ir_variable *back_color, 387 gl_shader_stage consumer_stage, 388 gl_shader_stage producer_stage) 389{ 390 if (front_color != NULL && front_color->data.assigned) 391 cross_validate_types_and_qualifiers(ctx, prog, input, front_color, 392 consumer_stage, producer_stage); 393 394 if (back_color != NULL && back_color->data.assigned) 395 cross_validate_types_and_qualifiers(ctx, prog, input, back_color, 396 consumer_stage, producer_stage); 397} 398 399static unsigned 400compute_variable_location_slot(ir_variable *var, gl_shader_stage stage) 401{ 402 unsigned location_start = VARYING_SLOT_VAR0; 403 404 switch (stage) { 405 case MESA_SHADER_VERTEX: 406 if (var->data.mode == ir_var_shader_in) 407 location_start = VERT_ATTRIB_GENERIC0; 408 break; 409 case MESA_SHADER_TESS_CTRL: 410 case MESA_SHADER_TESS_EVAL: 411 if (var->data.patch) 412 location_start = VARYING_SLOT_PATCH0; 413 break; 414 case MESA_SHADER_FRAGMENT: 415 if (var->data.mode == ir_var_shader_out) 416 location_start = FRAG_RESULT_DATA0; 417 break; 418 default: 419 break; 420 } 421 422 return var->data.location - location_start; 423} 424 425struct explicit_location_info { 426 ir_variable *var; 427 unsigned numerical_type; 428 unsigned interpolation; 429 bool centroid; 430 bool sample; 431 bool patch; 432}; 433 434static inline unsigned 435get_numerical_type(const glsl_type *type) 436{ 437 /* From the OpenGL 4.6 spec, section 4.4.1 Input Layout Qualifiers, Page 68, 438 * (Location aliasing): 439 * 440 * "Further, when location aliasing, the aliases sharing the location 441 * must have the same underlying numerical type (floating-point or 442 * integer) 443 */ 444 if (type->is_float() || type->is_double()) 445 return GLSL_TYPE_FLOAT; 446 return GLSL_TYPE_INT; 447} 448 449static bool 450check_location_aliasing(struct explicit_location_info explicit_locations[][4], 451 ir_variable *var, 452 unsigned location, 453 unsigned component, 454 unsigned location_limit, 455 const glsl_type *type, 456 unsigned interpolation, 457 bool centroid, 458 bool sample, 459 bool patch, 460 gl_shader_program *prog, 461 gl_shader_stage stage) 462{ 463 unsigned last_comp; 464 if (type->without_array()->is_record()) { 465 /* The component qualifier can't be used on structs so just treat 466 * all component slots as used. 467 */ 468 last_comp = 4; 469 } else { 470 unsigned dmul = type->without_array()->is_64bit() ? 2 : 1; 471 last_comp = component + type->without_array()->vector_elements * dmul; 472 } 473 474 while (location < location_limit) { 475 unsigned comp = 0; 476 while (comp < 4) { 477 struct explicit_location_info *info = 478 &explicit_locations[location][comp]; 479 480 if (info->var) { 481 /* Component aliasing is not alloed */ 482 if (comp >= component && comp < last_comp) { 483 linker_error(prog, 484 "%s shader has multiple %sputs explicitly " 485 "assigned to location %d and component %d\n", 486 _mesa_shader_stage_to_string(stage), 487 var->data.mode == ir_var_shader_in ? "in" : "out", 488 location, comp); 489 return false; 490 } else { 491 /* For all other used components we need to have matching 492 * types, interpolation and auxiliary storage 493 */ 494 if (info->numerical_type != 495 get_numerical_type(type->without_array())) { 496 linker_error(prog, 497 "Varyings sharing the same location must " 498 "have the same underlying numerical type. " 499 "Location %u component %u\n", 500 location, comp); 501 return false; 502 } 503 504 if (info->interpolation != interpolation) { 505 linker_error(prog, 506 "%s shader has multiple %sputs at explicit " 507 "location %u with different interpolation " 508 "settings\n", 509 _mesa_shader_stage_to_string(stage), 510 var->data.mode == ir_var_shader_in ? 511 "in" : "out", location); 512 return false; 513 } 514 515 if (info->centroid != centroid || 516 info->sample != sample || 517 info->patch != patch) { 518 linker_error(prog, 519 "%s shader has multiple %sputs at explicit " 520 "location %u with different aux storage\n", 521 _mesa_shader_stage_to_string(stage), 522 var->data.mode == ir_var_shader_in ? 523 "in" : "out", location); 524 return false; 525 } 526 } 527 } else if (comp >= component && comp < last_comp) { 528 info->var = var; 529 info->numerical_type = get_numerical_type(type->without_array()); 530 info->interpolation = interpolation; 531 info->centroid = centroid; 532 info->sample = sample; 533 info->patch = patch; 534 } 535 536 comp++; 537 538 /* We need to do some special handling for doubles as dvec3 and 539 * dvec4 consume two consecutive locations. We don't need to 540 * worry about components beginning at anything other than 0 as 541 * the spec does not allow this for dvec3 and dvec4. 542 */ 543 if (comp == 4 && last_comp > 4) { 544 last_comp = last_comp - 4; 545 /* Bump location index and reset the component index */ 546 location++; 547 comp = 0; 548 component = 0; 549 } 550 } 551 552 location++; 553 } 554 555 return true; 556} 557 558static bool 559validate_explicit_variable_location(struct gl_context *ctx, 560 struct explicit_location_info explicit_locations[][4], 561 ir_variable *var, 562 gl_shader_program *prog, 563 gl_linked_shader *sh) 564{ 565 const glsl_type *type = get_varying_type(var, sh->Stage); 566 unsigned num_elements = type->count_attribute_slots(false); 567 unsigned idx = compute_variable_location_slot(var, sh->Stage); 568 unsigned slot_limit = idx + num_elements; 569 570 /* Vertex shader inputs and fragment shader outputs are validated in 571 * assign_attribute_or_color_locations() so we should not attempt to 572 * validate them again here. 573 */ 574 unsigned slot_max; 575 if (var->data.mode == ir_var_shader_out) { 576 assert(sh->Stage != MESA_SHADER_FRAGMENT); 577 slot_max = 578 ctx->Const.Program[sh->Stage].MaxOutputComponents / 4; 579 } else { 580 assert(var->data.mode == ir_var_shader_in); 581 assert(sh->Stage != MESA_SHADER_VERTEX); 582 slot_max = 583 ctx->Const.Program[sh->Stage].MaxInputComponents / 4; 584 } 585 586 if (slot_limit > slot_max) { 587 linker_error(prog, 588 "Invalid location %u in %s shader\n", 589 idx, _mesa_shader_stage_to_string(sh->Stage)); 590 return false; 591 } 592 593 const glsl_type *type_without_array = type->without_array(); 594 if (type_without_array->is_interface()) { 595 for (unsigned i = 0; i < type_without_array->length; i++) { 596 glsl_struct_field *field = &type_without_array->fields.structure[i]; 597 unsigned field_location = field->location - 598 (field->patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0); 599 if (!check_location_aliasing(explicit_locations, var, 600 field_location, 601 0, field_location + 1, 602 field->type, 603 field->interpolation, 604 field->centroid, 605 field->sample, 606 field->patch, 607 prog, sh->Stage)) { 608 return false; 609 } 610 } 611 } else if (!check_location_aliasing(explicit_locations, var, 612 idx, var->data.location_frac, 613 slot_limit, type, 614 var->data.interpolation, 615 var->data.centroid, 616 var->data.sample, 617 var->data.patch, 618 prog, sh->Stage)) { 619 return false; 620 } 621 622 return true; 623} 624 625/** 626 * Validate explicit locations for the inputs to the first stage and the 627 * outputs of the last stage in an SSO program (everything in between is 628 * validated in cross_validate_outputs_to_inputs). 629 */ 630void 631validate_sso_explicit_locations(struct gl_context *ctx, 632 struct gl_shader_program *prog, 633 gl_shader_stage first_stage, 634 gl_shader_stage last_stage) 635{ 636 assert(prog->SeparateShader); 637 638 /* VS inputs and FS outputs are validated in 639 * assign_attribute_or_color_locations() 640 */ 641 bool validate_first_stage = first_stage != MESA_SHADER_VERTEX; 642 bool validate_last_stage = last_stage != MESA_SHADER_FRAGMENT; 643 if (!validate_first_stage && !validate_last_stage) 644 return; 645 646 struct explicit_location_info explicit_locations[MAX_VARYING][4]; 647 648 gl_shader_stage stages[2] = { first_stage, last_stage }; 649 bool validate_stage[2] = { validate_first_stage, validate_last_stage }; 650 ir_variable_mode var_direction[2] = { ir_var_shader_in, ir_var_shader_out }; 651 652 for (unsigned i = 0; i < 2; i++) { 653 if (!validate_stage[i]) 654 continue; 655 656 gl_shader_stage stage = stages[i]; 657 658 gl_linked_shader *sh = prog->_LinkedShaders[stage]; 659 assert(sh); 660 661 memset(explicit_locations, 0, sizeof(explicit_locations)); 662 663 foreach_in_list(ir_instruction, node, sh->ir) { 664 ir_variable *const var = node->as_variable(); 665 666 if (var == NULL || 667 !var->data.explicit_location || 668 var->data.location < VARYING_SLOT_VAR0 || 669 var->data.mode != var_direction[i]) 670 continue; 671 672 if (!validate_explicit_variable_location( 673 ctx, explicit_locations, var, prog, sh)) { 674 return; 675 } 676 } 677 } 678} 679 680/** 681 * Validate that outputs from one stage match inputs of another 682 */ 683void 684cross_validate_outputs_to_inputs(struct gl_context *ctx, 685 struct gl_shader_program *prog, 686 gl_linked_shader *producer, 687 gl_linked_shader *consumer) 688{ 689 glsl_symbol_table parameters; 690 struct explicit_location_info explicit_locations[MAX_VARYING][4] = { 0 }; 691 692 /* Find all shader outputs in the "producer" stage. 693 */ 694 foreach_in_list(ir_instruction, node, producer->ir) { 695 ir_variable *const var = node->as_variable(); 696 697 if (var == NULL || var->data.mode != ir_var_shader_out) 698 continue; 699 700 if (!var->data.explicit_location 701 || var->data.location < VARYING_SLOT_VAR0) 702 parameters.add_variable(var); 703 else { 704 /* User-defined varyings with explicit locations are handled 705 * differently because they do not need to have matching names. 706 */ 707 if (!validate_explicit_variable_location(ctx, 708 explicit_locations, 709 var, prog, producer)) { 710 return; 711 } 712 } 713 } 714 715 716 /* Find all shader inputs in the "consumer" stage. Any variables that have 717 * matching outputs already in the symbol table must have the same type and 718 * qualifiers. 719 * 720 * Exception: if the consumer is the geometry shader, then the inputs 721 * should be arrays and the type of the array element should match the type 722 * of the corresponding producer output. 723 */ 724 foreach_in_list(ir_instruction, node, consumer->ir) { 725 ir_variable *const input = node->as_variable(); 726 727 if (input == NULL || input->data.mode != ir_var_shader_in) 728 continue; 729 730 if (strcmp(input->name, "gl_Color") == 0 && input->data.used) { 731 const ir_variable *const front_color = 732 parameters.get_variable("gl_FrontColor"); 733 734 const ir_variable *const back_color = 735 parameters.get_variable("gl_BackColor"); 736 737 cross_validate_front_and_back_color(ctx, prog, input, 738 front_color, back_color, 739 consumer->Stage, producer->Stage); 740 } else if (strcmp(input->name, "gl_SecondaryColor") == 0 && input->data.used) { 741 const ir_variable *const front_color = 742 parameters.get_variable("gl_FrontSecondaryColor"); 743 744 const ir_variable *const back_color = 745 parameters.get_variable("gl_BackSecondaryColor"); 746 747 cross_validate_front_and_back_color(ctx, prog, input, 748 front_color, back_color, 749 consumer->Stage, producer->Stage); 750 } else { 751 /* The rules for connecting inputs and outputs change in the presence 752 * of explicit locations. In this case, we no longer care about the 753 * names of the variables. Instead, we care only about the 754 * explicitly assigned location. 755 */ 756 ir_variable *output = NULL; 757 if (input->data.explicit_location 758 && input->data.location >= VARYING_SLOT_VAR0) { 759 760 const glsl_type *type = get_varying_type(input, consumer->Stage); 761 unsigned num_elements = type->count_attribute_slots(false); 762 unsigned idx = 763 compute_variable_location_slot(input, consumer->Stage); 764 unsigned slot_limit = idx + num_elements; 765 766 while (idx < slot_limit) { 767 if (idx >= MAX_VARYING) { 768 linker_error(prog, 769 "Invalid location %u in %s shader\n", idx, 770 _mesa_shader_stage_to_string(consumer->Stage)); 771 return; 772 } 773 774 output = explicit_locations[idx][input->data.location_frac].var; 775 776 if (output == NULL) { 777 /* A linker failure should only happen when there is no 778 * output declaration and there is Static Use of the 779 * declared input. 780 */ 781 if (input->data.used) { 782 linker_error(prog, 783 "%s shader input `%s' with explicit location " 784 "has no matching output\n", 785 _mesa_shader_stage_to_string(consumer->Stage), 786 input->name); 787 break; 788 } 789 } else if (input->data.location != output->data.location) { 790 linker_error(prog, 791 "%s shader input `%s' with explicit location " 792 "has no matching output\n", 793 _mesa_shader_stage_to_string(consumer->Stage), 794 input->name); 795 break; 796 } 797 idx++; 798 } 799 } else { 800 output = parameters.get_variable(input->name); 801 } 802 803 if (output != NULL) { 804 /* Interface blocks have their own validation elsewhere so don't 805 * try validating them here. 806 */ 807 if (!(input->get_interface_type() && 808 output->get_interface_type())) 809 cross_validate_types_and_qualifiers(ctx, prog, input, output, 810 consumer->Stage, 811 producer->Stage); 812 } else { 813 /* Check for input vars with unmatched output vars in prev stage 814 * taking into account that interface blocks could have a matching 815 * output but with different name, so we ignore them. 816 */ 817 assert(!input->data.assigned); 818 if (input->data.used && !input->get_interface_type() && 819 !input->data.explicit_location) 820 linker_error(prog, 821 "%s shader input `%s' " 822 "has no matching output in the previous stage\n", 823 _mesa_shader_stage_to_string(consumer->Stage), 824 input->name); 825 } 826 } 827 } 828} 829 830/** 831 * Demote shader inputs and outputs that are not used in other stages, and 832 * remove them via dead code elimination. 833 */ 834static void 835remove_unused_shader_inputs_and_outputs(bool is_separate_shader_object, 836 gl_linked_shader *sh, 837 enum ir_variable_mode mode) 838{ 839 if (is_separate_shader_object) 840 return; 841 842 foreach_in_list(ir_instruction, node, sh->ir) { 843 ir_variable *const var = node->as_variable(); 844 845 if (var == NULL || var->data.mode != int(mode)) 846 continue; 847 848 /* A shader 'in' or 'out' variable is only really an input or output if 849 * its value is used by other shader stages. This will cause the 850 * variable to have a location assigned. 851 */ 852 if (var->data.is_unmatched_generic_inout && !var->data.is_xfb_only) { 853 assert(var->data.mode != ir_var_temporary); 854 855 /* Assign zeros to demoted inputs to allow more optimizations. */ 856 if (var->data.mode == ir_var_shader_in && !var->constant_value) 857 var->constant_value = ir_constant::zero(var, var->type); 858 859 var->data.mode = ir_var_auto; 860 } 861 } 862 863 /* Eliminate code that is now dead due to unused inputs/outputs being 864 * demoted. 865 */ 866 while (do_dead_code(sh->ir, false)) 867 ; 868 869} 870 871/** 872 * Initialize this object based on a string that was passed to 873 * glTransformFeedbackVaryings. 874 * 875 * If the input is mal-formed, this call still succeeds, but it sets 876 * this->var_name to a mal-formed input, so tfeedback_decl::find_output_var() 877 * will fail to find any matching variable. 878 */ 879void 880tfeedback_decl::init(struct gl_context *ctx, const void *mem_ctx, 881 const char *input) 882{ 883 /* We don't have to be pedantic about what is a valid GLSL variable name, 884 * because any variable with an invalid name can't exist in the IR anyway. 885 */ 886 887 this->location = -1; 888 this->orig_name = input; 889 this->lowered_builtin_array_variable = none; 890 this->skip_components = 0; 891 this->next_buffer_separator = false; 892 this->matched_candidate = NULL; 893 this->stream_id = 0; 894 this->buffer = 0; 895 this->offset = 0; 896 897 if (ctx->Extensions.ARB_transform_feedback3) { 898 /* Parse gl_NextBuffer. */ 899 if (strcmp(input, "gl_NextBuffer") == 0) { 900 this->next_buffer_separator = true; 901 return; 902 } 903 904 /* Parse gl_SkipComponents. */ 905 if (strcmp(input, "gl_SkipComponents1") == 0) 906 this->skip_components = 1; 907 else if (strcmp(input, "gl_SkipComponents2") == 0) 908 this->skip_components = 2; 909 else if (strcmp(input, "gl_SkipComponents3") == 0) 910 this->skip_components = 3; 911 else if (strcmp(input, "gl_SkipComponents4") == 0) 912 this->skip_components = 4; 913 914 if (this->skip_components) 915 return; 916 } 917 918 /* Parse a declaration. */ 919 const char *base_name_end; 920 long subscript = parse_program_resource_name(input, &base_name_end); 921 this->var_name = ralloc_strndup(mem_ctx, input, base_name_end - input); 922 if (this->var_name == NULL) { 923 _mesa_error_no_memory(__func__); 924 return; 925 } 926 927 if (subscript >= 0) { 928 this->array_subscript = subscript; 929 this->is_subscripted = true; 930 } else { 931 this->is_subscripted = false; 932 } 933 934 /* For drivers that lower gl_ClipDistance to gl_ClipDistanceMESA, this 935 * class must behave specially to account for the fact that gl_ClipDistance 936 * is converted from a float[8] to a vec4[2]. 937 */ 938 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance && 939 strcmp(this->var_name, "gl_ClipDistance") == 0) { 940 this->lowered_builtin_array_variable = clip_distance; 941 } 942 if (ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].LowerCombinedClipCullDistance && 943 strcmp(this->var_name, "gl_CullDistance") == 0) { 944 this->lowered_builtin_array_variable = cull_distance; 945 } 946 947 if (ctx->Const.LowerTessLevel && 948 (strcmp(this->var_name, "gl_TessLevelOuter") == 0)) 949 this->lowered_builtin_array_variable = tess_level_outer; 950 if (ctx->Const.LowerTessLevel && 951 (strcmp(this->var_name, "gl_TessLevelInner") == 0)) 952 this->lowered_builtin_array_variable = tess_level_inner; 953} 954 955 956/** 957 * Determine whether two tfeedback_decl objects refer to the same variable and 958 * array index (if applicable). 959 */ 960bool 961tfeedback_decl::is_same(const tfeedback_decl &x, const tfeedback_decl &y) 962{ 963 assert(x.is_varying() && y.is_varying()); 964 965 if (strcmp(x.var_name, y.var_name) != 0) 966 return false; 967 if (x.is_subscripted != y.is_subscripted) 968 return false; 969 if (x.is_subscripted && x.array_subscript != y.array_subscript) 970 return false; 971 return true; 972} 973 974 975/** 976 * Assign a location and stream ID for this tfeedback_decl object based on the 977 * transform feedback candidate found by find_candidate. 978 * 979 * If an error occurs, the error is reported through linker_error() and false 980 * is returned. 981 */ 982bool 983tfeedback_decl::assign_location(struct gl_context *ctx, 984 struct gl_shader_program *prog) 985{ 986 assert(this->is_varying()); 987 988 unsigned fine_location 989 = this->matched_candidate->toplevel_var->data.location * 4 990 + this->matched_candidate->toplevel_var->data.location_frac 991 + this->matched_candidate->offset; 992 const unsigned dmul = 993 this->matched_candidate->type->without_array()->is_64bit() ? 2 : 1; 994 995 if (this->matched_candidate->type->is_array()) { 996 /* Array variable */ 997 const unsigned matrix_cols = 998 this->matched_candidate->type->fields.array->matrix_columns; 999 const unsigned vector_elements = 1000 this->matched_candidate->type->fields.array->vector_elements; 1001 unsigned actual_array_size; 1002 switch (this->lowered_builtin_array_variable) { 1003 case clip_distance: 1004 actual_array_size = prog->last_vert_prog ? 1005 prog->last_vert_prog->info.clip_distance_array_size : 0; 1006 break; 1007 case cull_distance: 1008 actual_array_size = prog->last_vert_prog ? 1009 prog->last_vert_prog->info.cull_distance_array_size : 0; 1010 break; 1011 case tess_level_outer: 1012 actual_array_size = 4; 1013 break; 1014 case tess_level_inner: 1015 actual_array_size = 2; 1016 break; 1017 case none: 1018 default: 1019 actual_array_size = this->matched_candidate->type->array_size(); 1020 break; 1021 } 1022 1023 if (this->is_subscripted) { 1024 /* Check array bounds. */ 1025 if (this->array_subscript >= actual_array_size) { 1026 linker_error(prog, "Transform feedback varying %s has index " 1027 "%i, but the array size is %u.", 1028 this->orig_name, this->array_subscript, 1029 actual_array_size); 1030 return false; 1031 } 1032 unsigned array_elem_size = this->lowered_builtin_array_variable ? 1033 1 : vector_elements * matrix_cols * dmul; 1034 fine_location += array_elem_size * this->array_subscript; 1035 this->size = 1; 1036 } else { 1037 this->size = actual_array_size; 1038 } 1039 this->vector_elements = vector_elements; 1040 this->matrix_columns = matrix_cols; 1041 if (this->lowered_builtin_array_variable) 1042 this->type = GL_FLOAT; 1043 else 1044 this->type = this->matched_candidate->type->fields.array->gl_type; 1045 } else { 1046 /* Regular variable (scalar, vector, or matrix) */ 1047 if (this->is_subscripted) { 1048 linker_error(prog, "Transform feedback varying %s requested, " 1049 "but %s is not an array.", 1050 this->orig_name, this->var_name); 1051 return false; 1052 } 1053 this->size = 1; 1054 this->vector_elements = this->matched_candidate->type->vector_elements; 1055 this->matrix_columns = this->matched_candidate->type->matrix_columns; 1056 this->type = this->matched_candidate->type->gl_type; 1057 } 1058 this->location = fine_location / 4; 1059 this->location_frac = fine_location % 4; 1060 1061 /* From GL_EXT_transform_feedback: 1062 * A program will fail to link if: 1063 * 1064 * * the total number of components to capture in any varying 1065 * variable in <varyings> is greater than the constant 1066 * MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS_EXT and the 1067 * buffer mode is SEPARATE_ATTRIBS_EXT; 1068 */ 1069 if (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS && 1070 this->num_components() > 1071 ctx->Const.MaxTransformFeedbackSeparateComponents) { 1072 linker_error(prog, "Transform feedback varying %s exceeds " 1073 "MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS.", 1074 this->orig_name); 1075 return false; 1076 } 1077 1078 /* Only transform feedback varyings can be assigned to non-zero streams, 1079 * so assign the stream id here. 1080 */ 1081 this->stream_id = this->matched_candidate->toplevel_var->data.stream; 1082 1083 unsigned array_offset = this->array_subscript * 4 * dmul; 1084 unsigned struct_offset = this->matched_candidate->offset * 4 * dmul; 1085 this->buffer = this->matched_candidate->toplevel_var->data.xfb_buffer; 1086 this->offset = this->matched_candidate->toplevel_var->data.offset + 1087 array_offset + struct_offset; 1088 1089 return true; 1090} 1091 1092 1093unsigned 1094tfeedback_decl::get_num_outputs() const 1095{ 1096 if (!this->is_varying()) { 1097 return 0; 1098 } 1099 return (this->num_components() + this->location_frac + 3)/4; 1100} 1101 1102 1103/** 1104 * Update gl_transform_feedback_info to reflect this tfeedback_decl. 1105 * 1106 * If an error occurs, the error is reported through linker_error() and false 1107 * is returned. 1108 */ 1109bool 1110tfeedback_decl::store(struct gl_context *ctx, struct gl_shader_program *prog, 1111 struct gl_transform_feedback_info *info, 1112 unsigned buffer, unsigned buffer_index, 1113 const unsigned max_outputs, bool *explicit_stride, 1114 bool has_xfb_qualifiers) const 1115{ 1116 unsigned xfb_offset = 0; 1117 unsigned size = this->size; 1118 /* Handle gl_SkipComponents. */ 1119 if (this->skip_components) { 1120 info->Buffers[buffer].Stride += this->skip_components; 1121 size = this->skip_components; 1122 goto store_varying; 1123 } 1124 1125 if (this->next_buffer_separator) { 1126 size = 0; 1127 goto store_varying; 1128 } 1129 1130 if (has_xfb_qualifiers) { 1131 xfb_offset = this->offset / 4; 1132 } else { 1133 xfb_offset = info->Buffers[buffer].Stride; 1134 } 1135 info->Varyings[info->NumVarying].Offset = xfb_offset * 4; 1136 1137 { 1138 unsigned location = this->location; 1139 unsigned location_frac = this->location_frac; 1140 unsigned num_components = this->num_components(); 1141 while (num_components > 0) { 1142 unsigned output_size = MIN2(num_components, 4 - location_frac); 1143 assert((info->NumOutputs == 0 && max_outputs == 0) || 1144 info->NumOutputs < max_outputs); 1145 1146 /* From the ARB_enhanced_layouts spec: 1147 * 1148 * "If such a block member or variable is not written during a shader 1149 * invocation, the buffer contents at the assigned offset will be 1150 * undefined. Even if there are no static writes to a variable or 1151 * member that is assigned a transform feedback offset, the space is 1152 * still allocated in the buffer and still affects the stride." 1153 */ 1154 if (this->is_varying_written()) { 1155 info->Outputs[info->NumOutputs].ComponentOffset = location_frac; 1156 info->Outputs[info->NumOutputs].OutputRegister = location; 1157 info->Outputs[info->NumOutputs].NumComponents = output_size; 1158 info->Outputs[info->NumOutputs].StreamId = stream_id; 1159 info->Outputs[info->NumOutputs].OutputBuffer = buffer; 1160 info->Outputs[info->NumOutputs].DstOffset = xfb_offset; 1161 ++info->NumOutputs; 1162 } 1163 info->Buffers[buffer].Stream = this->stream_id; 1164 xfb_offset += output_size; 1165 1166 num_components -= output_size; 1167 location++; 1168 location_frac = 0; 1169 } 1170 } 1171 1172 if (explicit_stride && explicit_stride[buffer]) { 1173 if (this->is_64bit() && info->Buffers[buffer].Stride % 2) { 1174 linker_error(prog, "invalid qualifier xfb_stride=%d must be a " 1175 "multiple of 8 as its applied to a type that is or " 1176 "contains a double.", 1177 info->Buffers[buffer].Stride * 4); 1178 return false; 1179 } 1180 1181 if (xfb_offset > info->Buffers[buffer].Stride) { 1182 linker_error(prog, "xfb_offset (%d) overflows xfb_stride (%d) for " 1183 "buffer (%d)", xfb_offset * 4, 1184 info->Buffers[buffer].Stride * 4, buffer); 1185 return false; 1186 } 1187 } else { 1188 info->Buffers[buffer].Stride = xfb_offset; 1189 } 1190 1191 /* From GL_EXT_transform_feedback: 1192 * A program will fail to link if: 1193 * 1194 * * the total number of components to capture is greater than 1195 * the constant MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS_EXT 1196 * and the buffer mode is INTERLEAVED_ATTRIBS_EXT. 1197 * 1198 * From GL_ARB_enhanced_layouts: 1199 * 1200 * "The resulting stride (implicit or explicit) must be less than or 1201 * equal to the implementation-dependent constant 1202 * gl_MaxTransformFeedbackInterleavedComponents." 1203 */ 1204 if ((prog->TransformFeedback.BufferMode == GL_INTERLEAVED_ATTRIBS || 1205 has_xfb_qualifiers) && 1206 info->Buffers[buffer].Stride > 1207 ctx->Const.MaxTransformFeedbackInterleavedComponents) { 1208 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS " 1209 "limit has been exceeded."); 1210 return false; 1211 } 1212 1213 store_varying: 1214 info->Varyings[info->NumVarying].Name = ralloc_strdup(prog, 1215 this->orig_name); 1216 info->Varyings[info->NumVarying].Type = this->type; 1217 info->Varyings[info->NumVarying].Size = size; 1218 info->Varyings[info->NumVarying].BufferIndex = buffer_index; 1219 info->NumVarying++; 1220 info->Buffers[buffer].NumVaryings++; 1221 1222 return true; 1223} 1224 1225 1226const tfeedback_candidate * 1227tfeedback_decl::find_candidate(gl_shader_program *prog, 1228 hash_table *tfeedback_candidates) 1229{ 1230 const char *name = this->var_name; 1231 switch (this->lowered_builtin_array_variable) { 1232 case none: 1233 name = this->var_name; 1234 break; 1235 case clip_distance: 1236 name = "gl_ClipDistanceMESA"; 1237 break; 1238 case cull_distance: 1239 name = "gl_CullDistanceMESA"; 1240 break; 1241 case tess_level_outer: 1242 name = "gl_TessLevelOuterMESA"; 1243 break; 1244 case tess_level_inner: 1245 name = "gl_TessLevelInnerMESA"; 1246 break; 1247 } 1248 hash_entry *entry = _mesa_hash_table_search(tfeedback_candidates, name); 1249 1250 this->matched_candidate = entry ? 1251 (const tfeedback_candidate *) entry->data : NULL; 1252 1253 if (!this->matched_candidate) { 1254 /* From GL_EXT_transform_feedback: 1255 * A program will fail to link if: 1256 * 1257 * * any variable name specified in the <varyings> array is not 1258 * declared as an output in the geometry shader (if present) or 1259 * the vertex shader (if no geometry shader is present); 1260 */ 1261 linker_error(prog, "Transform feedback varying %s undeclared.", 1262 this->orig_name); 1263 } 1264 1265 return this->matched_candidate; 1266} 1267 1268 1269/** 1270 * Parse all the transform feedback declarations that were passed to 1271 * glTransformFeedbackVaryings() and store them in tfeedback_decl objects. 1272 * 1273 * If an error occurs, the error is reported through linker_error() and false 1274 * is returned. 1275 */ 1276static bool 1277parse_tfeedback_decls(struct gl_context *ctx, struct gl_shader_program *prog, 1278 const void *mem_ctx, unsigned num_names, 1279 char **varying_names, tfeedback_decl *decls) 1280{ 1281 for (unsigned i = 0; i < num_names; ++i) { 1282 decls[i].init(ctx, mem_ctx, varying_names[i]); 1283 1284 if (!decls[i].is_varying()) 1285 continue; 1286 1287 /* From GL_EXT_transform_feedback: 1288 * A program will fail to link if: 1289 * 1290 * * any two entries in the <varyings> array specify the same varying 1291 * variable; 1292 * 1293 * We interpret this to mean "any two entries in the <varyings> array 1294 * specify the same varying variable and array index", since transform 1295 * feedback of arrays would be useless otherwise. 1296 */ 1297 for (unsigned j = 0; j < i; ++j) { 1298 if (decls[j].is_varying()) { 1299 if (tfeedback_decl::is_same(decls[i], decls[j])) { 1300 linker_error(prog, "Transform feedback varying %s specified " 1301 "more than once.", varying_names[i]); 1302 return false; 1303 } 1304 } 1305 } 1306 } 1307 return true; 1308} 1309 1310 1311static int 1312cmp_xfb_offset(const void * x_generic, const void * y_generic) 1313{ 1314 tfeedback_decl *x = (tfeedback_decl *) x_generic; 1315 tfeedback_decl *y = (tfeedback_decl *) y_generic; 1316 1317 if (x->get_buffer() != y->get_buffer()) 1318 return x->get_buffer() - y->get_buffer(); 1319 return x->get_offset() - y->get_offset(); 1320} 1321 1322/** 1323 * Store transform feedback location assignments into 1324 * prog->sh.LinkedTransformFeedback based on the data stored in 1325 * tfeedback_decls. 1326 * 1327 * If an error occurs, the error is reported through linker_error() and false 1328 * is returned. 1329 */ 1330static bool 1331store_tfeedback_info(struct gl_context *ctx, struct gl_shader_program *prog, 1332 unsigned num_tfeedback_decls, 1333 tfeedback_decl *tfeedback_decls, bool has_xfb_qualifiers) 1334{ 1335 if (!prog->last_vert_prog) 1336 return true; 1337 1338 /* Make sure MaxTransformFeedbackBuffers is less than 32 so the bitmask for 1339 * tracking the number of buffers doesn't overflow. 1340 */ 1341 assert(ctx->Const.MaxTransformFeedbackBuffers < 32); 1342 1343 bool separate_attribs_mode = 1344 prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS; 1345 1346 struct gl_program *xfb_prog = prog->last_vert_prog; 1347 xfb_prog->sh.LinkedTransformFeedback = 1348 rzalloc(xfb_prog, struct gl_transform_feedback_info); 1349 1350 /* The xfb_offset qualifier does not have to be used in increasing order 1351 * however some drivers expect to receive the list of transform feedback 1352 * declarations in order so sort it now for convenience. 1353 */ 1354 if (has_xfb_qualifiers) { 1355 qsort(tfeedback_decls, num_tfeedback_decls, sizeof(*tfeedback_decls), 1356 cmp_xfb_offset); 1357 } 1358 1359 xfb_prog->sh.LinkedTransformFeedback->Varyings = 1360 rzalloc_array(xfb_prog, struct gl_transform_feedback_varying_info, 1361 num_tfeedback_decls); 1362 1363 unsigned num_outputs = 0; 1364 for (unsigned i = 0; i < num_tfeedback_decls; ++i) { 1365 if (tfeedback_decls[i].is_varying_written()) 1366 num_outputs += tfeedback_decls[i].get_num_outputs(); 1367 } 1368 1369 xfb_prog->sh.LinkedTransformFeedback->Outputs = 1370 rzalloc_array(xfb_prog, struct gl_transform_feedback_output, 1371 num_outputs); 1372 1373 unsigned num_buffers = 0; 1374 unsigned buffers = 0; 1375 1376 if (!has_xfb_qualifiers && separate_attribs_mode) { 1377 /* GL_SEPARATE_ATTRIBS */ 1378 for (unsigned i = 0; i < num_tfeedback_decls; ++i) { 1379 if (!tfeedback_decls[i].store(ctx, prog, 1380 xfb_prog->sh.LinkedTransformFeedback, 1381 num_buffers, num_buffers, num_outputs, 1382 NULL, has_xfb_qualifiers)) 1383 return false; 1384 1385 buffers |= 1 << num_buffers; 1386 num_buffers++; 1387 } 1388 } 1389 else { 1390 /* GL_INVERLEAVED_ATTRIBS */ 1391 int buffer_stream_id = -1; 1392 unsigned buffer = 1393 num_tfeedback_decls ? tfeedback_decls[0].get_buffer() : 0; 1394 bool explicit_stride[MAX_FEEDBACK_BUFFERS] = { false }; 1395 1396 /* Apply any xfb_stride global qualifiers */ 1397 if (has_xfb_qualifiers) { 1398 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) { 1399 if (prog->TransformFeedback.BufferStride[j]) { 1400 explicit_stride[j] = true; 1401 xfb_prog->sh.LinkedTransformFeedback->Buffers[j].Stride = 1402 prog->TransformFeedback.BufferStride[j] / 4; 1403 } 1404 } 1405 } 1406 1407 for (unsigned i = 0; i < num_tfeedback_decls; ++i) { 1408 if (has_xfb_qualifiers && 1409 buffer != tfeedback_decls[i].get_buffer()) { 1410 /* we have moved to the next buffer so reset stream id */ 1411 buffer_stream_id = -1; 1412 num_buffers++; 1413 } 1414 1415 if (tfeedback_decls[i].is_next_buffer_separator()) { 1416 if (!tfeedback_decls[i].store(ctx, prog, 1417 xfb_prog->sh.LinkedTransformFeedback, 1418 buffer, num_buffers, num_outputs, 1419 explicit_stride, has_xfb_qualifiers)) 1420 return false; 1421 num_buffers++; 1422 buffer_stream_id = -1; 1423 continue; 1424 } 1425 1426 if (has_xfb_qualifiers) { 1427 buffer = tfeedback_decls[i].get_buffer(); 1428 } else { 1429 buffer = num_buffers; 1430 } 1431 1432 if (tfeedback_decls[i].is_varying()) { 1433 if (buffer_stream_id == -1) { 1434 /* First varying writing to this buffer: remember its stream */ 1435 buffer_stream_id = (int) tfeedback_decls[i].get_stream_id(); 1436 1437 /* Only mark a buffer as active when there is a varying 1438 * attached to it. This behaviour is based on a revised version 1439 * of section 13.2.2 of the GL 4.6 spec. 1440 */ 1441 buffers |= 1 << buffer; 1442 } else if (buffer_stream_id != 1443 (int) tfeedback_decls[i].get_stream_id()) { 1444 /* Varying writes to the same buffer from a different stream */ 1445 linker_error(prog, 1446 "Transform feedback can't capture varyings belonging " 1447 "to different vertex streams in a single buffer. " 1448 "Varying %s writes to buffer from stream %u, other " 1449 "varyings in the same buffer write from stream %u.", 1450 tfeedback_decls[i].name(), 1451 tfeedback_decls[i].get_stream_id(), 1452 buffer_stream_id); 1453 return false; 1454 } 1455 } 1456 1457 if (!tfeedback_decls[i].store(ctx, prog, 1458 xfb_prog->sh.LinkedTransformFeedback, 1459 buffer, num_buffers, num_outputs, 1460 explicit_stride, has_xfb_qualifiers)) 1461 return false; 1462 } 1463 } 1464 1465 assert(xfb_prog->sh.LinkedTransformFeedback->NumOutputs == num_outputs); 1466 1467 xfb_prog->sh.LinkedTransformFeedback->ActiveBuffers = buffers; 1468 return true; 1469} 1470 1471namespace { 1472 1473/** 1474 * Data structure recording the relationship between outputs of one shader 1475 * stage (the "producer") and inputs of another (the "consumer"). 1476 */ 1477class varying_matches 1478{ 1479public: 1480 varying_matches(bool disable_varying_packing, bool xfb_enabled, 1481 bool enhanced_layouts_enabled, 1482 gl_shader_stage producer_stage, 1483 gl_shader_stage consumer_stage); 1484 ~varying_matches(); 1485 void record(ir_variable *producer_var, ir_variable *consumer_var); 1486 unsigned assign_locations(struct gl_shader_program *prog, 1487 uint8_t components[], 1488 uint64_t reserved_slots); 1489 void store_locations() const; 1490 1491private: 1492 bool is_varying_packing_safe(const glsl_type *type, 1493 const ir_variable *var) const; 1494 1495 /** 1496 * If true, this driver disables varying packing, so all varyings need to 1497 * be aligned on slot boundaries, and take up a number of slots equal to 1498 * their number of matrix columns times their array size. 1499 * 1500 * Packing may also be disabled because our current packing method is not 1501 * safe in SSO or versions of OpenGL where interpolation qualifiers are not 1502 * guaranteed to match across stages. 1503 */ 1504 const bool disable_varying_packing; 1505 1506 /** 1507 * If true, this driver has transform feedback enabled. The transform 1508 * feedback code requires at least some packing be done even when varying 1509 * packing is disabled, fortunately where transform feedback requires 1510 * packing it's safe to override the disabled setting. See 1511 * is_varying_packing_safe(). 1512 */ 1513 const bool xfb_enabled; 1514 1515 const bool enhanced_layouts_enabled; 1516 1517 /** 1518 * Enum representing the order in which varyings are packed within a 1519 * packing class. 1520 * 1521 * Currently we pack vec4's first, then vec2's, then scalar values, then 1522 * vec3's. This order ensures that the only vectors that are at risk of 1523 * having to be "double parked" (split between two adjacent varying slots) 1524 * are the vec3's. 1525 */ 1526 enum packing_order_enum { 1527 PACKING_ORDER_VEC4, 1528 PACKING_ORDER_VEC2, 1529 PACKING_ORDER_SCALAR, 1530 PACKING_ORDER_VEC3, 1531 }; 1532 1533 static unsigned compute_packing_class(const ir_variable *var); 1534 static packing_order_enum compute_packing_order(const ir_variable *var); 1535 static int match_comparator(const void *x_generic, const void *y_generic); 1536 static int xfb_comparator(const void *x_generic, const void *y_generic); 1537 1538 /** 1539 * Structure recording the relationship between a single producer output 1540 * and a single consumer input. 1541 */ 1542 struct match { 1543 /** 1544 * Packing class for this varying, computed by compute_packing_class(). 1545 */ 1546 unsigned packing_class; 1547 1548 /** 1549 * Packing order for this varying, computed by compute_packing_order(). 1550 */ 1551 packing_order_enum packing_order; 1552 unsigned num_components; 1553 1554 /** 1555 * The output variable in the producer stage. 1556 */ 1557 ir_variable *producer_var; 1558 1559 /** 1560 * The input variable in the consumer stage. 1561 */ 1562 ir_variable *consumer_var; 1563 1564 /** 1565 * The location which has been assigned for this varying. This is 1566 * expressed in multiples of a float, with the first generic varying 1567 * (i.e. the one referred to by VARYING_SLOT_VAR0) represented by the 1568 * value 0. 1569 */ 1570 unsigned generic_location; 1571 } *matches; 1572 1573 /** 1574 * The number of elements in the \c matches array that are currently in 1575 * use. 1576 */ 1577 unsigned num_matches; 1578 1579 /** 1580 * The number of elements that were set aside for the \c matches array when 1581 * it was allocated. 1582 */ 1583 unsigned matches_capacity; 1584 1585 gl_shader_stage producer_stage; 1586 gl_shader_stage consumer_stage; 1587}; 1588 1589} /* anonymous namespace */ 1590 1591varying_matches::varying_matches(bool disable_varying_packing, 1592 bool xfb_enabled, 1593 bool enhanced_layouts_enabled, 1594 gl_shader_stage producer_stage, 1595 gl_shader_stage consumer_stage) 1596 : disable_varying_packing(disable_varying_packing), 1597 xfb_enabled(xfb_enabled), 1598 enhanced_layouts_enabled(enhanced_layouts_enabled), 1599 producer_stage(producer_stage), 1600 consumer_stage(consumer_stage) 1601{ 1602 /* Note: this initial capacity is rather arbitrarily chosen to be large 1603 * enough for many cases without wasting an unreasonable amount of space. 1604 * varying_matches::record() will resize the array if there are more than 1605 * this number of varyings. 1606 */ 1607 this->matches_capacity = 8; 1608 this->matches = (match *) 1609 malloc(sizeof(*this->matches) * this->matches_capacity); 1610 this->num_matches = 0; 1611} 1612 1613 1614varying_matches::~varying_matches() 1615{ 1616 free(this->matches); 1617} 1618 1619 1620/** 1621 * Packing is always safe on individual arrays, structures, and matrices. It 1622 * is also safe if the varying is only used for transform feedback. 1623 */ 1624bool 1625varying_matches::is_varying_packing_safe(const glsl_type *type, 1626 const ir_variable *var) const 1627{ 1628 if (consumer_stage == MESA_SHADER_TESS_EVAL || 1629 consumer_stage == MESA_SHADER_TESS_CTRL || 1630 producer_stage == MESA_SHADER_TESS_CTRL) 1631 return false; 1632 1633 return xfb_enabled && (type->is_array() || type->is_record() || 1634 type->is_matrix() || var->data.is_xfb_only); 1635} 1636 1637 1638/** 1639 * Record the given producer/consumer variable pair in the list of variables 1640 * that should later be assigned locations. 1641 * 1642 * It is permissible for \c consumer_var to be NULL (this happens if a 1643 * variable is output by the producer and consumed by transform feedback, but 1644 * not consumed by the consumer). 1645 * 1646 * If \c producer_var has already been paired up with a consumer_var, or 1647 * producer_var is part of fixed pipeline functionality (and hence already has 1648 * a location assigned), this function has no effect. 1649 * 1650 * Note: as a side effect this function may change the interpolation type of 1651 * \c producer_var, but only when the change couldn't possibly affect 1652 * rendering. 1653 */ 1654void 1655varying_matches::record(ir_variable *producer_var, ir_variable *consumer_var) 1656{ 1657 assert(producer_var != NULL || consumer_var != NULL); 1658 1659 if ((producer_var && (!producer_var->data.is_unmatched_generic_inout || 1660 producer_var->data.explicit_location)) || 1661 (consumer_var && (!consumer_var->data.is_unmatched_generic_inout || 1662 consumer_var->data.explicit_location))) { 1663 /* Either a location already exists for this variable (since it is part 1664 * of fixed functionality), or it has already been recorded as part of a 1665 * previous match. 1666 */ 1667 return; 1668 } 1669 1670 bool needs_flat_qualifier = consumer_var == NULL && 1671 (producer_var->type->contains_integer() || 1672 producer_var->type->contains_double()); 1673 1674 if (!disable_varying_packing && 1675 (needs_flat_qualifier || 1676 (consumer_stage != MESA_SHADER_NONE && consumer_stage != MESA_SHADER_FRAGMENT))) { 1677 /* Since this varying is not being consumed by the fragment shader, its 1678 * interpolation type varying cannot possibly affect rendering. 1679 * Also, this variable is non-flat and is (or contains) an integer 1680 * or a double. 1681 * If the consumer stage is unknown, don't modify the interpolation 1682 * type as it could affect rendering later with separate shaders. 1683 * 1684 * lower_packed_varyings requires all integer varyings to flat, 1685 * regardless of where they appear. We can trivially satisfy that 1686 * requirement by changing the interpolation type to flat here. 1687 */ 1688 if (producer_var) { 1689 producer_var->data.centroid = false; 1690 producer_var->data.sample = false; 1691 producer_var->data.interpolation = INTERP_MODE_FLAT; 1692 } 1693 1694 if (consumer_var) { 1695 consumer_var->data.centroid = false; 1696 consumer_var->data.sample = false; 1697 consumer_var->data.interpolation = INTERP_MODE_FLAT; 1698 } 1699 } 1700 1701 if (this->num_matches == this->matches_capacity) { 1702 this->matches_capacity *= 2; 1703 this->matches = (match *) 1704 realloc(this->matches, 1705 sizeof(*this->matches) * this->matches_capacity); 1706 } 1707 1708 /* We must use the consumer to compute the packing class because in GL4.4+ 1709 * there is no guarantee interpolation qualifiers will match across stages. 1710 * 1711 * From Section 4.5 (Interpolation Qualifiers) of the GLSL 4.30 spec: 1712 * 1713 * "The type and presence of interpolation qualifiers of variables with 1714 * the same name declared in all linked shaders for the same cross-stage 1715 * interface must match, otherwise the link command will fail. 1716 * 1717 * When comparing an output from one stage to an input of a subsequent 1718 * stage, the input and output don't match if their interpolation 1719 * qualifiers (or lack thereof) are not the same." 1720 * 1721 * This text was also in at least revison 7 of the 4.40 spec but is no 1722 * longer in revision 9 and not in the 4.50 spec. 1723 */ 1724 const ir_variable *const var = (consumer_var != NULL) 1725 ? consumer_var : producer_var; 1726 const gl_shader_stage stage = (consumer_var != NULL) 1727 ? consumer_stage : producer_stage; 1728 const glsl_type *type = get_varying_type(var, stage); 1729 1730 if (producer_var && consumer_var && 1731 consumer_var->data.must_be_shader_input) { 1732 producer_var->data.must_be_shader_input = 1; 1733 } 1734 1735 this->matches[this->num_matches].packing_class 1736 = this->compute_packing_class(var); 1737 this->matches[this->num_matches].packing_order 1738 = this->compute_packing_order(var); 1739 if ((this->disable_varying_packing && !is_varying_packing_safe(type, var)) || 1740 var->data.must_be_shader_input) { 1741 unsigned slots = type->count_attribute_slots(false); 1742 this->matches[this->num_matches].num_components = slots * 4; 1743 } else { 1744 this->matches[this->num_matches].num_components 1745 = type->component_slots(); 1746 } 1747 1748 this->matches[this->num_matches].producer_var = producer_var; 1749 this->matches[this->num_matches].consumer_var = consumer_var; 1750 this->num_matches++; 1751 if (producer_var) 1752 producer_var->data.is_unmatched_generic_inout = 0; 1753 if (consumer_var) 1754 consumer_var->data.is_unmatched_generic_inout = 0; 1755} 1756 1757 1758/** 1759 * Choose locations for all of the variable matches that were previously 1760 * passed to varying_matches::record(). 1761 * \param components returns array[slot] of number of components used 1762 * per slot (1, 2, 3 or 4) 1763 * \param reserved_slots bitmask indicating which varying slots are already 1764 * allocated 1765 * \return number of slots (4-element vectors) allocated 1766 */ 1767unsigned 1768varying_matches::assign_locations(struct gl_shader_program *prog, 1769 uint8_t components[], 1770 uint64_t reserved_slots) 1771{ 1772 /* If packing has been disabled then we cannot safely sort the varyings by 1773 * class as it may mean we are using a version of OpenGL where 1774 * interpolation qualifiers are not guaranteed to be matching across 1775 * shaders, sorting in this case could result in mismatching shader 1776 * interfaces. 1777 * When packing is disabled the sort orders varyings used by transform 1778 * feedback first, but also depends on *undefined behaviour* of qsort to 1779 * reverse the order of the varyings. See: xfb_comparator(). 1780 */ 1781 if (!this->disable_varying_packing) { 1782 /* Sort varying matches into an order that makes them easy to pack. */ 1783 qsort(this->matches, this->num_matches, sizeof(*this->matches), 1784 &varying_matches::match_comparator); 1785 } else { 1786 /* Only sort varyings that are only used by transform feedback. */ 1787 qsort(this->matches, this->num_matches, sizeof(*this->matches), 1788 &varying_matches::xfb_comparator); 1789 } 1790 1791 unsigned generic_location = 0; 1792 unsigned generic_patch_location = MAX_VARYING*4; 1793 bool previous_var_xfb_only = false; 1794 unsigned previous_packing_class = ~0u; 1795 1796 /* For tranform feedback separate mode, we know the number of attributes 1797 * is <= the number of buffers. So packing isn't critical. In fact, 1798 * packing vec3 attributes can cause trouble because splitting a vec3 1799 * effectively creates an additional transform feedback output. The 1800 * extra TFB output may exceed device driver limits. 1801 */ 1802 const bool dont_pack_vec3 = 1803 (prog->TransformFeedback.BufferMode == GL_SEPARATE_ATTRIBS && 1804 prog->TransformFeedback.NumVarying > 0); 1805 1806 for (unsigned i = 0; i < this->num_matches; i++) { 1807 unsigned *location = &generic_location; 1808 const ir_variable *var; 1809 const glsl_type *type; 1810 bool is_vertex_input = false; 1811 1812 if (matches[i].consumer_var) { 1813 var = matches[i].consumer_var; 1814 type = get_varying_type(var, consumer_stage); 1815 if (consumer_stage == MESA_SHADER_VERTEX) 1816 is_vertex_input = true; 1817 } else { 1818 var = matches[i].producer_var; 1819 type = get_varying_type(var, producer_stage); 1820 } 1821 1822 if (var->data.patch) 1823 location = &generic_patch_location; 1824 1825 /* Advance to the next slot if this varying has a different packing 1826 * class than the previous one, and we're not already on a slot 1827 * boundary. 1828 * 1829 * Also advance to the next slot if packing is disabled. This makes sure 1830 * we don't assign varyings the same locations which is possible 1831 * because we still pack individual arrays, records and matrices even 1832 * when packing is disabled. Note we don't advance to the next slot if 1833 * we can pack varyings together that are only used for transform 1834 * feedback. 1835 */ 1836 if (var->data.must_be_shader_input || 1837 (this->disable_varying_packing && 1838 !(previous_var_xfb_only && var->data.is_xfb_only)) || 1839 (previous_packing_class != this->matches[i].packing_class) || 1840 (this->matches[i].packing_order == PACKING_ORDER_VEC3 && 1841 dont_pack_vec3)) { 1842 *location = ALIGN(*location, 4); 1843 } 1844 1845 previous_var_xfb_only = var->data.is_xfb_only; 1846 previous_packing_class = this->matches[i].packing_class; 1847 1848 /* The number of components taken up by this variable. For vertex shader 1849 * inputs, we use the number of slots * 4, as they have different 1850 * counting rules. 1851 */ 1852 unsigned num_components = is_vertex_input ? 1853 type->count_attribute_slots(is_vertex_input) * 4 : 1854 this->matches[i].num_components; 1855 1856 /* The last slot for this variable, inclusive. */ 1857 unsigned slot_end = *location + num_components - 1; 1858 1859 /* FIXME: We could be smarter in the below code and loop back over 1860 * trying to fill any locations that we skipped because we couldn't pack 1861 * the varying between an explicit location. For now just let the user 1862 * hit the linking error if we run out of room and suggest they use 1863 * explicit locations. 1864 */ 1865 while (slot_end < MAX_VARYING * 4u) { 1866 const unsigned slots = (slot_end / 4u) - (*location / 4u) + 1; 1867 const uint64_t slot_mask = ((1ull << slots) - 1) << (*location / 4u); 1868 1869 assert(slots > 0); 1870 1871 if ((reserved_slots & slot_mask) == 0) { 1872 break; 1873 } 1874 1875 *location = ALIGN(*location + 1, 4); 1876 slot_end = *location + num_components - 1; 1877 } 1878 1879 if (!var->data.patch && slot_end >= MAX_VARYING * 4u) { 1880 linker_error(prog, "insufficient contiguous locations available for " 1881 "%s it is possible an array or struct could not be " 1882 "packed between varyings with explicit locations. Try " 1883 "using an explicit location for arrays and structs.", 1884 var->name); 1885 } 1886 1887 if (slot_end < MAX_VARYINGS_INCL_PATCH * 4u) { 1888 for (unsigned j = *location / 4u; j < slot_end / 4u; j++) 1889 components[j] = 4; 1890 components[slot_end / 4u] = (slot_end & 3) + 1; 1891 } 1892 1893 this->matches[i].generic_location = *location; 1894 1895 *location = slot_end + 1; 1896 } 1897 1898 return (generic_location + 3) / 4; 1899} 1900 1901 1902/** 1903 * Update the producer and consumer shaders to reflect the locations 1904 * assignments that were made by varying_matches::assign_locations(). 1905 */ 1906void 1907varying_matches::store_locations() const 1908{ 1909 /* Check is location needs to be packed with lower_packed_varyings() or if 1910 * we can just use ARB_enhanced_layouts packing. 1911 */ 1912 bool pack_loc[MAX_VARYINGS_INCL_PATCH] = { 0 }; 1913 const glsl_type *loc_type[MAX_VARYINGS_INCL_PATCH][4] = { {NULL, NULL} }; 1914 1915 for (unsigned i = 0; i < this->num_matches; i++) { 1916 ir_variable *producer_var = this->matches[i].producer_var; 1917 ir_variable *consumer_var = this->matches[i].consumer_var; 1918 unsigned generic_location = this->matches[i].generic_location; 1919 unsigned slot = generic_location / 4; 1920 unsigned offset = generic_location % 4; 1921 1922 if (producer_var) { 1923 producer_var->data.location = VARYING_SLOT_VAR0 + slot; 1924 producer_var->data.location_frac = offset; 1925 } 1926 1927 if (consumer_var) { 1928 assert(consumer_var->data.location == -1); 1929 consumer_var->data.location = VARYING_SLOT_VAR0 + slot; 1930 consumer_var->data.location_frac = offset; 1931 } 1932 1933 /* Find locations suitable for native packing via 1934 * ARB_enhanced_layouts. 1935 */ 1936 if (producer_var && consumer_var) { 1937 if (enhanced_layouts_enabled) { 1938 const glsl_type *type = 1939 get_varying_type(producer_var, producer_stage); 1940 if (type->is_array() || type->is_matrix() || type->is_record() || 1941 type->is_double()) { 1942 unsigned comp_slots = type->component_slots() + offset; 1943 unsigned slots = comp_slots / 4; 1944 if (comp_slots % 4) 1945 slots += 1; 1946 1947 for (unsigned j = 0; j < slots; j++) { 1948 pack_loc[slot + j] = true; 1949 } 1950 } else if (offset + type->vector_elements > 4) { 1951 pack_loc[slot] = true; 1952 pack_loc[slot + 1] = true; 1953 } else { 1954 loc_type[slot][offset] = type; 1955 } 1956 } 1957 } 1958 } 1959 1960 /* Attempt to use ARB_enhanced_layouts for more efficient packing if 1961 * suitable. 1962 */ 1963 if (enhanced_layouts_enabled) { 1964 for (unsigned i = 0; i < this->num_matches; i++) { 1965 ir_variable *producer_var = this->matches[i].producer_var; 1966 ir_variable *consumer_var = this->matches[i].consumer_var; 1967 unsigned generic_location = this->matches[i].generic_location; 1968 unsigned slot = generic_location / 4; 1969 1970 if (pack_loc[slot] || !producer_var || !consumer_var) 1971 continue; 1972 1973 const glsl_type *type = 1974 get_varying_type(producer_var, producer_stage); 1975 bool type_match = true; 1976 for (unsigned j = 0; j < 4; j++) { 1977 if (loc_type[slot][j]) { 1978 if (type->base_type != loc_type[slot][j]->base_type) 1979 type_match = false; 1980 } 1981 } 1982 1983 if (type_match) { 1984 producer_var->data.explicit_location = 1; 1985 consumer_var->data.explicit_location = 1; 1986 producer_var->data.explicit_component = 1; 1987 consumer_var->data.explicit_component = 1; 1988 } 1989 } 1990 } 1991} 1992 1993 1994/** 1995 * Compute the "packing class" of the given varying. This is an unsigned 1996 * integer with the property that two variables in the same packing class can 1997 * be safely backed into the same vec4. 1998 */ 1999unsigned 2000varying_matches::compute_packing_class(const ir_variable *var) 2001{ 2002 /* Without help from the back-end, there is no way to pack together 2003 * variables with different interpolation types, because 2004 * lower_packed_varyings must choose exactly one interpolation type for 2005 * each packed varying it creates. 2006 * 2007 * However, we can safely pack together floats, ints, and uints, because: 2008 * 2009 * - varyings of base type "int" and "uint" must use the "flat" 2010 * interpolation type, which can only occur in GLSL 1.30 and above. 2011 * 2012 * - On platforms that support GLSL 1.30 and above, lower_packed_varyings 2013 * can store flat floats as ints without losing any information (using 2014 * the ir_unop_bitcast_* opcodes). 2015 * 2016 * Therefore, the packing class depends only on the interpolation type. 2017 */ 2018 const unsigned interp = var->is_interpolation_flat() 2019 ? unsigned(INTERP_MODE_FLAT) : var->data.interpolation; 2020 2021 assert(interp < (1 << 3)); 2022 2023 const unsigned packing_class = (interp << 0) | 2024 (var->data.centroid << 3) | 2025 (var->data.sample << 4) | 2026 (var->data.patch << 5) | 2027 (var->data.must_be_shader_input << 6); 2028 2029 return packing_class; 2030} 2031 2032 2033/** 2034 * Compute the "packing order" of the given varying. This is a sort key we 2035 * use to determine when to attempt to pack the given varying relative to 2036 * other varyings in the same packing class. 2037 */ 2038varying_matches::packing_order_enum 2039varying_matches::compute_packing_order(const ir_variable *var) 2040{ 2041 const glsl_type *element_type = var->type; 2042 2043 while (element_type->is_array()) { 2044 element_type = element_type->fields.array; 2045 } 2046 2047 switch (element_type->component_slots() % 4) { 2048 case 1: return PACKING_ORDER_SCALAR; 2049 case 2: return PACKING_ORDER_VEC2; 2050 case 3: return PACKING_ORDER_VEC3; 2051 case 0: return PACKING_ORDER_VEC4; 2052 default: 2053 assert(!"Unexpected value of vector_elements"); 2054 return PACKING_ORDER_VEC4; 2055 } 2056} 2057 2058 2059/** 2060 * Comparison function passed to qsort() to sort varyings by packing_class and 2061 * then by packing_order. 2062 */ 2063int 2064varying_matches::match_comparator(const void *x_generic, const void *y_generic) 2065{ 2066 const match *x = (const match *) x_generic; 2067 const match *y = (const match *) y_generic; 2068 2069 if (x->packing_class != y->packing_class) 2070 return x->packing_class - y->packing_class; 2071 return x->packing_order - y->packing_order; 2072} 2073 2074 2075/** 2076 * Comparison function passed to qsort() to sort varyings used only by 2077 * transform feedback when packing of other varyings is disabled. 2078 */ 2079int 2080varying_matches::xfb_comparator(const void *x_generic, const void *y_generic) 2081{ 2082 const match *x = (const match *) x_generic; 2083 2084 if (x->producer_var != NULL && x->producer_var->data.is_xfb_only) 2085 return match_comparator(x_generic, y_generic); 2086 2087 /* FIXME: When the comparator returns 0 it means the elements being 2088 * compared are equivalent. However the qsort documentation says: 2089 * 2090 * "The order of equivalent elements is undefined." 2091 * 2092 * In practice the sort ends up reversing the order of the varyings which 2093 * means locations are also assigned in this reversed order and happens to 2094 * be what we want. This is also whats happening in 2095 * varying_matches::match_comparator(). 2096 */ 2097 return 0; 2098} 2099 2100 2101/** 2102 * Is the given variable a varying variable to be counted against the 2103 * limit in ctx->Const.MaxVarying? 2104 * This includes variables such as texcoords, colors and generic 2105 * varyings, but excludes variables such as gl_FrontFacing and gl_FragCoord. 2106 */ 2107static bool 2108var_counts_against_varying_limit(gl_shader_stage stage, const ir_variable *var) 2109{ 2110 /* Only fragment shaders will take a varying variable as an input */ 2111 if (stage == MESA_SHADER_FRAGMENT && 2112 var->data.mode == ir_var_shader_in) { 2113 switch (var->data.location) { 2114 case VARYING_SLOT_POS: 2115 case VARYING_SLOT_FACE: 2116 case VARYING_SLOT_PNTC: 2117 return false; 2118 default: 2119 return true; 2120 } 2121 } 2122 return false; 2123} 2124 2125 2126/** 2127 * Visitor class that generates tfeedback_candidate structs describing all 2128 * possible targets of transform feedback. 2129 * 2130 * tfeedback_candidate structs are stored in the hash table 2131 * tfeedback_candidates, which is passed to the constructor. This hash table 2132 * maps varying names to instances of the tfeedback_candidate struct. 2133 */ 2134class tfeedback_candidate_generator : public program_resource_visitor 2135{ 2136public: 2137 tfeedback_candidate_generator(void *mem_ctx, 2138 hash_table *tfeedback_candidates, 2139 gl_shader_stage stage) 2140 : mem_ctx(mem_ctx), 2141 tfeedback_candidates(tfeedback_candidates), 2142 stage(stage), 2143 toplevel_var(NULL), 2144 varying_floats(0) 2145 { 2146 } 2147 2148 void process(ir_variable *var) 2149 { 2150 /* All named varying interface blocks should be flattened by now */ 2151 assert(!var->is_interface_instance()); 2152 assert(var->data.mode == ir_var_shader_out); 2153 2154 this->toplevel_var = var; 2155 this->varying_floats = 0; 2156 const glsl_type *t = 2157 var->data.from_named_ifc_block ? var->get_interface_type() : var->type; 2158 if (!var->data.patch && stage == MESA_SHADER_TESS_CTRL) { 2159 assert(t->is_array()); 2160 t = t->fields.array; 2161 } 2162 program_resource_visitor::process(var, t, false); 2163 } 2164 2165private: 2166 virtual void visit_field(const glsl_type *type, const char *name, 2167 bool /* row_major */, 2168 const glsl_type * /* record_type */, 2169 const enum glsl_interface_packing, 2170 bool /* last_field */) 2171 { 2172 assert(!type->without_array()->is_record()); 2173 assert(!type->without_array()->is_interface()); 2174 2175 tfeedback_candidate *candidate 2176 = rzalloc(this->mem_ctx, tfeedback_candidate); 2177 candidate->toplevel_var = this->toplevel_var; 2178 candidate->type = type; 2179 candidate->offset = this->varying_floats; 2180 _mesa_hash_table_insert(this->tfeedback_candidates, 2181 ralloc_strdup(this->mem_ctx, name), 2182 candidate); 2183 this->varying_floats += type->component_slots(); 2184 } 2185 2186 /** 2187 * Memory context used to allocate hash table keys and values. 2188 */ 2189 void * const mem_ctx; 2190 2191 /** 2192 * Hash table in which tfeedback_candidate objects should be stored. 2193 */ 2194 hash_table * const tfeedback_candidates; 2195 2196 gl_shader_stage stage; 2197 2198 /** 2199 * Pointer to the toplevel variable that is being traversed. 2200 */ 2201 ir_variable *toplevel_var; 2202 2203 /** 2204 * Total number of varying floats that have been visited so far. This is 2205 * used to determine the offset to each varying within the toplevel 2206 * variable. 2207 */ 2208 unsigned varying_floats; 2209}; 2210 2211 2212namespace linker { 2213 2214void 2215populate_consumer_input_sets(void *mem_ctx, exec_list *ir, 2216 hash_table *consumer_inputs, 2217 hash_table *consumer_interface_inputs, 2218 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX]) 2219{ 2220 memset(consumer_inputs_with_locations, 2221 0, 2222 sizeof(consumer_inputs_with_locations[0]) * VARYING_SLOT_TESS_MAX); 2223 2224 foreach_in_list(ir_instruction, node, ir) { 2225 ir_variable *const input_var = node->as_variable(); 2226 2227 if (input_var != NULL && input_var->data.mode == ir_var_shader_in) { 2228 /* All interface blocks should have been lowered by this point */ 2229 assert(!input_var->type->is_interface()); 2230 2231 if (input_var->data.explicit_location) { 2232 /* assign_varying_locations only cares about finding the 2233 * ir_variable at the start of a contiguous location block. 2234 * 2235 * - For !producer, consumer_inputs_with_locations isn't used. 2236 * 2237 * - For !consumer, consumer_inputs_with_locations is empty. 2238 * 2239 * For consumer && producer, if you were trying to set some 2240 * ir_variable to the middle of a location block on the other side 2241 * of producer/consumer, cross_validate_outputs_to_inputs() should 2242 * be link-erroring due to either type mismatch or location 2243 * overlaps. If the variables do match up, then they've got a 2244 * matching data.location and you only looked at 2245 * consumer_inputs_with_locations[var->data.location], not any 2246 * following entries for the array/structure. 2247 */ 2248 consumer_inputs_with_locations[input_var->data.location] = 2249 input_var; 2250 } else if (input_var->get_interface_type() != NULL) { 2251 char *const iface_field_name = 2252 ralloc_asprintf(mem_ctx, "%s.%s", 2253 input_var->get_interface_type()->without_array()->name, 2254 input_var->name); 2255 _mesa_hash_table_insert(consumer_interface_inputs, 2256 iface_field_name, input_var); 2257 } else { 2258 _mesa_hash_table_insert(consumer_inputs, 2259 ralloc_strdup(mem_ctx, input_var->name), 2260 input_var); 2261 } 2262 } 2263 } 2264} 2265 2266/** 2267 * Find a variable from the consumer that "matches" the specified variable 2268 * 2269 * This function only finds inputs with names that match. There is no 2270 * validation (here) that the types, etc. are compatible. 2271 */ 2272ir_variable * 2273get_matching_input(void *mem_ctx, 2274 const ir_variable *output_var, 2275 hash_table *consumer_inputs, 2276 hash_table *consumer_interface_inputs, 2277 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX]) 2278{ 2279 ir_variable *input_var; 2280 2281 if (output_var->data.explicit_location) { 2282 input_var = consumer_inputs_with_locations[output_var->data.location]; 2283 } else if (output_var->get_interface_type() != NULL) { 2284 char *const iface_field_name = 2285 ralloc_asprintf(mem_ctx, "%s.%s", 2286 output_var->get_interface_type()->without_array()->name, 2287 output_var->name); 2288 hash_entry *entry = _mesa_hash_table_search(consumer_interface_inputs, iface_field_name); 2289 input_var = entry ? (ir_variable *) entry->data : NULL; 2290 } else { 2291 hash_entry *entry = _mesa_hash_table_search(consumer_inputs, output_var->name); 2292 input_var = entry ? (ir_variable *) entry->data : NULL; 2293 } 2294 2295 return (input_var == NULL || input_var->data.mode != ir_var_shader_in) 2296 ? NULL : input_var; 2297} 2298 2299} 2300 2301static int 2302io_variable_cmp(const void *_a, const void *_b) 2303{ 2304 const ir_variable *const a = *(const ir_variable **) _a; 2305 const ir_variable *const b = *(const ir_variable **) _b; 2306 2307 if (a->data.explicit_location && b->data.explicit_location) 2308 return b->data.location - a->data.location; 2309 2310 if (a->data.explicit_location && !b->data.explicit_location) 2311 return 1; 2312 2313 if (!a->data.explicit_location && b->data.explicit_location) 2314 return -1; 2315 2316 return -strcmp(a->name, b->name); 2317} 2318 2319/** 2320 * Sort the shader IO variables into canonical order 2321 */ 2322static void 2323canonicalize_shader_io(exec_list *ir, enum ir_variable_mode io_mode) 2324{ 2325 ir_variable *var_table[MAX_PROGRAM_OUTPUTS * 4]; 2326 unsigned num_variables = 0; 2327 2328 foreach_in_list(ir_instruction, node, ir) { 2329 ir_variable *const var = node->as_variable(); 2330 2331 if (var == NULL || var->data.mode != io_mode) 2332 continue; 2333 2334 /* If we have already encountered more I/O variables that could 2335 * successfully link, bail. 2336 */ 2337 if (num_variables == ARRAY_SIZE(var_table)) 2338 return; 2339 2340 var_table[num_variables++] = var; 2341 } 2342 2343 if (num_variables == 0) 2344 return; 2345 2346 /* Sort the list in reverse order (io_variable_cmp handles this). Later 2347 * we're going to push the variables on to the IR list as a stack, so we 2348 * want the last variable (in canonical order) to be first in the list. 2349 */ 2350 qsort(var_table, num_variables, sizeof(var_table[0]), io_variable_cmp); 2351 2352 /* Remove the variable from it's current location in the IR, and put it at 2353 * the front. 2354 */ 2355 for (unsigned i = 0; i < num_variables; i++) { 2356 var_table[i]->remove(); 2357 ir->push_head(var_table[i]); 2358 } 2359} 2360 2361/** 2362 * Generate a bitfield map of the explicit locations for shader varyings. 2363 * 2364 * Note: For Tessellation shaders we are sitting right on the limits of the 2365 * 64 bit map. Per-vertex and per-patch both have separate location domains 2366 * with a max of MAX_VARYING. 2367 */ 2368static uint64_t 2369reserved_varying_slot(struct gl_linked_shader *stage, 2370 ir_variable_mode io_mode) 2371{ 2372 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out); 2373 /* Avoid an overflow of the returned value */ 2374 assert(MAX_VARYINGS_INCL_PATCH <= 64); 2375 2376 uint64_t slots = 0; 2377 int var_slot; 2378 2379 if (!stage) 2380 return slots; 2381 2382 foreach_in_list(ir_instruction, node, stage->ir) { 2383 ir_variable *const var = node->as_variable(); 2384 2385 if (var == NULL || var->data.mode != io_mode || 2386 !var->data.explicit_location || 2387 var->data.location < VARYING_SLOT_VAR0) 2388 continue; 2389 2390 var_slot = var->data.location - VARYING_SLOT_VAR0; 2391 2392 unsigned num_elements = get_varying_type(var, stage->Stage) 2393 ->count_attribute_slots(io_mode == ir_var_shader_in && 2394 stage->Stage == MESA_SHADER_VERTEX); 2395 for (unsigned i = 0; i < num_elements; i++) { 2396 if (var_slot >= 0 && var_slot < MAX_VARYINGS_INCL_PATCH) 2397 slots |= UINT64_C(1) << var_slot; 2398 var_slot += 1; 2399 } 2400 } 2401 2402 return slots; 2403} 2404 2405 2406/** 2407 * Assign locations for all variables that are produced in one pipeline stage 2408 * (the "producer") and consumed in the next stage (the "consumer"). 2409 * 2410 * Variables produced by the producer may also be consumed by transform 2411 * feedback. 2412 * 2413 * \param num_tfeedback_decls is the number of declarations indicating 2414 * variables that may be consumed by transform feedback. 2415 * 2416 * \param tfeedback_decls is a pointer to an array of tfeedback_decl objects 2417 * representing the result of parsing the strings passed to 2418 * glTransformFeedbackVaryings(). assign_location() will be called for 2419 * each of these objects that matches one of the outputs of the 2420 * producer. 2421 * 2422 * When num_tfeedback_decls is nonzero, it is permissible for the consumer to 2423 * be NULL. In this case, varying locations are assigned solely based on the 2424 * requirements of transform feedback. 2425 */ 2426static bool 2427assign_varying_locations(struct gl_context *ctx, 2428 void *mem_ctx, 2429 struct gl_shader_program *prog, 2430 gl_linked_shader *producer, 2431 gl_linked_shader *consumer, 2432 unsigned num_tfeedback_decls, 2433 tfeedback_decl *tfeedback_decls, 2434 const uint64_t reserved_slots) 2435{ 2436 /* Tessellation shaders treat inputs and outputs as shared memory and can 2437 * access inputs and outputs of other invocations. 2438 * Therefore, they can't be lowered to temps easily (and definitely not 2439 * efficiently). 2440 */ 2441 bool unpackable_tess = 2442 (consumer && consumer->Stage == MESA_SHADER_TESS_EVAL) || 2443 (consumer && consumer->Stage == MESA_SHADER_TESS_CTRL) || 2444 (producer && producer->Stage == MESA_SHADER_TESS_CTRL); 2445 2446 /* Transform feedback code assumes varying arrays are packed, so if the 2447 * driver has disabled varying packing, make sure to at least enable 2448 * packing required by transform feedback. 2449 */ 2450 bool xfb_enabled = 2451 ctx->Extensions.EXT_transform_feedback && !unpackable_tess; 2452 2453 /* Disable packing on outward facing interfaces for SSO because in ES we 2454 * need to retain the unpacked varying information for draw time 2455 * validation. 2456 * 2457 * Packing is still enabled on individual arrays, structs, and matrices as 2458 * these are required by the transform feedback code and it is still safe 2459 * to do so. We also enable packing when a varying is only used for 2460 * transform feedback and its not a SSO. 2461 */ 2462 bool disable_varying_packing = 2463 ctx->Const.DisableVaryingPacking || unpackable_tess; 2464 if (prog->SeparateShader && (producer == NULL || consumer == NULL)) 2465 disable_varying_packing = true; 2466 2467 varying_matches matches(disable_varying_packing, xfb_enabled, 2468 ctx->Extensions.ARB_enhanced_layouts, 2469 producer ? producer->Stage : MESA_SHADER_NONE, 2470 consumer ? consumer->Stage : MESA_SHADER_NONE); 2471 hash_table *tfeedback_candidates = 2472 _mesa_hash_table_create(NULL, _mesa_key_hash_string, 2473 _mesa_key_string_equal); 2474 hash_table *consumer_inputs = 2475 _mesa_hash_table_create(NULL, _mesa_key_hash_string, 2476 _mesa_key_string_equal); 2477 hash_table *consumer_interface_inputs = 2478 _mesa_hash_table_create(NULL, _mesa_key_hash_string, 2479 _mesa_key_string_equal); 2480 ir_variable *consumer_inputs_with_locations[VARYING_SLOT_TESS_MAX] = { 2481 NULL, 2482 }; 2483 2484 unsigned consumer_vertices = 0; 2485 if (consumer && consumer->Stage == MESA_SHADER_GEOMETRY) 2486 consumer_vertices = prog->Geom.VerticesIn; 2487 2488 /* Operate in a total of four passes. 2489 * 2490 * 1. Sort inputs / outputs into a canonical order. This is necessary so 2491 * that inputs / outputs of separable shaders will be assigned 2492 * predictable locations regardless of the order in which declarations 2493 * appeared in the shader source. 2494 * 2495 * 2. Assign locations for any matching inputs and outputs. 2496 * 2497 * 3. Mark output variables in the producer that do not have locations as 2498 * not being outputs. This lets the optimizer eliminate them. 2499 * 2500 * 4. Mark input variables in the consumer that do not have locations as 2501 * not being inputs. This lets the optimizer eliminate them. 2502 */ 2503 if (consumer) 2504 canonicalize_shader_io(consumer->ir, ir_var_shader_in); 2505 2506 if (producer) 2507 canonicalize_shader_io(producer->ir, ir_var_shader_out); 2508 2509 if (consumer) 2510 linker::populate_consumer_input_sets(mem_ctx, consumer->ir, 2511 consumer_inputs, 2512 consumer_interface_inputs, 2513 consumer_inputs_with_locations); 2514 2515 if (producer) { 2516 foreach_in_list(ir_instruction, node, producer->ir) { 2517 ir_variable *const output_var = node->as_variable(); 2518 2519 if (output_var == NULL || output_var->data.mode != ir_var_shader_out) 2520 continue; 2521 2522 /* Only geometry shaders can use non-zero streams */ 2523 assert(output_var->data.stream == 0 || 2524 (output_var->data.stream < MAX_VERTEX_STREAMS && 2525 producer->Stage == MESA_SHADER_GEOMETRY)); 2526 2527 if (num_tfeedback_decls > 0) { 2528 tfeedback_candidate_generator g(mem_ctx, tfeedback_candidates, producer->Stage); 2529 /* From OpenGL 4.6 (Core Profile) spec, section 11.1.2.1 2530 * ("Vertex Shader Variables / Output Variables") 2531 * 2532 * "Each program object can specify a set of output variables from 2533 * one shader to be recorded in transform feedback mode (see 2534 * section 13.3). The variables that can be recorded are those 2535 * emitted by the first active shader, in order, from the 2536 * following list: 2537 * 2538 * * geometry shader 2539 * * tessellation evaluation shader 2540 * * tessellation control shader 2541 * * vertex shader" 2542 * 2543 * But on OpenGL ES 3.2, section 11.1.2.1 ("Vertex Shader 2544 * Variables / Output Variables") tessellation control shader is 2545 * not included in the stages list. 2546 */ 2547 if (!prog->IsES || producer->Stage != MESA_SHADER_TESS_CTRL) { 2548 g.process(output_var); 2549 } 2550 } 2551 2552 ir_variable *const input_var = 2553 linker::get_matching_input(mem_ctx, output_var, consumer_inputs, 2554 consumer_interface_inputs, 2555 consumer_inputs_with_locations); 2556 2557 /* If a matching input variable was found, add this output (and the 2558 * input) to the set. If this is a separable program and there is no 2559 * consumer stage, add the output. 2560 * 2561 * Always add TCS outputs. They are shared by all invocations 2562 * within a patch and can be used as shared memory. 2563 */ 2564 if (input_var || (prog->SeparateShader && consumer == NULL) || 2565 producer->Stage == MESA_SHADER_TESS_CTRL) { 2566 matches.record(output_var, input_var); 2567 } 2568 2569 /* Only stream 0 outputs can be consumed in the next stage */ 2570 if (input_var && output_var->data.stream != 0) { 2571 linker_error(prog, "output %s is assigned to stream=%d but " 2572 "is linked to an input, which requires stream=0", 2573 output_var->name, output_var->data.stream); 2574 return false; 2575 } 2576 } 2577 } else { 2578 /* If there's no producer stage, then this must be a separable program. 2579 * For example, we may have a program that has just a fragment shader. 2580 * Later this program will be used with some arbitrary vertex (or 2581 * geometry) shader program. This means that locations must be assigned 2582 * for all the inputs. 2583 */ 2584 foreach_in_list(ir_instruction, node, consumer->ir) { 2585 ir_variable *const input_var = node->as_variable(); 2586 if (input_var && input_var->data.mode == ir_var_shader_in) { 2587 matches.record(NULL, input_var); 2588 } 2589 } 2590 } 2591 2592 for (unsigned i = 0; i < num_tfeedback_decls; ++i) { 2593 if (!tfeedback_decls[i].is_varying()) 2594 continue; 2595 2596 const tfeedback_candidate *matched_candidate 2597 = tfeedback_decls[i].find_candidate(prog, tfeedback_candidates); 2598 2599 if (matched_candidate == NULL) { 2600 _mesa_hash_table_destroy(tfeedback_candidates, NULL); 2601 return false; 2602 } 2603 2604 /* Mark xfb varyings as always active */ 2605 matched_candidate->toplevel_var->data.always_active_io = 1; 2606 2607 /* Mark any corresponding inputs as always active also. We must do this 2608 * because we have a NIR pass that lowers vectors to scalars and another 2609 * that removes unused varyings. 2610 * We don't split varyings marked as always active because there is no 2611 * point in doing so. This means we need to mark both sides of the 2612 * interface as always active otherwise we will have a mismatch and 2613 * start removing things we shouldn't. 2614 */ 2615 ir_variable *const input_var = 2616 linker::get_matching_input(mem_ctx, matched_candidate->toplevel_var, 2617 consumer_inputs, 2618 consumer_interface_inputs, 2619 consumer_inputs_with_locations); 2620 if (input_var) 2621 input_var->data.always_active_io = 1; 2622 2623 if (matched_candidate->toplevel_var->data.is_unmatched_generic_inout) { 2624 matched_candidate->toplevel_var->data.is_xfb_only = 1; 2625 matches.record(matched_candidate->toplevel_var, NULL); 2626 } 2627 } 2628 2629 _mesa_hash_table_destroy(consumer_inputs, NULL); 2630 _mesa_hash_table_destroy(consumer_interface_inputs, NULL); 2631 2632 uint8_t components[MAX_VARYINGS_INCL_PATCH] = {0}; 2633 const unsigned slots_used = matches.assign_locations( 2634 prog, components, reserved_slots); 2635 matches.store_locations(); 2636 2637 for (unsigned i = 0; i < num_tfeedback_decls; ++i) { 2638 if (tfeedback_decls[i].is_varying()) { 2639 if (!tfeedback_decls[i].assign_location(ctx, prog)) { 2640 _mesa_hash_table_destroy(tfeedback_candidates, NULL); 2641 return false; 2642 } 2643 } 2644 } 2645 _mesa_hash_table_destroy(tfeedback_candidates, NULL); 2646 2647 if (consumer && producer) { 2648 foreach_in_list(ir_instruction, node, consumer->ir) { 2649 ir_variable *const var = node->as_variable(); 2650 2651 if (var && var->data.mode == ir_var_shader_in && 2652 var->data.is_unmatched_generic_inout) { 2653 if (!prog->IsES && prog->data->Version <= 120) { 2654 /* On page 25 (page 31 of the PDF) of the GLSL 1.20 spec: 2655 * 2656 * Only those varying variables used (i.e. read) in 2657 * the fragment shader executable must be written to 2658 * by the vertex shader executable; declaring 2659 * superfluous varying variables in a vertex shader is 2660 * permissible. 2661 * 2662 * We interpret this text as meaning that the VS must 2663 * write the variable for the FS to read it. See 2664 * "glsl1-varying read but not written" in piglit. 2665 */ 2666 linker_error(prog, "%s shader varying %s not written " 2667 "by %s shader\n.", 2668 _mesa_shader_stage_to_string(consumer->Stage), 2669 var->name, 2670 _mesa_shader_stage_to_string(producer->Stage)); 2671 } else { 2672 linker_warning(prog, "%s shader varying %s not written " 2673 "by %s shader\n.", 2674 _mesa_shader_stage_to_string(consumer->Stage), 2675 var->name, 2676 _mesa_shader_stage_to_string(producer->Stage)); 2677 } 2678 } 2679 } 2680 2681 /* Now that validation is done its safe to remove unused varyings. As 2682 * we have both a producer and consumer its safe to remove unused 2683 * varyings even if the program is a SSO because the stages are being 2684 * linked together i.e. we have a multi-stage SSO. 2685 */ 2686 remove_unused_shader_inputs_and_outputs(false, producer, 2687 ir_var_shader_out); 2688 remove_unused_shader_inputs_and_outputs(false, consumer, 2689 ir_var_shader_in); 2690 } 2691 2692 if (producer) { 2693 lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_out, 2694 0, producer, disable_varying_packing, 2695 xfb_enabled); 2696 } 2697 2698 if (consumer) { 2699 lower_packed_varyings(mem_ctx, slots_used, components, ir_var_shader_in, 2700 consumer_vertices, consumer, 2701 disable_varying_packing, xfb_enabled); 2702 } 2703 2704 return true; 2705} 2706 2707static bool 2708check_against_output_limit(struct gl_context *ctx, 2709 struct gl_shader_program *prog, 2710 gl_linked_shader *producer, 2711 unsigned num_explicit_locations) 2712{ 2713 unsigned output_vectors = num_explicit_locations; 2714 2715 foreach_in_list(ir_instruction, node, producer->ir) { 2716 ir_variable *const var = node->as_variable(); 2717 2718 if (var && !var->data.explicit_location && 2719 var->data.mode == ir_var_shader_out && 2720 var_counts_against_varying_limit(producer->Stage, var)) { 2721 /* outputs for fragment shader can't be doubles */ 2722 output_vectors += var->type->count_attribute_slots(false); 2723 } 2724 } 2725 2726 assert(producer->Stage != MESA_SHADER_FRAGMENT); 2727 unsigned max_output_components = 2728 ctx->Const.Program[producer->Stage].MaxOutputComponents; 2729 2730 const unsigned output_components = output_vectors * 4; 2731 if (output_components > max_output_components) { 2732 if (ctx->API == API_OPENGLES2 || prog->IsES) 2733 linker_error(prog, "%s shader uses too many output vectors " 2734 "(%u > %u)\n", 2735 _mesa_shader_stage_to_string(producer->Stage), 2736 output_vectors, 2737 max_output_components / 4); 2738 else 2739 linker_error(prog, "%s shader uses too many output components " 2740 "(%u > %u)\n", 2741 _mesa_shader_stage_to_string(producer->Stage), 2742 output_components, 2743 max_output_components); 2744 2745 return false; 2746 } 2747 2748 return true; 2749} 2750 2751static bool 2752check_against_input_limit(struct gl_context *ctx, 2753 struct gl_shader_program *prog, 2754 gl_linked_shader *consumer, 2755 unsigned num_explicit_locations) 2756{ 2757 unsigned input_vectors = num_explicit_locations; 2758 2759 foreach_in_list(ir_instruction, node, consumer->ir) { 2760 ir_variable *const var = node->as_variable(); 2761 2762 if (var && !var->data.explicit_location && 2763 var->data.mode == ir_var_shader_in && 2764 var_counts_against_varying_limit(consumer->Stage, var)) { 2765 /* vertex inputs aren't varying counted */ 2766 input_vectors += var->type->count_attribute_slots(false); 2767 } 2768 } 2769 2770 assert(consumer->Stage != MESA_SHADER_VERTEX); 2771 unsigned max_input_components = 2772 ctx->Const.Program[consumer->Stage].MaxInputComponents; 2773 2774 const unsigned input_components = input_vectors * 4; 2775 if (input_components > max_input_components) { 2776 if (ctx->API == API_OPENGLES2 || prog->IsES) 2777 linker_error(prog, "%s shader uses too many input vectors " 2778 "(%u > %u)\n", 2779 _mesa_shader_stage_to_string(consumer->Stage), 2780 input_vectors, 2781 max_input_components / 4); 2782 else 2783 linker_error(prog, "%s shader uses too many input components " 2784 "(%u > %u)\n", 2785 _mesa_shader_stage_to_string(consumer->Stage), 2786 input_components, 2787 max_input_components); 2788 2789 return false; 2790 } 2791 2792 return true; 2793} 2794 2795bool 2796link_varyings(struct gl_shader_program *prog, unsigned first, unsigned last, 2797 struct gl_context *ctx, void *mem_ctx) 2798{ 2799 bool has_xfb_qualifiers = false; 2800 unsigned num_tfeedback_decls = 0; 2801 char **varying_names = NULL; 2802 tfeedback_decl *tfeedback_decls = NULL; 2803 2804 /* From the ARB_enhanced_layouts spec: 2805 * 2806 * "If the shader used to record output variables for transform feedback 2807 * varyings uses the "xfb_buffer", "xfb_offset", or "xfb_stride" layout 2808 * qualifiers, the values specified by TransformFeedbackVaryings are 2809 * ignored, and the set of variables captured for transform feedback is 2810 * instead derived from the specified layout qualifiers." 2811 */ 2812 for (int i = MESA_SHADER_FRAGMENT - 1; i >= 0; i--) { 2813 /* Find last stage before fragment shader */ 2814 if (prog->_LinkedShaders[i]) { 2815 has_xfb_qualifiers = 2816 process_xfb_layout_qualifiers(mem_ctx, prog->_LinkedShaders[i], 2817 prog, &num_tfeedback_decls, 2818 &varying_names); 2819 break; 2820 } 2821 } 2822 2823 if (!has_xfb_qualifiers) { 2824 num_tfeedback_decls = prog->TransformFeedback.NumVarying; 2825 varying_names = prog->TransformFeedback.VaryingNames; 2826 } 2827 2828 if (num_tfeedback_decls != 0) { 2829 /* From GL_EXT_transform_feedback: 2830 * A program will fail to link if: 2831 * 2832 * * the <count> specified by TransformFeedbackVaryingsEXT is 2833 * non-zero, but the program object has no vertex or geometry 2834 * shader; 2835 */ 2836 if (first >= MESA_SHADER_FRAGMENT) { 2837 linker_error(prog, "Transform feedback varyings specified, but " 2838 "no vertex, tessellation, or geometry shader is " 2839 "present.\n"); 2840 return false; 2841 } 2842 2843 tfeedback_decls = rzalloc_array(mem_ctx, tfeedback_decl, 2844 num_tfeedback_decls); 2845 if (!parse_tfeedback_decls(ctx, prog, mem_ctx, num_tfeedback_decls, 2846 varying_names, tfeedback_decls)) 2847 return false; 2848 } 2849 2850 /* If there is no fragment shader we need to set transform feedback. 2851 * 2852 * For SSO we also need to assign output locations. We assign them here 2853 * because we need to do it for both single stage programs and multi stage 2854 * programs. 2855 */ 2856 if (last < MESA_SHADER_FRAGMENT && 2857 (num_tfeedback_decls != 0 || prog->SeparateShader)) { 2858 const uint64_t reserved_out_slots = 2859 reserved_varying_slot(prog->_LinkedShaders[last], ir_var_shader_out); 2860 if (!assign_varying_locations(ctx, mem_ctx, prog, 2861 prog->_LinkedShaders[last], NULL, 2862 num_tfeedback_decls, tfeedback_decls, 2863 reserved_out_slots)) 2864 return false; 2865 } 2866 2867 if (last <= MESA_SHADER_FRAGMENT) { 2868 /* Remove unused varyings from the first/last stage unless SSO */ 2869 remove_unused_shader_inputs_and_outputs(prog->SeparateShader, 2870 prog->_LinkedShaders[first], 2871 ir_var_shader_in); 2872 remove_unused_shader_inputs_and_outputs(prog->SeparateShader, 2873 prog->_LinkedShaders[last], 2874 ir_var_shader_out); 2875 2876 /* If the program is made up of only a single stage */ 2877 if (first == last) { 2878 gl_linked_shader *const sh = prog->_LinkedShaders[last]; 2879 2880 do_dead_builtin_varyings(ctx, NULL, sh, 0, NULL); 2881 do_dead_builtin_varyings(ctx, sh, NULL, num_tfeedback_decls, 2882 tfeedback_decls); 2883 2884 if (prog->SeparateShader) { 2885 const uint64_t reserved_slots = 2886 reserved_varying_slot(sh, ir_var_shader_in); 2887 2888 /* Assign input locations for SSO, output locations are already 2889 * assigned. 2890 */ 2891 if (!assign_varying_locations(ctx, mem_ctx, prog, 2892 NULL /* producer */, 2893 sh /* consumer */, 2894 0 /* num_tfeedback_decls */, 2895 NULL /* tfeedback_decls */, 2896 reserved_slots)) 2897 return false; 2898 } 2899 } else { 2900 /* Linking the stages in the opposite order (from fragment to vertex) 2901 * ensures that inter-shader outputs written to in an earlier stage 2902 * are eliminated if they are (transitively) not used in a later 2903 * stage. 2904 */ 2905 int next = last; 2906 for (int i = next - 1; i >= 0; i--) { 2907 if (prog->_LinkedShaders[i] == NULL && i != 0) 2908 continue; 2909 2910 gl_linked_shader *const sh_i = prog->_LinkedShaders[i]; 2911 gl_linked_shader *const sh_next = prog->_LinkedShaders[next]; 2912 2913 const uint64_t reserved_out_slots = 2914 reserved_varying_slot(sh_i, ir_var_shader_out); 2915 const uint64_t reserved_in_slots = 2916 reserved_varying_slot(sh_next, ir_var_shader_in); 2917 2918 do_dead_builtin_varyings(ctx, sh_i, sh_next, 2919 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0, 2920 tfeedback_decls); 2921 2922 if (!assign_varying_locations(ctx, mem_ctx, prog, sh_i, sh_next, 2923 next == MESA_SHADER_FRAGMENT ? num_tfeedback_decls : 0, 2924 tfeedback_decls, 2925 reserved_out_slots | reserved_in_slots)) 2926 return false; 2927 2928 /* This must be done after all dead varyings are eliminated. */ 2929 if (sh_i != NULL) { 2930 unsigned slots_used = util_bitcount64(reserved_out_slots); 2931 if (!check_against_output_limit(ctx, prog, sh_i, slots_used)) { 2932 return false; 2933 } 2934 } 2935 2936 unsigned slots_used = util_bitcount64(reserved_in_slots); 2937 if (!check_against_input_limit(ctx, prog, sh_next, slots_used)) 2938 return false; 2939 2940 next = i; 2941 } 2942 } 2943 } 2944 2945 if (!store_tfeedback_info(ctx, prog, num_tfeedback_decls, tfeedback_decls, 2946 has_xfb_qualifiers)) 2947 return false; 2948 2949 return true; 2950} 2951