linker.cpp revision 01e04c3f
1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24/** 25 * \file linker.cpp 26 * GLSL linker implementation 27 * 28 * Given a set of shaders that are to be linked to generate a final program, 29 * there are three distinct stages. 30 * 31 * In the first stage shaders are partitioned into groups based on the shader 32 * type. All shaders of a particular type (e.g., vertex shaders) are linked 33 * together. 34 * 35 * - Undefined references in each shader are resolve to definitions in 36 * another shader. 37 * - Types and qualifiers of uniforms, outputs, and global variables defined 38 * in multiple shaders with the same name are verified to be the same. 39 * - Initializers for uniforms and global variables defined 40 * in multiple shaders with the same name are verified to be the same. 41 * 42 * The result, in the terminology of the GLSL spec, is a set of shader 43 * executables for each processing unit. 44 * 45 * After the first stage is complete, a series of semantic checks are performed 46 * on each of the shader executables. 47 * 48 * - Each shader executable must define a \c main function. 49 * - Each vertex shader executable must write to \c gl_Position. 50 * - Each fragment shader executable must write to either \c gl_FragData or 51 * \c gl_FragColor. 52 * 53 * In the final stage individual shader executables are linked to create a 54 * complete exectuable. 55 * 56 * - Types of uniforms defined in multiple shader stages with the same name 57 * are verified to be the same. 58 * - Initializers for uniforms defined in multiple shader stages with the 59 * same name are verified to be the same. 60 * - Types and qualifiers of outputs defined in one stage are verified to 61 * be the same as the types and qualifiers of inputs defined with the same 62 * name in a later stage. 63 * 64 * \author Ian Romanick <ian.d.romanick@intel.com> 65 */ 66 67#include <ctype.h> 68#include "util/strndup.h" 69#include "glsl_symbol_table.h" 70#include "glsl_parser_extras.h" 71#include "ir.h" 72#include "program.h" 73#include "program/prog_instruction.h" 74#include "program/program.h" 75#include "util/mesa-sha1.h" 76#include "util/set.h" 77#include "string_to_uint_map.h" 78#include "linker.h" 79#include "linker_util.h" 80#include "link_varyings.h" 81#include "ir_optimization.h" 82#include "ir_rvalue_visitor.h" 83#include "ir_uniform.h" 84#include "builtin_functions.h" 85#include "shader_cache.h" 86#include "util/u_string.h" 87#include "util/u_math.h" 88 89#include "main/imports.h" 90#include "main/shaderobj.h" 91#include "main/enums.h" 92#include "main/mtypes.h" 93 94 95namespace { 96 97struct find_variable { 98 const char *name; 99 bool found; 100 101 find_variable(const char *name) : name(name), found(false) {} 102}; 103 104/** 105 * Visitor that determines whether or not a variable is ever written. 106 * 107 * Use \ref find_assignments for convenience. 108 */ 109class find_assignment_visitor : public ir_hierarchical_visitor { 110public: 111 find_assignment_visitor(unsigned num_vars, 112 find_variable * const *vars) 113 : num_variables(num_vars), num_found(0), variables(vars) 114 { 115 } 116 117 virtual ir_visitor_status visit_enter(ir_assignment *ir) 118 { 119 ir_variable *const var = ir->lhs->variable_referenced(); 120 121 return check_variable_name(var->name); 122 } 123 124 virtual ir_visitor_status visit_enter(ir_call *ir) 125 { 126 foreach_two_lists(formal_node, &ir->callee->parameters, 127 actual_node, &ir->actual_parameters) { 128 ir_rvalue *param_rval = (ir_rvalue *) actual_node; 129 ir_variable *sig_param = (ir_variable *) formal_node; 130 131 if (sig_param->data.mode == ir_var_function_out || 132 sig_param->data.mode == ir_var_function_inout) { 133 ir_variable *var = param_rval->variable_referenced(); 134 if (var && check_variable_name(var->name) == visit_stop) 135 return visit_stop; 136 } 137 } 138 139 if (ir->return_deref != NULL) { 140 ir_variable *const var = ir->return_deref->variable_referenced(); 141 142 if (check_variable_name(var->name) == visit_stop) 143 return visit_stop; 144 } 145 146 return visit_continue_with_parent; 147 } 148 149private: 150 ir_visitor_status check_variable_name(const char *name) 151 { 152 for (unsigned i = 0; i < num_variables; ++i) { 153 if (strcmp(variables[i]->name, name) == 0) { 154 if (!variables[i]->found) { 155 variables[i]->found = true; 156 157 assert(num_found < num_variables); 158 if (++num_found == num_variables) 159 return visit_stop; 160 } 161 break; 162 } 163 } 164 165 return visit_continue_with_parent; 166 } 167 168private: 169 unsigned num_variables; /**< Number of variables to find */ 170 unsigned num_found; /**< Number of variables already found */ 171 find_variable * const *variables; /**< Variables to find */ 172}; 173 174/** 175 * Determine whether or not any of NULL-terminated list of variables is ever 176 * written to. 177 */ 178static void 179find_assignments(exec_list *ir, find_variable * const *vars) 180{ 181 unsigned num_variables = 0; 182 183 for (find_variable * const *v = vars; *v; ++v) 184 num_variables++; 185 186 find_assignment_visitor visitor(num_variables, vars); 187 visitor.run(ir); 188} 189 190/** 191 * Determine whether or not the given variable is ever written to. 192 */ 193static void 194find_assignments(exec_list *ir, find_variable *var) 195{ 196 find_assignment_visitor visitor(1, &var); 197 visitor.run(ir); 198} 199 200/** 201 * Visitor that determines whether or not a variable is ever read. 202 */ 203class find_deref_visitor : public ir_hierarchical_visitor { 204public: 205 find_deref_visitor(const char *name) 206 : name(name), found(false) 207 { 208 /* empty */ 209 } 210 211 virtual ir_visitor_status visit(ir_dereference_variable *ir) 212 { 213 if (strcmp(this->name, ir->var->name) == 0) { 214 this->found = true; 215 return visit_stop; 216 } 217 218 return visit_continue; 219 } 220 221 bool variable_found() const 222 { 223 return this->found; 224 } 225 226private: 227 const char *name; /**< Find writes to a variable with this name. */ 228 bool found; /**< Was a write to the variable found? */ 229}; 230 231 232/** 233 * A visitor helper that provides methods for updating the types of 234 * ir_dereferences. Classes that update variable types (say, updating 235 * array sizes) will want to use this so that dereference types stay in sync. 236 */ 237class deref_type_updater : public ir_hierarchical_visitor { 238public: 239 virtual ir_visitor_status visit(ir_dereference_variable *ir) 240 { 241 ir->type = ir->var->type; 242 return visit_continue; 243 } 244 245 virtual ir_visitor_status visit_leave(ir_dereference_array *ir) 246 { 247 const glsl_type *const vt = ir->array->type; 248 if (vt->is_array()) 249 ir->type = vt->fields.array; 250 return visit_continue; 251 } 252 253 virtual ir_visitor_status visit_leave(ir_dereference_record *ir) 254 { 255 ir->type = ir->record->type->fields.structure[ir->field_idx].type; 256 return visit_continue; 257 } 258}; 259 260 261class array_resize_visitor : public deref_type_updater { 262public: 263 unsigned num_vertices; 264 gl_shader_program *prog; 265 gl_shader_stage stage; 266 267 array_resize_visitor(unsigned num_vertices, 268 gl_shader_program *prog, 269 gl_shader_stage stage) 270 { 271 this->num_vertices = num_vertices; 272 this->prog = prog; 273 this->stage = stage; 274 } 275 276 virtual ~array_resize_visitor() 277 { 278 /* empty */ 279 } 280 281 virtual ir_visitor_status visit(ir_variable *var) 282 { 283 if (!var->type->is_array() || var->data.mode != ir_var_shader_in || 284 var->data.patch) 285 return visit_continue; 286 287 unsigned size = var->type->length; 288 289 if (stage == MESA_SHADER_GEOMETRY) { 290 /* Generate a link error if the shader has declared this array with 291 * an incorrect size. 292 */ 293 if (!var->data.implicit_sized_array && 294 size && size != this->num_vertices) { 295 linker_error(this->prog, "size of array %s declared as %u, " 296 "but number of input vertices is %u\n", 297 var->name, size, this->num_vertices); 298 return visit_continue; 299 } 300 301 /* Generate a link error if the shader attempts to access an input 302 * array using an index too large for its actual size assigned at 303 * link time. 304 */ 305 if (var->data.max_array_access >= (int)this->num_vertices) { 306 linker_error(this->prog, "%s shader accesses element %i of " 307 "%s, but only %i input vertices\n", 308 _mesa_shader_stage_to_string(this->stage), 309 var->data.max_array_access, var->name, this->num_vertices); 310 return visit_continue; 311 } 312 } 313 314 var->type = glsl_type::get_array_instance(var->type->fields.array, 315 this->num_vertices); 316 var->data.max_array_access = this->num_vertices - 1; 317 318 return visit_continue; 319 } 320}; 321 322/** 323 * Visitor that determines the highest stream id to which a (geometry) shader 324 * emits vertices. It also checks whether End{Stream}Primitive is ever called. 325 */ 326class find_emit_vertex_visitor : public ir_hierarchical_visitor { 327public: 328 find_emit_vertex_visitor(int max_allowed) 329 : max_stream_allowed(max_allowed), 330 invalid_stream_id(0), 331 invalid_stream_id_from_emit_vertex(false), 332 end_primitive_found(false), 333 uses_non_zero_stream(false) 334 { 335 /* empty */ 336 } 337 338 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir) 339 { 340 int stream_id = ir->stream_id(); 341 342 if (stream_id < 0) { 343 invalid_stream_id = stream_id; 344 invalid_stream_id_from_emit_vertex = true; 345 return visit_stop; 346 } 347 348 if (stream_id > max_stream_allowed) { 349 invalid_stream_id = stream_id; 350 invalid_stream_id_from_emit_vertex = true; 351 return visit_stop; 352 } 353 354 if (stream_id != 0) 355 uses_non_zero_stream = true; 356 357 return visit_continue; 358 } 359 360 virtual ir_visitor_status visit_leave(ir_end_primitive *ir) 361 { 362 end_primitive_found = true; 363 364 int stream_id = ir->stream_id(); 365 366 if (stream_id < 0) { 367 invalid_stream_id = stream_id; 368 invalid_stream_id_from_emit_vertex = false; 369 return visit_stop; 370 } 371 372 if (stream_id > max_stream_allowed) { 373 invalid_stream_id = stream_id; 374 invalid_stream_id_from_emit_vertex = false; 375 return visit_stop; 376 } 377 378 if (stream_id != 0) 379 uses_non_zero_stream = true; 380 381 return visit_continue; 382 } 383 384 bool error() 385 { 386 return invalid_stream_id != 0; 387 } 388 389 const char *error_func() 390 { 391 return invalid_stream_id_from_emit_vertex ? 392 "EmitStreamVertex" : "EndStreamPrimitive"; 393 } 394 395 int error_stream() 396 { 397 return invalid_stream_id; 398 } 399 400 bool uses_streams() 401 { 402 return uses_non_zero_stream; 403 } 404 405 bool uses_end_primitive() 406 { 407 return end_primitive_found; 408 } 409 410private: 411 int max_stream_allowed; 412 int invalid_stream_id; 413 bool invalid_stream_id_from_emit_vertex; 414 bool end_primitive_found; 415 bool uses_non_zero_stream; 416}; 417 418/* Class that finds array derefs and check if indexes are dynamic. */ 419class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor 420{ 421public: 422 dynamic_sampler_array_indexing_visitor() : 423 dynamic_sampler_array_indexing(false) 424 { 425 } 426 427 ir_visitor_status visit_enter(ir_dereference_array *ir) 428 { 429 if (!ir->variable_referenced()) 430 return visit_continue; 431 432 if (!ir->variable_referenced()->type->contains_sampler()) 433 return visit_continue; 434 435 if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) { 436 dynamic_sampler_array_indexing = true; 437 return visit_stop; 438 } 439 return visit_continue; 440 } 441 442 bool uses_dynamic_sampler_array_indexing() 443 { 444 return dynamic_sampler_array_indexing; 445 } 446 447private: 448 bool dynamic_sampler_array_indexing; 449}; 450 451} /* anonymous namespace */ 452 453void 454linker_error(gl_shader_program *prog, const char *fmt, ...) 455{ 456 va_list ap; 457 458 ralloc_strcat(&prog->data->InfoLog, "error: "); 459 va_start(ap, fmt); 460 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap); 461 va_end(ap); 462 463 prog->data->LinkStatus = LINKING_FAILURE; 464} 465 466 467void 468linker_warning(gl_shader_program *prog, const char *fmt, ...) 469{ 470 va_list ap; 471 472 ralloc_strcat(&prog->data->InfoLog, "warning: "); 473 va_start(ap, fmt); 474 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap); 475 va_end(ap); 476 477} 478 479 480/** 481 * Given a string identifying a program resource, break it into a base name 482 * and an optional array index in square brackets. 483 * 484 * If an array index is present, \c out_base_name_end is set to point to the 485 * "[" that precedes the array index, and the array index itself is returned 486 * as a long. 487 * 488 * If no array index is present (or if the array index is negative or 489 * mal-formed), \c out_base_name_end, is set to point to the null terminator 490 * at the end of the input string, and -1 is returned. 491 * 492 * Only the final array index is parsed; if the string contains other array 493 * indices (or structure field accesses), they are left in the base name. 494 * 495 * No attempt is made to check that the base name is properly formed; 496 * typically the caller will look up the base name in a hash table, so 497 * ill-formed base names simply turn into hash table lookup failures. 498 */ 499long 500parse_program_resource_name(const GLchar *name, 501 const GLchar **out_base_name_end) 502{ 503 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says: 504 * 505 * "When an integer array element or block instance number is part of 506 * the name string, it will be specified in decimal form without a "+" 507 * or "-" sign or any extra leading zeroes. Additionally, the name 508 * string will not include white space anywhere in the string." 509 */ 510 511 const size_t len = strlen(name); 512 *out_base_name_end = name + len; 513 514 if (len == 0 || name[len-1] != ']') 515 return -1; 516 517 /* Walk backwards over the string looking for a non-digit character. This 518 * had better be the opening bracket for an array index. 519 * 520 * Initially, i specifies the location of the ']'. Since the string may 521 * contain only the ']' charcater, walk backwards very carefully. 522 */ 523 unsigned i; 524 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i) 525 /* empty */ ; 526 527 if ((i == 0) || name[i-1] != '[') 528 return -1; 529 530 long array_index = strtol(&name[i], NULL, 10); 531 if (array_index < 0) 532 return -1; 533 534 /* Check for leading zero */ 535 if (name[i] == '0' && name[i+1] != ']') 536 return -1; 537 538 *out_base_name_end = name + (i - 1); 539 return array_index; 540} 541 542 543void 544link_invalidate_variable_locations(exec_list *ir) 545{ 546 foreach_in_list(ir_instruction, node, ir) { 547 ir_variable *const var = node->as_variable(); 548 549 if (var == NULL) 550 continue; 551 552 /* Only assign locations for variables that lack an explicit location. 553 * Explicit locations are set for all built-in variables, generic vertex 554 * shader inputs (via layout(location=...)), and generic fragment shader 555 * outputs (also via layout(location=...)). 556 */ 557 if (!var->data.explicit_location) { 558 var->data.location = -1; 559 var->data.location_frac = 0; 560 } 561 562 /* ir_variable::is_unmatched_generic_inout is used by the linker while 563 * connecting outputs from one stage to inputs of the next stage. 564 */ 565 if (var->data.explicit_location && 566 var->data.location < VARYING_SLOT_VAR0) { 567 var->data.is_unmatched_generic_inout = 0; 568 } else { 569 var->data.is_unmatched_generic_inout = 1; 570 } 571 } 572} 573 574 575/** 576 * Set clip_distance_array_size based and cull_distance_array_size on the given 577 * shader. 578 * 579 * Also check for errors based on incorrect usage of gl_ClipVertex and 580 * gl_ClipDistance and gl_CullDistance. 581 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance 582 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances. 583 * 584 * Return false if an error was reported. 585 */ 586static void 587analyze_clip_cull_usage(struct gl_shader_program *prog, 588 struct gl_linked_shader *shader, 589 struct gl_context *ctx, 590 GLuint *clip_distance_array_size, 591 GLuint *cull_distance_array_size) 592{ 593 *clip_distance_array_size = 0; 594 *cull_distance_array_size = 0; 595 596 if (prog->data->Version >= (prog->IsES ? 300 : 130)) { 597 /* From section 7.1 (Vertex Shader Special Variables) of the 598 * GLSL 1.30 spec: 599 * 600 * "It is an error for a shader to statically write both 601 * gl_ClipVertex and gl_ClipDistance." 602 * 603 * This does not apply to GLSL ES shaders, since GLSL ES defines neither 604 * gl_ClipVertex nor gl_ClipDistance. However with 605 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0. 606 */ 607 find_variable gl_ClipDistance("gl_ClipDistance"); 608 find_variable gl_CullDistance("gl_CullDistance"); 609 find_variable gl_ClipVertex("gl_ClipVertex"); 610 find_variable * const variables[] = { 611 &gl_ClipDistance, 612 &gl_CullDistance, 613 !prog->IsES ? &gl_ClipVertex : NULL, 614 NULL 615 }; 616 find_assignments(shader->ir, variables); 617 618 /* From the ARB_cull_distance spec: 619 * 620 * It is a compile-time or link-time error for the set of shaders forming 621 * a program to statically read or write both gl_ClipVertex and either 622 * gl_ClipDistance or gl_CullDistance. 623 * 624 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define 625 * gl_ClipVertex. 626 */ 627 if (!prog->IsES) { 628 if (gl_ClipVertex.found && gl_ClipDistance.found) { 629 linker_error(prog, "%s shader writes to both `gl_ClipVertex' " 630 "and `gl_ClipDistance'\n", 631 _mesa_shader_stage_to_string(shader->Stage)); 632 return; 633 } 634 if (gl_ClipVertex.found && gl_CullDistance.found) { 635 linker_error(prog, "%s shader writes to both `gl_ClipVertex' " 636 "and `gl_CullDistance'\n", 637 _mesa_shader_stage_to_string(shader->Stage)); 638 return; 639 } 640 } 641 642 if (gl_ClipDistance.found) { 643 ir_variable *clip_distance_var = 644 shader->symbols->get_variable("gl_ClipDistance"); 645 assert(clip_distance_var); 646 *clip_distance_array_size = clip_distance_var->type->length; 647 } 648 if (gl_CullDistance.found) { 649 ir_variable *cull_distance_var = 650 shader->symbols->get_variable("gl_CullDistance"); 651 assert(cull_distance_var); 652 *cull_distance_array_size = cull_distance_var->type->length; 653 } 654 /* From the ARB_cull_distance spec: 655 * 656 * It is a compile-time or link-time error for the set of shaders forming 657 * a program to have the sum of the sizes of the gl_ClipDistance and 658 * gl_CullDistance arrays to be larger than 659 * gl_MaxCombinedClipAndCullDistances. 660 */ 661 if ((*clip_distance_array_size + *cull_distance_array_size) > 662 ctx->Const.MaxClipPlanes) { 663 linker_error(prog, "%s shader: the combined size of " 664 "'gl_ClipDistance' and 'gl_CullDistance' size cannot " 665 "be larger than " 666 "gl_MaxCombinedClipAndCullDistances (%u)", 667 _mesa_shader_stage_to_string(shader->Stage), 668 ctx->Const.MaxClipPlanes); 669 } 670 } 671} 672 673 674/** 675 * Verify that a vertex shader executable meets all semantic requirements. 676 * 677 * Also sets info.clip_distance_array_size and 678 * info.cull_distance_array_size as a side effect. 679 * 680 * \param shader Vertex shader executable to be verified 681 */ 682static void 683validate_vertex_shader_executable(struct gl_shader_program *prog, 684 struct gl_linked_shader *shader, 685 struct gl_context *ctx) 686{ 687 if (shader == NULL) 688 return; 689 690 /* From the GLSL 1.10 spec, page 48: 691 * 692 * "The variable gl_Position is available only in the vertex 693 * language and is intended for writing the homogeneous vertex 694 * position. All executions of a well-formed vertex shader 695 * executable must write a value into this variable. [...] The 696 * variable gl_Position is available only in the vertex 697 * language and is intended for writing the homogeneous vertex 698 * position. All executions of a well-formed vertex shader 699 * executable must write a value into this variable." 700 * 701 * while in GLSL 1.40 this text is changed to: 702 * 703 * "The variable gl_Position is available only in the vertex 704 * language and is intended for writing the homogeneous vertex 705 * position. It can be written at any time during shader 706 * execution. It may also be read back by a vertex shader 707 * after being written. This value will be used by primitive 708 * assembly, clipping, culling, and other fixed functionality 709 * operations, if present, that operate on primitives after 710 * vertex processing has occurred. Its value is undefined if 711 * the vertex shader executable does not write gl_Position." 712 * 713 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to 714 * gl_Position is not an error. 715 */ 716 if (prog->data->Version < (prog->IsES ? 300 : 140)) { 717 find_variable gl_Position("gl_Position"); 718 find_assignments(shader->ir, &gl_Position); 719 if (!gl_Position.found) { 720 if (prog->IsES) { 721 linker_warning(prog, 722 "vertex shader does not write to `gl_Position'. " 723 "Its value is undefined. \n"); 724 } else { 725 linker_error(prog, 726 "vertex shader does not write to `gl_Position'. \n"); 727 } 728 return; 729 } 730 } 731 732 analyze_clip_cull_usage(prog, shader, ctx, 733 &shader->Program->info.clip_distance_array_size, 734 &shader->Program->info.cull_distance_array_size); 735} 736 737static void 738validate_tess_eval_shader_executable(struct gl_shader_program *prog, 739 struct gl_linked_shader *shader, 740 struct gl_context *ctx) 741{ 742 if (shader == NULL) 743 return; 744 745 analyze_clip_cull_usage(prog, shader, ctx, 746 &shader->Program->info.clip_distance_array_size, 747 &shader->Program->info.cull_distance_array_size); 748} 749 750 751/** 752 * Verify that a fragment shader executable meets all semantic requirements 753 * 754 * \param shader Fragment shader executable to be verified 755 */ 756static void 757validate_fragment_shader_executable(struct gl_shader_program *prog, 758 struct gl_linked_shader *shader) 759{ 760 if (shader == NULL) 761 return; 762 763 find_variable gl_FragColor("gl_FragColor"); 764 find_variable gl_FragData("gl_FragData"); 765 find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL }; 766 find_assignments(shader->ir, variables); 767 768 if (gl_FragColor.found && gl_FragData.found) { 769 linker_error(prog, "fragment shader writes to both " 770 "`gl_FragColor' and `gl_FragData'\n"); 771 } 772} 773 774/** 775 * Verify that a geometry shader executable meets all semantic requirements 776 * 777 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand 778 * info.cull_distance_array_size as a side effect. 779 * 780 * \param shader Geometry shader executable to be verified 781 */ 782static void 783validate_geometry_shader_executable(struct gl_shader_program *prog, 784 struct gl_linked_shader *shader, 785 struct gl_context *ctx) 786{ 787 if (shader == NULL) 788 return; 789 790 unsigned num_vertices = 791 vertices_per_prim(shader->Program->info.gs.input_primitive); 792 prog->Geom.VerticesIn = num_vertices; 793 794 analyze_clip_cull_usage(prog, shader, ctx, 795 &shader->Program->info.clip_distance_array_size, 796 &shader->Program->info.cull_distance_array_size); 797} 798 799/** 800 * Check if geometry shaders emit to non-zero streams and do corresponding 801 * validations. 802 */ 803static void 804validate_geometry_shader_emissions(struct gl_context *ctx, 805 struct gl_shader_program *prog) 806{ 807 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY]; 808 809 if (sh != NULL) { 810 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1); 811 emit_vertex.run(sh->ir); 812 if (emit_vertex.error()) { 813 linker_error(prog, "Invalid call %s(%d). Accepted values for the " 814 "stream parameter are in the range [0, %d].\n", 815 emit_vertex.error_func(), 816 emit_vertex.error_stream(), 817 ctx->Const.MaxVertexStreams - 1); 818 } 819 prog->Geom.UsesStreams = emit_vertex.uses_streams(); 820 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive(); 821 822 /* From the ARB_gpu_shader5 spec: 823 * 824 * "Multiple vertex streams are supported only if the output primitive 825 * type is declared to be "points". A program will fail to link if it 826 * contains a geometry shader calling EmitStreamVertex() or 827 * EndStreamPrimitive() if its output primitive type is not "points". 828 * 829 * However, in the same spec: 830 * 831 * "The function EmitVertex() is equivalent to calling EmitStreamVertex() 832 * with <stream> set to zero." 833 * 834 * And: 835 * 836 * "The function EndPrimitive() is equivalent to calling 837 * EndStreamPrimitive() with <stream> set to zero." 838 * 839 * Since we can call EmitVertex() and EndPrimitive() when we output 840 * primitives other than points, calling EmitStreamVertex(0) or 841 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia 842 * does. Currently we only set prog->Geom.UsesStreams to TRUE when 843 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero 844 * stream. 845 */ 846 if (prog->Geom.UsesStreams && 847 sh->Program->info.gs.output_primitive != GL_POINTS) { 848 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) " 849 "with n>0 requires point output\n"); 850 } 851 } 852} 853 854bool 855validate_intrastage_arrays(struct gl_shader_program *prog, 856 ir_variable *const var, 857 ir_variable *const existing) 858{ 859 /* Consider the types to be "the same" if both types are arrays 860 * of the same type and one of the arrays is implicitly sized. 861 * In addition, set the type of the linked variable to the 862 * explicitly sized array. 863 */ 864 if (var->type->is_array() && existing->type->is_array()) { 865 if ((var->type->fields.array == existing->type->fields.array) && 866 ((var->type->length == 0)|| (existing->type->length == 0))) { 867 if (var->type->length != 0) { 868 if ((int)var->type->length <= existing->data.max_array_access) { 869 linker_error(prog, "%s `%s' declared as type " 870 "`%s' but outermost dimension has an index" 871 " of `%i'\n", 872 mode_string(var), 873 var->name, var->type->name, 874 existing->data.max_array_access); 875 } 876 existing->type = var->type; 877 return true; 878 } else if (existing->type->length != 0) { 879 if((int)existing->type->length <= var->data.max_array_access && 880 !existing->data.from_ssbo_unsized_array) { 881 linker_error(prog, "%s `%s' declared as type " 882 "`%s' but outermost dimension has an index" 883 " of `%i'\n", 884 mode_string(var), 885 var->name, existing->type->name, 886 var->data.max_array_access); 887 } 888 return true; 889 } 890 } 891 } 892 return false; 893} 894 895 896/** 897 * Perform validation of global variables used across multiple shaders 898 */ 899static void 900cross_validate_globals(struct gl_context *ctx, struct gl_shader_program *prog, 901 struct exec_list *ir, glsl_symbol_table *variables, 902 bool uniforms_only) 903{ 904 foreach_in_list(ir_instruction, node, ir) { 905 ir_variable *const var = node->as_variable(); 906 907 if (var == NULL) 908 continue; 909 910 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage)) 911 continue; 912 913 /* don't cross validate subroutine uniforms */ 914 if (var->type->contains_subroutine()) 915 continue; 916 917 /* Don't cross validate interface instances. These are only relevant 918 * inside a shader. The cross validation is done at the Interface Block 919 * name level. 920 */ 921 if (var->is_interface_instance()) 922 continue; 923 924 /* Don't cross validate temporaries that are at global scope. These 925 * will eventually get pulled into the shaders 'main'. 926 */ 927 if (var->data.mode == ir_var_temporary) 928 continue; 929 930 /* If a global with this name has already been seen, verify that the 931 * new instance has the same type. In addition, if the globals have 932 * initializers, the values of the initializers must be the same. 933 */ 934 ir_variable *const existing = variables->get_variable(var->name); 935 if (existing != NULL) { 936 /* Check if types match. */ 937 if (var->type != existing->type) { 938 if (!validate_intrastage_arrays(prog, var, existing)) { 939 /* If it is an unsized array in a Shader Storage Block, 940 * two different shaders can access to different elements. 941 * Because of that, they might be converted to different 942 * sized arrays, then check that they are compatible but 943 * ignore the array size. 944 */ 945 if (!(var->data.mode == ir_var_shader_storage && 946 var->data.from_ssbo_unsized_array && 947 existing->data.mode == ir_var_shader_storage && 948 existing->data.from_ssbo_unsized_array && 949 var->type->gl_type == existing->type->gl_type)) { 950 linker_error(prog, "%s `%s' declared as type " 951 "`%s' and type `%s'\n", 952 mode_string(var), 953 var->name, var->type->name, 954 existing->type->name); 955 return; 956 } 957 } 958 } 959 960 if (var->data.explicit_location) { 961 if (existing->data.explicit_location 962 && (var->data.location != existing->data.location)) { 963 linker_error(prog, "explicit locations for %s " 964 "`%s' have differing values\n", 965 mode_string(var), var->name); 966 return; 967 } 968 969 if (var->data.location_frac != existing->data.location_frac) { 970 linker_error(prog, "explicit components for %s `%s' have " 971 "differing values\n", mode_string(var), var->name); 972 return; 973 } 974 975 existing->data.location = var->data.location; 976 existing->data.explicit_location = true; 977 } else { 978 /* Check if uniform with implicit location was marked explicit 979 * by earlier shader stage. If so, mark it explicit in this stage 980 * too to make sure later processing does not treat it as 981 * implicit one. 982 */ 983 if (existing->data.explicit_location) { 984 var->data.location = existing->data.location; 985 var->data.explicit_location = true; 986 } 987 } 988 989 /* From the GLSL 4.20 specification: 990 * "A link error will result if two compilation units in a program 991 * specify different integer-constant bindings for the same 992 * opaque-uniform name. However, it is not an error to specify a 993 * binding on some but not all declarations for the same name" 994 */ 995 if (var->data.explicit_binding) { 996 if (existing->data.explicit_binding && 997 var->data.binding != existing->data.binding) { 998 linker_error(prog, "explicit bindings for %s " 999 "`%s' have differing values\n", 1000 mode_string(var), var->name); 1001 return; 1002 } 1003 1004 existing->data.binding = var->data.binding; 1005 existing->data.explicit_binding = true; 1006 } 1007 1008 if (var->type->contains_atomic() && 1009 var->data.offset != existing->data.offset) { 1010 linker_error(prog, "offset specifications for %s " 1011 "`%s' have differing values\n", 1012 mode_string(var), var->name); 1013 return; 1014 } 1015 1016 /* Validate layout qualifiers for gl_FragDepth. 1017 * 1018 * From the AMD/ARB_conservative_depth specs: 1019 * 1020 * "If gl_FragDepth is redeclared in any fragment shader in a 1021 * program, it must be redeclared in all fragment shaders in 1022 * that program that have static assignments to 1023 * gl_FragDepth. All redeclarations of gl_FragDepth in all 1024 * fragment shaders in a single program must have the same set 1025 * of qualifiers." 1026 */ 1027 if (strcmp(var->name, "gl_FragDepth") == 0) { 1028 bool layout_declared = var->data.depth_layout != ir_depth_layout_none; 1029 bool layout_differs = 1030 var->data.depth_layout != existing->data.depth_layout; 1031 1032 if (layout_declared && layout_differs) { 1033 linker_error(prog, 1034 "All redeclarations of gl_FragDepth in all " 1035 "fragment shaders in a single program must have " 1036 "the same set of qualifiers.\n"); 1037 } 1038 1039 if (var->data.used && layout_differs) { 1040 linker_error(prog, 1041 "If gl_FragDepth is redeclared with a layout " 1042 "qualifier in any fragment shader, it must be " 1043 "redeclared with the same layout qualifier in " 1044 "all fragment shaders that have assignments to " 1045 "gl_FragDepth\n"); 1046 } 1047 } 1048 1049 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says: 1050 * 1051 * "If a shared global has multiple initializers, the 1052 * initializers must all be constant expressions, and they 1053 * must all have the same value. Otherwise, a link error will 1054 * result. (A shared global having only one initializer does 1055 * not require that initializer to be a constant expression.)" 1056 * 1057 * Previous to 4.20 the GLSL spec simply said that initializers 1058 * must have the same value. In this case of non-constant 1059 * initializers, this was impossible to determine. As a result, 1060 * no vendor actually implemented that behavior. The 4.20 1061 * behavior matches the implemented behavior of at least one other 1062 * vendor, so we'll implement that for all GLSL versions. 1063 */ 1064 if (var->constant_initializer != NULL) { 1065 if (existing->constant_initializer != NULL) { 1066 if (!var->constant_initializer->has_value(existing->constant_initializer)) { 1067 linker_error(prog, "initializers for %s " 1068 "`%s' have differing values\n", 1069 mode_string(var), var->name); 1070 return; 1071 } 1072 } else { 1073 /* If the first-seen instance of a particular uniform did 1074 * not have an initializer but a later instance does, 1075 * replace the former with the later. 1076 */ 1077 variables->replace_variable(existing->name, var); 1078 } 1079 } 1080 1081 if (var->data.has_initializer) { 1082 if (existing->data.has_initializer 1083 && (var->constant_initializer == NULL 1084 || existing->constant_initializer == NULL)) { 1085 linker_error(prog, 1086 "shared global variable `%s' has multiple " 1087 "non-constant initializers.\n", 1088 var->name); 1089 return; 1090 } 1091 } 1092 1093 if (existing->data.invariant != var->data.invariant) { 1094 linker_error(prog, "declarations for %s `%s' have " 1095 "mismatching invariant qualifiers\n", 1096 mode_string(var), var->name); 1097 return; 1098 } 1099 if (existing->data.centroid != var->data.centroid) { 1100 linker_error(prog, "declarations for %s `%s' have " 1101 "mismatching centroid qualifiers\n", 1102 mode_string(var), var->name); 1103 return; 1104 } 1105 if (existing->data.sample != var->data.sample) { 1106 linker_error(prog, "declarations for %s `%s` have " 1107 "mismatching sample qualifiers\n", 1108 mode_string(var), var->name); 1109 return; 1110 } 1111 if (existing->data.image_format != var->data.image_format) { 1112 linker_error(prog, "declarations for %s `%s` have " 1113 "mismatching image format qualifiers\n", 1114 mode_string(var), var->name); 1115 return; 1116 } 1117 1118 /* Check the precision qualifier matches for uniform variables on 1119 * GLSL ES. 1120 */ 1121 if (!ctx->Const.AllowGLSLRelaxedES && 1122 prog->IsES && !var->get_interface_type() && 1123 existing->data.precision != var->data.precision) { 1124 if ((existing->data.used && var->data.used) || prog->data->Version >= 300) { 1125 linker_error(prog, "declarations for %s `%s` have " 1126 "mismatching precision qualifiers\n", 1127 mode_string(var), var->name); 1128 return; 1129 } else { 1130 linker_warning(prog, "declarations for %s `%s` have " 1131 "mismatching precision qualifiers\n", 1132 mode_string(var), var->name); 1133 } 1134 } 1135 1136 /* In OpenGL GLSL 3.20 spec, section 4.3.9: 1137 * 1138 * "It is a link-time error if any particular shader interface 1139 * contains: 1140 * 1141 * - two different blocks, each having no instance name, and each 1142 * having a member of the same name, or 1143 * 1144 * - a variable outside a block, and a block with no instance name, 1145 * where the variable has the same name as a member in the block." 1146 */ 1147 const glsl_type *var_itype = var->get_interface_type(); 1148 const glsl_type *existing_itype = existing->get_interface_type(); 1149 if (var_itype != existing_itype) { 1150 if (!var_itype || !existing_itype) { 1151 linker_error(prog, "declarations for %s `%s` are inside block " 1152 "`%s` and outside a block", 1153 mode_string(var), var->name, 1154 var_itype ? var_itype->name : existing_itype->name); 1155 return; 1156 } else if (strcmp(var_itype->name, existing_itype->name) != 0) { 1157 linker_error(prog, "declarations for %s `%s` are inside blocks " 1158 "`%s` and `%s`", 1159 mode_string(var), var->name, 1160 existing_itype->name, 1161 var_itype->name); 1162 return; 1163 } 1164 } 1165 } else 1166 variables->add_variable(var); 1167 } 1168} 1169 1170 1171/** 1172 * Perform validation of uniforms used across multiple shader stages 1173 */ 1174static void 1175cross_validate_uniforms(struct gl_context *ctx, 1176 struct gl_shader_program *prog) 1177{ 1178 glsl_symbol_table variables; 1179 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1180 if (prog->_LinkedShaders[i] == NULL) 1181 continue; 1182 1183 cross_validate_globals(ctx, prog, prog->_LinkedShaders[i]->ir, 1184 &variables, true); 1185 } 1186} 1187 1188/** 1189 * Accumulates the array of buffer blocks and checks that all definitions of 1190 * blocks agree on their contents. 1191 */ 1192static bool 1193interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog, 1194 bool validate_ssbo) 1195{ 1196 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES]; 1197 struct gl_uniform_block *blks = NULL; 1198 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks : 1199 &prog->data->NumUniformBlocks; 1200 1201 unsigned max_num_buffer_blocks = 0; 1202 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1203 if (prog->_LinkedShaders[i]) { 1204 if (validate_ssbo) { 1205 max_num_buffer_blocks += 1206 prog->_LinkedShaders[i]->Program->info.num_ssbos; 1207 } else { 1208 max_num_buffer_blocks += 1209 prog->_LinkedShaders[i]->Program->info.num_ubos; 1210 } 1211 } 1212 } 1213 1214 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1215 struct gl_linked_shader *sh = prog->_LinkedShaders[i]; 1216 1217 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks]; 1218 for (unsigned int j = 0; j < max_num_buffer_blocks; j++) 1219 InterfaceBlockStageIndex[i][j] = -1; 1220 1221 if (sh == NULL) 1222 continue; 1223 1224 unsigned sh_num_blocks; 1225 struct gl_uniform_block **sh_blks; 1226 if (validate_ssbo) { 1227 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos; 1228 sh_blks = sh->Program->sh.ShaderStorageBlocks; 1229 } else { 1230 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos; 1231 sh_blks = sh->Program->sh.UniformBlocks; 1232 } 1233 1234 for (unsigned int j = 0; j < sh_num_blocks; j++) { 1235 int index = link_cross_validate_uniform_block(prog->data, &blks, 1236 num_blks, sh_blks[j]); 1237 1238 if (index == -1) { 1239 linker_error(prog, "buffer block `%s' has mismatching " 1240 "definitions\n", sh_blks[j]->Name); 1241 1242 for (unsigned k = 0; k <= i; k++) { 1243 delete[] InterfaceBlockStageIndex[k]; 1244 } 1245 1246 /* Reset the block count. This will help avoid various segfaults 1247 * from api calls that assume the array exists due to the count 1248 * being non-zero. 1249 */ 1250 *num_blks = 0; 1251 return false; 1252 } 1253 1254 InterfaceBlockStageIndex[i][index] = j; 1255 } 1256 } 1257 1258 /* Update per stage block pointers to point to the program list. 1259 * FIXME: We should be able to free the per stage blocks here. 1260 */ 1261 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1262 for (unsigned j = 0; j < *num_blks; j++) { 1263 int stage_index = InterfaceBlockStageIndex[i][j]; 1264 1265 if (stage_index != -1) { 1266 struct gl_linked_shader *sh = prog->_LinkedShaders[i]; 1267 1268 struct gl_uniform_block **sh_blks = validate_ssbo ? 1269 sh->Program->sh.ShaderStorageBlocks : 1270 sh->Program->sh.UniformBlocks; 1271 1272 blks[j].stageref |= sh_blks[stage_index]->stageref; 1273 sh_blks[stage_index] = &blks[j]; 1274 } 1275 } 1276 } 1277 1278 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1279 delete[] InterfaceBlockStageIndex[i]; 1280 } 1281 1282 if (validate_ssbo) 1283 prog->data->ShaderStorageBlocks = blks; 1284 else 1285 prog->data->UniformBlocks = blks; 1286 1287 return true; 1288} 1289 1290/** 1291 * Verifies the invariance of built-in special variables. 1292 */ 1293static bool 1294validate_invariant_builtins(struct gl_shader_program *prog, 1295 const gl_linked_shader *vert, 1296 const gl_linked_shader *frag) 1297{ 1298 const ir_variable *var_vert; 1299 const ir_variable *var_frag; 1300 1301 if (!vert || !frag) 1302 return true; 1303 1304 /* 1305 * From OpenGL ES Shading Language 1.0 specification 1306 * (4.6.4 Invariance and Linkage): 1307 * "The invariance of varyings that are declared in both the vertex and 1308 * fragment shaders must match. For the built-in special variables, 1309 * gl_FragCoord can only be declared invariant if and only if 1310 * gl_Position is declared invariant. Similarly gl_PointCoord can only 1311 * be declared invariant if and only if gl_PointSize is declared 1312 * invariant. It is an error to declare gl_FrontFacing as invariant. 1313 * The invariance of gl_FrontFacing is the same as the invariance of 1314 * gl_Position." 1315 */ 1316 var_frag = frag->symbols->get_variable("gl_FragCoord"); 1317 if (var_frag && var_frag->data.invariant) { 1318 var_vert = vert->symbols->get_variable("gl_Position"); 1319 if (var_vert && !var_vert->data.invariant) { 1320 linker_error(prog, 1321 "fragment shader built-in `%s' has invariant qualifier, " 1322 "but vertex shader built-in `%s' lacks invariant qualifier\n", 1323 var_frag->name, var_vert->name); 1324 return false; 1325 } 1326 } 1327 1328 var_frag = frag->symbols->get_variable("gl_PointCoord"); 1329 if (var_frag && var_frag->data.invariant) { 1330 var_vert = vert->symbols->get_variable("gl_PointSize"); 1331 if (var_vert && !var_vert->data.invariant) { 1332 linker_error(prog, 1333 "fragment shader built-in `%s' has invariant qualifier, " 1334 "but vertex shader built-in `%s' lacks invariant qualifier\n", 1335 var_frag->name, var_vert->name); 1336 return false; 1337 } 1338 } 1339 1340 var_frag = frag->symbols->get_variable("gl_FrontFacing"); 1341 if (var_frag && var_frag->data.invariant) { 1342 linker_error(prog, 1343 "fragment shader built-in `%s' can not be declared as invariant\n", 1344 var_frag->name); 1345 return false; 1346 } 1347 1348 return true; 1349} 1350 1351/** 1352 * Populates a shaders symbol table with all global declarations 1353 */ 1354static void 1355populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols) 1356{ 1357 sh->symbols = new(sh) glsl_symbol_table; 1358 1359 _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols); 1360} 1361 1362 1363/** 1364 * Remap variables referenced in an instruction tree 1365 * 1366 * This is used when instruction trees are cloned from one shader and placed in 1367 * another. These trees will contain references to \c ir_variable nodes that 1368 * do not exist in the target shader. This function finds these \c ir_variable 1369 * references and replaces the references with matching variables in the target 1370 * shader. 1371 * 1372 * If there is no matching variable in the target shader, a clone of the 1373 * \c ir_variable is made and added to the target shader. The new variable is 1374 * added to \b both the instruction stream and the symbol table. 1375 * 1376 * \param inst IR tree that is to be processed. 1377 * \param symbols Symbol table containing global scope symbols in the 1378 * linked shader. 1379 * \param instructions Instruction stream where new variable declarations 1380 * should be added. 1381 */ 1382static void 1383remap_variables(ir_instruction *inst, struct gl_linked_shader *target, 1384 hash_table *temps) 1385{ 1386 class remap_visitor : public ir_hierarchical_visitor { 1387 public: 1388 remap_visitor(struct gl_linked_shader *target, hash_table *temps) 1389 { 1390 this->target = target; 1391 this->symbols = target->symbols; 1392 this->instructions = target->ir; 1393 this->temps = temps; 1394 } 1395 1396 virtual ir_visitor_status visit(ir_dereference_variable *ir) 1397 { 1398 if (ir->var->data.mode == ir_var_temporary) { 1399 hash_entry *entry = _mesa_hash_table_search(temps, ir->var); 1400 ir_variable *var = entry ? (ir_variable *) entry->data : NULL; 1401 1402 assert(var != NULL); 1403 ir->var = var; 1404 return visit_continue; 1405 } 1406 1407 ir_variable *const existing = 1408 this->symbols->get_variable(ir->var->name); 1409 if (existing != NULL) 1410 ir->var = existing; 1411 else { 1412 ir_variable *copy = ir->var->clone(this->target, NULL); 1413 1414 this->symbols->add_variable(copy); 1415 this->instructions->push_head(copy); 1416 ir->var = copy; 1417 } 1418 1419 return visit_continue; 1420 } 1421 1422 private: 1423 struct gl_linked_shader *target; 1424 glsl_symbol_table *symbols; 1425 exec_list *instructions; 1426 hash_table *temps; 1427 }; 1428 1429 remap_visitor v(target, temps); 1430 1431 inst->accept(&v); 1432} 1433 1434 1435/** 1436 * Move non-declarations from one instruction stream to another 1437 * 1438 * The intended usage pattern of this function is to pass the pointer to the 1439 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node 1440 * pointer) for \c last and \c false for \c make_copies on the first 1441 * call. Successive calls pass the return value of the previous call for 1442 * \c last and \c true for \c make_copies. 1443 * 1444 * \param instructions Source instruction stream 1445 * \param last Instruction after which new instructions should be 1446 * inserted in the target instruction stream 1447 * \param make_copies Flag selecting whether instructions in \c instructions 1448 * should be copied (via \c ir_instruction::clone) into the 1449 * target list or moved. 1450 * 1451 * \return 1452 * The new "last" instruction in the target instruction stream. This pointer 1453 * is suitable for use as the \c last parameter of a later call to this 1454 * function. 1455 */ 1456static exec_node * 1457move_non_declarations(exec_list *instructions, exec_node *last, 1458 bool make_copies, gl_linked_shader *target) 1459{ 1460 hash_table *temps = NULL; 1461 1462 if (make_copies) 1463 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer, 1464 _mesa_key_pointer_equal); 1465 1466 foreach_in_list_safe(ir_instruction, inst, instructions) { 1467 if (inst->as_function()) 1468 continue; 1469 1470 ir_variable *var = inst->as_variable(); 1471 if ((var != NULL) && (var->data.mode != ir_var_temporary)) 1472 continue; 1473 1474 assert(inst->as_assignment() 1475 || inst->as_call() 1476 || inst->as_if() /* for initializers with the ?: operator */ 1477 || ((var != NULL) && (var->data.mode == ir_var_temporary))); 1478 1479 if (make_copies) { 1480 inst = inst->clone(target, NULL); 1481 1482 if (var != NULL) 1483 _mesa_hash_table_insert(temps, var, inst); 1484 else 1485 remap_variables(inst, target, temps); 1486 } else { 1487 inst->remove(); 1488 } 1489 1490 last->insert_after(inst); 1491 last = inst; 1492 } 1493 1494 if (make_copies) 1495 _mesa_hash_table_destroy(temps, NULL); 1496 1497 return last; 1498} 1499 1500 1501/** 1502 * This class is only used in link_intrastage_shaders() below but declaring 1503 * it inside that function leads to compiler warnings with some versions of 1504 * gcc. 1505 */ 1506class array_sizing_visitor : public deref_type_updater { 1507public: 1508 array_sizing_visitor() 1509 : mem_ctx(ralloc_context(NULL)), 1510 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer, 1511 _mesa_key_pointer_equal)) 1512 { 1513 } 1514 1515 ~array_sizing_visitor() 1516 { 1517 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL); 1518 ralloc_free(this->mem_ctx); 1519 } 1520 1521 virtual ir_visitor_status visit(ir_variable *var) 1522 { 1523 const glsl_type *type_without_array; 1524 bool implicit_sized_array = var->data.implicit_sized_array; 1525 fixup_type(&var->type, var->data.max_array_access, 1526 var->data.from_ssbo_unsized_array, 1527 &implicit_sized_array); 1528 var->data.implicit_sized_array = implicit_sized_array; 1529 type_without_array = var->type->without_array(); 1530 if (var->type->is_interface()) { 1531 if (interface_contains_unsized_arrays(var->type)) { 1532 const glsl_type *new_type = 1533 resize_interface_members(var->type, 1534 var->get_max_ifc_array_access(), 1535 var->is_in_shader_storage_block()); 1536 var->type = new_type; 1537 var->change_interface_type(new_type); 1538 } 1539 } else if (type_without_array->is_interface()) { 1540 if (interface_contains_unsized_arrays(type_without_array)) { 1541 const glsl_type *new_type = 1542 resize_interface_members(type_without_array, 1543 var->get_max_ifc_array_access(), 1544 var->is_in_shader_storage_block()); 1545 var->change_interface_type(new_type); 1546 var->type = update_interface_members_array(var->type, new_type); 1547 } 1548 } else if (const glsl_type *ifc_type = var->get_interface_type()) { 1549 /* Store a pointer to the variable in the unnamed_interfaces 1550 * hashtable. 1551 */ 1552 hash_entry *entry = 1553 _mesa_hash_table_search(this->unnamed_interfaces, 1554 ifc_type); 1555 1556 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL; 1557 1558 if (interface_vars == NULL) { 1559 interface_vars = rzalloc_array(mem_ctx, ir_variable *, 1560 ifc_type->length); 1561 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type, 1562 interface_vars); 1563 } 1564 unsigned index = ifc_type->field_index(var->name); 1565 assert(index < ifc_type->length); 1566 assert(interface_vars[index] == NULL); 1567 interface_vars[index] = var; 1568 } 1569 return visit_continue; 1570 } 1571 1572 /** 1573 * For each unnamed interface block that was discovered while running the 1574 * visitor, adjust the interface type to reflect the newly assigned array 1575 * sizes, and fix up the ir_variable nodes to point to the new interface 1576 * type. 1577 */ 1578 void fixup_unnamed_interface_types() 1579 { 1580 hash_table_call_foreach(this->unnamed_interfaces, 1581 fixup_unnamed_interface_type, NULL); 1582 } 1583 1584private: 1585 /** 1586 * If the type pointed to by \c type represents an unsized array, replace 1587 * it with a sized array whose size is determined by max_array_access. 1588 */ 1589 static void fixup_type(const glsl_type **type, unsigned max_array_access, 1590 bool from_ssbo_unsized_array, bool *implicit_sized) 1591 { 1592 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) { 1593 *type = glsl_type::get_array_instance((*type)->fields.array, 1594 max_array_access + 1); 1595 *implicit_sized = true; 1596 assert(*type != NULL); 1597 } 1598 } 1599 1600 static const glsl_type * 1601 update_interface_members_array(const glsl_type *type, 1602 const glsl_type *new_interface_type) 1603 { 1604 const glsl_type *element_type = type->fields.array; 1605 if (element_type->is_array()) { 1606 const glsl_type *new_array_type = 1607 update_interface_members_array(element_type, new_interface_type); 1608 return glsl_type::get_array_instance(new_array_type, type->length); 1609 } else { 1610 return glsl_type::get_array_instance(new_interface_type, 1611 type->length); 1612 } 1613 } 1614 1615 /** 1616 * Determine whether the given interface type contains unsized arrays (if 1617 * it doesn't, array_sizing_visitor doesn't need to process it). 1618 */ 1619 static bool interface_contains_unsized_arrays(const glsl_type *type) 1620 { 1621 for (unsigned i = 0; i < type->length; i++) { 1622 const glsl_type *elem_type = type->fields.structure[i].type; 1623 if (elem_type->is_unsized_array()) 1624 return true; 1625 } 1626 return false; 1627 } 1628 1629 /** 1630 * Create a new interface type based on the given type, with unsized arrays 1631 * replaced by sized arrays whose size is determined by 1632 * max_ifc_array_access. 1633 */ 1634 static const glsl_type * 1635 resize_interface_members(const glsl_type *type, 1636 const int *max_ifc_array_access, 1637 bool is_ssbo) 1638 { 1639 unsigned num_fields = type->length; 1640 glsl_struct_field *fields = new glsl_struct_field[num_fields]; 1641 memcpy(fields, type->fields.structure, 1642 num_fields * sizeof(*fields)); 1643 for (unsigned i = 0; i < num_fields; i++) { 1644 bool implicit_sized_array = fields[i].implicit_sized_array; 1645 /* If SSBO last member is unsized array, we don't replace it by a sized 1646 * array. 1647 */ 1648 if (is_ssbo && i == (num_fields - 1)) 1649 fixup_type(&fields[i].type, max_ifc_array_access[i], 1650 true, &implicit_sized_array); 1651 else 1652 fixup_type(&fields[i].type, max_ifc_array_access[i], 1653 false, &implicit_sized_array); 1654 fields[i].implicit_sized_array = implicit_sized_array; 1655 } 1656 glsl_interface_packing packing = 1657 (glsl_interface_packing) type->interface_packing; 1658 bool row_major = (bool) type->interface_row_major; 1659 const glsl_type *new_ifc_type = 1660 glsl_type::get_interface_instance(fields, num_fields, 1661 packing, row_major, type->name); 1662 delete [] fields; 1663 return new_ifc_type; 1664 } 1665 1666 static void fixup_unnamed_interface_type(const void *key, void *data, 1667 void *) 1668 { 1669 const glsl_type *ifc_type = (const glsl_type *) key; 1670 ir_variable **interface_vars = (ir_variable **) data; 1671 unsigned num_fields = ifc_type->length; 1672 glsl_struct_field *fields = new glsl_struct_field[num_fields]; 1673 memcpy(fields, ifc_type->fields.structure, 1674 num_fields * sizeof(*fields)); 1675 bool interface_type_changed = false; 1676 for (unsigned i = 0; i < num_fields; i++) { 1677 if (interface_vars[i] != NULL && 1678 fields[i].type != interface_vars[i]->type) { 1679 fields[i].type = interface_vars[i]->type; 1680 interface_type_changed = true; 1681 } 1682 } 1683 if (!interface_type_changed) { 1684 delete [] fields; 1685 return; 1686 } 1687 glsl_interface_packing packing = 1688 (glsl_interface_packing) ifc_type->interface_packing; 1689 bool row_major = (bool) ifc_type->interface_row_major; 1690 const glsl_type *new_ifc_type = 1691 glsl_type::get_interface_instance(fields, num_fields, packing, 1692 row_major, ifc_type->name); 1693 delete [] fields; 1694 for (unsigned i = 0; i < num_fields; i++) { 1695 if (interface_vars[i] != NULL) 1696 interface_vars[i]->change_interface_type(new_ifc_type); 1697 } 1698 } 1699 1700 /** 1701 * Memory context used to allocate the data in \c unnamed_interfaces. 1702 */ 1703 void *mem_ctx; 1704 1705 /** 1706 * Hash table from const glsl_type * to an array of ir_variable *'s 1707 * pointing to the ir_variables constituting each unnamed interface block. 1708 */ 1709 hash_table *unnamed_interfaces; 1710}; 1711 1712static bool 1713validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx, 1714 struct gl_shader_program *prog) 1715{ 1716 /* We will validate doubles at a later stage */ 1717 if (prog->TransformFeedback.BufferStride[idx] % 4) { 1718 linker_error(prog, "invalid qualifier xfb_stride=%d must be a " 1719 "multiple of 4 or if its applied to a type that is " 1720 "or contains a double a multiple of 8.", 1721 prog->TransformFeedback.BufferStride[idx]); 1722 return false; 1723 } 1724 1725 if (prog->TransformFeedback.BufferStride[idx] / 4 > 1726 ctx->Const.MaxTransformFeedbackInterleavedComponents) { 1727 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS " 1728 "limit has been exceeded."); 1729 return false; 1730 } 1731 1732 return true; 1733} 1734 1735/** 1736 * Check for conflicting xfb_stride default qualifiers and store buffer stride 1737 * for later use. 1738 */ 1739static void 1740link_xfb_stride_layout_qualifiers(struct gl_context *ctx, 1741 struct gl_shader_program *prog, 1742 struct gl_shader **shader_list, 1743 unsigned num_shaders) 1744{ 1745 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) { 1746 prog->TransformFeedback.BufferStride[i] = 0; 1747 } 1748 1749 for (unsigned i = 0; i < num_shaders; i++) { 1750 struct gl_shader *shader = shader_list[i]; 1751 1752 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) { 1753 if (shader->TransformFeedbackBufferStride[j]) { 1754 if (prog->TransformFeedback.BufferStride[j] == 0) { 1755 prog->TransformFeedback.BufferStride[j] = 1756 shader->TransformFeedbackBufferStride[j]; 1757 if (!validate_xfb_buffer_stride(ctx, j, prog)) 1758 return; 1759 } else if (prog->TransformFeedback.BufferStride[j] != 1760 shader->TransformFeedbackBufferStride[j]){ 1761 linker_error(prog, 1762 "intrastage shaders defined with conflicting " 1763 "xfb_stride for buffer %d (%d and %d)\n", j, 1764 prog->TransformFeedback.BufferStride[j], 1765 shader->TransformFeedbackBufferStride[j]); 1766 return; 1767 } 1768 } 1769 } 1770 } 1771} 1772 1773/** 1774 * Check for conflicting bindless/bound sampler/image layout qualifiers at 1775 * global scope. 1776 */ 1777static void 1778link_bindless_layout_qualifiers(struct gl_shader_program *prog, 1779 struct gl_shader **shader_list, 1780 unsigned num_shaders) 1781{ 1782 bool bindless_sampler, bindless_image; 1783 bool bound_sampler, bound_image; 1784 1785 bindless_sampler = bindless_image = false; 1786 bound_sampler = bound_image = false; 1787 1788 for (unsigned i = 0; i < num_shaders; i++) { 1789 struct gl_shader *shader = shader_list[i]; 1790 1791 if (shader->bindless_sampler) 1792 bindless_sampler = true; 1793 if (shader->bindless_image) 1794 bindless_image = true; 1795 if (shader->bound_sampler) 1796 bound_sampler = true; 1797 if (shader->bound_image) 1798 bound_image = true; 1799 1800 if ((bindless_sampler && bound_sampler) || 1801 (bindless_image && bound_image)) { 1802 /* From section 4.4.6 of the ARB_bindless_texture spec: 1803 * 1804 * "If both bindless_sampler and bound_sampler, or bindless_image 1805 * and bound_image, are declared at global scope in any 1806 * compilation unit, a link- time error will be generated." 1807 */ 1808 linker_error(prog, "both bindless_sampler and bound_sampler, or " 1809 "bindless_image and bound_image, can't be declared at " 1810 "global scope"); 1811 } 1812 } 1813} 1814 1815/** 1816 * Performs the cross-validation of tessellation control shader vertices and 1817 * layout qualifiers for the attached tessellation control shaders, 1818 * and propagates them to the linked TCS and linked shader program. 1819 */ 1820static void 1821link_tcs_out_layout_qualifiers(struct gl_shader_program *prog, 1822 struct gl_program *gl_prog, 1823 struct gl_shader **shader_list, 1824 unsigned num_shaders) 1825{ 1826 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL) 1827 return; 1828 1829 gl_prog->info.tess.tcs_vertices_out = 0; 1830 1831 /* From the GLSL 4.0 spec (chapter 4.3.8.2): 1832 * 1833 * "All tessellation control shader layout declarations in a program 1834 * must specify the same output patch vertex count. There must be at 1835 * least one layout qualifier specifying an output patch vertex count 1836 * in any program containing tessellation control shaders; however, 1837 * such a declaration is not required in all tessellation control 1838 * shaders." 1839 */ 1840 1841 for (unsigned i = 0; i < num_shaders; i++) { 1842 struct gl_shader *shader = shader_list[i]; 1843 1844 if (shader->info.TessCtrl.VerticesOut != 0) { 1845 if (gl_prog->info.tess.tcs_vertices_out != 0 && 1846 gl_prog->info.tess.tcs_vertices_out != 1847 (unsigned) shader->info.TessCtrl.VerticesOut) { 1848 linker_error(prog, "tessellation control shader defined with " 1849 "conflicting output vertex count (%d and %d)\n", 1850 gl_prog->info.tess.tcs_vertices_out, 1851 shader->info.TessCtrl.VerticesOut); 1852 return; 1853 } 1854 gl_prog->info.tess.tcs_vertices_out = 1855 shader->info.TessCtrl.VerticesOut; 1856 } 1857 } 1858 1859 /* Just do the intrastage -> interstage propagation right now, 1860 * since we already know we're in the right type of shader program 1861 * for doing it. 1862 */ 1863 if (gl_prog->info.tess.tcs_vertices_out == 0) { 1864 linker_error(prog, "tessellation control shader didn't declare " 1865 "vertices out layout qualifier\n"); 1866 return; 1867 } 1868} 1869 1870 1871/** 1872 * Performs the cross-validation of tessellation evaluation shader 1873 * primitive type, vertex spacing, ordering and point_mode layout qualifiers 1874 * for the attached tessellation evaluation shaders, and propagates them 1875 * to the linked TES and linked shader program. 1876 */ 1877static void 1878link_tes_in_layout_qualifiers(struct gl_shader_program *prog, 1879 struct gl_program *gl_prog, 1880 struct gl_shader **shader_list, 1881 unsigned num_shaders) 1882{ 1883 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL) 1884 return; 1885 1886 int point_mode = -1; 1887 unsigned vertex_order = 0; 1888 1889 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN; 1890 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED; 1891 1892 /* From the GLSL 4.0 spec (chapter 4.3.8.1): 1893 * 1894 * "At least one tessellation evaluation shader (compilation unit) in 1895 * a program must declare a primitive mode in its input layout. 1896 * Declaration vertex spacing, ordering, and point mode identifiers is 1897 * optional. It is not required that all tessellation evaluation 1898 * shaders in a program declare a primitive mode. If spacing or 1899 * vertex ordering declarations are omitted, the tessellation 1900 * primitive generator will use equal spacing or counter-clockwise 1901 * vertex ordering, respectively. If a point mode declaration is 1902 * omitted, the tessellation primitive generator will produce lines or 1903 * triangles according to the primitive mode." 1904 */ 1905 1906 for (unsigned i = 0; i < num_shaders; i++) { 1907 struct gl_shader *shader = shader_list[i]; 1908 1909 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) { 1910 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN && 1911 gl_prog->info.tess.primitive_mode != 1912 shader->info.TessEval.PrimitiveMode) { 1913 linker_error(prog, "tessellation evaluation shader defined with " 1914 "conflicting input primitive modes.\n"); 1915 return; 1916 } 1917 gl_prog->info.tess.primitive_mode = 1918 shader->info.TessEval.PrimitiveMode; 1919 } 1920 1921 if (shader->info.TessEval.Spacing != 0) { 1922 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing != 1923 shader->info.TessEval.Spacing) { 1924 linker_error(prog, "tessellation evaluation shader defined with " 1925 "conflicting vertex spacing.\n"); 1926 return; 1927 } 1928 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing; 1929 } 1930 1931 if (shader->info.TessEval.VertexOrder != 0) { 1932 if (vertex_order != 0 && 1933 vertex_order != shader->info.TessEval.VertexOrder) { 1934 linker_error(prog, "tessellation evaluation shader defined with " 1935 "conflicting ordering.\n"); 1936 return; 1937 } 1938 vertex_order = shader->info.TessEval.VertexOrder; 1939 } 1940 1941 if (shader->info.TessEval.PointMode != -1) { 1942 if (point_mode != -1 && 1943 point_mode != shader->info.TessEval.PointMode) { 1944 linker_error(prog, "tessellation evaluation shader defined with " 1945 "conflicting point modes.\n"); 1946 return; 1947 } 1948 point_mode = shader->info.TessEval.PointMode; 1949 } 1950 1951 } 1952 1953 /* Just do the intrastage -> interstage propagation right now, 1954 * since we already know we're in the right type of shader program 1955 * for doing it. 1956 */ 1957 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) { 1958 linker_error(prog, 1959 "tessellation evaluation shader didn't declare input " 1960 "primitive modes.\n"); 1961 return; 1962 } 1963 1964 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED) 1965 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL; 1966 1967 if (vertex_order == 0 || vertex_order == GL_CCW) 1968 gl_prog->info.tess.ccw = true; 1969 else 1970 gl_prog->info.tess.ccw = false; 1971 1972 1973 if (point_mode == -1 || point_mode == GL_FALSE) 1974 gl_prog->info.tess.point_mode = false; 1975 else 1976 gl_prog->info.tess.point_mode = true; 1977} 1978 1979 1980/** 1981 * Performs the cross-validation of layout qualifiers specified in 1982 * redeclaration of gl_FragCoord for the attached fragment shaders, 1983 * and propagates them to the linked FS and linked shader program. 1984 */ 1985static void 1986link_fs_inout_layout_qualifiers(struct gl_shader_program *prog, 1987 struct gl_linked_shader *linked_shader, 1988 struct gl_shader **shader_list, 1989 unsigned num_shaders) 1990{ 1991 bool redeclares_gl_fragcoord = false; 1992 bool uses_gl_fragcoord = false; 1993 bool origin_upper_left = false; 1994 bool pixel_center_integer = false; 1995 1996 if (linked_shader->Stage != MESA_SHADER_FRAGMENT || 1997 (prog->data->Version < 150 && 1998 !prog->ARB_fragment_coord_conventions_enable)) 1999 return; 2000 2001 for (unsigned i = 0; i < num_shaders; i++) { 2002 struct gl_shader *shader = shader_list[i]; 2003 /* From the GLSL 1.50 spec, page 39: 2004 * 2005 * "If gl_FragCoord is redeclared in any fragment shader in a program, 2006 * it must be redeclared in all the fragment shaders in that program 2007 * that have a static use gl_FragCoord." 2008 */ 2009 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord && 2010 shader->uses_gl_fragcoord) 2011 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord && 2012 uses_gl_fragcoord)) { 2013 linker_error(prog, "fragment shader defined with conflicting " 2014 "layout qualifiers for gl_FragCoord\n"); 2015 } 2016 2017 /* From the GLSL 1.50 spec, page 39: 2018 * 2019 * "All redeclarations of gl_FragCoord in all fragment shaders in a 2020 * single program must have the same set of qualifiers." 2021 */ 2022 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord && 2023 (shader->origin_upper_left != origin_upper_left || 2024 shader->pixel_center_integer != pixel_center_integer)) { 2025 linker_error(prog, "fragment shader defined with conflicting " 2026 "layout qualifiers for gl_FragCoord\n"); 2027 } 2028 2029 /* Update the linked shader state. Note that uses_gl_fragcoord should 2030 * accumulate the results. The other values should replace. If there 2031 * are multiple redeclarations, all the fields except uses_gl_fragcoord 2032 * are already known to be the same. 2033 */ 2034 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) { 2035 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord; 2036 uses_gl_fragcoord |= shader->uses_gl_fragcoord; 2037 origin_upper_left = shader->origin_upper_left; 2038 pixel_center_integer = shader->pixel_center_integer; 2039 } 2040 2041 linked_shader->Program->info.fs.early_fragment_tests |= 2042 shader->EarlyFragmentTests || shader->PostDepthCoverage; 2043 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage; 2044 linked_shader->Program->info.fs.post_depth_coverage |= 2045 shader->PostDepthCoverage; 2046 linked_shader->Program->info.fs.pixel_interlock_ordered |= 2047 shader->PixelInterlockOrdered; 2048 linked_shader->Program->info.fs.pixel_interlock_unordered |= 2049 shader->PixelInterlockUnordered; 2050 linked_shader->Program->info.fs.sample_interlock_ordered |= 2051 shader->SampleInterlockOrdered; 2052 linked_shader->Program->info.fs.sample_interlock_unordered |= 2053 shader->SampleInterlockUnordered; 2054 2055 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport; 2056 } 2057} 2058 2059/** 2060 * Performs the cross-validation of geometry shader max_vertices and 2061 * primitive type layout qualifiers for the attached geometry shaders, 2062 * and propagates them to the linked GS and linked shader program. 2063 */ 2064static void 2065link_gs_inout_layout_qualifiers(struct gl_shader_program *prog, 2066 struct gl_program *gl_prog, 2067 struct gl_shader **shader_list, 2068 unsigned num_shaders) 2069{ 2070 /* No in/out qualifiers defined for anything but GLSL 1.50+ 2071 * geometry shaders so far. 2072 */ 2073 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY || 2074 prog->data->Version < 150) 2075 return; 2076 2077 int vertices_out = -1; 2078 2079 gl_prog->info.gs.invocations = 0; 2080 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN; 2081 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN; 2082 2083 /* From the GLSL 1.50 spec, page 46: 2084 * 2085 * "All geometry shader output layout declarations in a program 2086 * must declare the same layout and same value for 2087 * max_vertices. There must be at least one geometry output 2088 * layout declaration somewhere in a program, but not all 2089 * geometry shaders (compilation units) are required to 2090 * declare it." 2091 */ 2092 2093 for (unsigned i = 0; i < num_shaders; i++) { 2094 struct gl_shader *shader = shader_list[i]; 2095 2096 if (shader->info.Geom.InputType != PRIM_UNKNOWN) { 2097 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN && 2098 gl_prog->info.gs.input_primitive != 2099 shader->info.Geom.InputType) { 2100 linker_error(prog, "geometry shader defined with conflicting " 2101 "input types\n"); 2102 return; 2103 } 2104 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType; 2105 } 2106 2107 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) { 2108 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN && 2109 gl_prog->info.gs.output_primitive != 2110 shader->info.Geom.OutputType) { 2111 linker_error(prog, "geometry shader defined with conflicting " 2112 "output types\n"); 2113 return; 2114 } 2115 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType; 2116 } 2117 2118 if (shader->info.Geom.VerticesOut != -1) { 2119 if (vertices_out != -1 && 2120 vertices_out != shader->info.Geom.VerticesOut) { 2121 linker_error(prog, "geometry shader defined with conflicting " 2122 "output vertex count (%d and %d)\n", 2123 vertices_out, shader->info.Geom.VerticesOut); 2124 return; 2125 } 2126 vertices_out = shader->info.Geom.VerticesOut; 2127 } 2128 2129 if (shader->info.Geom.Invocations != 0) { 2130 if (gl_prog->info.gs.invocations != 0 && 2131 gl_prog->info.gs.invocations != 2132 (unsigned) shader->info.Geom.Invocations) { 2133 linker_error(prog, "geometry shader defined with conflicting " 2134 "invocation count (%d and %d)\n", 2135 gl_prog->info.gs.invocations, 2136 shader->info.Geom.Invocations); 2137 return; 2138 } 2139 gl_prog->info.gs.invocations = shader->info.Geom.Invocations; 2140 } 2141 } 2142 2143 /* Just do the intrastage -> interstage propagation right now, 2144 * since we already know we're in the right type of shader program 2145 * for doing it. 2146 */ 2147 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) { 2148 linker_error(prog, 2149 "geometry shader didn't declare primitive input type\n"); 2150 return; 2151 } 2152 2153 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) { 2154 linker_error(prog, 2155 "geometry shader didn't declare primitive output type\n"); 2156 return; 2157 } 2158 2159 if (vertices_out == -1) { 2160 linker_error(prog, 2161 "geometry shader didn't declare max_vertices\n"); 2162 return; 2163 } else { 2164 gl_prog->info.gs.vertices_out = vertices_out; 2165 } 2166 2167 if (gl_prog->info.gs.invocations == 0) 2168 gl_prog->info.gs.invocations = 1; 2169} 2170 2171 2172/** 2173 * Perform cross-validation of compute shader local_size_{x,y,z} layout 2174 * qualifiers for the attached compute shaders, and propagate them to the 2175 * linked CS and linked shader program. 2176 */ 2177static void 2178link_cs_input_layout_qualifiers(struct gl_shader_program *prog, 2179 struct gl_program *gl_prog, 2180 struct gl_shader **shader_list, 2181 unsigned num_shaders) 2182{ 2183 /* This function is called for all shader stages, but it only has an effect 2184 * for compute shaders. 2185 */ 2186 if (gl_prog->info.stage != MESA_SHADER_COMPUTE) 2187 return; 2188 2189 for (int i = 0; i < 3; i++) 2190 gl_prog->info.cs.local_size[i] = 0; 2191 2192 gl_prog->info.cs.local_size_variable = false; 2193 2194 /* From the ARB_compute_shader spec, in the section describing local size 2195 * declarations: 2196 * 2197 * If multiple compute shaders attached to a single program object 2198 * declare local work-group size, the declarations must be identical; 2199 * otherwise a link-time error results. Furthermore, if a program 2200 * object contains any compute shaders, at least one must contain an 2201 * input layout qualifier specifying the local work sizes of the 2202 * program, or a link-time error will occur. 2203 */ 2204 for (unsigned sh = 0; sh < num_shaders; sh++) { 2205 struct gl_shader *shader = shader_list[sh]; 2206 2207 if (shader->info.Comp.LocalSize[0] != 0) { 2208 if (gl_prog->info.cs.local_size[0] != 0) { 2209 for (int i = 0; i < 3; i++) { 2210 if (gl_prog->info.cs.local_size[i] != 2211 shader->info.Comp.LocalSize[i]) { 2212 linker_error(prog, "compute shader defined with conflicting " 2213 "local sizes\n"); 2214 return; 2215 } 2216 } 2217 } 2218 for (int i = 0; i < 3; i++) { 2219 gl_prog->info.cs.local_size[i] = 2220 shader->info.Comp.LocalSize[i]; 2221 } 2222 } else if (shader->info.Comp.LocalSizeVariable) { 2223 if (gl_prog->info.cs.local_size[0] != 0) { 2224 /* The ARB_compute_variable_group_size spec says: 2225 * 2226 * If one compute shader attached to a program declares a 2227 * variable local group size and a second compute shader 2228 * attached to the same program declares a fixed local group 2229 * size, a link-time error results. 2230 */ 2231 linker_error(prog, "compute shader defined with both fixed and " 2232 "variable local group size\n"); 2233 return; 2234 } 2235 gl_prog->info.cs.local_size_variable = true; 2236 } 2237 } 2238 2239 /* Just do the intrastage -> interstage propagation right now, 2240 * since we already know we're in the right type of shader program 2241 * for doing it. 2242 */ 2243 if (gl_prog->info.cs.local_size[0] == 0 && 2244 !gl_prog->info.cs.local_size_variable) { 2245 linker_error(prog, "compute shader must contain a fixed or a variable " 2246 "local group size\n"); 2247 return; 2248 } 2249} 2250 2251/** 2252 * Link all out variables on a single stage which are not 2253 * directly used in a shader with the main function. 2254 */ 2255static void 2256link_output_variables(struct gl_linked_shader *linked_shader, 2257 struct gl_shader **shader_list, 2258 unsigned num_shaders) 2259{ 2260 struct glsl_symbol_table *symbols = linked_shader->symbols; 2261 2262 for (unsigned i = 0; i < num_shaders; i++) { 2263 2264 /* Skip shader object with main function */ 2265 if (shader_list[i]->symbols->get_function("main")) 2266 continue; 2267 2268 foreach_in_list(ir_instruction, ir, shader_list[i]->ir) { 2269 if (ir->ir_type != ir_type_variable) 2270 continue; 2271 2272 ir_variable *var = (ir_variable *) ir; 2273 2274 if (var->data.mode == ir_var_shader_out && 2275 !symbols->get_variable(var->name)) { 2276 var = var->clone(linked_shader, NULL); 2277 symbols->add_variable(var); 2278 linked_shader->ir->push_head(var); 2279 } 2280 } 2281 } 2282 2283 return; 2284} 2285 2286 2287/** 2288 * Combine a group of shaders for a single stage to generate a linked shader 2289 * 2290 * \note 2291 * If this function is supplied a single shader, it is cloned, and the new 2292 * shader is returned. 2293 */ 2294struct gl_linked_shader * 2295link_intrastage_shaders(void *mem_ctx, 2296 struct gl_context *ctx, 2297 struct gl_shader_program *prog, 2298 struct gl_shader **shader_list, 2299 unsigned num_shaders, 2300 bool allow_missing_main) 2301{ 2302 struct gl_uniform_block *ubo_blocks = NULL; 2303 struct gl_uniform_block *ssbo_blocks = NULL; 2304 unsigned num_ubo_blocks = 0; 2305 unsigned num_ssbo_blocks = 0; 2306 2307 /* Check that global variables defined in multiple shaders are consistent. 2308 */ 2309 glsl_symbol_table variables; 2310 for (unsigned i = 0; i < num_shaders; i++) { 2311 if (shader_list[i] == NULL) 2312 continue; 2313 cross_validate_globals(ctx, prog, shader_list[i]->ir, &variables, 2314 false); 2315 } 2316 2317 if (!prog->data->LinkStatus) 2318 return NULL; 2319 2320 /* Check that interface blocks defined in multiple shaders are consistent. 2321 */ 2322 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list, 2323 num_shaders); 2324 if (!prog->data->LinkStatus) 2325 return NULL; 2326 2327 /* Check that there is only a single definition of each function signature 2328 * across all shaders. 2329 */ 2330 for (unsigned i = 0; i < (num_shaders - 1); i++) { 2331 foreach_in_list(ir_instruction, node, shader_list[i]->ir) { 2332 ir_function *const f = node->as_function(); 2333 2334 if (f == NULL) 2335 continue; 2336 2337 for (unsigned j = i + 1; j < num_shaders; j++) { 2338 ir_function *const other = 2339 shader_list[j]->symbols->get_function(f->name); 2340 2341 /* If the other shader has no function (and therefore no function 2342 * signatures) with the same name, skip to the next shader. 2343 */ 2344 if (other == NULL) 2345 continue; 2346 2347 foreach_in_list(ir_function_signature, sig, &f->signatures) { 2348 if (!sig->is_defined) 2349 continue; 2350 2351 ir_function_signature *other_sig = 2352 other->exact_matching_signature(NULL, &sig->parameters); 2353 2354 if (other_sig != NULL && other_sig->is_defined) { 2355 linker_error(prog, "function `%s' is multiply defined\n", 2356 f->name); 2357 return NULL; 2358 } 2359 } 2360 } 2361 } 2362 } 2363 2364 /* Find the shader that defines main, and make a clone of it. 2365 * 2366 * Starting with the clone, search for undefined references. If one is 2367 * found, find the shader that defines it. Clone the reference and add 2368 * it to the shader. Repeat until there are no undefined references or 2369 * until a reference cannot be resolved. 2370 */ 2371 gl_shader *main = NULL; 2372 for (unsigned i = 0; i < num_shaders; i++) { 2373 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) { 2374 main = shader_list[i]; 2375 break; 2376 } 2377 } 2378 2379 if (main == NULL && allow_missing_main) 2380 main = shader_list[0]; 2381 2382 if (main == NULL) { 2383 linker_error(prog, "%s shader lacks `main'\n", 2384 _mesa_shader_stage_to_string(shader_list[0]->Stage)); 2385 return NULL; 2386 } 2387 2388 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader); 2389 linked->Stage = shader_list[0]->Stage; 2390 2391 /* Create program and attach it to the linked shader */ 2392 struct gl_program *gl_prog = 2393 ctx->Driver.NewProgram(ctx, 2394 _mesa_shader_stage_to_program(shader_list[0]->Stage), 2395 prog->Name, false); 2396 if (!gl_prog) { 2397 prog->data->LinkStatus = LINKING_FAILURE; 2398 _mesa_delete_linked_shader(ctx, linked); 2399 return NULL; 2400 } 2401 2402 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data); 2403 2404 /* Don't use _mesa_reference_program() just take ownership */ 2405 linked->Program = gl_prog; 2406 2407 linked->ir = new(linked) exec_list; 2408 clone_ir_list(mem_ctx, linked->ir, main->ir); 2409 2410 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders); 2411 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); 2412 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); 2413 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); 2414 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); 2415 2416 if (linked->Stage != MESA_SHADER_FRAGMENT) 2417 link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders); 2418 2419 link_bindless_layout_qualifiers(prog, shader_list, num_shaders); 2420 2421 populate_symbol_table(linked, shader_list[0]->symbols); 2422 2423 /* The pointer to the main function in the final linked shader (i.e., the 2424 * copy of the original shader that contained the main function). 2425 */ 2426 ir_function_signature *const main_sig = 2427 _mesa_get_main_function_signature(linked->symbols); 2428 2429 /* Move any instructions other than variable declarations or function 2430 * declarations into main. 2431 */ 2432 if (main_sig != NULL) { 2433 exec_node *insertion_point = 2434 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false, 2435 linked); 2436 2437 for (unsigned i = 0; i < num_shaders; i++) { 2438 if (shader_list[i] == main) 2439 continue; 2440 2441 insertion_point = move_non_declarations(shader_list[i]->ir, 2442 insertion_point, true, linked); 2443 } 2444 } 2445 2446 if (!link_function_calls(prog, linked, shader_list, num_shaders)) { 2447 _mesa_delete_linked_shader(ctx, linked); 2448 return NULL; 2449 } 2450 2451 if (linked->Stage != MESA_SHADER_FRAGMENT) 2452 link_output_variables(linked, shader_list, num_shaders); 2453 2454 /* Make a pass over all variable declarations to ensure that arrays with 2455 * unspecified sizes have a size specified. The size is inferred from the 2456 * max_array_access field. 2457 */ 2458 array_sizing_visitor v; 2459 v.run(linked->ir); 2460 v.fixup_unnamed_interface_types(); 2461 2462 /* Link up uniform blocks defined within this stage. */ 2463 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks, 2464 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks); 2465 2466 if (!prog->data->LinkStatus) { 2467 _mesa_delete_linked_shader(ctx, linked); 2468 return NULL; 2469 } 2470 2471 /* Copy ubo blocks to linked shader list */ 2472 linked->Program->sh.UniformBlocks = 2473 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks); 2474 ralloc_steal(linked, ubo_blocks); 2475 for (unsigned i = 0; i < num_ubo_blocks; i++) { 2476 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i]; 2477 } 2478 linked->Program->info.num_ubos = num_ubo_blocks; 2479 2480 /* Copy ssbo blocks to linked shader list */ 2481 linked->Program->sh.ShaderStorageBlocks = 2482 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks); 2483 ralloc_steal(linked, ssbo_blocks); 2484 for (unsigned i = 0; i < num_ssbo_blocks; i++) { 2485 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i]; 2486 } 2487 linked->Program->info.num_ssbos = num_ssbo_blocks; 2488 2489 /* At this point linked should contain all of the linked IR, so 2490 * validate it to make sure nothing went wrong. 2491 */ 2492 validate_ir_tree(linked->ir); 2493 2494 /* Set the size of geometry shader input arrays */ 2495 if (linked->Stage == MESA_SHADER_GEOMETRY) { 2496 unsigned num_vertices = 2497 vertices_per_prim(gl_prog->info.gs.input_primitive); 2498 array_resize_visitor input_resize_visitor(num_vertices, prog, 2499 MESA_SHADER_GEOMETRY); 2500 foreach_in_list(ir_instruction, ir, linked->ir) { 2501 ir->accept(&input_resize_visitor); 2502 } 2503 } 2504 2505 if (ctx->Const.VertexID_is_zero_based) 2506 lower_vertex_id(linked); 2507 2508 if (ctx->Const.LowerCsDerivedVariables) 2509 lower_cs_derived(linked); 2510 2511#ifdef DEBUG 2512 /* Compute the source checksum. */ 2513 linked->SourceChecksum = 0; 2514 for (unsigned i = 0; i < num_shaders; i++) { 2515 if (shader_list[i] == NULL) 2516 continue; 2517 linked->SourceChecksum ^= shader_list[i]->SourceChecksum; 2518 } 2519#endif 2520 2521 return linked; 2522} 2523 2524/** 2525 * Update the sizes of linked shader uniform arrays to the maximum 2526 * array index used. 2527 * 2528 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec: 2529 * 2530 * If one or more elements of an array are active, 2531 * GetActiveUniform will return the name of the array in name, 2532 * subject to the restrictions listed above. The type of the array 2533 * is returned in type. The size parameter contains the highest 2534 * array element index used, plus one. The compiler or linker 2535 * determines the highest index used. There will be only one 2536 * active uniform reported by the GL per uniform array. 2537 2538 */ 2539static void 2540update_array_sizes(struct gl_shader_program *prog) 2541{ 2542 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 2543 if (prog->_LinkedShaders[i] == NULL) 2544 continue; 2545 2546 bool types_were_updated = false; 2547 2548 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { 2549 ir_variable *const var = node->as_variable(); 2550 2551 if ((var == NULL) || (var->data.mode != ir_var_uniform) || 2552 !var->type->is_array()) 2553 continue; 2554 2555 /* GL_ARB_uniform_buffer_object says that std140 uniforms 2556 * will not be eliminated. Since we always do std140, just 2557 * don't resize arrays in UBOs. 2558 * 2559 * Atomic counters are supposed to get deterministic 2560 * locations assigned based on the declaration ordering and 2561 * sizes, array compaction would mess that up. 2562 * 2563 * Subroutine uniforms are not removed. 2564 */ 2565 if (var->is_in_buffer_block() || var->type->contains_atomic() || 2566 var->type->contains_subroutine() || var->constant_initializer) 2567 continue; 2568 2569 int size = var->data.max_array_access; 2570 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) { 2571 if (prog->_LinkedShaders[j] == NULL) 2572 continue; 2573 2574 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) { 2575 ir_variable *other_var = node2->as_variable(); 2576 if (!other_var) 2577 continue; 2578 2579 if (strcmp(var->name, other_var->name) == 0 && 2580 other_var->data.max_array_access > size) { 2581 size = other_var->data.max_array_access; 2582 } 2583 } 2584 } 2585 2586 if (size + 1 != (int)var->type->length) { 2587 /* If this is a built-in uniform (i.e., it's backed by some 2588 * fixed-function state), adjust the number of state slots to 2589 * match the new array size. The number of slots per array entry 2590 * is not known. It seems safe to assume that the total number of 2591 * slots is an integer multiple of the number of array elements. 2592 * Determine the number of slots per array element by dividing by 2593 * the old (total) size. 2594 */ 2595 const unsigned num_slots = var->get_num_state_slots(); 2596 if (num_slots > 0) { 2597 var->set_num_state_slots((size + 1) 2598 * (num_slots / var->type->length)); 2599 } 2600 2601 var->type = glsl_type::get_array_instance(var->type->fields.array, 2602 size + 1); 2603 types_were_updated = true; 2604 } 2605 } 2606 2607 /* Update the types of dereferences in case we changed any. */ 2608 if (types_were_updated) { 2609 deref_type_updater v; 2610 v.run(prog->_LinkedShaders[i]->ir); 2611 } 2612 } 2613} 2614 2615/** 2616 * Resize tessellation evaluation per-vertex inputs to the size of 2617 * tessellation control per-vertex outputs. 2618 */ 2619static void 2620resize_tes_inputs(struct gl_context *ctx, 2621 struct gl_shader_program *prog) 2622{ 2623 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL) 2624 return; 2625 2626 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL]; 2627 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL]; 2628 2629 /* If no control shader is present, then the TES inputs are statically 2630 * sized to MaxPatchVertices; the actual size of the arrays won't be 2631 * known until draw time. 2632 */ 2633 const int num_vertices = tcs 2634 ? tcs->Program->info.tess.tcs_vertices_out 2635 : ctx->Const.MaxPatchVertices; 2636 2637 array_resize_visitor input_resize_visitor(num_vertices, prog, 2638 MESA_SHADER_TESS_EVAL); 2639 foreach_in_list(ir_instruction, ir, tes->ir) { 2640 ir->accept(&input_resize_visitor); 2641 } 2642 2643 if (tcs) { 2644 /* Convert the gl_PatchVerticesIn system value into a constant, since 2645 * the value is known at this point. 2646 */ 2647 foreach_in_list(ir_instruction, ir, tes->ir) { 2648 ir_variable *var = ir->as_variable(); 2649 if (var && var->data.mode == ir_var_system_value && 2650 var->data.location == SYSTEM_VALUE_VERTICES_IN) { 2651 void *mem_ctx = ralloc_parent(var); 2652 var->data.location = 0; 2653 var->data.explicit_location = false; 2654 var->data.mode = ir_var_auto; 2655 var->constant_value = new(mem_ctx) ir_constant(num_vertices); 2656 } 2657 } 2658 } 2659} 2660 2661/** 2662 * Find a contiguous set of available bits in a bitmask. 2663 * 2664 * \param used_mask Bits representing used (1) and unused (0) locations 2665 * \param needed_count Number of contiguous bits needed. 2666 * 2667 * \return 2668 * Base location of the available bits on success or -1 on failure. 2669 */ 2670static int 2671find_available_slots(unsigned used_mask, unsigned needed_count) 2672{ 2673 unsigned needed_mask = (1 << needed_count) - 1; 2674 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count; 2675 2676 /* The comparison to 32 is redundant, but without it GCC emits "warning: 2677 * cannot optimize possibly infinite loops" for the loop below. 2678 */ 2679 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32)) 2680 return -1; 2681 2682 for (int i = 0; i <= max_bit_to_test; i++) { 2683 if ((needed_mask & ~used_mask) == needed_mask) 2684 return i; 2685 2686 needed_mask <<= 1; 2687 } 2688 2689 return -1; 2690} 2691 2692 2693#define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1)) 2694 2695/** 2696 * Assign locations for either VS inputs or FS outputs 2697 * 2698 * \param mem_ctx Temporary ralloc context used for linking 2699 * \param prog Shader program whose variables need locations assigned 2700 * \param constants Driver specific constant values for the program. 2701 * \param target_index Selector for the program target to receive location 2702 * assignmnets. Must be either \c MESA_SHADER_VERTEX or 2703 * \c MESA_SHADER_FRAGMENT. 2704 * 2705 * \return 2706 * If locations are successfully assigned, true is returned. Otherwise an 2707 * error is emitted to the shader link log and false is returned. 2708 */ 2709static bool 2710assign_attribute_or_color_locations(void *mem_ctx, 2711 gl_shader_program *prog, 2712 struct gl_constants *constants, 2713 unsigned target_index, 2714 bool do_assignment) 2715{ 2716 /* Maximum number of generic locations. This corresponds to either the 2717 * maximum number of draw buffers or the maximum number of generic 2718 * attributes. 2719 */ 2720 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ? 2721 constants->Program[target_index].MaxAttribs : 2722 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers); 2723 2724 /* Mark invalid locations as being used. 2725 */ 2726 unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index); 2727 unsigned double_storage_locations = 0; 2728 2729 assert((target_index == MESA_SHADER_VERTEX) 2730 || (target_index == MESA_SHADER_FRAGMENT)); 2731 2732 gl_linked_shader *const sh = prog->_LinkedShaders[target_index]; 2733 if (sh == NULL) 2734 return true; 2735 2736 /* Operate in a total of four passes. 2737 * 2738 * 1. Invalidate the location assignments for all vertex shader inputs. 2739 * 2740 * 2. Assign locations for inputs that have user-defined (via 2741 * glBindVertexAttribLocation) locations and outputs that have 2742 * user-defined locations (via glBindFragDataLocation). 2743 * 2744 * 3. Sort the attributes without assigned locations by number of slots 2745 * required in decreasing order. Fragmentation caused by attribute 2746 * locations assigned by the application may prevent large attributes 2747 * from having enough contiguous space. 2748 * 2749 * 4. Assign locations to any inputs without assigned locations. 2750 */ 2751 2752 const int generic_base = (target_index == MESA_SHADER_VERTEX) 2753 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0; 2754 2755 const enum ir_variable_mode direction = 2756 (target_index == MESA_SHADER_VERTEX) 2757 ? ir_var_shader_in : ir_var_shader_out; 2758 2759 2760 /* Temporary storage for the set of attributes that need locations assigned. 2761 */ 2762 struct temp_attr { 2763 unsigned slots; 2764 ir_variable *var; 2765 2766 /* Used below in the call to qsort. */ 2767 static int compare(const void *a, const void *b) 2768 { 2769 const temp_attr *const l = (const temp_attr *) a; 2770 const temp_attr *const r = (const temp_attr *) b; 2771 2772 /* Reversed because we want a descending order sort below. */ 2773 return r->slots - l->slots; 2774 } 2775 } to_assign[32]; 2776 assert(max_index <= 32); 2777 2778 /* Temporary array for the set of attributes that have locations assigned, 2779 * for the purpose of checking overlapping slots/components of (non-ES) 2780 * fragment shader outputs. 2781 */ 2782 ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */ 2783 unsigned assigned_attr = 0; 2784 2785 unsigned num_attr = 0; 2786 2787 foreach_in_list(ir_instruction, node, sh->ir) { 2788 ir_variable *const var = node->as_variable(); 2789 2790 if ((var == NULL) || (var->data.mode != (unsigned) direction)) 2791 continue; 2792 2793 if (var->data.explicit_location) { 2794 var->data.is_unmatched_generic_inout = 0; 2795 if ((var->data.location >= (int)(max_index + generic_base)) 2796 || (var->data.location < 0)) { 2797 linker_error(prog, 2798 "invalid explicit location %d specified for `%s'\n", 2799 (var->data.location < 0) 2800 ? var->data.location 2801 : var->data.location - generic_base, 2802 var->name); 2803 return false; 2804 } 2805 } else if (target_index == MESA_SHADER_VERTEX) { 2806 unsigned binding; 2807 2808 if (prog->AttributeBindings->get(binding, var->name)) { 2809 assert(binding >= VERT_ATTRIB_GENERIC0); 2810 var->data.location = binding; 2811 var->data.is_unmatched_generic_inout = 0; 2812 } 2813 } else if (target_index == MESA_SHADER_FRAGMENT) { 2814 unsigned binding; 2815 unsigned index; 2816 const char *name = var->name; 2817 const glsl_type *type = var->type; 2818 2819 while (type) { 2820 /* Check if there's a binding for the variable name */ 2821 if (prog->FragDataBindings->get(binding, name)) { 2822 assert(binding >= FRAG_RESULT_DATA0); 2823 var->data.location = binding; 2824 var->data.is_unmatched_generic_inout = 0; 2825 2826 if (prog->FragDataIndexBindings->get(index, name)) { 2827 var->data.index = index; 2828 } 2829 break; 2830 } 2831 2832 /* If not, but it's an array type, look for name[0] */ 2833 if (type->is_array()) { 2834 name = ralloc_asprintf(mem_ctx, "%s[0]", name); 2835 type = type->fields.array; 2836 continue; 2837 } 2838 2839 break; 2840 } 2841 } 2842 2843 if (strcmp(var->name, "gl_LastFragData") == 0) 2844 continue; 2845 2846 /* From GL4.5 core spec, section 15.2 (Shader Execution): 2847 * 2848 * "Output binding assignments will cause LinkProgram to fail: 2849 * ... 2850 * If the program has an active output assigned to a location greater 2851 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has 2852 * an active output assigned an index greater than or equal to one;" 2853 */ 2854 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 && 2855 var->data.location - generic_base >= 2856 (int) constants->MaxDualSourceDrawBuffers) { 2857 linker_error(prog, 2858 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS " 2859 "with index %u for %s\n", 2860 var->data.location - generic_base, var->data.index, 2861 var->name); 2862 return false; 2863 } 2864 2865 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX); 2866 2867 /* If the variable is not a built-in and has a location statically 2868 * assigned in the shader (presumably via a layout qualifier), make sure 2869 * that it doesn't collide with other assigned locations. Otherwise, 2870 * add it to the list of variables that need linker-assigned locations. 2871 */ 2872 if (var->data.location != -1) { 2873 if (var->data.location >= generic_base && var->data.index < 1) { 2874 /* From page 61 of the OpenGL 4.0 spec: 2875 * 2876 * "LinkProgram will fail if the attribute bindings assigned 2877 * by BindAttribLocation do not leave not enough space to 2878 * assign a location for an active matrix attribute or an 2879 * active attribute array, both of which require multiple 2880 * contiguous generic attributes." 2881 * 2882 * I think above text prohibits the aliasing of explicit and 2883 * automatic assignments. But, aliasing is allowed in manual 2884 * assignments of attribute locations. See below comments for 2885 * the details. 2886 * 2887 * From OpenGL 4.0 spec, page 61: 2888 * 2889 * "It is possible for an application to bind more than one 2890 * attribute name to the same location. This is referred to as 2891 * aliasing. This will only work if only one of the aliased 2892 * attributes is active in the executable program, or if no 2893 * path through the shader consumes more than one attribute of 2894 * a set of attributes aliased to the same location. A link 2895 * error can occur if the linker determines that every path 2896 * through the shader consumes multiple aliased attributes, 2897 * but implementations are not required to generate an error 2898 * in this case." 2899 * 2900 * From GLSL 4.30 spec, page 54: 2901 * 2902 * "A program will fail to link if any two non-vertex shader 2903 * input variables are assigned to the same location. For 2904 * vertex shaders, multiple input variables may be assigned 2905 * to the same location using either layout qualifiers or via 2906 * the OpenGL API. However, such aliasing is intended only to 2907 * support vertex shaders where each execution path accesses 2908 * at most one input per each location. Implementations are 2909 * permitted, but not required, to generate link-time errors 2910 * if they detect that every path through the vertex shader 2911 * executable accesses multiple inputs assigned to any single 2912 * location. For all shader types, a program will fail to link 2913 * if explicit location assignments leave the linker unable 2914 * to find space for other variables without explicit 2915 * assignments." 2916 * 2917 * From OpenGL ES 3.0 spec, page 56: 2918 * 2919 * "Binding more than one attribute name to the same location 2920 * is referred to as aliasing, and is not permitted in OpenGL 2921 * ES Shading Language 3.00 vertex shaders. LinkProgram will 2922 * fail when this condition exists. However, aliasing is 2923 * possible in OpenGL ES Shading Language 1.00 vertex shaders. 2924 * This will only work if only one of the aliased attributes 2925 * is active in the executable program, or if no path through 2926 * the shader consumes more than one attribute of a set of 2927 * attributes aliased to the same location. A link error can 2928 * occur if the linker determines that every path through the 2929 * shader consumes multiple aliased attributes, but implemen- 2930 * tations are not required to generate an error in this case." 2931 * 2932 * After looking at above references from OpenGL, OpenGL ES and 2933 * GLSL specifications, we allow aliasing of vertex input variables 2934 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0. 2935 * 2936 * NOTE: This is not required by the spec but its worth mentioning 2937 * here that we're not doing anything to make sure that no path 2938 * through the vertex shader executable accesses multiple inputs 2939 * assigned to any single location. 2940 */ 2941 2942 /* Mask representing the contiguous slots that will be used by 2943 * this attribute. 2944 */ 2945 const unsigned attr = var->data.location - generic_base; 2946 const unsigned use_mask = (1 << slots) - 1; 2947 const char *const string = (target_index == MESA_SHADER_VERTEX) 2948 ? "vertex shader input" : "fragment shader output"; 2949 2950 /* Generate a link error if the requested locations for this 2951 * attribute exceed the maximum allowed attribute location. 2952 */ 2953 if (attr + slots > max_index) { 2954 linker_error(prog, 2955 "insufficient contiguous locations " 2956 "available for %s `%s' %d %d %d\n", string, 2957 var->name, used_locations, use_mask, attr); 2958 return false; 2959 } 2960 2961 /* Generate a link error if the set of bits requested for this 2962 * attribute overlaps any previously allocated bits. 2963 */ 2964 if ((~(use_mask << attr) & used_locations) != used_locations) { 2965 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) { 2966 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL 2967 * 4.40 spec: 2968 * 2969 * "Additionally, for fragment shader outputs, if two 2970 * variables are placed within the same location, they 2971 * must have the same underlying type (floating-point or 2972 * integer). No component aliasing of output variables or 2973 * members is allowed. 2974 */ 2975 for (unsigned i = 0; i < assigned_attr; i++) { 2976 unsigned assigned_slots = 2977 assigned[i]->type->count_attribute_slots(false); 2978 unsigned assig_attr = 2979 assigned[i]->data.location - generic_base; 2980 unsigned assigned_use_mask = (1 << assigned_slots) - 1; 2981 2982 if ((assigned_use_mask << assig_attr) & 2983 (use_mask << attr)) { 2984 2985 const glsl_type *assigned_type = 2986 assigned[i]->type->without_array(); 2987 const glsl_type *type = var->type->without_array(); 2988 if (assigned_type->base_type != type->base_type) { 2989 linker_error(prog, "types do not match for aliased" 2990 " %ss %s and %s\n", string, 2991 assigned[i]->name, var->name); 2992 return false; 2993 } 2994 2995 unsigned assigned_component_mask = 2996 ((1 << assigned_type->vector_elements) - 1) << 2997 assigned[i]->data.location_frac; 2998 unsigned component_mask = 2999 ((1 << type->vector_elements) - 1) << 3000 var->data.location_frac; 3001 if (assigned_component_mask & component_mask) { 3002 linker_error(prog, "overlapping component is " 3003 "assigned to %ss %s and %s " 3004 "(component=%d)\n", 3005 string, assigned[i]->name, var->name, 3006 var->data.location_frac); 3007 return false; 3008 } 3009 } 3010 } 3011 } else if (target_index == MESA_SHADER_FRAGMENT || 3012 (prog->IsES && prog->data->Version >= 300)) { 3013 linker_error(prog, "overlapping location is assigned " 3014 "to %s `%s' %d %d %d\n", string, var->name, 3015 used_locations, use_mask, attr); 3016 return false; 3017 } else { 3018 linker_warning(prog, "overlapping location is assigned " 3019 "to %s `%s' %d %d %d\n", string, var->name, 3020 used_locations, use_mask, attr); 3021 } 3022 } 3023 3024 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) { 3025 /* Only track assigned variables for non-ES fragment shaders 3026 * to avoid overflowing the array. 3027 * 3028 * At most one variable per fragment output component should 3029 * reach this. 3030 */ 3031 assert(assigned_attr < ARRAY_SIZE(assigned)); 3032 assigned[assigned_attr] = var; 3033 assigned_attr++; 3034 } 3035 3036 used_locations |= (use_mask << attr); 3037 3038 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes): 3039 * 3040 * "A program with more than the value of MAX_VERTEX_ATTRIBS 3041 * active attribute variables may fail to link, unless 3042 * device-dependent optimizations are able to make the program 3043 * fit within available hardware resources. For the purposes 3044 * of this test, attribute variables of the type dvec3, dvec4, 3045 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may 3046 * count as consuming twice as many attributes as equivalent 3047 * single-precision types. While these types use the same number 3048 * of generic attributes as their single-precision equivalents, 3049 * implementations are permitted to consume two single-precision 3050 * vectors of internal storage for each three- or four-component 3051 * double-precision vector." 3052 * 3053 * Mark this attribute slot as taking up twice as much space 3054 * so we can count it properly against limits. According to 3055 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this 3056 * is optional behavior, but it seems preferable. 3057 */ 3058 if (var->type->without_array()->is_dual_slot()) 3059 double_storage_locations |= (use_mask << attr); 3060 } 3061 3062 continue; 3063 } 3064 3065 if (num_attr >= max_index) { 3066 linker_error(prog, "too many %s (max %u)", 3067 target_index == MESA_SHADER_VERTEX ? 3068 "vertex shader inputs" : "fragment shader outputs", 3069 max_index); 3070 return false; 3071 } 3072 to_assign[num_attr].slots = slots; 3073 to_assign[num_attr].var = var; 3074 num_attr++; 3075 } 3076 3077 if (!do_assignment) 3078 return true; 3079 3080 if (target_index == MESA_SHADER_VERTEX) { 3081 unsigned total_attribs_size = 3082 util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) + 3083 util_bitcount(double_storage_locations); 3084 if (total_attribs_size > max_index) { 3085 linker_error(prog, 3086 "attempt to use %d vertex attribute slots only %d available ", 3087 total_attribs_size, max_index); 3088 return false; 3089 } 3090 } 3091 3092 /* If all of the attributes were assigned locations by the application (or 3093 * are built-in attributes with fixed locations), return early. This should 3094 * be the common case. 3095 */ 3096 if (num_attr == 0) 3097 return true; 3098 3099 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare); 3100 3101 if (target_index == MESA_SHADER_VERTEX) { 3102 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can 3103 * only be explicitly assigned by via glBindAttribLocation. Mark it as 3104 * reserved to prevent it from being automatically allocated below. 3105 */ 3106 find_deref_visitor find("gl_Vertex"); 3107 find.run(sh->ir); 3108 if (find.variable_found()) 3109 used_locations |= (1 << 0); 3110 } 3111 3112 for (unsigned i = 0; i < num_attr; i++) { 3113 /* Mask representing the contiguous slots that will be used by this 3114 * attribute. 3115 */ 3116 const unsigned use_mask = (1 << to_assign[i].slots) - 1; 3117 3118 int location = find_available_slots(used_locations, to_assign[i].slots); 3119 3120 if (location < 0) { 3121 const char *const string = (target_index == MESA_SHADER_VERTEX) 3122 ? "vertex shader input" : "fragment shader output"; 3123 3124 linker_error(prog, 3125 "insufficient contiguous locations " 3126 "available for %s `%s'\n", 3127 string, to_assign[i].var->name); 3128 return false; 3129 } 3130 3131 to_assign[i].var->data.location = generic_base + location; 3132 to_assign[i].var->data.is_unmatched_generic_inout = 0; 3133 used_locations |= (use_mask << location); 3134 3135 if (to_assign[i].var->type->without_array()->is_dual_slot()) 3136 double_storage_locations |= (use_mask << location); 3137 } 3138 3139 /* Now that we have all the locations, from the GL 4.5 core spec, section 3140 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3, 3141 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes 3142 * as equivalent single-precision types. 3143 */ 3144 if (target_index == MESA_SHADER_VERTEX) { 3145 unsigned total_attribs_size = 3146 util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) + 3147 util_bitcount(double_storage_locations); 3148 if (total_attribs_size > max_index) { 3149 linker_error(prog, 3150 "attempt to use %d vertex attribute slots only %d available ", 3151 total_attribs_size, max_index); 3152 return false; 3153 } 3154 } 3155 3156 return true; 3157} 3158 3159/** 3160 * Match explicit locations of outputs to inputs and deactivate the 3161 * unmatch flag if found so we don't optimise them away. 3162 */ 3163static void 3164match_explicit_outputs_to_inputs(gl_linked_shader *producer, 3165 gl_linked_shader *consumer) 3166{ 3167 glsl_symbol_table parameters; 3168 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] = 3169 { {NULL, NULL} }; 3170 3171 /* Find all shader outputs in the "producer" stage. 3172 */ 3173 foreach_in_list(ir_instruction, node, producer->ir) { 3174 ir_variable *const var = node->as_variable(); 3175 3176 if ((var == NULL) || (var->data.mode != ir_var_shader_out)) 3177 continue; 3178 3179 if (var->data.explicit_location && 3180 var->data.location >= VARYING_SLOT_VAR0) { 3181 const unsigned idx = var->data.location - VARYING_SLOT_VAR0; 3182 if (explicit_locations[idx][var->data.location_frac] == NULL) 3183 explicit_locations[idx][var->data.location_frac] = var; 3184 } 3185 } 3186 3187 /* Match inputs to outputs */ 3188 foreach_in_list(ir_instruction, node, consumer->ir) { 3189 ir_variable *const input = node->as_variable(); 3190 3191 if ((input == NULL) || (input->data.mode != ir_var_shader_in)) 3192 continue; 3193 3194 ir_variable *output = NULL; 3195 if (input->data.explicit_location 3196 && input->data.location >= VARYING_SLOT_VAR0) { 3197 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0] 3198 [input->data.location_frac]; 3199 3200 if (output != NULL){ 3201 input->data.is_unmatched_generic_inout = 0; 3202 output->data.is_unmatched_generic_inout = 0; 3203 } 3204 } 3205 } 3206} 3207 3208/** 3209 * Store the gl_FragDepth layout in the gl_shader_program struct. 3210 */ 3211static void 3212store_fragdepth_layout(struct gl_shader_program *prog) 3213{ 3214 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) { 3215 return; 3216 } 3217 3218 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir; 3219 3220 /* We don't look up the gl_FragDepth symbol directly because if 3221 * gl_FragDepth is not used in the shader, it's removed from the IR. 3222 * However, the symbol won't be removed from the symbol table. 3223 * 3224 * We're only interested in the cases where the variable is NOT removed 3225 * from the IR. 3226 */ 3227 foreach_in_list(ir_instruction, node, ir) { 3228 ir_variable *const var = node->as_variable(); 3229 3230 if (var == NULL || var->data.mode != ir_var_shader_out) { 3231 continue; 3232 } 3233 3234 if (strcmp(var->name, "gl_FragDepth") == 0) { 3235 switch (var->data.depth_layout) { 3236 case ir_depth_layout_none: 3237 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE; 3238 return; 3239 case ir_depth_layout_any: 3240 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY; 3241 return; 3242 case ir_depth_layout_greater: 3243 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER; 3244 return; 3245 case ir_depth_layout_less: 3246 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS; 3247 return; 3248 case ir_depth_layout_unchanged: 3249 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED; 3250 return; 3251 default: 3252 assert(0); 3253 return; 3254 } 3255 } 3256 } 3257} 3258 3259/** 3260 * Validate the resources used by a program versus the implementation limits 3261 */ 3262static void 3263check_resources(struct gl_context *ctx, struct gl_shader_program *prog) 3264{ 3265 unsigned total_uniform_blocks = 0; 3266 unsigned total_shader_storage_blocks = 0; 3267 3268 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 3269 struct gl_linked_shader *sh = prog->_LinkedShaders[i]; 3270 3271 if (sh == NULL) 3272 continue; 3273 3274 if (sh->Program->info.num_textures > 3275 ctx->Const.Program[i].MaxTextureImageUnits) { 3276 linker_error(prog, "Too many %s shader texture samplers\n", 3277 _mesa_shader_stage_to_string(i)); 3278 } 3279 3280 if (sh->num_uniform_components > 3281 ctx->Const.Program[i].MaxUniformComponents) { 3282 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) { 3283 linker_warning(prog, "Too many %s shader default uniform block " 3284 "components, but the driver will try to optimize " 3285 "them out; this is non-portable out-of-spec " 3286 "behavior\n", 3287 _mesa_shader_stage_to_string(i)); 3288 } else { 3289 linker_error(prog, "Too many %s shader default uniform block " 3290 "components\n", 3291 _mesa_shader_stage_to_string(i)); 3292 } 3293 } 3294 3295 if (sh->num_combined_uniform_components > 3296 ctx->Const.Program[i].MaxCombinedUniformComponents) { 3297 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) { 3298 linker_warning(prog, "Too many %s shader uniform components, " 3299 "but the driver will try to optimize them out; " 3300 "this is non-portable out-of-spec behavior\n", 3301 _mesa_shader_stage_to_string(i)); 3302 } else { 3303 linker_error(prog, "Too many %s shader uniform components\n", 3304 _mesa_shader_stage_to_string(i)); 3305 } 3306 } 3307 3308 total_shader_storage_blocks += sh->Program->info.num_ssbos; 3309 total_uniform_blocks += sh->Program->info.num_ubos; 3310 3311 const unsigned max_uniform_blocks = 3312 ctx->Const.Program[i].MaxUniformBlocks; 3313 if (max_uniform_blocks < sh->Program->info.num_ubos) { 3314 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n", 3315 _mesa_shader_stage_to_string(i), 3316 sh->Program->info.num_ubos, max_uniform_blocks); 3317 } 3318 3319 const unsigned max_shader_storage_blocks = 3320 ctx->Const.Program[i].MaxShaderStorageBlocks; 3321 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) { 3322 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n", 3323 _mesa_shader_stage_to_string(i), 3324 sh->Program->info.num_ssbos, max_shader_storage_blocks); 3325 } 3326 } 3327 3328 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) { 3329 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n", 3330 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks); 3331 } 3332 3333 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) { 3334 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n", 3335 total_shader_storage_blocks, 3336 ctx->Const.MaxCombinedShaderStorageBlocks); 3337 } 3338 3339 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) { 3340 if (prog->data->UniformBlocks[i].UniformBufferSize > 3341 ctx->Const.MaxUniformBlockSize) { 3342 linker_error(prog, "Uniform block %s too big (%d/%d)\n", 3343 prog->data->UniformBlocks[i].Name, 3344 prog->data->UniformBlocks[i].UniformBufferSize, 3345 ctx->Const.MaxUniformBlockSize); 3346 } 3347 } 3348 3349 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) { 3350 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize > 3351 ctx->Const.MaxShaderStorageBlockSize) { 3352 linker_error(prog, "Shader storage block %s too big (%d/%d)\n", 3353 prog->data->ShaderStorageBlocks[i].Name, 3354 prog->data->ShaderStorageBlocks[i].UniformBufferSize, 3355 ctx->Const.MaxShaderStorageBlockSize); 3356 } 3357 } 3358} 3359 3360static void 3361link_calculate_subroutine_compat(struct gl_shader_program *prog) 3362{ 3363 unsigned mask = prog->data->linked_stages; 3364 while (mask) { 3365 const int i = u_bit_scan(&mask); 3366 struct gl_program *p = prog->_LinkedShaders[i]->Program; 3367 3368 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) { 3369 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) 3370 continue; 3371 3372 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j]; 3373 3374 if (!uni) 3375 continue; 3376 3377 int count = 0; 3378 if (p->sh.NumSubroutineFunctions == 0) { 3379 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name); 3380 continue; 3381 } 3382 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) { 3383 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f]; 3384 for (int k = 0; k < fn->num_compat_types; k++) { 3385 if (fn->types[k] == uni->type) { 3386 count++; 3387 break; 3388 } 3389 } 3390 } 3391 uni->num_compatible_subroutines = count; 3392 } 3393 } 3394} 3395 3396static void 3397check_subroutine_resources(struct gl_shader_program *prog) 3398{ 3399 unsigned mask = prog->data->linked_stages; 3400 while (mask) { 3401 const int i = u_bit_scan(&mask); 3402 struct gl_program *p = prog->_LinkedShaders[i]->Program; 3403 3404 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) { 3405 linker_error(prog, "Too many %s shader subroutine uniforms\n", 3406 _mesa_shader_stage_to_string(i)); 3407 } 3408 } 3409} 3410/** 3411 * Validate shader image resources. 3412 */ 3413static void 3414check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog) 3415{ 3416 unsigned total_image_units = 0; 3417 unsigned fragment_outputs = 0; 3418 unsigned total_shader_storage_blocks = 0; 3419 3420 if (!ctx->Extensions.ARB_shader_image_load_store) 3421 return; 3422 3423 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 3424 struct gl_linked_shader *sh = prog->_LinkedShaders[i]; 3425 3426 if (sh) { 3427 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms) 3428 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n", 3429 _mesa_shader_stage_to_string(i), 3430 sh->Program->info.num_images, 3431 ctx->Const.Program[i].MaxImageUniforms); 3432 3433 total_image_units += sh->Program->info.num_images; 3434 total_shader_storage_blocks += sh->Program->info.num_ssbos; 3435 3436 if (i == MESA_SHADER_FRAGMENT) { 3437 foreach_in_list(ir_instruction, node, sh->ir) { 3438 ir_variable *var = node->as_variable(); 3439 if (var && var->data.mode == ir_var_shader_out) 3440 /* since there are no double fs outputs - pass false */ 3441 fragment_outputs += var->type->count_attribute_slots(false); 3442 } 3443 } 3444 } 3445 } 3446 3447 if (total_image_units > ctx->Const.MaxCombinedImageUniforms) 3448 linker_error(prog, "Too many combined image uniforms\n"); 3449 3450 if (total_image_units + fragment_outputs + total_shader_storage_blocks > 3451 ctx->Const.MaxCombinedShaderOutputResources) 3452 linker_error(prog, "Too many combined image uniforms, shader storage " 3453 " buffers and fragment outputs\n"); 3454} 3455 3456 3457/** 3458 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION 3459 * for a variable, checks for overlaps between other uniforms using explicit 3460 * locations. 3461 */ 3462static int 3463reserve_explicit_locations(struct gl_shader_program *prog, 3464 string_to_uint_map *map, ir_variable *var) 3465{ 3466 unsigned slots = var->type->uniform_locations(); 3467 unsigned max_loc = var->data.location + slots - 1; 3468 unsigned return_value = slots; 3469 3470 /* Resize remap table if locations do not fit in the current one. */ 3471 if (max_loc + 1 > prog->NumUniformRemapTable) { 3472 prog->UniformRemapTable = 3473 reralloc(prog, prog->UniformRemapTable, 3474 gl_uniform_storage *, 3475 max_loc + 1); 3476 3477 if (!prog->UniformRemapTable) { 3478 linker_error(prog, "Out of memory during linking.\n"); 3479 return -1; 3480 } 3481 3482 /* Initialize allocated space. */ 3483 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++) 3484 prog->UniformRemapTable[i] = NULL; 3485 3486 prog->NumUniformRemapTable = max_loc + 1; 3487 } 3488 3489 for (unsigned i = 0; i < slots; i++) { 3490 unsigned loc = var->data.location + i; 3491 3492 /* Check if location is already used. */ 3493 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) { 3494 3495 /* Possibly same uniform from a different stage, this is ok. */ 3496 unsigned hash_loc; 3497 if (map->get(hash_loc, var->name) && hash_loc == loc - i) { 3498 return_value = 0; 3499 continue; 3500 } 3501 3502 /* ARB_explicit_uniform_location specification states: 3503 * 3504 * "No two default-block uniform variables in the program can have 3505 * the same location, even if they are unused, otherwise a compiler 3506 * or linker error will be generated." 3507 */ 3508 linker_error(prog, 3509 "location qualifier for uniform %s overlaps " 3510 "previously used location\n", 3511 var->name); 3512 return -1; 3513 } 3514 3515 /* Initialize location as inactive before optimization 3516 * rounds and location assignment. 3517 */ 3518 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION; 3519 } 3520 3521 /* Note, base location used for arrays. */ 3522 map->put(var->data.location, var->name); 3523 3524 return return_value; 3525} 3526 3527static bool 3528reserve_subroutine_explicit_locations(struct gl_shader_program *prog, 3529 struct gl_program *p, 3530 ir_variable *var) 3531{ 3532 unsigned slots = var->type->uniform_locations(); 3533 unsigned max_loc = var->data.location + slots - 1; 3534 3535 /* Resize remap table if locations do not fit in the current one. */ 3536 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) { 3537 p->sh.SubroutineUniformRemapTable = 3538 reralloc(p, p->sh.SubroutineUniformRemapTable, 3539 gl_uniform_storage *, 3540 max_loc + 1); 3541 3542 if (!p->sh.SubroutineUniformRemapTable) { 3543 linker_error(prog, "Out of memory during linking.\n"); 3544 return false; 3545 } 3546 3547 /* Initialize allocated space. */ 3548 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++) 3549 p->sh.SubroutineUniformRemapTable[i] = NULL; 3550 3551 p->sh.NumSubroutineUniformRemapTable = max_loc + 1; 3552 } 3553 3554 for (unsigned i = 0; i < slots; i++) { 3555 unsigned loc = var->data.location + i; 3556 3557 /* Check if location is already used. */ 3558 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) { 3559 3560 /* ARB_explicit_uniform_location specification states: 3561 * "No two subroutine uniform variables can have the same location 3562 * in the same shader stage, otherwise a compiler or linker error 3563 * will be generated." 3564 */ 3565 linker_error(prog, 3566 "location qualifier for uniform %s overlaps " 3567 "previously used location\n", 3568 var->name); 3569 return false; 3570 } 3571 3572 /* Initialize location as inactive before optimization 3573 * rounds and location assignment. 3574 */ 3575 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION; 3576 } 3577 3578 return true; 3579} 3580/** 3581 * Check and reserve all explicit uniform locations, called before 3582 * any optimizations happen to handle also inactive uniforms and 3583 * inactive array elements that may get trimmed away. 3584 */ 3585static void 3586check_explicit_uniform_locations(struct gl_context *ctx, 3587 struct gl_shader_program *prog) 3588{ 3589 prog->NumExplicitUniformLocations = 0; 3590 3591 if (!ctx->Extensions.ARB_explicit_uniform_location) 3592 return; 3593 3594 /* This map is used to detect if overlapping explicit locations 3595 * occur with the same uniform (from different stage) or a different one. 3596 */ 3597 string_to_uint_map *uniform_map = new string_to_uint_map; 3598 3599 if (!uniform_map) { 3600 linker_error(prog, "Out of memory during linking.\n"); 3601 return; 3602 } 3603 3604 unsigned entries_total = 0; 3605 unsigned mask = prog->data->linked_stages; 3606 while (mask) { 3607 const int i = u_bit_scan(&mask); 3608 struct gl_program *p = prog->_LinkedShaders[i]->Program; 3609 3610 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { 3611 ir_variable *var = node->as_variable(); 3612 if (!var || var->data.mode != ir_var_uniform) 3613 continue; 3614 3615 if (var->data.explicit_location) { 3616 bool ret = false; 3617 if (var->type->without_array()->is_subroutine()) 3618 ret = reserve_subroutine_explicit_locations(prog, p, var); 3619 else { 3620 int slots = reserve_explicit_locations(prog, uniform_map, 3621 var); 3622 if (slots != -1) { 3623 ret = true; 3624 entries_total += slots; 3625 } 3626 } 3627 if (!ret) { 3628 delete uniform_map; 3629 return; 3630 } 3631 } 3632 } 3633 } 3634 3635 link_util_update_empty_uniform_locations(prog); 3636 3637 delete uniform_map; 3638 prog->NumExplicitUniformLocations = entries_total; 3639} 3640 3641static bool 3642should_add_buffer_variable(struct gl_shader_program *shProg, 3643 GLenum type, const char *name) 3644{ 3645 bool found_interface = false; 3646 unsigned block_name_len = 0; 3647 const char *block_name_dot = strchr(name, '.'); 3648 3649 /* These rules only apply to buffer variables. So we return 3650 * true for the rest of types. 3651 */ 3652 if (type != GL_BUFFER_VARIABLE) 3653 return true; 3654 3655 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) { 3656 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name; 3657 block_name_len = strlen(block_name); 3658 3659 const char *block_square_bracket = strchr(block_name, '['); 3660 if (block_square_bracket) { 3661 /* The block is part of an array of named interfaces, 3662 * for the name comparison we ignore the "[x]" part. 3663 */ 3664 block_name_len -= strlen(block_square_bracket); 3665 } 3666 3667 if (block_name_dot) { 3668 /* Check if the variable name starts with the interface 3669 * name. The interface name (if present) should have the 3670 * length than the interface block name we are comparing to. 3671 */ 3672 unsigned len = strlen(name) - strlen(block_name_dot); 3673 if (len != block_name_len) 3674 continue; 3675 } 3676 3677 if (strncmp(block_name, name, block_name_len) == 0) { 3678 found_interface = true; 3679 break; 3680 } 3681 } 3682 3683 /* We remove the interface name from the buffer variable name, 3684 * including the dot that follows it. 3685 */ 3686 if (found_interface) 3687 name = name + block_name_len + 1; 3688 3689 /* The ARB_program_interface_query spec says: 3690 * 3691 * "For an active shader storage block member declared as an array, an 3692 * entry will be generated only for the first array element, regardless 3693 * of its type. For arrays of aggregate types, the enumeration rules 3694 * are applied recursively for the single enumerated array element." 3695 */ 3696 const char *struct_first_dot = strchr(name, '.'); 3697 const char *first_square_bracket = strchr(name, '['); 3698 3699 /* The buffer variable is on top level and it is not an array */ 3700 if (!first_square_bracket) { 3701 return true; 3702 /* The shader storage block member is a struct, then generate the entry */ 3703 } else if (struct_first_dot && struct_first_dot < first_square_bracket) { 3704 return true; 3705 } else { 3706 /* Shader storage block member is an array, only generate an entry for the 3707 * first array element. 3708 */ 3709 if (strncmp(first_square_bracket, "[0]", 3) == 0) 3710 return true; 3711 } 3712 3713 return false; 3714} 3715 3716/* Function checks if a variable var is a packed varying and 3717 * if given name is part of packed varying's list. 3718 * 3719 * If a variable is a packed varying, it has a name like 3720 * 'packed:a,b,c' where a, b and c are separate variables. 3721 */ 3722static bool 3723included_in_packed_varying(ir_variable *var, const char *name) 3724{ 3725 if (strncmp(var->name, "packed:", 7) != 0) 3726 return false; 3727 3728 char *list = strdup(var->name + 7); 3729 assert(list); 3730 3731 bool found = false; 3732 char *saveptr; 3733 char *token = strtok_r(list, ",", &saveptr); 3734 while (token) { 3735 if (strcmp(token, name) == 0) { 3736 found = true; 3737 break; 3738 } 3739 token = strtok_r(NULL, ",", &saveptr); 3740 } 3741 free(list); 3742 return found; 3743} 3744 3745/** 3746 * Function builds a stage reference bitmask from variable name. 3747 */ 3748static uint8_t 3749build_stageref(struct gl_shader_program *shProg, const char *name, 3750 unsigned mode) 3751{ 3752 uint8_t stages = 0; 3753 3754 /* Note, that we assume MAX 8 stages, if there will be more stages, type 3755 * used for reference mask in gl_program_resource will need to be changed. 3756 */ 3757 assert(MESA_SHADER_STAGES < 8); 3758 3759 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 3760 struct gl_linked_shader *sh = shProg->_LinkedShaders[i]; 3761 if (!sh) 3762 continue; 3763 3764 /* Shader symbol table may contain variables that have 3765 * been optimized away. Search IR for the variable instead. 3766 */ 3767 foreach_in_list(ir_instruction, node, sh->ir) { 3768 ir_variable *var = node->as_variable(); 3769 if (var) { 3770 unsigned baselen = strlen(var->name); 3771 3772 if (included_in_packed_varying(var, name)) { 3773 stages |= (1 << i); 3774 break; 3775 } 3776 3777 /* Type needs to match if specified, otherwise we might 3778 * pick a variable with same name but different interface. 3779 */ 3780 if (var->data.mode != mode) 3781 continue; 3782 3783 if (strncmp(var->name, name, baselen) == 0) { 3784 /* Check for exact name matches but also check for arrays and 3785 * structs. 3786 */ 3787 if (name[baselen] == '\0' || 3788 name[baselen] == '[' || 3789 name[baselen] == '.') { 3790 stages |= (1 << i); 3791 break; 3792 } 3793 } 3794 } 3795 } 3796 } 3797 return stages; 3798} 3799 3800/** 3801 * Create gl_shader_variable from ir_variable class. 3802 */ 3803static gl_shader_variable * 3804create_shader_variable(struct gl_shader_program *shProg, 3805 const ir_variable *in, 3806 const char *name, const glsl_type *type, 3807 const glsl_type *interface_type, 3808 bool use_implicit_location, int location, 3809 const glsl_type *outermost_struct_type) 3810{ 3811 /* Allocate zero-initialized memory to ensure that bitfield padding 3812 * is zero. 3813 */ 3814 gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable); 3815 if (!out) 3816 return NULL; 3817 3818 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications 3819 * expect to see gl_VertexID in the program resource list. Pretend. 3820 */ 3821 if (in->data.mode == ir_var_system_value && 3822 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) { 3823 out->name = ralloc_strdup(shProg, "gl_VertexID"); 3824 } else if ((in->data.mode == ir_var_shader_out && 3825 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) || 3826 (in->data.mode == ir_var_system_value && 3827 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) { 3828 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter"); 3829 type = glsl_type::get_array_instance(glsl_type::float_type, 4); 3830 } else if ((in->data.mode == ir_var_shader_out && 3831 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) || 3832 (in->data.mode == ir_var_system_value && 3833 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) { 3834 out->name = ralloc_strdup(shProg, "gl_TessLevelInner"); 3835 type = glsl_type::get_array_instance(glsl_type::float_type, 2); 3836 } else { 3837 out->name = ralloc_strdup(shProg, name); 3838 } 3839 3840 if (!out->name) 3841 return NULL; 3842 3843 /* The ARB_program_interface_query spec says: 3844 * 3845 * "Not all active variables are assigned valid locations; the 3846 * following variables will have an effective location of -1: 3847 * 3848 * * uniforms declared as atomic counters; 3849 * 3850 * * members of a uniform block; 3851 * 3852 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and 3853 * 3854 * * inputs or outputs not declared with a "location" layout 3855 * qualifier, except for vertex shader inputs and fragment shader 3856 * outputs." 3857 */ 3858 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) || 3859 !(in->data.explicit_location || use_implicit_location)) { 3860 out->location = -1; 3861 } else { 3862 out->location = location; 3863 } 3864 3865 out->type = type; 3866 out->outermost_struct_type = outermost_struct_type; 3867 out->interface_type = interface_type; 3868 out->component = in->data.location_frac; 3869 out->index = in->data.index; 3870 out->patch = in->data.patch; 3871 out->mode = in->data.mode; 3872 out->interpolation = in->data.interpolation; 3873 out->explicit_location = in->data.explicit_location; 3874 out->precision = in->data.precision; 3875 3876 return out; 3877} 3878 3879static bool 3880add_shader_variable(const struct gl_context *ctx, 3881 struct gl_shader_program *shProg, 3882 struct set *resource_set, 3883 unsigned stage_mask, 3884 GLenum programInterface, ir_variable *var, 3885 const char *name, const glsl_type *type, 3886 bool use_implicit_location, int location, 3887 bool inouts_share_location, 3888 const glsl_type *outermost_struct_type = NULL) 3889{ 3890 const glsl_type *interface_type = var->get_interface_type(); 3891 3892 if (outermost_struct_type == NULL) { 3893 if (var->data.from_named_ifc_block) { 3894 const char *interface_name = interface_type->name; 3895 3896 if (interface_type->is_array()) { 3897 /* Issue #16 of the ARB_program_interface_query spec says: 3898 * 3899 * "* If a variable is a member of an interface block without an 3900 * instance name, it is enumerated using just the variable name. 3901 * 3902 * * If a variable is a member of an interface block with an 3903 * instance name, it is enumerated as "BlockName.Member", where 3904 * "BlockName" is the name of the interface block (not the 3905 * instance name) and "Member" is the name of the variable." 3906 * 3907 * In particular, it indicates that it should be "BlockName", 3908 * not "BlockName[array length]". The conformance suite and 3909 * dEQP both require this behavior. 3910 * 3911 * Here, we unwrap the extra array level added by named interface 3912 * block array lowering so we have the correct variable type. We 3913 * also unwrap the interface type when constructing the name. 3914 * 3915 * We leave interface_type the same so that ES 3.x SSO pipeline 3916 * validation can enforce the rules requiring array length to 3917 * match on interface blocks. 3918 */ 3919 type = type->fields.array; 3920 3921 interface_name = interface_type->fields.array->name; 3922 } 3923 3924 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name); 3925 } 3926 } 3927 3928 switch (type->base_type) { 3929 case GLSL_TYPE_STRUCT: { 3930 /* The ARB_program_interface_query spec says: 3931 * 3932 * "For an active variable declared as a structure, a separate entry 3933 * will be generated for each active structure member. The name of 3934 * each entry is formed by concatenating the name of the structure, 3935 * the "." character, and the name of the structure member. If a 3936 * structure member to enumerate is itself a structure or array, 3937 * these enumeration rules are applied recursively." 3938 */ 3939 if (outermost_struct_type == NULL) 3940 outermost_struct_type = type; 3941 3942 unsigned field_location = location; 3943 for (unsigned i = 0; i < type->length; i++) { 3944 const struct glsl_struct_field *field = &type->fields.structure[i]; 3945 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name); 3946 if (!add_shader_variable(ctx, shProg, resource_set, 3947 stage_mask, programInterface, 3948 var, field_name, field->type, 3949 use_implicit_location, field_location, 3950 false, outermost_struct_type)) 3951 return false; 3952 3953 field_location += field->type->count_attribute_slots(false); 3954 } 3955 return true; 3956 } 3957 3958 case GLSL_TYPE_ARRAY: { 3959 /* The ARB_program_interface_query spec says: 3960 * 3961 * "For an active variable declared as an array of basic types, a 3962 * single entry will be generated, with its name string formed by 3963 * concatenating the name of the array and the string "[0]"." 3964 * 3965 * "For an active variable declared as an array of an aggregate data 3966 * type (structures or arrays), a separate entry will be generated 3967 * for each active array element, unless noted immediately below. 3968 * The name of each entry is formed by concatenating the name of 3969 * the array, the "[" character, an integer identifying the element 3970 * number, and the "]" character. These enumeration rules are 3971 * applied recursively, treating each enumerated array element as a 3972 * separate active variable." 3973 */ 3974 const struct glsl_type *array_type = type->fields.array; 3975 if (array_type->base_type == GLSL_TYPE_STRUCT || 3976 array_type->base_type == GLSL_TYPE_ARRAY) { 3977 unsigned elem_location = location; 3978 unsigned stride = inouts_share_location ? 0 : 3979 array_type->count_attribute_slots(false); 3980 for (unsigned i = 0; i < type->length; i++) { 3981 char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i); 3982 if (!add_shader_variable(ctx, shProg, resource_set, 3983 stage_mask, programInterface, 3984 var, elem, array_type, 3985 use_implicit_location, elem_location, 3986 false, outermost_struct_type)) 3987 return false; 3988 elem_location += stride; 3989 } 3990 return true; 3991 } 3992 /* fallthrough */ 3993 } 3994 3995 default: { 3996 /* The ARB_program_interface_query spec says: 3997 * 3998 * "For an active variable declared as a single instance of a basic 3999 * type, a single entry will be generated, using the variable name 4000 * from the shader source." 4001 */ 4002 gl_shader_variable *sha_v = 4003 create_shader_variable(shProg, var, name, type, interface_type, 4004 use_implicit_location, location, 4005 outermost_struct_type); 4006 if (!sha_v) 4007 return false; 4008 4009 return link_util_add_program_resource(shProg, resource_set, 4010 programInterface, sha_v, stage_mask); 4011 } 4012 } 4013} 4014 4015static bool 4016inout_has_same_location(const ir_variable *var, unsigned stage) 4017{ 4018 if (!var->data.patch && 4019 ((var->data.mode == ir_var_shader_out && 4020 stage == MESA_SHADER_TESS_CTRL) || 4021 (var->data.mode == ir_var_shader_in && 4022 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL || 4023 stage == MESA_SHADER_GEOMETRY)))) 4024 return true; 4025 else 4026 return false; 4027} 4028 4029static bool 4030add_interface_variables(const struct gl_context *ctx, 4031 struct gl_shader_program *shProg, 4032 struct set *resource_set, 4033 unsigned stage, GLenum programInterface) 4034{ 4035 exec_list *ir = shProg->_LinkedShaders[stage]->ir; 4036 4037 foreach_in_list(ir_instruction, node, ir) { 4038 ir_variable *var = node->as_variable(); 4039 4040 if (!var || var->data.how_declared == ir_var_hidden) 4041 continue; 4042 4043 int loc_bias; 4044 4045 switch (var->data.mode) { 4046 case ir_var_system_value: 4047 case ir_var_shader_in: 4048 if (programInterface != GL_PROGRAM_INPUT) 4049 continue; 4050 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0) 4051 : int(VARYING_SLOT_VAR0); 4052 break; 4053 case ir_var_shader_out: 4054 if (programInterface != GL_PROGRAM_OUTPUT) 4055 continue; 4056 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0) 4057 : int(VARYING_SLOT_VAR0); 4058 break; 4059 default: 4060 continue; 4061 }; 4062 4063 if (var->data.patch) 4064 loc_bias = int(VARYING_SLOT_PATCH0); 4065 4066 /* Skip packed varyings, packed varyings are handled separately 4067 * by add_packed_varyings. 4068 */ 4069 if (strncmp(var->name, "packed:", 7) == 0) 4070 continue; 4071 4072 /* Skip fragdata arrays, these are handled separately 4073 * by add_fragdata_arrays. 4074 */ 4075 if (strncmp(var->name, "gl_out_FragData", 15) == 0) 4076 continue; 4077 4078 const bool vs_input_or_fs_output = 4079 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) || 4080 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out); 4081 4082 if (!add_shader_variable(ctx, shProg, resource_set, 4083 1 << stage, programInterface, 4084 var, var->name, var->type, vs_input_or_fs_output, 4085 var->data.location - loc_bias, 4086 inout_has_same_location(var, stage))) 4087 return false; 4088 } 4089 return true; 4090} 4091 4092static bool 4093add_packed_varyings(const struct gl_context *ctx, 4094 struct gl_shader_program *shProg, 4095 struct set *resource_set, 4096 int stage, GLenum type) 4097{ 4098 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage]; 4099 GLenum iface; 4100 4101 if (!sh || !sh->packed_varyings) 4102 return true; 4103 4104 foreach_in_list(ir_instruction, node, sh->packed_varyings) { 4105 ir_variable *var = node->as_variable(); 4106 if (var) { 4107 switch (var->data.mode) { 4108 case ir_var_shader_in: 4109 iface = GL_PROGRAM_INPUT; 4110 break; 4111 case ir_var_shader_out: 4112 iface = GL_PROGRAM_OUTPUT; 4113 break; 4114 default: 4115 unreachable("unexpected type"); 4116 } 4117 4118 if (type == iface) { 4119 const int stage_mask = 4120 build_stageref(shProg, var->name, var->data.mode); 4121 if (!add_shader_variable(ctx, shProg, resource_set, 4122 stage_mask, 4123 iface, var, var->name, var->type, false, 4124 var->data.location - VARYING_SLOT_VAR0, 4125 inout_has_same_location(var, stage))) 4126 return false; 4127 } 4128 } 4129 } 4130 return true; 4131} 4132 4133static bool 4134add_fragdata_arrays(const struct gl_context *ctx, 4135 struct gl_shader_program *shProg, 4136 struct set *resource_set) 4137{ 4138 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT]; 4139 4140 if (!sh || !sh->fragdata_arrays) 4141 return true; 4142 4143 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) { 4144 ir_variable *var = node->as_variable(); 4145 if (var) { 4146 assert(var->data.mode == ir_var_shader_out); 4147 4148 if (!add_shader_variable(ctx, shProg, resource_set, 4149 1 << MESA_SHADER_FRAGMENT, 4150 GL_PROGRAM_OUTPUT, var, var->name, var->type, 4151 true, var->data.location - FRAG_RESULT_DATA0, 4152 false)) 4153 return false; 4154 } 4155 } 4156 return true; 4157} 4158 4159static char* 4160get_top_level_name(const char *name) 4161{ 4162 const char *first_dot = strchr(name, '.'); 4163 const char *first_square_bracket = strchr(name, '['); 4164 int name_size = 0; 4165 4166 /* The ARB_program_interface_query spec says: 4167 * 4168 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying 4169 * the number of active array elements of the top-level shader storage 4170 * block member containing to the active variable is written to 4171 * <params>. If the top-level block member is not declared as an 4172 * array, the value one is written to <params>. If the top-level block 4173 * member is an array with no declared size, the value zero is written 4174 * to <params>." 4175 */ 4176 4177 /* The buffer variable is on top level.*/ 4178 if (!first_square_bracket && !first_dot) 4179 name_size = strlen(name); 4180 else if ((!first_square_bracket || 4181 (first_dot && first_dot < first_square_bracket))) 4182 name_size = first_dot - name; 4183 else 4184 name_size = first_square_bracket - name; 4185 4186 return strndup(name, name_size); 4187} 4188 4189static char* 4190get_var_name(const char *name) 4191{ 4192 const char *first_dot = strchr(name, '.'); 4193 4194 if (!first_dot) 4195 return strdup(name); 4196 4197 return strndup(first_dot+1, strlen(first_dot) - 1); 4198} 4199 4200static bool 4201is_top_level_shader_storage_block_member(const char* name, 4202 const char* interface_name, 4203 const char* field_name) 4204{ 4205 bool result = false; 4206 4207 /* If the given variable is already a top-level shader storage 4208 * block member, then return array_size = 1. 4209 * We could have two possibilities: if we have an instanced 4210 * shader storage block or not instanced. 4211 * 4212 * For the first, we check create a name as it was in top level and 4213 * compare it with the real name. If they are the same, then 4214 * the variable is already at top-level. 4215 * 4216 * Full instanced name is: interface name + '.' + var name + 4217 * NULL character 4218 */ 4219 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1; 4220 char *full_instanced_name = (char *) calloc(name_length, sizeof(char)); 4221 if (!full_instanced_name) { 4222 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__); 4223 return false; 4224 } 4225 4226 util_snprintf(full_instanced_name, name_length, "%s.%s", 4227 interface_name, field_name); 4228 4229 /* Check if its top-level shader storage block member of an 4230 * instanced interface block, or of a unnamed interface block. 4231 */ 4232 if (strcmp(name, full_instanced_name) == 0 || 4233 strcmp(name, field_name) == 0) 4234 result = true; 4235 4236 free(full_instanced_name); 4237 return result; 4238} 4239 4240static int 4241get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field, 4242 char *interface_name, char *var_name) 4243{ 4244 /* The ARB_program_interface_query spec says: 4245 * 4246 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying 4247 * the number of active array elements of the top-level shader storage 4248 * block member containing to the active variable is written to 4249 * <params>. If the top-level block member is not declared as an 4250 * array, the value one is written to <params>. If the top-level block 4251 * member is an array with no declared size, the value zero is written 4252 * to <params>." 4253 */ 4254 if (is_top_level_shader_storage_block_member(uni->name, 4255 interface_name, 4256 var_name)) 4257 return 1; 4258 else if (field->type->is_unsized_array()) 4259 return 0; 4260 else if (field->type->is_array()) 4261 return field->type->length; 4262 4263 return 1; 4264} 4265 4266static int 4267get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni, 4268 const glsl_type *iface, const glsl_struct_field *field, 4269 char *interface_name, char *var_name) 4270{ 4271 /* The ARB_program_interface_query spec says: 4272 * 4273 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer 4274 * identifying the stride between array elements of the top-level 4275 * shader storage block member containing the active variable is 4276 * written to <params>. For top-level block members declared as 4277 * arrays, the value written is the difference, in basic machine units, 4278 * between the offsets of the active variable for consecutive elements 4279 * in the top-level array. For top-level block members not declared as 4280 * an array, zero is written to <params>." 4281 */ 4282 if (field->type->is_array()) { 4283 const enum glsl_matrix_layout matrix_layout = 4284 glsl_matrix_layout(field->matrix_layout); 4285 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR; 4286 const glsl_type *array_type = field->type->fields.array; 4287 4288 if (is_top_level_shader_storage_block_member(uni->name, 4289 interface_name, 4290 var_name)) 4291 return 0; 4292 4293 if (GLSL_INTERFACE_PACKING_STD140 == 4294 iface-> 4295 get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) { 4296 if (array_type->is_record() || array_type->is_array()) 4297 return glsl_align(array_type->std140_size(row_major), 16); 4298 else 4299 return MAX2(array_type->std140_base_alignment(row_major), 16); 4300 } else { 4301 return array_type->std430_array_stride(row_major); 4302 } 4303 } 4304 return 0; 4305} 4306 4307static void 4308calculate_array_size_and_stride(struct gl_context *ctx, 4309 struct gl_shader_program *shProg, 4310 struct gl_uniform_storage *uni) 4311{ 4312 int block_index = uni->block_index; 4313 int array_size = -1; 4314 int array_stride = -1; 4315 char *var_name = get_top_level_name(uni->name); 4316 char *interface_name = 4317 get_top_level_name(uni->is_shader_storage ? 4318 shProg->data->ShaderStorageBlocks[block_index].Name : 4319 shProg->data->UniformBlocks[block_index].Name); 4320 4321 if (strcmp(var_name, interface_name) == 0) { 4322 /* Deal with instanced array of SSBOs */ 4323 char *temp_name = get_var_name(uni->name); 4324 if (!temp_name) { 4325 linker_error(shProg, "Out of memory during linking.\n"); 4326 goto write_top_level_array_size_and_stride; 4327 } 4328 free(var_name); 4329 var_name = get_top_level_name(temp_name); 4330 free(temp_name); 4331 if (!var_name) { 4332 linker_error(shProg, "Out of memory during linking.\n"); 4333 goto write_top_level_array_size_and_stride; 4334 } 4335 } 4336 4337 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 4338 const gl_linked_shader *sh = shProg->_LinkedShaders[i]; 4339 if (sh == NULL) 4340 continue; 4341 4342 foreach_in_list(ir_instruction, node, sh->ir) { 4343 ir_variable *var = node->as_variable(); 4344 if (!var || !var->get_interface_type() || 4345 var->data.mode != ir_var_shader_storage) 4346 continue; 4347 4348 const glsl_type *iface = var->get_interface_type(); 4349 4350 if (strcmp(interface_name, iface->name) != 0) 4351 continue; 4352 4353 for (unsigned i = 0; i < iface->length; i++) { 4354 const glsl_struct_field *field = &iface->fields.structure[i]; 4355 if (strcmp(field->name, var_name) != 0) 4356 continue; 4357 4358 array_stride = get_array_stride(ctx, uni, iface, field, 4359 interface_name, var_name); 4360 array_size = get_array_size(uni, field, interface_name, var_name); 4361 goto write_top_level_array_size_and_stride; 4362 } 4363 } 4364 } 4365write_top_level_array_size_and_stride: 4366 free(interface_name); 4367 free(var_name); 4368 uni->top_level_array_stride = array_stride; 4369 uni->top_level_array_size = array_size; 4370} 4371 4372/** 4373 * Builds up a list of program resources that point to existing 4374 * resource data. 4375 */ 4376void 4377build_program_resource_list(struct gl_context *ctx, 4378 struct gl_shader_program *shProg) 4379{ 4380 /* Rebuild resource list. */ 4381 if (shProg->data->ProgramResourceList) { 4382 ralloc_free(shProg->data->ProgramResourceList); 4383 shProg->data->ProgramResourceList = NULL; 4384 shProg->data->NumProgramResourceList = 0; 4385 } 4386 4387 int input_stage = MESA_SHADER_STAGES, output_stage = 0; 4388 4389 /* Determine first input and final output stage. These are used to 4390 * detect which variables should be enumerated in the resource list 4391 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT. 4392 */ 4393 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 4394 if (!shProg->_LinkedShaders[i]) 4395 continue; 4396 if (input_stage == MESA_SHADER_STAGES) 4397 input_stage = i; 4398 output_stage = i; 4399 } 4400 4401 /* Empty shader, no resources. */ 4402 if (input_stage == MESA_SHADER_STAGES && output_stage == 0) 4403 return; 4404 4405 struct set *resource_set = _mesa_set_create(NULL, 4406 _mesa_hash_pointer, 4407 _mesa_key_pointer_equal); 4408 4409 /* Program interface needs to expose varyings in case of SSO. */ 4410 if (shProg->SeparateShader) { 4411 if (!add_packed_varyings(ctx, shProg, resource_set, 4412 input_stage, GL_PROGRAM_INPUT)) 4413 return; 4414 4415 if (!add_packed_varyings(ctx, shProg, resource_set, 4416 output_stage, GL_PROGRAM_OUTPUT)) 4417 return; 4418 } 4419 4420 if (!add_fragdata_arrays(ctx, shProg, resource_set)) 4421 return; 4422 4423 /* Add inputs and outputs to the resource list. */ 4424 if (!add_interface_variables(ctx, shProg, resource_set, 4425 input_stage, GL_PROGRAM_INPUT)) 4426 return; 4427 4428 if (!add_interface_variables(ctx, shProg, resource_set, 4429 output_stage, GL_PROGRAM_OUTPUT)) 4430 return; 4431 4432 if (shProg->last_vert_prog) { 4433 struct gl_transform_feedback_info *linked_xfb = 4434 shProg->last_vert_prog->sh.LinkedTransformFeedback; 4435 4436 /* Add transform feedback varyings. */ 4437 if (linked_xfb->NumVarying > 0) { 4438 for (int i = 0; i < linked_xfb->NumVarying; i++) { 4439 if (!link_util_add_program_resource(shProg, resource_set, 4440 GL_TRANSFORM_FEEDBACK_VARYING, 4441 &linked_xfb->Varyings[i], 0)) 4442 return; 4443 } 4444 } 4445 4446 /* Add transform feedback buffers. */ 4447 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) { 4448 if ((linked_xfb->ActiveBuffers >> i) & 1) { 4449 linked_xfb->Buffers[i].Binding = i; 4450 if (!link_util_add_program_resource(shProg, resource_set, 4451 GL_TRANSFORM_FEEDBACK_BUFFER, 4452 &linked_xfb->Buffers[i], 0)) 4453 return; 4454 } 4455 } 4456 } 4457 4458 /* Add uniforms from uniform storage. */ 4459 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) { 4460 /* Do not add uniforms internally used by Mesa. */ 4461 if (shProg->data->UniformStorage[i].hidden) 4462 continue; 4463 4464 uint8_t stageref = 4465 build_stageref(shProg, shProg->data->UniformStorage[i].name, 4466 ir_var_uniform); 4467 4468 /* Add stagereferences for uniforms in a uniform block. */ 4469 bool is_shader_storage = 4470 shProg->data->UniformStorage[i].is_shader_storage; 4471 int block_index = shProg->data->UniformStorage[i].block_index; 4472 if (block_index != -1) { 4473 stageref |= is_shader_storage ? 4474 shProg->data->ShaderStorageBlocks[block_index].stageref : 4475 shProg->data->UniformBlocks[block_index].stageref; 4476 } 4477 4478 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM; 4479 if (!should_add_buffer_variable(shProg, type, 4480 shProg->data->UniformStorage[i].name)) 4481 continue; 4482 4483 if (is_shader_storage) { 4484 calculate_array_size_and_stride(ctx, shProg, 4485 &shProg->data->UniformStorage[i]); 4486 } 4487 4488 if (!link_util_add_program_resource(shProg, resource_set, type, 4489 &shProg->data->UniformStorage[i], stageref)) 4490 return; 4491 } 4492 4493 /* Add program uniform blocks. */ 4494 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) { 4495 if (!link_util_add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK, 4496 &shProg->data->UniformBlocks[i], 0)) 4497 return; 4498 } 4499 4500 /* Add program shader storage blocks. */ 4501 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) { 4502 if (!link_util_add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK, 4503 &shProg->data->ShaderStorageBlocks[i], 0)) 4504 return; 4505 } 4506 4507 /* Add atomic counter buffers. */ 4508 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) { 4509 if (!link_util_add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER, 4510 &shProg->data->AtomicBuffers[i], 0)) 4511 return; 4512 } 4513 4514 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) { 4515 GLenum type; 4516 if (!shProg->data->UniformStorage[i].hidden) 4517 continue; 4518 4519 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) { 4520 if (!shProg->data->UniformStorage[i].opaque[j].active || 4521 !shProg->data->UniformStorage[i].type->is_subroutine()) 4522 continue; 4523 4524 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j); 4525 /* add shader subroutines */ 4526 if (!link_util_add_program_resource(shProg, resource_set, 4527 type, &shProg->data->UniformStorage[i], 0)) 4528 return; 4529 } 4530 } 4531 4532 unsigned mask = shProg->data->linked_stages; 4533 while (mask) { 4534 const int i = u_bit_scan(&mask); 4535 struct gl_program *p = shProg->_LinkedShaders[i]->Program; 4536 4537 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i); 4538 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) { 4539 if (!link_util_add_program_resource(shProg, resource_set, 4540 type, &p->sh.SubroutineFunctions[j], 0)) 4541 return; 4542 } 4543 } 4544 4545 _mesa_set_destroy(resource_set, NULL); 4546} 4547 4548/** 4549 * This check is done to make sure we allow only constant expression 4550 * indexing and "constant-index-expression" (indexing with an expression 4551 * that includes loop induction variable). 4552 */ 4553static bool 4554validate_sampler_array_indexing(struct gl_context *ctx, 4555 struct gl_shader_program *prog) 4556{ 4557 dynamic_sampler_array_indexing_visitor v; 4558 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 4559 if (prog->_LinkedShaders[i] == NULL) 4560 continue; 4561 4562 bool no_dynamic_indexing = 4563 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler; 4564 4565 /* Search for array derefs in shader. */ 4566 v.run(prog->_LinkedShaders[i]->ir); 4567 if (v.uses_dynamic_sampler_array_indexing()) { 4568 const char *msg = "sampler arrays indexed with non-constant " 4569 "expressions is forbidden in GLSL %s %u"; 4570 /* Backend has indicated that it has no dynamic indexing support. */ 4571 if (no_dynamic_indexing) { 4572 linker_error(prog, msg, prog->IsES ? "ES" : "", 4573 prog->data->Version); 4574 return false; 4575 } else { 4576 linker_warning(prog, msg, prog->IsES ? "ES" : "", 4577 prog->data->Version); 4578 } 4579 } 4580 } 4581 return true; 4582} 4583 4584static void 4585link_assign_subroutine_types(struct gl_shader_program *prog) 4586{ 4587 unsigned mask = prog->data->linked_stages; 4588 while (mask) { 4589 const int i = u_bit_scan(&mask); 4590 gl_program *p = prog->_LinkedShaders[i]->Program; 4591 4592 p->sh.MaxSubroutineFunctionIndex = 0; 4593 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { 4594 ir_function *fn = node->as_function(); 4595 if (!fn) 4596 continue; 4597 4598 if (fn->is_subroutine) 4599 p->sh.NumSubroutineUniformTypes++; 4600 4601 if (!fn->num_subroutine_types) 4602 continue; 4603 4604 /* these should have been calculated earlier. */ 4605 assert(fn->subroutine_index != -1); 4606 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) { 4607 linker_error(prog, "Too many subroutine functions declared.\n"); 4608 return; 4609 } 4610 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions, 4611 struct gl_subroutine_function, 4612 p->sh.NumSubroutineFunctions + 1); 4613 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name); 4614 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types; 4615 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types = 4616 ralloc_array(p, const struct glsl_type *, 4617 fn->num_subroutine_types); 4618 4619 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the 4620 * GLSL 4.5 spec: 4621 * 4622 * "Each subroutine with an index qualifier in the shader must be 4623 * given a unique index, otherwise a compile or link error will be 4624 * generated." 4625 */ 4626 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) { 4627 if (p->sh.SubroutineFunctions[j].index != -1 && 4628 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) { 4629 linker_error(prog, "each subroutine index qualifier in the " 4630 "shader must be unique\n"); 4631 return; 4632 } 4633 } 4634 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index = 4635 fn->subroutine_index; 4636 4637 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex) 4638 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index; 4639 4640 for (int j = 0; j < fn->num_subroutine_types; j++) 4641 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j]; 4642 p->sh.NumSubroutineFunctions++; 4643 } 4644 } 4645} 4646 4647static void 4648verify_subroutine_associated_funcs(struct gl_shader_program *prog) 4649{ 4650 unsigned mask = prog->data->linked_stages; 4651 while (mask) { 4652 const int i = u_bit_scan(&mask); 4653 gl_program *p = prog->_LinkedShaders[i]->Program; 4654 glsl_symbol_table *symbols = prog->_LinkedShaders[i]->symbols; 4655 4656 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says: 4657 * 4658 * "A program will fail to compile or link if any shader 4659 * or stage contains two or more functions with the same 4660 * name if the name is associated with a subroutine type." 4661 */ 4662 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) { 4663 unsigned definitions = 0; 4664 char *name = p->sh.SubroutineFunctions[j].name; 4665 ir_function *fn = symbols->get_function(name); 4666 4667 /* Calculate number of function definitions with the same name */ 4668 foreach_in_list(ir_function_signature, sig, &fn->signatures) { 4669 if (sig->is_defined) { 4670 if (++definitions > 1) { 4671 linker_error(prog, "%s shader contains two or more function " 4672 "definitions with name `%s', which is " 4673 "associated with a subroutine type.\n", 4674 _mesa_shader_stage_to_string(i), 4675 fn->name); 4676 return; 4677 } 4678 } 4679 } 4680 } 4681 } 4682} 4683 4684 4685static void 4686set_always_active_io(exec_list *ir, ir_variable_mode io_mode) 4687{ 4688 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out); 4689 4690 foreach_in_list(ir_instruction, node, ir) { 4691 ir_variable *const var = node->as_variable(); 4692 4693 if (var == NULL || var->data.mode != io_mode) 4694 continue; 4695 4696 /* Don't set always active on builtins that haven't been redeclared */ 4697 if (var->data.how_declared == ir_var_declared_implicitly) 4698 continue; 4699 4700 var->data.always_active_io = true; 4701 } 4702} 4703 4704/** 4705 * When separate shader programs are enabled, only input/outputs between 4706 * the stages of a multi-stage separate program can be safely removed 4707 * from the shader interface. Other inputs/outputs must remain active. 4708 */ 4709static void 4710disable_varying_optimizations_for_sso(struct gl_shader_program *prog) 4711{ 4712 unsigned first, last; 4713 assert(prog->SeparateShader); 4714 4715 first = MESA_SHADER_STAGES; 4716 last = 0; 4717 4718 /* Determine first and last stage. Excluding the compute stage */ 4719 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) { 4720 if (!prog->_LinkedShaders[i]) 4721 continue; 4722 if (first == MESA_SHADER_STAGES) 4723 first = i; 4724 last = i; 4725 } 4726 4727 if (first == MESA_SHADER_STAGES) 4728 return; 4729 4730 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) { 4731 gl_linked_shader *sh = prog->_LinkedShaders[stage]; 4732 if (!sh) 4733 continue; 4734 4735 /* Prevent the removal of inputs to the first and outputs from the last 4736 * stage, unless they are the initial pipeline inputs or final pipeline 4737 * outputs, respectively. 4738 * 4739 * The removal of IO between shaders in the same program is always 4740 * allowed. 4741 */ 4742 if (stage == first && stage != MESA_SHADER_VERTEX) 4743 set_always_active_io(sh->ir, ir_var_shader_in); 4744 if (stage == last && stage != MESA_SHADER_FRAGMENT) 4745 set_always_active_io(sh->ir, ir_var_shader_out); 4746 } 4747} 4748 4749static void 4750link_and_validate_uniforms(struct gl_context *ctx, 4751 struct gl_shader_program *prog) 4752{ 4753 update_array_sizes(prog); 4754 link_assign_uniform_locations(prog, ctx); 4755 4756 link_assign_atomic_counter_resources(ctx, prog); 4757 link_calculate_subroutine_compat(prog); 4758 check_resources(ctx, prog); 4759 check_subroutine_resources(prog); 4760 check_image_resources(ctx, prog); 4761 link_check_atomic_counter_resources(ctx, prog); 4762} 4763 4764static bool 4765link_varyings_and_uniforms(unsigned first, unsigned last, 4766 struct gl_context *ctx, 4767 struct gl_shader_program *prog, void *mem_ctx) 4768{ 4769 /* Mark all generic shader inputs and outputs as unpaired. */ 4770 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) { 4771 if (prog->_LinkedShaders[i] != NULL) { 4772 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir); 4773 } 4774 } 4775 4776 unsigned prev = first; 4777 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) { 4778 if (prog->_LinkedShaders[i] == NULL) 4779 continue; 4780 4781 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev], 4782 prog->_LinkedShaders[i]); 4783 prev = i; 4784 } 4785 4786 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const, 4787 MESA_SHADER_VERTEX, true)) { 4788 return false; 4789 } 4790 4791 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const, 4792 MESA_SHADER_FRAGMENT, true)) { 4793 return false; 4794 } 4795 4796 prog->last_vert_prog = NULL; 4797 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) { 4798 if (prog->_LinkedShaders[i] == NULL) 4799 continue; 4800 4801 prog->last_vert_prog = prog->_LinkedShaders[i]->Program; 4802 break; 4803 } 4804 4805 if (!link_varyings(prog, first, last, ctx, mem_ctx)) 4806 return false; 4807 4808 link_and_validate_uniforms(ctx, prog); 4809 4810 if (!prog->data->LinkStatus) 4811 return false; 4812 4813 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 4814 if (prog->_LinkedShaders[i] == NULL) 4815 continue; 4816 4817 const struct gl_shader_compiler_options *options = 4818 &ctx->Const.ShaderCompilerOptions[i]; 4819 4820 if (options->LowerBufferInterfaceBlocks) 4821 lower_ubo_reference(prog->_LinkedShaders[i], 4822 options->ClampBlockIndicesToArrayBounds, 4823 ctx->Const.UseSTD430AsDefaultPacking); 4824 4825 if (i == MESA_SHADER_COMPUTE) 4826 lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]); 4827 4828 lower_vector_derefs(prog->_LinkedShaders[i]); 4829 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir); 4830 } 4831 4832 return true; 4833} 4834 4835static void 4836linker_optimisation_loop(struct gl_context *ctx, exec_list *ir, 4837 unsigned stage) 4838{ 4839 if (ctx->Const.GLSLOptimizeConservatively) { 4840 /* Run it just once. */ 4841 do_common_optimization(ir, true, false, 4842 &ctx->Const.ShaderCompilerOptions[stage], 4843 ctx->Const.NativeIntegers); 4844 } else { 4845 /* Repeat it until it stops making changes. */ 4846 while (do_common_optimization(ir, true, false, 4847 &ctx->Const.ShaderCompilerOptions[stage], 4848 ctx->Const.NativeIntegers)) 4849 ; 4850 } 4851} 4852 4853void 4854link_shaders(struct gl_context *ctx, struct gl_shader_program *prog) 4855{ 4856 prog->data->LinkStatus = LINKING_SUCCESS; /* All error paths will set this to false */ 4857 prog->data->Validated = false; 4858 4859 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says: 4860 * 4861 * "Linking can fail for a variety of reasons as specified in the 4862 * OpenGL Shading Language Specification, as well as any of the 4863 * following reasons: 4864 * 4865 * - No shader objects are attached to program." 4866 * 4867 * The Compatibility Profile specification does not list the error. In 4868 * Compatibility Profile missing shader stages are replaced by 4869 * fixed-function. This applies to the case where all stages are 4870 * missing. 4871 */ 4872 if (prog->NumShaders == 0) { 4873 if (ctx->API != API_OPENGL_COMPAT) 4874 linker_error(prog, "no shaders attached to the program\n"); 4875 return; 4876 } 4877 4878#ifdef ENABLE_SHADER_CACHE 4879 if (shader_cache_read_program_metadata(ctx, prog)) 4880 return; 4881#endif 4882 4883 void *mem_ctx = ralloc_context(NULL); // temporary linker context 4884 4885 prog->ARB_fragment_coord_conventions_enable = false; 4886 4887 /* Separate the shaders into groups based on their type. 4888 */ 4889 struct gl_shader **shader_list[MESA_SHADER_STAGES]; 4890 unsigned num_shaders[MESA_SHADER_STAGES]; 4891 4892 for (int i = 0; i < MESA_SHADER_STAGES; i++) { 4893 shader_list[i] = (struct gl_shader **) 4894 calloc(prog->NumShaders, sizeof(struct gl_shader *)); 4895 num_shaders[i] = 0; 4896 } 4897 4898 unsigned min_version = UINT_MAX; 4899 unsigned max_version = 0; 4900 for (unsigned i = 0; i < prog->NumShaders; i++) { 4901 min_version = MIN2(min_version, prog->Shaders[i]->Version); 4902 max_version = MAX2(max_version, prog->Shaders[i]->Version); 4903 4904 if (!ctx->Const.AllowGLSLRelaxedES && 4905 prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) { 4906 linker_error(prog, "all shaders must use same shading " 4907 "language version\n"); 4908 goto done; 4909 } 4910 4911 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) { 4912 prog->ARB_fragment_coord_conventions_enable = true; 4913 } 4914 4915 gl_shader_stage shader_type = prog->Shaders[i]->Stage; 4916 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i]; 4917 num_shaders[shader_type]++; 4918 } 4919 4920 /* In desktop GLSL, different shader versions may be linked together. In 4921 * GLSL ES, all shader versions must be the same. 4922 */ 4923 if (!ctx->Const.AllowGLSLRelaxedES && prog->Shaders[0]->IsES && 4924 min_version != max_version) { 4925 linker_error(prog, "all shaders must use same shading " 4926 "language version\n"); 4927 goto done; 4928 } 4929 4930 prog->data->Version = max_version; 4931 prog->IsES = prog->Shaders[0]->IsES; 4932 4933 /* Some shaders have to be linked with some other shaders present. 4934 */ 4935 if (!prog->SeparateShader) { 4936 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 && 4937 num_shaders[MESA_SHADER_VERTEX] == 0) { 4938 linker_error(prog, "Geometry shader must be linked with " 4939 "vertex shader\n"); 4940 goto done; 4941 } 4942 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 && 4943 num_shaders[MESA_SHADER_VERTEX] == 0) { 4944 linker_error(prog, "Tessellation evaluation shader must be linked " 4945 "with vertex shader\n"); 4946 goto done; 4947 } 4948 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 && 4949 num_shaders[MESA_SHADER_VERTEX] == 0) { 4950 linker_error(prog, "Tessellation control shader must be linked with " 4951 "vertex shader\n"); 4952 goto done; 4953 } 4954 4955 /* Section 7.3 of the OpenGL ES 3.2 specification says: 4956 * 4957 * "Linking can fail for [...] any of the following reasons: 4958 * 4959 * * program contains an object to form a tessellation control 4960 * shader [...] and [...] the program is not separable and 4961 * contains no object to form a tessellation evaluation shader" 4962 * 4963 * The OpenGL spec is contradictory. It allows linking without a tess 4964 * eval shader, but that can only be used with transform feedback and 4965 * rasterization disabled. However, transform feedback isn't allowed 4966 * with GL_PATCHES, so it can't be used. 4967 * 4968 * More investigation showed that the idea of transform feedback after 4969 * a tess control shader was dropped, because some hw vendors couldn't 4970 * support tessellation without a tess eval shader, but the linker 4971 * section wasn't updated to reflect that. 4972 * 4973 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this 4974 * spec bug. 4975 * 4976 * Do what's reasonable and always require a tess eval shader if a tess 4977 * control shader is present. 4978 */ 4979 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 && 4980 num_shaders[MESA_SHADER_TESS_EVAL] == 0) { 4981 linker_error(prog, "Tessellation control shader must be linked with " 4982 "tessellation evaluation shader\n"); 4983 goto done; 4984 } 4985 4986 if (prog->IsES) { 4987 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 && 4988 num_shaders[MESA_SHADER_TESS_CTRL] == 0) { 4989 linker_error(prog, "GLSL ES requires non-separable programs " 4990 "containing a tessellation evaluation shader to also " 4991 "be linked with a tessellation control shader\n"); 4992 goto done; 4993 } 4994 } 4995 } 4996 4997 /* Compute shaders have additional restrictions. */ 4998 if (num_shaders[MESA_SHADER_COMPUTE] > 0 && 4999 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) { 5000 linker_error(prog, "Compute shaders may not be linked with any other " 5001 "type of shader\n"); 5002 } 5003 5004 /* Link all shaders for a particular stage and validate the result. 5005 */ 5006 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) { 5007 if (num_shaders[stage] > 0) { 5008 gl_linked_shader *const sh = 5009 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage], 5010 num_shaders[stage], false); 5011 5012 if (!prog->data->LinkStatus) { 5013 if (sh) 5014 _mesa_delete_linked_shader(ctx, sh); 5015 goto done; 5016 } 5017 5018 switch (stage) { 5019 case MESA_SHADER_VERTEX: 5020 validate_vertex_shader_executable(prog, sh, ctx); 5021 break; 5022 case MESA_SHADER_TESS_CTRL: 5023 /* nothing to be done */ 5024 break; 5025 case MESA_SHADER_TESS_EVAL: 5026 validate_tess_eval_shader_executable(prog, sh, ctx); 5027 break; 5028 case MESA_SHADER_GEOMETRY: 5029 validate_geometry_shader_executable(prog, sh, ctx); 5030 break; 5031 case MESA_SHADER_FRAGMENT: 5032 validate_fragment_shader_executable(prog, sh); 5033 break; 5034 } 5035 if (!prog->data->LinkStatus) { 5036 if (sh) 5037 _mesa_delete_linked_shader(ctx, sh); 5038 goto done; 5039 } 5040 5041 prog->_LinkedShaders[stage] = sh; 5042 prog->data->linked_stages |= 1 << stage; 5043 } 5044 } 5045 5046 /* Here begins the inter-stage linking phase. Some initial validation is 5047 * performed, then locations are assigned for uniforms, attributes, and 5048 * varyings. 5049 */ 5050 cross_validate_uniforms(ctx, prog); 5051 if (!prog->data->LinkStatus) 5052 goto done; 5053 5054 unsigned first, last, prev; 5055 5056 first = MESA_SHADER_STAGES; 5057 last = 0; 5058 5059 /* Determine first and last stage. */ 5060 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 5061 if (!prog->_LinkedShaders[i]) 5062 continue; 5063 if (first == MESA_SHADER_STAGES) 5064 first = i; 5065 last = i; 5066 } 5067 5068 check_explicit_uniform_locations(ctx, prog); 5069 link_assign_subroutine_types(prog); 5070 verify_subroutine_associated_funcs(prog); 5071 5072 if (!prog->data->LinkStatus) 5073 goto done; 5074 5075 resize_tes_inputs(ctx, prog); 5076 5077 /* Validate the inputs of each stage with the output of the preceding 5078 * stage. 5079 */ 5080 prev = first; 5081 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) { 5082 if (prog->_LinkedShaders[i] == NULL) 5083 continue; 5084 5085 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev], 5086 prog->_LinkedShaders[i]); 5087 if (!prog->data->LinkStatus) 5088 goto done; 5089 5090 cross_validate_outputs_to_inputs(ctx, prog, 5091 prog->_LinkedShaders[prev], 5092 prog->_LinkedShaders[i]); 5093 if (!prog->data->LinkStatus) 5094 goto done; 5095 5096 prev = i; 5097 } 5098 5099 /* The cross validation of outputs/inputs above validates explicit locations 5100 * but for SSO programs we need to do this also for the inputs in the 5101 * first stage and outputs of the last stage included in the program, since 5102 * there is no cross validation for these. 5103 */ 5104 if (prog->SeparateShader) 5105 validate_sso_explicit_locations(ctx, prog, 5106 (gl_shader_stage) first, 5107 (gl_shader_stage) last); 5108 5109 /* Cross-validate uniform blocks between shader stages */ 5110 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders); 5111 if (!prog->data->LinkStatus) 5112 goto done; 5113 5114 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) { 5115 if (prog->_LinkedShaders[i] != NULL) 5116 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]); 5117 } 5118 5119 if (prog->IsES && prog->data->Version == 100) 5120 if (!validate_invariant_builtins(prog, 5121 prog->_LinkedShaders[MESA_SHADER_VERTEX], 5122 prog->_LinkedShaders[MESA_SHADER_FRAGMENT])) 5123 goto done; 5124 5125 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do 5126 * it before optimization because we want most of the checks to get 5127 * dropped thanks to constant propagation. 5128 * 5129 * This rule also applies to GLSL ES 3.00. 5130 */ 5131 if (max_version >= (prog->IsES ? 300 : 130)) { 5132 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]; 5133 if (sh) { 5134 lower_discard_flow(sh->ir); 5135 } 5136 } 5137 5138 if (prog->SeparateShader) 5139 disable_varying_optimizations_for_sso(prog); 5140 5141 /* Process UBOs */ 5142 if (!interstage_cross_validate_uniform_blocks(prog, false)) 5143 goto done; 5144 5145 /* Process SSBOs */ 5146 if (!interstage_cross_validate_uniform_blocks(prog, true)) 5147 goto done; 5148 5149 /* Do common optimization before assigning storage for attributes, 5150 * uniforms, and varyings. Later optimization could possibly make 5151 * some of that unused. 5152 */ 5153 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 5154 if (prog->_LinkedShaders[i] == NULL) 5155 continue; 5156 5157 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir); 5158 if (!prog->data->LinkStatus) 5159 goto done; 5160 5161 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) { 5162 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]); 5163 } 5164 5165 if (ctx->Const.LowerTessLevel) { 5166 lower_tess_level(prog->_LinkedShaders[i]); 5167 } 5168 5169 /* Section 13.46 (Vertex Attribute Aliasing) of the OpenGL ES 3.2 5170 * specification says: 5171 * 5172 * "In general, the behavior of GLSL ES should not depend on compiler 5173 * optimizations which might be implementation-dependent. Name matching 5174 * rules in most languages, including C++ from which GLSL ES is derived, 5175 * are based on declarations rather than use. 5176 * 5177 * RESOLUTION: The existence of aliasing is determined by declarations 5178 * present after preprocessing." 5179 * 5180 * Because of this rule, we do a 'dry-run' of attribute assignment for 5181 * vertex shader inputs here. 5182 */ 5183 if (prog->IsES && i == MESA_SHADER_VERTEX) { 5184 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const, 5185 MESA_SHADER_VERTEX, false)) { 5186 goto done; 5187 } 5188 } 5189 5190 /* Call opts before lowering const arrays to uniforms so we can const 5191 * propagate any elements accessed directly. 5192 */ 5193 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i); 5194 5195 /* Call opts after lowering const arrays to copy propagate things. */ 5196 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i)) 5197 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i); 5198 5199 propagate_invariance(prog->_LinkedShaders[i]->ir); 5200 } 5201 5202 /* Validation for special cases where we allow sampler array indexing 5203 * with loop induction variable. This check emits a warning or error 5204 * depending if backend can handle dynamic indexing. 5205 */ 5206 if ((!prog->IsES && prog->data->Version < 130) || 5207 (prog->IsES && prog->data->Version < 300)) { 5208 if (!validate_sampler_array_indexing(ctx, prog)) 5209 goto done; 5210 } 5211 5212 /* Check and validate stream emissions in geometry shaders */ 5213 validate_geometry_shader_emissions(ctx, prog); 5214 5215 store_fragdepth_layout(prog); 5216 5217 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx)) 5218 goto done; 5219 5220 /* Linking varyings can cause some extra, useless swizzles to be generated 5221 * due to packing and unpacking. 5222 */ 5223 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 5224 if (prog->_LinkedShaders[i] == NULL) 5225 continue; 5226 5227 optimize_swizzles(prog->_LinkedShaders[i]->ir); 5228 } 5229 5230 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both 5231 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say 5232 * anything about shader linking when one of the shaders (vertex or 5233 * fragment shader) is absent. So, the extension shouldn't change the 5234 * behavior specified in GLSL specification. 5235 * 5236 * From OpenGL ES 3.1 specification (7.3 Program Objects): 5237 * "Linking can fail for a variety of reasons as specified in the 5238 * OpenGL ES Shading Language Specification, as well as any of the 5239 * following reasons: 5240 * 5241 * ... 5242 * 5243 * * program contains objects to form either a vertex shader or 5244 * fragment shader, and program is not separable, and does not 5245 * contain objects to form both a vertex shader and fragment 5246 * shader." 5247 * 5248 * However, the only scenario in 3.1+ where we don't require them both is 5249 * when we have a compute shader. For example: 5250 * 5251 * - No shaders is a link error. 5252 * - Geom or Tess without a Vertex shader is a link error which means we 5253 * always require a Vertex shader and hence a Fragment shader. 5254 * - Finally a Compute shader linked with any other stage is a link error. 5255 */ 5256 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 && 5257 num_shaders[MESA_SHADER_COMPUTE] == 0) { 5258 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) { 5259 linker_error(prog, "program lacks a vertex shader\n"); 5260 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) { 5261 linker_error(prog, "program lacks a fragment shader\n"); 5262 } 5263 } 5264 5265done: 5266 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 5267 free(shader_list[i]); 5268 if (prog->_LinkedShaders[i] == NULL) 5269 continue; 5270 5271 /* Do a final validation step to make sure that the IR wasn't 5272 * invalidated by any modifications performed after intrastage linking. 5273 */ 5274 validate_ir_tree(prog->_LinkedShaders[i]->ir); 5275 5276 /* Retain any live IR, but trash the rest. */ 5277 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir); 5278 5279 /* The symbol table in the linked shaders may contain references to 5280 * variables that were removed (e.g., unused uniforms). Since it may 5281 * contain junk, there is no possible valid use. Delete it and set the 5282 * pointer to NULL. 5283 */ 5284 delete prog->_LinkedShaders[i]->symbols; 5285 prog->_LinkedShaders[i]->symbols = NULL; 5286 } 5287 5288 ralloc_free(mem_ctx); 5289} 5290