linker.cpp revision 01e04c3f
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type.  All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 *   - Undefined references in each shader are resolve to definitions in
36 *     another shader.
37 *   - Types and qualifiers of uniforms, outputs, and global variables defined
38 *     in multiple shaders with the same name are verified to be the same.
39 *   - Initializers for uniforms and global variables defined
40 *     in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 *   - Each shader executable must define a \c main function.
49 *   - Each vertex shader executable must write to \c gl_Position.
50 *   - Each fragment shader executable must write to either \c gl_FragData or
51 *     \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 *   - Types of uniforms defined in multiple shader stages with the same name
57 *     are verified to be the same.
58 *   - Initializers for uniforms defined in multiple shader stages with the
59 *     same name are verified to be the same.
60 *   - Types and qualifiers of outputs defined in one stage are verified to
61 *     be the same as the types and qualifiers of inputs defined with the same
62 *     name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67#include <ctype.h>
68#include "util/strndup.h"
69#include "glsl_symbol_table.h"
70#include "glsl_parser_extras.h"
71#include "ir.h"
72#include "program.h"
73#include "program/prog_instruction.h"
74#include "program/program.h"
75#include "util/mesa-sha1.h"
76#include "util/set.h"
77#include "string_to_uint_map.h"
78#include "linker.h"
79#include "linker_util.h"
80#include "link_varyings.h"
81#include "ir_optimization.h"
82#include "ir_rvalue_visitor.h"
83#include "ir_uniform.h"
84#include "builtin_functions.h"
85#include "shader_cache.h"
86#include "util/u_string.h"
87#include "util/u_math.h"
88
89#include "main/imports.h"
90#include "main/shaderobj.h"
91#include "main/enums.h"
92#include "main/mtypes.h"
93
94
95namespace {
96
97struct find_variable {
98   const char *name;
99   bool found;
100
101   find_variable(const char *name) : name(name), found(false) {}
102};
103
104/**
105 * Visitor that determines whether or not a variable is ever written.
106 *
107 * Use \ref find_assignments for convenience.
108 */
109class find_assignment_visitor : public ir_hierarchical_visitor {
110public:
111   find_assignment_visitor(unsigned num_vars,
112                           find_variable * const *vars)
113      : num_variables(num_vars), num_found(0), variables(vars)
114   {
115   }
116
117   virtual ir_visitor_status visit_enter(ir_assignment *ir)
118   {
119      ir_variable *const var = ir->lhs->variable_referenced();
120
121      return check_variable_name(var->name);
122   }
123
124   virtual ir_visitor_status visit_enter(ir_call *ir)
125   {
126      foreach_two_lists(formal_node, &ir->callee->parameters,
127                        actual_node, &ir->actual_parameters) {
128         ir_rvalue *param_rval = (ir_rvalue *) actual_node;
129         ir_variable *sig_param = (ir_variable *) formal_node;
130
131         if (sig_param->data.mode == ir_var_function_out ||
132             sig_param->data.mode == ir_var_function_inout) {
133            ir_variable *var = param_rval->variable_referenced();
134            if (var && check_variable_name(var->name) == visit_stop)
135               return visit_stop;
136         }
137      }
138
139      if (ir->return_deref != NULL) {
140         ir_variable *const var = ir->return_deref->variable_referenced();
141
142         if (check_variable_name(var->name) == visit_stop)
143            return visit_stop;
144      }
145
146      return visit_continue_with_parent;
147   }
148
149private:
150   ir_visitor_status check_variable_name(const char *name)
151   {
152      for (unsigned i = 0; i < num_variables; ++i) {
153         if (strcmp(variables[i]->name, name) == 0) {
154            if (!variables[i]->found) {
155               variables[i]->found = true;
156
157               assert(num_found < num_variables);
158               if (++num_found == num_variables)
159                  return visit_stop;
160            }
161            break;
162         }
163      }
164
165      return visit_continue_with_parent;
166   }
167
168private:
169   unsigned num_variables;           /**< Number of variables to find */
170   unsigned num_found;               /**< Number of variables already found */
171   find_variable * const *variables; /**< Variables to find */
172};
173
174/**
175 * Determine whether or not any of NULL-terminated list of variables is ever
176 * written to.
177 */
178static void
179find_assignments(exec_list *ir, find_variable * const *vars)
180{
181   unsigned num_variables = 0;
182
183   for (find_variable * const *v = vars; *v; ++v)
184      num_variables++;
185
186   find_assignment_visitor visitor(num_variables, vars);
187   visitor.run(ir);
188}
189
190/**
191 * Determine whether or not the given variable is ever written to.
192 */
193static void
194find_assignments(exec_list *ir, find_variable *var)
195{
196   find_assignment_visitor visitor(1, &var);
197   visitor.run(ir);
198}
199
200/**
201 * Visitor that determines whether or not a variable is ever read.
202 */
203class find_deref_visitor : public ir_hierarchical_visitor {
204public:
205   find_deref_visitor(const char *name)
206      : name(name), found(false)
207   {
208      /* empty */
209   }
210
211   virtual ir_visitor_status visit(ir_dereference_variable *ir)
212   {
213      if (strcmp(this->name, ir->var->name) == 0) {
214         this->found = true;
215         return visit_stop;
216      }
217
218      return visit_continue;
219   }
220
221   bool variable_found() const
222   {
223      return this->found;
224   }
225
226private:
227   const char *name;       /**< Find writes to a variable with this name. */
228   bool found;             /**< Was a write to the variable found? */
229};
230
231
232/**
233 * A visitor helper that provides methods for updating the types of
234 * ir_dereferences.  Classes that update variable types (say, updating
235 * array sizes) will want to use this so that dereference types stay in sync.
236 */
237class deref_type_updater : public ir_hierarchical_visitor {
238public:
239   virtual ir_visitor_status visit(ir_dereference_variable *ir)
240   {
241      ir->type = ir->var->type;
242      return visit_continue;
243   }
244
245   virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
246   {
247      const glsl_type *const vt = ir->array->type;
248      if (vt->is_array())
249         ir->type = vt->fields.array;
250      return visit_continue;
251   }
252
253   virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
254   {
255      ir->type = ir->record->type->fields.structure[ir->field_idx].type;
256      return visit_continue;
257   }
258};
259
260
261class array_resize_visitor : public deref_type_updater {
262public:
263   unsigned num_vertices;
264   gl_shader_program *prog;
265   gl_shader_stage stage;
266
267   array_resize_visitor(unsigned num_vertices,
268                        gl_shader_program *prog,
269                        gl_shader_stage stage)
270   {
271      this->num_vertices = num_vertices;
272      this->prog = prog;
273      this->stage = stage;
274   }
275
276   virtual ~array_resize_visitor()
277   {
278      /* empty */
279   }
280
281   virtual ir_visitor_status visit(ir_variable *var)
282   {
283      if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
284          var->data.patch)
285         return visit_continue;
286
287      unsigned size = var->type->length;
288
289      if (stage == MESA_SHADER_GEOMETRY) {
290         /* Generate a link error if the shader has declared this array with
291          * an incorrect size.
292          */
293         if (!var->data.implicit_sized_array &&
294             size && size != this->num_vertices) {
295            linker_error(this->prog, "size of array %s declared as %u, "
296                         "but number of input vertices is %u\n",
297                         var->name, size, this->num_vertices);
298            return visit_continue;
299         }
300
301         /* Generate a link error if the shader attempts to access an input
302          * array using an index too large for its actual size assigned at
303          * link time.
304          */
305         if (var->data.max_array_access >= (int)this->num_vertices) {
306            linker_error(this->prog, "%s shader accesses element %i of "
307                         "%s, but only %i input vertices\n",
308                         _mesa_shader_stage_to_string(this->stage),
309                         var->data.max_array_access, var->name, this->num_vertices);
310            return visit_continue;
311         }
312      }
313
314      var->type = glsl_type::get_array_instance(var->type->fields.array,
315                                                this->num_vertices);
316      var->data.max_array_access = this->num_vertices - 1;
317
318      return visit_continue;
319   }
320};
321
322/**
323 * Visitor that determines the highest stream id to which a (geometry) shader
324 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
325 */
326class find_emit_vertex_visitor : public ir_hierarchical_visitor {
327public:
328   find_emit_vertex_visitor(int max_allowed)
329      : max_stream_allowed(max_allowed),
330        invalid_stream_id(0),
331        invalid_stream_id_from_emit_vertex(false),
332        end_primitive_found(false),
333        uses_non_zero_stream(false)
334   {
335      /* empty */
336   }
337
338   virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
339   {
340      int stream_id = ir->stream_id();
341
342      if (stream_id < 0) {
343         invalid_stream_id = stream_id;
344         invalid_stream_id_from_emit_vertex = true;
345         return visit_stop;
346      }
347
348      if (stream_id > max_stream_allowed) {
349         invalid_stream_id = stream_id;
350         invalid_stream_id_from_emit_vertex = true;
351         return visit_stop;
352      }
353
354      if (stream_id != 0)
355         uses_non_zero_stream = true;
356
357      return visit_continue;
358   }
359
360   virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
361   {
362      end_primitive_found = true;
363
364      int stream_id = ir->stream_id();
365
366      if (stream_id < 0) {
367         invalid_stream_id = stream_id;
368         invalid_stream_id_from_emit_vertex = false;
369         return visit_stop;
370      }
371
372      if (stream_id > max_stream_allowed) {
373         invalid_stream_id = stream_id;
374         invalid_stream_id_from_emit_vertex = false;
375         return visit_stop;
376      }
377
378      if (stream_id != 0)
379         uses_non_zero_stream = true;
380
381      return visit_continue;
382   }
383
384   bool error()
385   {
386      return invalid_stream_id != 0;
387   }
388
389   const char *error_func()
390   {
391      return invalid_stream_id_from_emit_vertex ?
392         "EmitStreamVertex" : "EndStreamPrimitive";
393   }
394
395   int error_stream()
396   {
397      return invalid_stream_id;
398   }
399
400   bool uses_streams()
401   {
402      return uses_non_zero_stream;
403   }
404
405   bool uses_end_primitive()
406   {
407      return end_primitive_found;
408   }
409
410private:
411   int max_stream_allowed;
412   int invalid_stream_id;
413   bool invalid_stream_id_from_emit_vertex;
414   bool end_primitive_found;
415   bool uses_non_zero_stream;
416};
417
418/* Class that finds array derefs and check if indexes are dynamic. */
419class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
420{
421public:
422   dynamic_sampler_array_indexing_visitor() :
423      dynamic_sampler_array_indexing(false)
424   {
425   }
426
427   ir_visitor_status visit_enter(ir_dereference_array *ir)
428   {
429      if (!ir->variable_referenced())
430         return visit_continue;
431
432      if (!ir->variable_referenced()->type->contains_sampler())
433         return visit_continue;
434
435      if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
436         dynamic_sampler_array_indexing = true;
437         return visit_stop;
438      }
439      return visit_continue;
440   }
441
442   bool uses_dynamic_sampler_array_indexing()
443   {
444      return dynamic_sampler_array_indexing;
445   }
446
447private:
448   bool dynamic_sampler_array_indexing;
449};
450
451} /* anonymous namespace */
452
453void
454linker_error(gl_shader_program *prog, const char *fmt, ...)
455{
456   va_list ap;
457
458   ralloc_strcat(&prog->data->InfoLog, "error: ");
459   va_start(ap, fmt);
460   ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
461   va_end(ap);
462
463   prog->data->LinkStatus = LINKING_FAILURE;
464}
465
466
467void
468linker_warning(gl_shader_program *prog, const char *fmt, ...)
469{
470   va_list ap;
471
472   ralloc_strcat(&prog->data->InfoLog, "warning: ");
473   va_start(ap, fmt);
474   ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
475   va_end(ap);
476
477}
478
479
480/**
481 * Given a string identifying a program resource, break it into a base name
482 * and an optional array index in square brackets.
483 *
484 * If an array index is present, \c out_base_name_end is set to point to the
485 * "[" that precedes the array index, and the array index itself is returned
486 * as a long.
487 *
488 * If no array index is present (or if the array index is negative or
489 * mal-formed), \c out_base_name_end, is set to point to the null terminator
490 * at the end of the input string, and -1 is returned.
491 *
492 * Only the final array index is parsed; if the string contains other array
493 * indices (or structure field accesses), they are left in the base name.
494 *
495 * No attempt is made to check that the base name is properly formed;
496 * typically the caller will look up the base name in a hash table, so
497 * ill-formed base names simply turn into hash table lookup failures.
498 */
499long
500parse_program_resource_name(const GLchar *name,
501                            const GLchar **out_base_name_end)
502{
503   /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
504    *
505    *     "When an integer array element or block instance number is part of
506    *     the name string, it will be specified in decimal form without a "+"
507    *     or "-" sign or any extra leading zeroes. Additionally, the name
508    *     string will not include white space anywhere in the string."
509    */
510
511   const size_t len = strlen(name);
512   *out_base_name_end = name + len;
513
514   if (len == 0 || name[len-1] != ']')
515      return -1;
516
517   /* Walk backwards over the string looking for a non-digit character.  This
518    * had better be the opening bracket for an array index.
519    *
520    * Initially, i specifies the location of the ']'.  Since the string may
521    * contain only the ']' charcater, walk backwards very carefully.
522    */
523   unsigned i;
524   for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
525      /* empty */ ;
526
527   if ((i == 0) || name[i-1] != '[')
528      return -1;
529
530   long array_index = strtol(&name[i], NULL, 10);
531   if (array_index < 0)
532      return -1;
533
534   /* Check for leading zero */
535   if (name[i] == '0' && name[i+1] != ']')
536      return -1;
537
538   *out_base_name_end = name + (i - 1);
539   return array_index;
540}
541
542
543void
544link_invalidate_variable_locations(exec_list *ir)
545{
546   foreach_in_list(ir_instruction, node, ir) {
547      ir_variable *const var = node->as_variable();
548
549      if (var == NULL)
550         continue;
551
552      /* Only assign locations for variables that lack an explicit location.
553       * Explicit locations are set for all built-in variables, generic vertex
554       * shader inputs (via layout(location=...)), and generic fragment shader
555       * outputs (also via layout(location=...)).
556       */
557      if (!var->data.explicit_location) {
558         var->data.location = -1;
559         var->data.location_frac = 0;
560      }
561
562      /* ir_variable::is_unmatched_generic_inout is used by the linker while
563       * connecting outputs from one stage to inputs of the next stage.
564       */
565      if (var->data.explicit_location &&
566          var->data.location < VARYING_SLOT_VAR0) {
567         var->data.is_unmatched_generic_inout = 0;
568      } else {
569         var->data.is_unmatched_generic_inout = 1;
570      }
571   }
572}
573
574
575/**
576 * Set clip_distance_array_size based and cull_distance_array_size on the given
577 * shader.
578 *
579 * Also check for errors based on incorrect usage of gl_ClipVertex and
580 * gl_ClipDistance and gl_CullDistance.
581 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
582 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
583 *
584 * Return false if an error was reported.
585 */
586static void
587analyze_clip_cull_usage(struct gl_shader_program *prog,
588                        struct gl_linked_shader *shader,
589                        struct gl_context *ctx,
590                        GLuint *clip_distance_array_size,
591                        GLuint *cull_distance_array_size)
592{
593   *clip_distance_array_size = 0;
594   *cull_distance_array_size = 0;
595
596   if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
597      /* From section 7.1 (Vertex Shader Special Variables) of the
598       * GLSL 1.30 spec:
599       *
600       *   "It is an error for a shader to statically write both
601       *   gl_ClipVertex and gl_ClipDistance."
602       *
603       * This does not apply to GLSL ES shaders, since GLSL ES defines neither
604       * gl_ClipVertex nor gl_ClipDistance. However with
605       * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
606       */
607      find_variable gl_ClipDistance("gl_ClipDistance");
608      find_variable gl_CullDistance("gl_CullDistance");
609      find_variable gl_ClipVertex("gl_ClipVertex");
610      find_variable * const variables[] = {
611         &gl_ClipDistance,
612         &gl_CullDistance,
613         !prog->IsES ? &gl_ClipVertex : NULL,
614         NULL
615      };
616      find_assignments(shader->ir, variables);
617
618      /* From the ARB_cull_distance spec:
619       *
620       * It is a compile-time or link-time error for the set of shaders forming
621       * a program to statically read or write both gl_ClipVertex and either
622       * gl_ClipDistance or gl_CullDistance.
623       *
624       * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
625       * gl_ClipVertex.
626       */
627      if (!prog->IsES) {
628         if (gl_ClipVertex.found && gl_ClipDistance.found) {
629            linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
630                         "and `gl_ClipDistance'\n",
631                         _mesa_shader_stage_to_string(shader->Stage));
632            return;
633         }
634         if (gl_ClipVertex.found && gl_CullDistance.found) {
635            linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
636                         "and `gl_CullDistance'\n",
637                         _mesa_shader_stage_to_string(shader->Stage));
638            return;
639         }
640      }
641
642      if (gl_ClipDistance.found) {
643         ir_variable *clip_distance_var =
644                shader->symbols->get_variable("gl_ClipDistance");
645         assert(clip_distance_var);
646         *clip_distance_array_size = clip_distance_var->type->length;
647      }
648      if (gl_CullDistance.found) {
649         ir_variable *cull_distance_var =
650                shader->symbols->get_variable("gl_CullDistance");
651         assert(cull_distance_var);
652         *cull_distance_array_size = cull_distance_var->type->length;
653      }
654      /* From the ARB_cull_distance spec:
655       *
656       * It is a compile-time or link-time error for the set of shaders forming
657       * a program to have the sum of the sizes of the gl_ClipDistance and
658       * gl_CullDistance arrays to be larger than
659       * gl_MaxCombinedClipAndCullDistances.
660       */
661      if ((*clip_distance_array_size + *cull_distance_array_size) >
662          ctx->Const.MaxClipPlanes) {
663          linker_error(prog, "%s shader: the combined size of "
664                       "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
665                       "be larger than "
666                       "gl_MaxCombinedClipAndCullDistances (%u)",
667                       _mesa_shader_stage_to_string(shader->Stage),
668                       ctx->Const.MaxClipPlanes);
669      }
670   }
671}
672
673
674/**
675 * Verify that a vertex shader executable meets all semantic requirements.
676 *
677 * Also sets info.clip_distance_array_size and
678 * info.cull_distance_array_size as a side effect.
679 *
680 * \param shader  Vertex shader executable to be verified
681 */
682static void
683validate_vertex_shader_executable(struct gl_shader_program *prog,
684                                  struct gl_linked_shader *shader,
685                                  struct gl_context *ctx)
686{
687   if (shader == NULL)
688      return;
689
690   /* From the GLSL 1.10 spec, page 48:
691    *
692    *     "The variable gl_Position is available only in the vertex
693    *      language and is intended for writing the homogeneous vertex
694    *      position. All executions of a well-formed vertex shader
695    *      executable must write a value into this variable. [...] The
696    *      variable gl_Position is available only in the vertex
697    *      language and is intended for writing the homogeneous vertex
698    *      position. All executions of a well-formed vertex shader
699    *      executable must write a value into this variable."
700    *
701    * while in GLSL 1.40 this text is changed to:
702    *
703    *     "The variable gl_Position is available only in the vertex
704    *      language and is intended for writing the homogeneous vertex
705    *      position. It can be written at any time during shader
706    *      execution. It may also be read back by a vertex shader
707    *      after being written. This value will be used by primitive
708    *      assembly, clipping, culling, and other fixed functionality
709    *      operations, if present, that operate on primitives after
710    *      vertex processing has occurred. Its value is undefined if
711    *      the vertex shader executable does not write gl_Position."
712    *
713    * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
714    * gl_Position is not an error.
715    */
716   if (prog->data->Version < (prog->IsES ? 300 : 140)) {
717      find_variable gl_Position("gl_Position");
718      find_assignments(shader->ir, &gl_Position);
719      if (!gl_Position.found) {
720        if (prog->IsES) {
721          linker_warning(prog,
722                         "vertex shader does not write to `gl_Position'. "
723                         "Its value is undefined. \n");
724        } else {
725          linker_error(prog,
726                       "vertex shader does not write to `gl_Position'. \n");
727        }
728         return;
729      }
730   }
731
732   analyze_clip_cull_usage(prog, shader, ctx,
733                           &shader->Program->info.clip_distance_array_size,
734                           &shader->Program->info.cull_distance_array_size);
735}
736
737static void
738validate_tess_eval_shader_executable(struct gl_shader_program *prog,
739                                     struct gl_linked_shader *shader,
740                                     struct gl_context *ctx)
741{
742   if (shader == NULL)
743      return;
744
745   analyze_clip_cull_usage(prog, shader, ctx,
746                           &shader->Program->info.clip_distance_array_size,
747                           &shader->Program->info.cull_distance_array_size);
748}
749
750
751/**
752 * Verify that a fragment shader executable meets all semantic requirements
753 *
754 * \param shader  Fragment shader executable to be verified
755 */
756static void
757validate_fragment_shader_executable(struct gl_shader_program *prog,
758                                    struct gl_linked_shader *shader)
759{
760   if (shader == NULL)
761      return;
762
763   find_variable gl_FragColor("gl_FragColor");
764   find_variable gl_FragData("gl_FragData");
765   find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
766   find_assignments(shader->ir, variables);
767
768   if (gl_FragColor.found && gl_FragData.found) {
769      linker_error(prog,  "fragment shader writes to both "
770                   "`gl_FragColor' and `gl_FragData'\n");
771   }
772}
773
774/**
775 * Verify that a geometry shader executable meets all semantic requirements
776 *
777 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
778 * info.cull_distance_array_size as a side effect.
779 *
780 * \param shader Geometry shader executable to be verified
781 */
782static void
783validate_geometry_shader_executable(struct gl_shader_program *prog,
784                                    struct gl_linked_shader *shader,
785                                    struct gl_context *ctx)
786{
787   if (shader == NULL)
788      return;
789
790   unsigned num_vertices =
791      vertices_per_prim(shader->Program->info.gs.input_primitive);
792   prog->Geom.VerticesIn = num_vertices;
793
794   analyze_clip_cull_usage(prog, shader, ctx,
795                           &shader->Program->info.clip_distance_array_size,
796                           &shader->Program->info.cull_distance_array_size);
797}
798
799/**
800 * Check if geometry shaders emit to non-zero streams and do corresponding
801 * validations.
802 */
803static void
804validate_geometry_shader_emissions(struct gl_context *ctx,
805                                   struct gl_shader_program *prog)
806{
807   struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
808
809   if (sh != NULL) {
810      find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
811      emit_vertex.run(sh->ir);
812      if (emit_vertex.error()) {
813         linker_error(prog, "Invalid call %s(%d). Accepted values for the "
814                      "stream parameter are in the range [0, %d].\n",
815                      emit_vertex.error_func(),
816                      emit_vertex.error_stream(),
817                      ctx->Const.MaxVertexStreams - 1);
818      }
819      prog->Geom.UsesStreams = emit_vertex.uses_streams();
820      prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
821
822      /* From the ARB_gpu_shader5 spec:
823       *
824       *   "Multiple vertex streams are supported only if the output primitive
825       *    type is declared to be "points".  A program will fail to link if it
826       *    contains a geometry shader calling EmitStreamVertex() or
827       *    EndStreamPrimitive() if its output primitive type is not "points".
828       *
829       * However, in the same spec:
830       *
831       *   "The function EmitVertex() is equivalent to calling EmitStreamVertex()
832       *    with <stream> set to zero."
833       *
834       * And:
835       *
836       *   "The function EndPrimitive() is equivalent to calling
837       *    EndStreamPrimitive() with <stream> set to zero."
838       *
839       * Since we can call EmitVertex() and EndPrimitive() when we output
840       * primitives other than points, calling EmitStreamVertex(0) or
841       * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
842       * does. Currently we only set prog->Geom.UsesStreams to TRUE when
843       * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
844       * stream.
845       */
846      if (prog->Geom.UsesStreams &&
847          sh->Program->info.gs.output_primitive != GL_POINTS) {
848         linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
849                      "with n>0 requires point output\n");
850      }
851   }
852}
853
854bool
855validate_intrastage_arrays(struct gl_shader_program *prog,
856                           ir_variable *const var,
857                           ir_variable *const existing)
858{
859   /* Consider the types to be "the same" if both types are arrays
860    * of the same type and one of the arrays is implicitly sized.
861    * In addition, set the type of the linked variable to the
862    * explicitly sized array.
863    */
864   if (var->type->is_array() && existing->type->is_array()) {
865      if ((var->type->fields.array == existing->type->fields.array) &&
866          ((var->type->length == 0)|| (existing->type->length == 0))) {
867         if (var->type->length != 0) {
868            if ((int)var->type->length <= existing->data.max_array_access) {
869               linker_error(prog, "%s `%s' declared as type "
870                           "`%s' but outermost dimension has an index"
871                           " of `%i'\n",
872                           mode_string(var),
873                           var->name, var->type->name,
874                           existing->data.max_array_access);
875            }
876            existing->type = var->type;
877            return true;
878         } else if (existing->type->length != 0) {
879            if((int)existing->type->length <= var->data.max_array_access &&
880               !existing->data.from_ssbo_unsized_array) {
881               linker_error(prog, "%s `%s' declared as type "
882                           "`%s' but outermost dimension has an index"
883                           " of `%i'\n",
884                           mode_string(var),
885                           var->name, existing->type->name,
886                           var->data.max_array_access);
887            }
888            return true;
889         }
890      }
891   }
892   return false;
893}
894
895
896/**
897 * Perform validation of global variables used across multiple shaders
898 */
899static void
900cross_validate_globals(struct gl_context *ctx, struct gl_shader_program *prog,
901                       struct exec_list *ir, glsl_symbol_table *variables,
902                       bool uniforms_only)
903{
904   foreach_in_list(ir_instruction, node, ir) {
905      ir_variable *const var = node->as_variable();
906
907      if (var == NULL)
908         continue;
909
910      if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
911         continue;
912
913      /* don't cross validate subroutine uniforms */
914      if (var->type->contains_subroutine())
915         continue;
916
917      /* Don't cross validate interface instances. These are only relevant
918       * inside a shader. The cross validation is done at the Interface Block
919       * name level.
920       */
921      if (var->is_interface_instance())
922         continue;
923
924      /* Don't cross validate temporaries that are at global scope.  These
925       * will eventually get pulled into the shaders 'main'.
926       */
927      if (var->data.mode == ir_var_temporary)
928         continue;
929
930      /* If a global with this name has already been seen, verify that the
931       * new instance has the same type.  In addition, if the globals have
932       * initializers, the values of the initializers must be the same.
933       */
934      ir_variable *const existing = variables->get_variable(var->name);
935      if (existing != NULL) {
936         /* Check if types match. */
937         if (var->type != existing->type) {
938            if (!validate_intrastage_arrays(prog, var, existing)) {
939               /* If it is an unsized array in a Shader Storage Block,
940                * two different shaders can access to different elements.
941                * Because of that, they might be converted to different
942                * sized arrays, then check that they are compatible but
943                * ignore the array size.
944                */
945               if (!(var->data.mode == ir_var_shader_storage &&
946                     var->data.from_ssbo_unsized_array &&
947                     existing->data.mode == ir_var_shader_storage &&
948                     existing->data.from_ssbo_unsized_array &&
949                     var->type->gl_type == existing->type->gl_type)) {
950                  linker_error(prog, "%s `%s' declared as type "
951                                 "`%s' and type `%s'\n",
952                                 mode_string(var),
953                                 var->name, var->type->name,
954                                 existing->type->name);
955                  return;
956               }
957            }
958         }
959
960         if (var->data.explicit_location) {
961            if (existing->data.explicit_location
962                && (var->data.location != existing->data.location)) {
963               linker_error(prog, "explicit locations for %s "
964                            "`%s' have differing values\n",
965                            mode_string(var), var->name);
966               return;
967            }
968
969            if (var->data.location_frac != existing->data.location_frac) {
970               linker_error(prog, "explicit components for %s `%s' have "
971                            "differing values\n", mode_string(var), var->name);
972               return;
973            }
974
975            existing->data.location = var->data.location;
976            existing->data.explicit_location = true;
977         } else {
978            /* Check if uniform with implicit location was marked explicit
979             * by earlier shader stage. If so, mark it explicit in this stage
980             * too to make sure later processing does not treat it as
981             * implicit one.
982             */
983            if (existing->data.explicit_location) {
984               var->data.location = existing->data.location;
985               var->data.explicit_location = true;
986            }
987         }
988
989         /* From the GLSL 4.20 specification:
990          * "A link error will result if two compilation units in a program
991          *  specify different integer-constant bindings for the same
992          *  opaque-uniform name.  However, it is not an error to specify a
993          *  binding on some but not all declarations for the same name"
994          */
995         if (var->data.explicit_binding) {
996            if (existing->data.explicit_binding &&
997                var->data.binding != existing->data.binding) {
998               linker_error(prog, "explicit bindings for %s "
999                            "`%s' have differing values\n",
1000                            mode_string(var), var->name);
1001               return;
1002            }
1003
1004            existing->data.binding = var->data.binding;
1005            existing->data.explicit_binding = true;
1006         }
1007
1008         if (var->type->contains_atomic() &&
1009             var->data.offset != existing->data.offset) {
1010            linker_error(prog, "offset specifications for %s "
1011                         "`%s' have differing values\n",
1012                         mode_string(var), var->name);
1013            return;
1014         }
1015
1016         /* Validate layout qualifiers for gl_FragDepth.
1017          *
1018          * From the AMD/ARB_conservative_depth specs:
1019          *
1020          *    "If gl_FragDepth is redeclared in any fragment shader in a
1021          *    program, it must be redeclared in all fragment shaders in
1022          *    that program that have static assignments to
1023          *    gl_FragDepth. All redeclarations of gl_FragDepth in all
1024          *    fragment shaders in a single program must have the same set
1025          *    of qualifiers."
1026          */
1027         if (strcmp(var->name, "gl_FragDepth") == 0) {
1028            bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1029            bool layout_differs =
1030               var->data.depth_layout != existing->data.depth_layout;
1031
1032            if (layout_declared && layout_differs) {
1033               linker_error(prog,
1034                            "All redeclarations of gl_FragDepth in all "
1035                            "fragment shaders in a single program must have "
1036                            "the same set of qualifiers.\n");
1037            }
1038
1039            if (var->data.used && layout_differs) {
1040               linker_error(prog,
1041                            "If gl_FragDepth is redeclared with a layout "
1042                            "qualifier in any fragment shader, it must be "
1043                            "redeclared with the same layout qualifier in "
1044                            "all fragment shaders that have assignments to "
1045                            "gl_FragDepth\n");
1046            }
1047         }
1048
1049         /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1050          *
1051          *     "If a shared global has multiple initializers, the
1052          *     initializers must all be constant expressions, and they
1053          *     must all have the same value. Otherwise, a link error will
1054          *     result. (A shared global having only one initializer does
1055          *     not require that initializer to be a constant expression.)"
1056          *
1057          * Previous to 4.20 the GLSL spec simply said that initializers
1058          * must have the same value.  In this case of non-constant
1059          * initializers, this was impossible to determine.  As a result,
1060          * no vendor actually implemented that behavior.  The 4.20
1061          * behavior matches the implemented behavior of at least one other
1062          * vendor, so we'll implement that for all GLSL versions.
1063          */
1064         if (var->constant_initializer != NULL) {
1065            if (existing->constant_initializer != NULL) {
1066               if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1067                  linker_error(prog, "initializers for %s "
1068                               "`%s' have differing values\n",
1069                               mode_string(var), var->name);
1070                  return;
1071               }
1072            } else {
1073               /* If the first-seen instance of a particular uniform did
1074                * not have an initializer but a later instance does,
1075                * replace the former with the later.
1076                */
1077               variables->replace_variable(existing->name, var);
1078            }
1079         }
1080
1081         if (var->data.has_initializer) {
1082            if (existing->data.has_initializer
1083                && (var->constant_initializer == NULL
1084                    || existing->constant_initializer == NULL)) {
1085               linker_error(prog,
1086                            "shared global variable `%s' has multiple "
1087                            "non-constant initializers.\n",
1088                            var->name);
1089               return;
1090            }
1091         }
1092
1093         if (existing->data.invariant != var->data.invariant) {
1094            linker_error(prog, "declarations for %s `%s' have "
1095                         "mismatching invariant qualifiers\n",
1096                         mode_string(var), var->name);
1097            return;
1098         }
1099         if (existing->data.centroid != var->data.centroid) {
1100            linker_error(prog, "declarations for %s `%s' have "
1101                         "mismatching centroid qualifiers\n",
1102                         mode_string(var), var->name);
1103            return;
1104         }
1105         if (existing->data.sample != var->data.sample) {
1106            linker_error(prog, "declarations for %s `%s` have "
1107                         "mismatching sample qualifiers\n",
1108                         mode_string(var), var->name);
1109            return;
1110         }
1111         if (existing->data.image_format != var->data.image_format) {
1112            linker_error(prog, "declarations for %s `%s` have "
1113                         "mismatching image format qualifiers\n",
1114                         mode_string(var), var->name);
1115            return;
1116         }
1117
1118         /* Check the precision qualifier matches for uniform variables on
1119          * GLSL ES.
1120          */
1121         if (!ctx->Const.AllowGLSLRelaxedES &&
1122             prog->IsES && !var->get_interface_type() &&
1123             existing->data.precision != var->data.precision) {
1124            if ((existing->data.used && var->data.used) || prog->data->Version >= 300) {
1125               linker_error(prog, "declarations for %s `%s` have "
1126                            "mismatching precision qualifiers\n",
1127                            mode_string(var), var->name);
1128               return;
1129            } else {
1130               linker_warning(prog, "declarations for %s `%s` have "
1131                              "mismatching precision qualifiers\n",
1132                              mode_string(var), var->name);
1133            }
1134         }
1135
1136         /* In OpenGL GLSL 3.20 spec, section 4.3.9:
1137          *
1138          *   "It is a link-time error if any particular shader interface
1139          *    contains:
1140          *
1141          *    - two different blocks, each having no instance name, and each
1142          *      having a member of the same name, or
1143          *
1144          *    - a variable outside a block, and a block with no instance name,
1145          *      where the variable has the same name as a member in the block."
1146          */
1147         const glsl_type *var_itype = var->get_interface_type();
1148         const glsl_type *existing_itype = existing->get_interface_type();
1149         if (var_itype != existing_itype) {
1150            if (!var_itype || !existing_itype) {
1151               linker_error(prog, "declarations for %s `%s` are inside block "
1152                            "`%s` and outside a block",
1153                            mode_string(var), var->name,
1154                            var_itype ? var_itype->name : existing_itype->name);
1155               return;
1156            } else if (strcmp(var_itype->name, existing_itype->name) != 0) {
1157               linker_error(prog, "declarations for %s `%s` are inside blocks "
1158                            "`%s` and `%s`",
1159                            mode_string(var), var->name,
1160                            existing_itype->name,
1161                            var_itype->name);
1162               return;
1163            }
1164         }
1165      } else
1166         variables->add_variable(var);
1167   }
1168}
1169
1170
1171/**
1172 * Perform validation of uniforms used across multiple shader stages
1173 */
1174static void
1175cross_validate_uniforms(struct gl_context *ctx,
1176                        struct gl_shader_program *prog)
1177{
1178   glsl_symbol_table variables;
1179   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1180      if (prog->_LinkedShaders[i] == NULL)
1181         continue;
1182
1183      cross_validate_globals(ctx, prog, prog->_LinkedShaders[i]->ir,
1184                             &variables, true);
1185   }
1186}
1187
1188/**
1189 * Accumulates the array of buffer blocks and checks that all definitions of
1190 * blocks agree on their contents.
1191 */
1192static bool
1193interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1194                                         bool validate_ssbo)
1195{
1196   int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1197   struct gl_uniform_block *blks = NULL;
1198   unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1199      &prog->data->NumUniformBlocks;
1200
1201   unsigned max_num_buffer_blocks = 0;
1202   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1203      if (prog->_LinkedShaders[i]) {
1204         if (validate_ssbo) {
1205            max_num_buffer_blocks +=
1206               prog->_LinkedShaders[i]->Program->info.num_ssbos;
1207         } else {
1208            max_num_buffer_blocks +=
1209               prog->_LinkedShaders[i]->Program->info.num_ubos;
1210         }
1211      }
1212   }
1213
1214   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1215      struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1216
1217      InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1218      for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1219         InterfaceBlockStageIndex[i][j] = -1;
1220
1221      if (sh == NULL)
1222         continue;
1223
1224      unsigned sh_num_blocks;
1225      struct gl_uniform_block **sh_blks;
1226      if (validate_ssbo) {
1227         sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1228         sh_blks = sh->Program->sh.ShaderStorageBlocks;
1229      } else {
1230         sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1231         sh_blks = sh->Program->sh.UniformBlocks;
1232      }
1233
1234      for (unsigned int j = 0; j < sh_num_blocks; j++) {
1235         int index = link_cross_validate_uniform_block(prog->data, &blks,
1236                                                       num_blks, sh_blks[j]);
1237
1238         if (index == -1) {
1239            linker_error(prog, "buffer block `%s' has mismatching "
1240                         "definitions\n", sh_blks[j]->Name);
1241
1242            for (unsigned k = 0; k <= i; k++) {
1243               delete[] InterfaceBlockStageIndex[k];
1244            }
1245
1246            /* Reset the block count. This will help avoid various segfaults
1247             * from api calls that assume the array exists due to the count
1248             * being non-zero.
1249             */
1250            *num_blks = 0;
1251            return false;
1252         }
1253
1254         InterfaceBlockStageIndex[i][index] = j;
1255      }
1256   }
1257
1258   /* Update per stage block pointers to point to the program list.
1259    * FIXME: We should be able to free the per stage blocks here.
1260    */
1261   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1262      for (unsigned j = 0; j < *num_blks; j++) {
1263         int stage_index = InterfaceBlockStageIndex[i][j];
1264
1265         if (stage_index != -1) {
1266            struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1267
1268            struct gl_uniform_block **sh_blks = validate_ssbo ?
1269               sh->Program->sh.ShaderStorageBlocks :
1270               sh->Program->sh.UniformBlocks;
1271
1272            blks[j].stageref |= sh_blks[stage_index]->stageref;
1273            sh_blks[stage_index] = &blks[j];
1274         }
1275      }
1276   }
1277
1278   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1279      delete[] InterfaceBlockStageIndex[i];
1280   }
1281
1282   if (validate_ssbo)
1283      prog->data->ShaderStorageBlocks = blks;
1284   else
1285      prog->data->UniformBlocks = blks;
1286
1287   return true;
1288}
1289
1290/**
1291 * Verifies the invariance of built-in special variables.
1292 */
1293static bool
1294validate_invariant_builtins(struct gl_shader_program *prog,
1295                            const gl_linked_shader *vert,
1296                            const gl_linked_shader *frag)
1297{
1298   const ir_variable *var_vert;
1299   const ir_variable *var_frag;
1300
1301   if (!vert || !frag)
1302      return true;
1303
1304   /*
1305    * From OpenGL ES Shading Language 1.0 specification
1306    * (4.6.4 Invariance and Linkage):
1307    *     "The invariance of varyings that are declared in both the vertex and
1308    *     fragment shaders must match. For the built-in special variables,
1309    *     gl_FragCoord can only be declared invariant if and only if
1310    *     gl_Position is declared invariant. Similarly gl_PointCoord can only
1311    *     be declared invariant if and only if gl_PointSize is declared
1312    *     invariant. It is an error to declare gl_FrontFacing as invariant.
1313    *     The invariance of gl_FrontFacing is the same as the invariance of
1314    *     gl_Position."
1315    */
1316   var_frag = frag->symbols->get_variable("gl_FragCoord");
1317   if (var_frag && var_frag->data.invariant) {
1318      var_vert = vert->symbols->get_variable("gl_Position");
1319      if (var_vert && !var_vert->data.invariant) {
1320         linker_error(prog,
1321               "fragment shader built-in `%s' has invariant qualifier, "
1322               "but vertex shader built-in `%s' lacks invariant qualifier\n",
1323               var_frag->name, var_vert->name);
1324         return false;
1325      }
1326   }
1327
1328   var_frag = frag->symbols->get_variable("gl_PointCoord");
1329   if (var_frag && var_frag->data.invariant) {
1330      var_vert = vert->symbols->get_variable("gl_PointSize");
1331      if (var_vert && !var_vert->data.invariant) {
1332         linker_error(prog,
1333               "fragment shader built-in `%s' has invariant qualifier, "
1334               "but vertex shader built-in `%s' lacks invariant qualifier\n",
1335               var_frag->name, var_vert->name);
1336         return false;
1337      }
1338   }
1339
1340   var_frag = frag->symbols->get_variable("gl_FrontFacing");
1341   if (var_frag && var_frag->data.invariant) {
1342      linker_error(prog,
1343            "fragment shader built-in `%s' can not be declared as invariant\n",
1344            var_frag->name);
1345      return false;
1346   }
1347
1348   return true;
1349}
1350
1351/**
1352 * Populates a shaders symbol table with all global declarations
1353 */
1354static void
1355populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
1356{
1357   sh->symbols = new(sh) glsl_symbol_table;
1358
1359   _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
1360}
1361
1362
1363/**
1364 * Remap variables referenced in an instruction tree
1365 *
1366 * This is used when instruction trees are cloned from one shader and placed in
1367 * another.  These trees will contain references to \c ir_variable nodes that
1368 * do not exist in the target shader.  This function finds these \c ir_variable
1369 * references and replaces the references with matching variables in the target
1370 * shader.
1371 *
1372 * If there is no matching variable in the target shader, a clone of the
1373 * \c ir_variable is made and added to the target shader.  The new variable is
1374 * added to \b both the instruction stream and the symbol table.
1375 *
1376 * \param inst         IR tree that is to be processed.
1377 * \param symbols      Symbol table containing global scope symbols in the
1378 *                     linked shader.
1379 * \param instructions Instruction stream where new variable declarations
1380 *                     should be added.
1381 */
1382static void
1383remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1384                hash_table *temps)
1385{
1386   class remap_visitor : public ir_hierarchical_visitor {
1387   public:
1388         remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1389      {
1390         this->target = target;
1391         this->symbols = target->symbols;
1392         this->instructions = target->ir;
1393         this->temps = temps;
1394      }
1395
1396      virtual ir_visitor_status visit(ir_dereference_variable *ir)
1397      {
1398         if (ir->var->data.mode == ir_var_temporary) {
1399            hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1400            ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1401
1402            assert(var != NULL);
1403            ir->var = var;
1404            return visit_continue;
1405         }
1406
1407         ir_variable *const existing =
1408            this->symbols->get_variable(ir->var->name);
1409         if (existing != NULL)
1410            ir->var = existing;
1411         else {
1412            ir_variable *copy = ir->var->clone(this->target, NULL);
1413
1414            this->symbols->add_variable(copy);
1415            this->instructions->push_head(copy);
1416            ir->var = copy;
1417         }
1418
1419         return visit_continue;
1420      }
1421
1422   private:
1423      struct gl_linked_shader *target;
1424      glsl_symbol_table *symbols;
1425      exec_list *instructions;
1426      hash_table *temps;
1427   };
1428
1429   remap_visitor v(target, temps);
1430
1431   inst->accept(&v);
1432}
1433
1434
1435/**
1436 * Move non-declarations from one instruction stream to another
1437 *
1438 * The intended usage pattern of this function is to pass the pointer to the
1439 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1440 * pointer) for \c last and \c false for \c make_copies on the first
1441 * call.  Successive calls pass the return value of the previous call for
1442 * \c last and \c true for \c make_copies.
1443 *
1444 * \param instructions Source instruction stream
1445 * \param last         Instruction after which new instructions should be
1446 *                     inserted in the target instruction stream
1447 * \param make_copies  Flag selecting whether instructions in \c instructions
1448 *                     should be copied (via \c ir_instruction::clone) into the
1449 *                     target list or moved.
1450 *
1451 * \return
1452 * The new "last" instruction in the target instruction stream.  This pointer
1453 * is suitable for use as the \c last parameter of a later call to this
1454 * function.
1455 */
1456static exec_node *
1457move_non_declarations(exec_list *instructions, exec_node *last,
1458                      bool make_copies, gl_linked_shader *target)
1459{
1460   hash_table *temps = NULL;
1461
1462   if (make_copies)
1463      temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1464                                      _mesa_key_pointer_equal);
1465
1466   foreach_in_list_safe(ir_instruction, inst, instructions) {
1467      if (inst->as_function())
1468         continue;
1469
1470      ir_variable *var = inst->as_variable();
1471      if ((var != NULL) && (var->data.mode != ir_var_temporary))
1472         continue;
1473
1474      assert(inst->as_assignment()
1475             || inst->as_call()
1476             || inst->as_if() /* for initializers with the ?: operator */
1477             || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1478
1479      if (make_copies) {
1480         inst = inst->clone(target, NULL);
1481
1482         if (var != NULL)
1483            _mesa_hash_table_insert(temps, var, inst);
1484         else
1485            remap_variables(inst, target, temps);
1486      } else {
1487         inst->remove();
1488      }
1489
1490      last->insert_after(inst);
1491      last = inst;
1492   }
1493
1494   if (make_copies)
1495      _mesa_hash_table_destroy(temps, NULL);
1496
1497   return last;
1498}
1499
1500
1501/**
1502 * This class is only used in link_intrastage_shaders() below but declaring
1503 * it inside that function leads to compiler warnings with some versions of
1504 * gcc.
1505 */
1506class array_sizing_visitor : public deref_type_updater {
1507public:
1508   array_sizing_visitor()
1509      : mem_ctx(ralloc_context(NULL)),
1510        unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1511                                                   _mesa_key_pointer_equal))
1512   {
1513   }
1514
1515   ~array_sizing_visitor()
1516   {
1517      _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1518      ralloc_free(this->mem_ctx);
1519   }
1520
1521   virtual ir_visitor_status visit(ir_variable *var)
1522   {
1523      const glsl_type *type_without_array;
1524      bool implicit_sized_array = var->data.implicit_sized_array;
1525      fixup_type(&var->type, var->data.max_array_access,
1526                 var->data.from_ssbo_unsized_array,
1527                 &implicit_sized_array);
1528      var->data.implicit_sized_array = implicit_sized_array;
1529      type_without_array = var->type->without_array();
1530      if (var->type->is_interface()) {
1531         if (interface_contains_unsized_arrays(var->type)) {
1532            const glsl_type *new_type =
1533               resize_interface_members(var->type,
1534                                        var->get_max_ifc_array_access(),
1535                                        var->is_in_shader_storage_block());
1536            var->type = new_type;
1537            var->change_interface_type(new_type);
1538         }
1539      } else if (type_without_array->is_interface()) {
1540         if (interface_contains_unsized_arrays(type_without_array)) {
1541            const glsl_type *new_type =
1542               resize_interface_members(type_without_array,
1543                                        var->get_max_ifc_array_access(),
1544                                        var->is_in_shader_storage_block());
1545            var->change_interface_type(new_type);
1546            var->type = update_interface_members_array(var->type, new_type);
1547         }
1548      } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1549         /* Store a pointer to the variable in the unnamed_interfaces
1550          * hashtable.
1551          */
1552         hash_entry *entry =
1553               _mesa_hash_table_search(this->unnamed_interfaces,
1554                                       ifc_type);
1555
1556         ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1557
1558         if (interface_vars == NULL) {
1559            interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1560                                           ifc_type->length);
1561            _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1562                                    interface_vars);
1563         }
1564         unsigned index = ifc_type->field_index(var->name);
1565         assert(index < ifc_type->length);
1566         assert(interface_vars[index] == NULL);
1567         interface_vars[index] = var;
1568      }
1569      return visit_continue;
1570   }
1571
1572   /**
1573    * For each unnamed interface block that was discovered while running the
1574    * visitor, adjust the interface type to reflect the newly assigned array
1575    * sizes, and fix up the ir_variable nodes to point to the new interface
1576    * type.
1577    */
1578   void fixup_unnamed_interface_types()
1579   {
1580      hash_table_call_foreach(this->unnamed_interfaces,
1581                              fixup_unnamed_interface_type, NULL);
1582   }
1583
1584private:
1585   /**
1586    * If the type pointed to by \c type represents an unsized array, replace
1587    * it with a sized array whose size is determined by max_array_access.
1588    */
1589   static void fixup_type(const glsl_type **type, unsigned max_array_access,
1590                          bool from_ssbo_unsized_array, bool *implicit_sized)
1591   {
1592      if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1593         *type = glsl_type::get_array_instance((*type)->fields.array,
1594                                               max_array_access + 1);
1595         *implicit_sized = true;
1596         assert(*type != NULL);
1597      }
1598   }
1599
1600   static const glsl_type *
1601   update_interface_members_array(const glsl_type *type,
1602                                  const glsl_type *new_interface_type)
1603   {
1604      const glsl_type *element_type = type->fields.array;
1605      if (element_type->is_array()) {
1606         const glsl_type *new_array_type =
1607            update_interface_members_array(element_type, new_interface_type);
1608         return glsl_type::get_array_instance(new_array_type, type->length);
1609      } else {
1610         return glsl_type::get_array_instance(new_interface_type,
1611                                              type->length);
1612      }
1613   }
1614
1615   /**
1616    * Determine whether the given interface type contains unsized arrays (if
1617    * it doesn't, array_sizing_visitor doesn't need to process it).
1618    */
1619   static bool interface_contains_unsized_arrays(const glsl_type *type)
1620   {
1621      for (unsigned i = 0; i < type->length; i++) {
1622         const glsl_type *elem_type = type->fields.structure[i].type;
1623         if (elem_type->is_unsized_array())
1624            return true;
1625      }
1626      return false;
1627   }
1628
1629   /**
1630    * Create a new interface type based on the given type, with unsized arrays
1631    * replaced by sized arrays whose size is determined by
1632    * max_ifc_array_access.
1633    */
1634   static const glsl_type *
1635   resize_interface_members(const glsl_type *type,
1636                            const int *max_ifc_array_access,
1637                            bool is_ssbo)
1638   {
1639      unsigned num_fields = type->length;
1640      glsl_struct_field *fields = new glsl_struct_field[num_fields];
1641      memcpy(fields, type->fields.structure,
1642             num_fields * sizeof(*fields));
1643      for (unsigned i = 0; i < num_fields; i++) {
1644         bool implicit_sized_array = fields[i].implicit_sized_array;
1645         /* If SSBO last member is unsized array, we don't replace it by a sized
1646          * array.
1647          */
1648         if (is_ssbo && i == (num_fields - 1))
1649            fixup_type(&fields[i].type, max_ifc_array_access[i],
1650                       true, &implicit_sized_array);
1651         else
1652            fixup_type(&fields[i].type, max_ifc_array_access[i],
1653                       false, &implicit_sized_array);
1654         fields[i].implicit_sized_array = implicit_sized_array;
1655      }
1656      glsl_interface_packing packing =
1657         (glsl_interface_packing) type->interface_packing;
1658      bool row_major = (bool) type->interface_row_major;
1659      const glsl_type *new_ifc_type =
1660         glsl_type::get_interface_instance(fields, num_fields,
1661                                           packing, row_major, type->name);
1662      delete [] fields;
1663      return new_ifc_type;
1664   }
1665
1666   static void fixup_unnamed_interface_type(const void *key, void *data,
1667                                            void *)
1668   {
1669      const glsl_type *ifc_type = (const glsl_type *) key;
1670      ir_variable **interface_vars = (ir_variable **) data;
1671      unsigned num_fields = ifc_type->length;
1672      glsl_struct_field *fields = new glsl_struct_field[num_fields];
1673      memcpy(fields, ifc_type->fields.structure,
1674             num_fields * sizeof(*fields));
1675      bool interface_type_changed = false;
1676      for (unsigned i = 0; i < num_fields; i++) {
1677         if (interface_vars[i] != NULL &&
1678             fields[i].type != interface_vars[i]->type) {
1679            fields[i].type = interface_vars[i]->type;
1680            interface_type_changed = true;
1681         }
1682      }
1683      if (!interface_type_changed) {
1684         delete [] fields;
1685         return;
1686      }
1687      glsl_interface_packing packing =
1688         (glsl_interface_packing) ifc_type->interface_packing;
1689      bool row_major = (bool) ifc_type->interface_row_major;
1690      const glsl_type *new_ifc_type =
1691         glsl_type::get_interface_instance(fields, num_fields, packing,
1692                                           row_major, ifc_type->name);
1693      delete [] fields;
1694      for (unsigned i = 0; i < num_fields; i++) {
1695         if (interface_vars[i] != NULL)
1696            interface_vars[i]->change_interface_type(new_ifc_type);
1697      }
1698   }
1699
1700   /**
1701    * Memory context used to allocate the data in \c unnamed_interfaces.
1702    */
1703   void *mem_ctx;
1704
1705   /**
1706    * Hash table from const glsl_type * to an array of ir_variable *'s
1707    * pointing to the ir_variables constituting each unnamed interface block.
1708    */
1709   hash_table *unnamed_interfaces;
1710};
1711
1712static bool
1713validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1714                           struct gl_shader_program *prog)
1715{
1716   /* We will validate doubles at a later stage */
1717   if (prog->TransformFeedback.BufferStride[idx] % 4) {
1718      linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1719                   "multiple of 4 or if its applied to a type that is "
1720                   "or contains a double a multiple of 8.",
1721                   prog->TransformFeedback.BufferStride[idx]);
1722      return false;
1723   }
1724
1725   if (prog->TransformFeedback.BufferStride[idx] / 4 >
1726       ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1727      linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1728                   "limit has been exceeded.");
1729      return false;
1730   }
1731
1732   return true;
1733}
1734
1735/**
1736 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1737 * for later use.
1738 */
1739static void
1740link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1741                                  struct gl_shader_program *prog,
1742                                  struct gl_shader **shader_list,
1743                                  unsigned num_shaders)
1744{
1745   for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1746      prog->TransformFeedback.BufferStride[i] = 0;
1747   }
1748
1749   for (unsigned i = 0; i < num_shaders; i++) {
1750      struct gl_shader *shader = shader_list[i];
1751
1752      for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1753         if (shader->TransformFeedbackBufferStride[j]) {
1754            if (prog->TransformFeedback.BufferStride[j] == 0) {
1755               prog->TransformFeedback.BufferStride[j] =
1756                  shader->TransformFeedbackBufferStride[j];
1757               if (!validate_xfb_buffer_stride(ctx, j, prog))
1758                  return;
1759            } else if (prog->TransformFeedback.BufferStride[j] !=
1760                       shader->TransformFeedbackBufferStride[j]){
1761               linker_error(prog,
1762                            "intrastage shaders defined with conflicting "
1763                            "xfb_stride for buffer %d (%d and %d)\n", j,
1764                            prog->TransformFeedback.BufferStride[j],
1765                            shader->TransformFeedbackBufferStride[j]);
1766               return;
1767            }
1768         }
1769      }
1770   }
1771}
1772
1773/**
1774 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1775 * global scope.
1776 */
1777static void
1778link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1779                                struct gl_shader **shader_list,
1780                                unsigned num_shaders)
1781{
1782   bool bindless_sampler, bindless_image;
1783   bool bound_sampler, bound_image;
1784
1785   bindless_sampler = bindless_image = false;
1786   bound_sampler = bound_image = false;
1787
1788   for (unsigned i = 0; i < num_shaders; i++) {
1789      struct gl_shader *shader = shader_list[i];
1790
1791      if (shader->bindless_sampler)
1792         bindless_sampler = true;
1793      if (shader->bindless_image)
1794         bindless_image = true;
1795      if (shader->bound_sampler)
1796         bound_sampler = true;
1797      if (shader->bound_image)
1798         bound_image = true;
1799
1800      if ((bindless_sampler && bound_sampler) ||
1801          (bindless_image && bound_image)) {
1802         /* From section 4.4.6 of the ARB_bindless_texture spec:
1803          *
1804          *     "If both bindless_sampler and bound_sampler, or bindless_image
1805          *      and bound_image, are declared at global scope in any
1806          *      compilation unit, a link- time error will be generated."
1807          */
1808         linker_error(prog, "both bindless_sampler and bound_sampler, or "
1809                      "bindless_image and bound_image, can't be declared at "
1810                      "global scope");
1811      }
1812   }
1813}
1814
1815/**
1816 * Performs the cross-validation of tessellation control shader vertices and
1817 * layout qualifiers for the attached tessellation control shaders,
1818 * and propagates them to the linked TCS and linked shader program.
1819 */
1820static void
1821link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1822                               struct gl_program *gl_prog,
1823                               struct gl_shader **shader_list,
1824                               unsigned num_shaders)
1825{
1826   if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1827      return;
1828
1829   gl_prog->info.tess.tcs_vertices_out = 0;
1830
1831   /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1832    *
1833    *     "All tessellation control shader layout declarations in a program
1834    *      must specify the same output patch vertex count.  There must be at
1835    *      least one layout qualifier specifying an output patch vertex count
1836    *      in any program containing tessellation control shaders; however,
1837    *      such a declaration is not required in all tessellation control
1838    *      shaders."
1839    */
1840
1841   for (unsigned i = 0; i < num_shaders; i++) {
1842      struct gl_shader *shader = shader_list[i];
1843
1844      if (shader->info.TessCtrl.VerticesOut != 0) {
1845         if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1846             gl_prog->info.tess.tcs_vertices_out !=
1847             (unsigned) shader->info.TessCtrl.VerticesOut) {
1848            linker_error(prog, "tessellation control shader defined with "
1849                         "conflicting output vertex count (%d and %d)\n",
1850                         gl_prog->info.tess.tcs_vertices_out,
1851                         shader->info.TessCtrl.VerticesOut);
1852            return;
1853         }
1854         gl_prog->info.tess.tcs_vertices_out =
1855            shader->info.TessCtrl.VerticesOut;
1856      }
1857   }
1858
1859   /* Just do the intrastage -> interstage propagation right now,
1860    * since we already know we're in the right type of shader program
1861    * for doing it.
1862    */
1863   if (gl_prog->info.tess.tcs_vertices_out == 0) {
1864      linker_error(prog, "tessellation control shader didn't declare "
1865                   "vertices out layout qualifier\n");
1866      return;
1867   }
1868}
1869
1870
1871/**
1872 * Performs the cross-validation of tessellation evaluation shader
1873 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1874 * for the attached tessellation evaluation shaders, and propagates them
1875 * to the linked TES and linked shader program.
1876 */
1877static void
1878link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1879                              struct gl_program *gl_prog,
1880                              struct gl_shader **shader_list,
1881                              unsigned num_shaders)
1882{
1883   if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1884      return;
1885
1886   int point_mode = -1;
1887   unsigned vertex_order = 0;
1888
1889   gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1890   gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1891
1892   /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1893    *
1894    *     "At least one tessellation evaluation shader (compilation unit) in
1895    *      a program must declare a primitive mode in its input layout.
1896    *      Declaration vertex spacing, ordering, and point mode identifiers is
1897    *      optional.  It is not required that all tessellation evaluation
1898    *      shaders in a program declare a primitive mode.  If spacing or
1899    *      vertex ordering declarations are omitted, the tessellation
1900    *      primitive generator will use equal spacing or counter-clockwise
1901    *      vertex ordering, respectively.  If a point mode declaration is
1902    *      omitted, the tessellation primitive generator will produce lines or
1903    *      triangles according to the primitive mode."
1904    */
1905
1906   for (unsigned i = 0; i < num_shaders; i++) {
1907      struct gl_shader *shader = shader_list[i];
1908
1909      if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1910         if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1911             gl_prog->info.tess.primitive_mode !=
1912             shader->info.TessEval.PrimitiveMode) {
1913            linker_error(prog, "tessellation evaluation shader defined with "
1914                         "conflicting input primitive modes.\n");
1915            return;
1916         }
1917         gl_prog->info.tess.primitive_mode =
1918            shader->info.TessEval.PrimitiveMode;
1919      }
1920
1921      if (shader->info.TessEval.Spacing != 0) {
1922         if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1923             shader->info.TessEval.Spacing) {
1924            linker_error(prog, "tessellation evaluation shader defined with "
1925                         "conflicting vertex spacing.\n");
1926            return;
1927         }
1928         gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1929      }
1930
1931      if (shader->info.TessEval.VertexOrder != 0) {
1932         if (vertex_order != 0 &&
1933             vertex_order != shader->info.TessEval.VertexOrder) {
1934            linker_error(prog, "tessellation evaluation shader defined with "
1935                         "conflicting ordering.\n");
1936            return;
1937         }
1938         vertex_order = shader->info.TessEval.VertexOrder;
1939      }
1940
1941      if (shader->info.TessEval.PointMode != -1) {
1942         if (point_mode != -1 &&
1943             point_mode != shader->info.TessEval.PointMode) {
1944            linker_error(prog, "tessellation evaluation shader defined with "
1945                         "conflicting point modes.\n");
1946            return;
1947         }
1948         point_mode = shader->info.TessEval.PointMode;
1949      }
1950
1951   }
1952
1953   /* Just do the intrastage -> interstage propagation right now,
1954    * since we already know we're in the right type of shader program
1955    * for doing it.
1956    */
1957   if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1958      linker_error(prog,
1959                   "tessellation evaluation shader didn't declare input "
1960                   "primitive modes.\n");
1961      return;
1962   }
1963
1964   if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1965      gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1966
1967   if (vertex_order == 0 || vertex_order == GL_CCW)
1968      gl_prog->info.tess.ccw = true;
1969   else
1970      gl_prog->info.tess.ccw = false;
1971
1972
1973   if (point_mode == -1 || point_mode == GL_FALSE)
1974      gl_prog->info.tess.point_mode = false;
1975   else
1976      gl_prog->info.tess.point_mode = true;
1977}
1978
1979
1980/**
1981 * Performs the cross-validation of layout qualifiers specified in
1982 * redeclaration of gl_FragCoord for the attached fragment shaders,
1983 * and propagates them to the linked FS and linked shader program.
1984 */
1985static void
1986link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1987                                struct gl_linked_shader *linked_shader,
1988                                struct gl_shader **shader_list,
1989                                unsigned num_shaders)
1990{
1991   bool redeclares_gl_fragcoord = false;
1992   bool uses_gl_fragcoord = false;
1993   bool origin_upper_left = false;
1994   bool pixel_center_integer = false;
1995
1996   if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1997       (prog->data->Version < 150 &&
1998        !prog->ARB_fragment_coord_conventions_enable))
1999      return;
2000
2001   for (unsigned i = 0; i < num_shaders; i++) {
2002      struct gl_shader *shader = shader_list[i];
2003      /* From the GLSL 1.50 spec, page 39:
2004       *
2005       *   "If gl_FragCoord is redeclared in any fragment shader in a program,
2006       *    it must be redeclared in all the fragment shaders in that program
2007       *    that have a static use gl_FragCoord."
2008       */
2009      if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
2010           shader->uses_gl_fragcoord)
2011          || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
2012              uses_gl_fragcoord)) {
2013             linker_error(prog, "fragment shader defined with conflicting "
2014                         "layout qualifiers for gl_FragCoord\n");
2015      }
2016
2017      /* From the GLSL 1.50 spec, page 39:
2018       *
2019       *   "All redeclarations of gl_FragCoord in all fragment shaders in a
2020       *    single program must have the same set of qualifiers."
2021       */
2022      if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
2023          (shader->origin_upper_left != origin_upper_left ||
2024           shader->pixel_center_integer != pixel_center_integer)) {
2025         linker_error(prog, "fragment shader defined with conflicting "
2026                      "layout qualifiers for gl_FragCoord\n");
2027      }
2028
2029      /* Update the linked shader state.  Note that uses_gl_fragcoord should
2030       * accumulate the results.  The other values should replace.  If there
2031       * are multiple redeclarations, all the fields except uses_gl_fragcoord
2032       * are already known to be the same.
2033       */
2034      if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
2035         redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
2036         uses_gl_fragcoord |= shader->uses_gl_fragcoord;
2037         origin_upper_left = shader->origin_upper_left;
2038         pixel_center_integer = shader->pixel_center_integer;
2039      }
2040
2041      linked_shader->Program->info.fs.early_fragment_tests |=
2042         shader->EarlyFragmentTests || shader->PostDepthCoverage;
2043      linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
2044      linked_shader->Program->info.fs.post_depth_coverage |=
2045         shader->PostDepthCoverage;
2046      linked_shader->Program->info.fs.pixel_interlock_ordered |=
2047         shader->PixelInterlockOrdered;
2048      linked_shader->Program->info.fs.pixel_interlock_unordered |=
2049         shader->PixelInterlockUnordered;
2050      linked_shader->Program->info.fs.sample_interlock_ordered |=
2051         shader->SampleInterlockOrdered;
2052      linked_shader->Program->info.fs.sample_interlock_unordered |=
2053         shader->SampleInterlockUnordered;
2054
2055      linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
2056   }
2057}
2058
2059/**
2060 * Performs the cross-validation of geometry shader max_vertices and
2061 * primitive type layout qualifiers for the attached geometry shaders,
2062 * and propagates them to the linked GS and linked shader program.
2063 */
2064static void
2065link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
2066                                struct gl_program *gl_prog,
2067                                struct gl_shader **shader_list,
2068                                unsigned num_shaders)
2069{
2070   /* No in/out qualifiers defined for anything but GLSL 1.50+
2071    * geometry shaders so far.
2072    */
2073   if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
2074       prog->data->Version < 150)
2075      return;
2076
2077   int vertices_out = -1;
2078
2079   gl_prog->info.gs.invocations = 0;
2080   gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
2081   gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
2082
2083   /* From the GLSL 1.50 spec, page 46:
2084    *
2085    *     "All geometry shader output layout declarations in a program
2086    *      must declare the same layout and same value for
2087    *      max_vertices. There must be at least one geometry output
2088    *      layout declaration somewhere in a program, but not all
2089    *      geometry shaders (compilation units) are required to
2090    *      declare it."
2091    */
2092
2093   for (unsigned i = 0; i < num_shaders; i++) {
2094      struct gl_shader *shader = shader_list[i];
2095
2096      if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
2097         if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
2098             gl_prog->info.gs.input_primitive !=
2099             shader->info.Geom.InputType) {
2100            linker_error(prog, "geometry shader defined with conflicting "
2101                         "input types\n");
2102            return;
2103         }
2104         gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2105      }
2106
2107      if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2108         if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2109             gl_prog->info.gs.output_primitive !=
2110             shader->info.Geom.OutputType) {
2111            linker_error(prog, "geometry shader defined with conflicting "
2112                         "output types\n");
2113            return;
2114         }
2115         gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2116      }
2117
2118      if (shader->info.Geom.VerticesOut != -1) {
2119         if (vertices_out != -1 &&
2120             vertices_out != shader->info.Geom.VerticesOut) {
2121            linker_error(prog, "geometry shader defined with conflicting "
2122                         "output vertex count (%d and %d)\n",
2123                         vertices_out, shader->info.Geom.VerticesOut);
2124            return;
2125         }
2126         vertices_out = shader->info.Geom.VerticesOut;
2127      }
2128
2129      if (shader->info.Geom.Invocations != 0) {
2130         if (gl_prog->info.gs.invocations != 0 &&
2131             gl_prog->info.gs.invocations !=
2132             (unsigned) shader->info.Geom.Invocations) {
2133            linker_error(prog, "geometry shader defined with conflicting "
2134                         "invocation count (%d and %d)\n",
2135                         gl_prog->info.gs.invocations,
2136                         shader->info.Geom.Invocations);
2137            return;
2138         }
2139         gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2140      }
2141   }
2142
2143   /* Just do the intrastage -> interstage propagation right now,
2144    * since we already know we're in the right type of shader program
2145    * for doing it.
2146    */
2147   if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2148      linker_error(prog,
2149                   "geometry shader didn't declare primitive input type\n");
2150      return;
2151   }
2152
2153   if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2154      linker_error(prog,
2155                   "geometry shader didn't declare primitive output type\n");
2156      return;
2157   }
2158
2159   if (vertices_out == -1) {
2160      linker_error(prog,
2161                   "geometry shader didn't declare max_vertices\n");
2162      return;
2163   } else {
2164      gl_prog->info.gs.vertices_out = vertices_out;
2165   }
2166
2167   if (gl_prog->info.gs.invocations == 0)
2168      gl_prog->info.gs.invocations = 1;
2169}
2170
2171
2172/**
2173 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2174 * qualifiers for the attached compute shaders, and propagate them to the
2175 * linked CS and linked shader program.
2176 */
2177static void
2178link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2179                                struct gl_program *gl_prog,
2180                                struct gl_shader **shader_list,
2181                                unsigned num_shaders)
2182{
2183   /* This function is called for all shader stages, but it only has an effect
2184    * for compute shaders.
2185    */
2186   if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2187      return;
2188
2189   for (int i = 0; i < 3; i++)
2190      gl_prog->info.cs.local_size[i] = 0;
2191
2192   gl_prog->info.cs.local_size_variable = false;
2193
2194   /* From the ARB_compute_shader spec, in the section describing local size
2195    * declarations:
2196    *
2197    *     If multiple compute shaders attached to a single program object
2198    *     declare local work-group size, the declarations must be identical;
2199    *     otherwise a link-time error results. Furthermore, if a program
2200    *     object contains any compute shaders, at least one must contain an
2201    *     input layout qualifier specifying the local work sizes of the
2202    *     program, or a link-time error will occur.
2203    */
2204   for (unsigned sh = 0; sh < num_shaders; sh++) {
2205      struct gl_shader *shader = shader_list[sh];
2206
2207      if (shader->info.Comp.LocalSize[0] != 0) {
2208         if (gl_prog->info.cs.local_size[0] != 0) {
2209            for (int i = 0; i < 3; i++) {
2210               if (gl_prog->info.cs.local_size[i] !=
2211                   shader->info.Comp.LocalSize[i]) {
2212                  linker_error(prog, "compute shader defined with conflicting "
2213                               "local sizes\n");
2214                  return;
2215               }
2216            }
2217         }
2218         for (int i = 0; i < 3; i++) {
2219            gl_prog->info.cs.local_size[i] =
2220               shader->info.Comp.LocalSize[i];
2221         }
2222      } else if (shader->info.Comp.LocalSizeVariable) {
2223         if (gl_prog->info.cs.local_size[0] != 0) {
2224            /* The ARB_compute_variable_group_size spec says:
2225             *
2226             *     If one compute shader attached to a program declares a
2227             *     variable local group size and a second compute shader
2228             *     attached to the same program declares a fixed local group
2229             *     size, a link-time error results.
2230             */
2231            linker_error(prog, "compute shader defined with both fixed and "
2232                         "variable local group size\n");
2233            return;
2234         }
2235         gl_prog->info.cs.local_size_variable = true;
2236      }
2237   }
2238
2239   /* Just do the intrastage -> interstage propagation right now,
2240    * since we already know we're in the right type of shader program
2241    * for doing it.
2242    */
2243   if (gl_prog->info.cs.local_size[0] == 0 &&
2244       !gl_prog->info.cs.local_size_variable) {
2245      linker_error(prog, "compute shader must contain a fixed or a variable "
2246                         "local group size\n");
2247      return;
2248   }
2249}
2250
2251/**
2252 * Link all out variables on a single stage which are not
2253 * directly used in a shader with the main function.
2254 */
2255static void
2256link_output_variables(struct gl_linked_shader *linked_shader,
2257                      struct gl_shader **shader_list,
2258                      unsigned num_shaders)
2259{
2260   struct glsl_symbol_table *symbols = linked_shader->symbols;
2261
2262   for (unsigned i = 0; i < num_shaders; i++) {
2263
2264      /* Skip shader object with main function */
2265      if (shader_list[i]->symbols->get_function("main"))
2266         continue;
2267
2268      foreach_in_list(ir_instruction, ir, shader_list[i]->ir) {
2269         if (ir->ir_type != ir_type_variable)
2270            continue;
2271
2272         ir_variable *var = (ir_variable *) ir;
2273
2274         if (var->data.mode == ir_var_shader_out &&
2275               !symbols->get_variable(var->name)) {
2276            var = var->clone(linked_shader, NULL);
2277            symbols->add_variable(var);
2278            linked_shader->ir->push_head(var);
2279         }
2280      }
2281   }
2282
2283   return;
2284}
2285
2286
2287/**
2288 * Combine a group of shaders for a single stage to generate a linked shader
2289 *
2290 * \note
2291 * If this function is supplied a single shader, it is cloned, and the new
2292 * shader is returned.
2293 */
2294struct gl_linked_shader *
2295link_intrastage_shaders(void *mem_ctx,
2296                        struct gl_context *ctx,
2297                        struct gl_shader_program *prog,
2298                        struct gl_shader **shader_list,
2299                        unsigned num_shaders,
2300                        bool allow_missing_main)
2301{
2302   struct gl_uniform_block *ubo_blocks = NULL;
2303   struct gl_uniform_block *ssbo_blocks = NULL;
2304   unsigned num_ubo_blocks = 0;
2305   unsigned num_ssbo_blocks = 0;
2306
2307   /* Check that global variables defined in multiple shaders are consistent.
2308    */
2309   glsl_symbol_table variables;
2310   for (unsigned i = 0; i < num_shaders; i++) {
2311      if (shader_list[i] == NULL)
2312         continue;
2313      cross_validate_globals(ctx, prog, shader_list[i]->ir, &variables,
2314                             false);
2315   }
2316
2317   if (!prog->data->LinkStatus)
2318      return NULL;
2319
2320   /* Check that interface blocks defined in multiple shaders are consistent.
2321    */
2322   validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2323                                        num_shaders);
2324   if (!prog->data->LinkStatus)
2325      return NULL;
2326
2327   /* Check that there is only a single definition of each function signature
2328    * across all shaders.
2329    */
2330   for (unsigned i = 0; i < (num_shaders - 1); i++) {
2331      foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2332         ir_function *const f = node->as_function();
2333
2334         if (f == NULL)
2335            continue;
2336
2337         for (unsigned j = i + 1; j < num_shaders; j++) {
2338            ir_function *const other =
2339               shader_list[j]->symbols->get_function(f->name);
2340
2341            /* If the other shader has no function (and therefore no function
2342             * signatures) with the same name, skip to the next shader.
2343             */
2344            if (other == NULL)
2345               continue;
2346
2347            foreach_in_list(ir_function_signature, sig, &f->signatures) {
2348               if (!sig->is_defined)
2349                  continue;
2350
2351               ir_function_signature *other_sig =
2352                  other->exact_matching_signature(NULL, &sig->parameters);
2353
2354               if (other_sig != NULL && other_sig->is_defined) {
2355                  linker_error(prog, "function `%s' is multiply defined\n",
2356                               f->name);
2357                  return NULL;
2358               }
2359            }
2360         }
2361      }
2362   }
2363
2364   /* Find the shader that defines main, and make a clone of it.
2365    *
2366    * Starting with the clone, search for undefined references.  If one is
2367    * found, find the shader that defines it.  Clone the reference and add
2368    * it to the shader.  Repeat until there are no undefined references or
2369    * until a reference cannot be resolved.
2370    */
2371   gl_shader *main = NULL;
2372   for (unsigned i = 0; i < num_shaders; i++) {
2373      if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2374         main = shader_list[i];
2375         break;
2376      }
2377   }
2378
2379   if (main == NULL && allow_missing_main)
2380      main = shader_list[0];
2381
2382   if (main == NULL) {
2383      linker_error(prog, "%s shader lacks `main'\n",
2384                   _mesa_shader_stage_to_string(shader_list[0]->Stage));
2385      return NULL;
2386   }
2387
2388   gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2389   linked->Stage = shader_list[0]->Stage;
2390
2391   /* Create program and attach it to the linked shader */
2392   struct gl_program *gl_prog =
2393      ctx->Driver.NewProgram(ctx,
2394                             _mesa_shader_stage_to_program(shader_list[0]->Stage),
2395                             prog->Name, false);
2396   if (!gl_prog) {
2397      prog->data->LinkStatus = LINKING_FAILURE;
2398      _mesa_delete_linked_shader(ctx, linked);
2399      return NULL;
2400   }
2401
2402   _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2403
2404   /* Don't use _mesa_reference_program() just take ownership */
2405   linked->Program = gl_prog;
2406
2407   linked->ir = new(linked) exec_list;
2408   clone_ir_list(mem_ctx, linked->ir, main->ir);
2409
2410   link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2411   link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2412   link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2413   link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2414   link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2415
2416   if (linked->Stage != MESA_SHADER_FRAGMENT)
2417      link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2418
2419   link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2420
2421   populate_symbol_table(linked, shader_list[0]->symbols);
2422
2423   /* The pointer to the main function in the final linked shader (i.e., the
2424    * copy of the original shader that contained the main function).
2425    */
2426   ir_function_signature *const main_sig =
2427      _mesa_get_main_function_signature(linked->symbols);
2428
2429   /* Move any instructions other than variable declarations or function
2430    * declarations into main.
2431    */
2432   if (main_sig != NULL) {
2433      exec_node *insertion_point =
2434         move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2435                               linked);
2436
2437      for (unsigned i = 0; i < num_shaders; i++) {
2438         if (shader_list[i] == main)
2439            continue;
2440
2441         insertion_point = move_non_declarations(shader_list[i]->ir,
2442                                                 insertion_point, true, linked);
2443      }
2444   }
2445
2446   if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2447      _mesa_delete_linked_shader(ctx, linked);
2448      return NULL;
2449   }
2450
2451   if (linked->Stage != MESA_SHADER_FRAGMENT)
2452      link_output_variables(linked, shader_list, num_shaders);
2453
2454   /* Make a pass over all variable declarations to ensure that arrays with
2455    * unspecified sizes have a size specified.  The size is inferred from the
2456    * max_array_access field.
2457    */
2458   array_sizing_visitor v;
2459   v.run(linked->ir);
2460   v.fixup_unnamed_interface_types();
2461
2462   /* Link up uniform blocks defined within this stage. */
2463   link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2464                       &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2465
2466   if (!prog->data->LinkStatus) {
2467      _mesa_delete_linked_shader(ctx, linked);
2468      return NULL;
2469   }
2470
2471   /* Copy ubo blocks to linked shader list */
2472   linked->Program->sh.UniformBlocks =
2473      ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2474   ralloc_steal(linked, ubo_blocks);
2475   for (unsigned i = 0; i < num_ubo_blocks; i++) {
2476      linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2477   }
2478   linked->Program->info.num_ubos = num_ubo_blocks;
2479
2480   /* Copy ssbo blocks to linked shader list */
2481   linked->Program->sh.ShaderStorageBlocks =
2482      ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2483   ralloc_steal(linked, ssbo_blocks);
2484   for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2485      linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2486   }
2487   linked->Program->info.num_ssbos = num_ssbo_blocks;
2488
2489   /* At this point linked should contain all of the linked IR, so
2490    * validate it to make sure nothing went wrong.
2491    */
2492   validate_ir_tree(linked->ir);
2493
2494   /* Set the size of geometry shader input arrays */
2495   if (linked->Stage == MESA_SHADER_GEOMETRY) {
2496      unsigned num_vertices =
2497         vertices_per_prim(gl_prog->info.gs.input_primitive);
2498      array_resize_visitor input_resize_visitor(num_vertices, prog,
2499                                                MESA_SHADER_GEOMETRY);
2500      foreach_in_list(ir_instruction, ir, linked->ir) {
2501         ir->accept(&input_resize_visitor);
2502      }
2503   }
2504
2505   if (ctx->Const.VertexID_is_zero_based)
2506      lower_vertex_id(linked);
2507
2508   if (ctx->Const.LowerCsDerivedVariables)
2509      lower_cs_derived(linked);
2510
2511#ifdef DEBUG
2512   /* Compute the source checksum. */
2513   linked->SourceChecksum = 0;
2514   for (unsigned i = 0; i < num_shaders; i++) {
2515      if (shader_list[i] == NULL)
2516         continue;
2517      linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2518   }
2519#endif
2520
2521   return linked;
2522}
2523
2524/**
2525 * Update the sizes of linked shader uniform arrays to the maximum
2526 * array index used.
2527 *
2528 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2529 *
2530 *     If one or more elements of an array are active,
2531 *     GetActiveUniform will return the name of the array in name,
2532 *     subject to the restrictions listed above. The type of the array
2533 *     is returned in type. The size parameter contains the highest
2534 *     array element index used, plus one. The compiler or linker
2535 *     determines the highest index used.  There will be only one
2536 *     active uniform reported by the GL per uniform array.
2537
2538 */
2539static void
2540update_array_sizes(struct gl_shader_program *prog)
2541{
2542   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2543         if (prog->_LinkedShaders[i] == NULL)
2544            continue;
2545
2546      bool types_were_updated = false;
2547
2548      foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2549         ir_variable *const var = node->as_variable();
2550
2551         if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2552             !var->type->is_array())
2553            continue;
2554
2555         /* GL_ARB_uniform_buffer_object says that std140 uniforms
2556          * will not be eliminated.  Since we always do std140, just
2557          * don't resize arrays in UBOs.
2558          *
2559          * Atomic counters are supposed to get deterministic
2560          * locations assigned based on the declaration ordering and
2561          * sizes, array compaction would mess that up.
2562          *
2563          * Subroutine uniforms are not removed.
2564          */
2565         if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2566             var->type->contains_subroutine() || var->constant_initializer)
2567            continue;
2568
2569         int size = var->data.max_array_access;
2570         for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2571               if (prog->_LinkedShaders[j] == NULL)
2572                  continue;
2573
2574            foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2575               ir_variable *other_var = node2->as_variable();
2576               if (!other_var)
2577                  continue;
2578
2579               if (strcmp(var->name, other_var->name) == 0 &&
2580                   other_var->data.max_array_access > size) {
2581                  size = other_var->data.max_array_access;
2582               }
2583            }
2584         }
2585
2586         if (size + 1 != (int)var->type->length) {
2587            /* If this is a built-in uniform (i.e., it's backed by some
2588             * fixed-function state), adjust the number of state slots to
2589             * match the new array size.  The number of slots per array entry
2590             * is not known.  It seems safe to assume that the total number of
2591             * slots is an integer multiple of the number of array elements.
2592             * Determine the number of slots per array element by dividing by
2593             * the old (total) size.
2594             */
2595            const unsigned num_slots = var->get_num_state_slots();
2596            if (num_slots > 0) {
2597               var->set_num_state_slots((size + 1)
2598                                        * (num_slots / var->type->length));
2599            }
2600
2601            var->type = glsl_type::get_array_instance(var->type->fields.array,
2602                                                      size + 1);
2603            types_were_updated = true;
2604         }
2605      }
2606
2607      /* Update the types of dereferences in case we changed any. */
2608      if (types_were_updated) {
2609         deref_type_updater v;
2610         v.run(prog->_LinkedShaders[i]->ir);
2611      }
2612   }
2613}
2614
2615/**
2616 * Resize tessellation evaluation per-vertex inputs to the size of
2617 * tessellation control per-vertex outputs.
2618 */
2619static void
2620resize_tes_inputs(struct gl_context *ctx,
2621                  struct gl_shader_program *prog)
2622{
2623   if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2624      return;
2625
2626   gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2627   gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2628
2629   /* If no control shader is present, then the TES inputs are statically
2630    * sized to MaxPatchVertices; the actual size of the arrays won't be
2631    * known until draw time.
2632    */
2633   const int num_vertices = tcs
2634      ? tcs->Program->info.tess.tcs_vertices_out
2635      : ctx->Const.MaxPatchVertices;
2636
2637   array_resize_visitor input_resize_visitor(num_vertices, prog,
2638                                             MESA_SHADER_TESS_EVAL);
2639   foreach_in_list(ir_instruction, ir, tes->ir) {
2640      ir->accept(&input_resize_visitor);
2641   }
2642
2643   if (tcs) {
2644      /* Convert the gl_PatchVerticesIn system value into a constant, since
2645       * the value is known at this point.
2646       */
2647      foreach_in_list(ir_instruction, ir, tes->ir) {
2648         ir_variable *var = ir->as_variable();
2649         if (var && var->data.mode == ir_var_system_value &&
2650             var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2651            void *mem_ctx = ralloc_parent(var);
2652            var->data.location = 0;
2653            var->data.explicit_location = false;
2654            var->data.mode = ir_var_auto;
2655            var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2656         }
2657      }
2658   }
2659}
2660
2661/**
2662 * Find a contiguous set of available bits in a bitmask.
2663 *
2664 * \param used_mask     Bits representing used (1) and unused (0) locations
2665 * \param needed_count  Number of contiguous bits needed.
2666 *
2667 * \return
2668 * Base location of the available bits on success or -1 on failure.
2669 */
2670static int
2671find_available_slots(unsigned used_mask, unsigned needed_count)
2672{
2673   unsigned needed_mask = (1 << needed_count) - 1;
2674   const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2675
2676   /* The comparison to 32 is redundant, but without it GCC emits "warning:
2677    * cannot optimize possibly infinite loops" for the loop below.
2678    */
2679   if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2680      return -1;
2681
2682   for (int i = 0; i <= max_bit_to_test; i++) {
2683      if ((needed_mask & ~used_mask) == needed_mask)
2684         return i;
2685
2686      needed_mask <<= 1;
2687   }
2688
2689   return -1;
2690}
2691
2692
2693#define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1))
2694
2695/**
2696 * Assign locations for either VS inputs or FS outputs
2697 *
2698 * \param mem_ctx       Temporary ralloc context used for linking
2699 * \param prog          Shader program whose variables need locations assigned
2700 * \param constants     Driver specific constant values for the program.
2701 * \param target_index  Selector for the program target to receive location
2702 *                      assignmnets.  Must be either \c MESA_SHADER_VERTEX or
2703 *                      \c MESA_SHADER_FRAGMENT.
2704 *
2705 * \return
2706 * If locations are successfully assigned, true is returned.  Otherwise an
2707 * error is emitted to the shader link log and false is returned.
2708 */
2709static bool
2710assign_attribute_or_color_locations(void *mem_ctx,
2711                                    gl_shader_program *prog,
2712                                    struct gl_constants *constants,
2713                                    unsigned target_index,
2714                                    bool do_assignment)
2715{
2716   /* Maximum number of generic locations.  This corresponds to either the
2717    * maximum number of draw buffers or the maximum number of generic
2718    * attributes.
2719    */
2720   unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2721      constants->Program[target_index].MaxAttribs :
2722      MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2723
2724   /* Mark invalid locations as being used.
2725    */
2726   unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index);
2727   unsigned double_storage_locations = 0;
2728
2729   assert((target_index == MESA_SHADER_VERTEX)
2730          || (target_index == MESA_SHADER_FRAGMENT));
2731
2732   gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2733   if (sh == NULL)
2734      return true;
2735
2736   /* Operate in a total of four passes.
2737    *
2738    * 1. Invalidate the location assignments for all vertex shader inputs.
2739    *
2740    * 2. Assign locations for inputs that have user-defined (via
2741    *    glBindVertexAttribLocation) locations and outputs that have
2742    *    user-defined locations (via glBindFragDataLocation).
2743    *
2744    * 3. Sort the attributes without assigned locations by number of slots
2745    *    required in decreasing order.  Fragmentation caused by attribute
2746    *    locations assigned by the application may prevent large attributes
2747    *    from having enough contiguous space.
2748    *
2749    * 4. Assign locations to any inputs without assigned locations.
2750    */
2751
2752   const int generic_base = (target_index == MESA_SHADER_VERTEX)
2753      ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2754
2755   const enum ir_variable_mode direction =
2756      (target_index == MESA_SHADER_VERTEX)
2757      ? ir_var_shader_in : ir_var_shader_out;
2758
2759
2760   /* Temporary storage for the set of attributes that need locations assigned.
2761    */
2762   struct temp_attr {
2763      unsigned slots;
2764      ir_variable *var;
2765
2766      /* Used below in the call to qsort. */
2767      static int compare(const void *a, const void *b)
2768      {
2769         const temp_attr *const l = (const temp_attr *) a;
2770         const temp_attr *const r = (const temp_attr *) b;
2771
2772         /* Reversed because we want a descending order sort below. */
2773         return r->slots - l->slots;
2774      }
2775   } to_assign[32];
2776   assert(max_index <= 32);
2777
2778   /* Temporary array for the set of attributes that have locations assigned,
2779    * for the purpose of checking overlapping slots/components of (non-ES)
2780    * fragment shader outputs.
2781    */
2782   ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
2783   unsigned assigned_attr = 0;
2784
2785   unsigned num_attr = 0;
2786
2787   foreach_in_list(ir_instruction, node, sh->ir) {
2788      ir_variable *const var = node->as_variable();
2789
2790      if ((var == NULL) || (var->data.mode != (unsigned) direction))
2791         continue;
2792
2793      if (var->data.explicit_location) {
2794         var->data.is_unmatched_generic_inout = 0;
2795         if ((var->data.location >= (int)(max_index + generic_base))
2796             || (var->data.location < 0)) {
2797            linker_error(prog,
2798                         "invalid explicit location %d specified for `%s'\n",
2799                         (var->data.location < 0)
2800                         ? var->data.location
2801                         : var->data.location - generic_base,
2802                         var->name);
2803            return false;
2804         }
2805      } else if (target_index == MESA_SHADER_VERTEX) {
2806         unsigned binding;
2807
2808         if (prog->AttributeBindings->get(binding, var->name)) {
2809            assert(binding >= VERT_ATTRIB_GENERIC0);
2810            var->data.location = binding;
2811            var->data.is_unmatched_generic_inout = 0;
2812         }
2813      } else if (target_index == MESA_SHADER_FRAGMENT) {
2814         unsigned binding;
2815         unsigned index;
2816         const char *name = var->name;
2817         const glsl_type *type = var->type;
2818
2819         while (type) {
2820            /* Check if there's a binding for the variable name */
2821            if (prog->FragDataBindings->get(binding, name)) {
2822               assert(binding >= FRAG_RESULT_DATA0);
2823               var->data.location = binding;
2824               var->data.is_unmatched_generic_inout = 0;
2825
2826               if (prog->FragDataIndexBindings->get(index, name)) {
2827                  var->data.index = index;
2828               }
2829               break;
2830            }
2831
2832            /* If not, but it's an array type, look for name[0] */
2833            if (type->is_array()) {
2834               name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2835               type = type->fields.array;
2836               continue;
2837            }
2838
2839            break;
2840         }
2841      }
2842
2843      if (strcmp(var->name, "gl_LastFragData") == 0)
2844         continue;
2845
2846      /* From GL4.5 core spec, section 15.2 (Shader Execution):
2847       *
2848       *     "Output binding assignments will cause LinkProgram to fail:
2849       *     ...
2850       *     If the program has an active output assigned to a location greater
2851       *     than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2852       *     an active output assigned an index greater than or equal to one;"
2853       */
2854      if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2855          var->data.location - generic_base >=
2856          (int) constants->MaxDualSourceDrawBuffers) {
2857         linker_error(prog,
2858                      "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2859                      "with index %u for %s\n",
2860                      var->data.location - generic_base, var->data.index,
2861                      var->name);
2862         return false;
2863      }
2864
2865      const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2866
2867      /* If the variable is not a built-in and has a location statically
2868       * assigned in the shader (presumably via a layout qualifier), make sure
2869       * that it doesn't collide with other assigned locations.  Otherwise,
2870       * add it to the list of variables that need linker-assigned locations.
2871       */
2872      if (var->data.location != -1) {
2873         if (var->data.location >= generic_base && var->data.index < 1) {
2874            /* From page 61 of the OpenGL 4.0 spec:
2875             *
2876             *     "LinkProgram will fail if the attribute bindings assigned
2877             *     by BindAttribLocation do not leave not enough space to
2878             *     assign a location for an active matrix attribute or an
2879             *     active attribute array, both of which require multiple
2880             *     contiguous generic attributes."
2881             *
2882             * I think above text prohibits the aliasing of explicit and
2883             * automatic assignments. But, aliasing is allowed in manual
2884             * assignments of attribute locations. See below comments for
2885             * the details.
2886             *
2887             * From OpenGL 4.0 spec, page 61:
2888             *
2889             *     "It is possible for an application to bind more than one
2890             *     attribute name to the same location. This is referred to as
2891             *     aliasing. This will only work if only one of the aliased
2892             *     attributes is active in the executable program, or if no
2893             *     path through the shader consumes more than one attribute of
2894             *     a set of attributes aliased to the same location. A link
2895             *     error can occur if the linker determines that every path
2896             *     through the shader consumes multiple aliased attributes,
2897             *     but implementations are not required to generate an error
2898             *     in this case."
2899             *
2900             * From GLSL 4.30 spec, page 54:
2901             *
2902             *    "A program will fail to link if any two non-vertex shader
2903             *     input variables are assigned to the same location. For
2904             *     vertex shaders, multiple input variables may be assigned
2905             *     to the same location using either layout qualifiers or via
2906             *     the OpenGL API. However, such aliasing is intended only to
2907             *     support vertex shaders where each execution path accesses
2908             *     at most one input per each location. Implementations are
2909             *     permitted, but not required, to generate link-time errors
2910             *     if they detect that every path through the vertex shader
2911             *     executable accesses multiple inputs assigned to any single
2912             *     location. For all shader types, a program will fail to link
2913             *     if explicit location assignments leave the linker unable
2914             *     to find space for other variables without explicit
2915             *     assignments."
2916             *
2917             * From OpenGL ES 3.0 spec, page 56:
2918             *
2919             *    "Binding more than one attribute name to the same location
2920             *     is referred to as aliasing, and is not permitted in OpenGL
2921             *     ES Shading Language 3.00 vertex shaders. LinkProgram will
2922             *     fail when this condition exists. However, aliasing is
2923             *     possible in OpenGL ES Shading Language 1.00 vertex shaders.
2924             *     This will only work if only one of the aliased attributes
2925             *     is active in the executable program, or if no path through
2926             *     the shader consumes more than one attribute of a set of
2927             *     attributes aliased to the same location. A link error can
2928             *     occur if the linker determines that every path through the
2929             *     shader consumes multiple aliased attributes, but implemen-
2930             *     tations are not required to generate an error in this case."
2931             *
2932             * After looking at above references from OpenGL, OpenGL ES and
2933             * GLSL specifications, we allow aliasing of vertex input variables
2934             * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2935             *
2936             * NOTE: This is not required by the spec but its worth mentioning
2937             * here that we're not doing anything to make sure that no path
2938             * through the vertex shader executable accesses multiple inputs
2939             * assigned to any single location.
2940             */
2941
2942            /* Mask representing the contiguous slots that will be used by
2943             * this attribute.
2944             */
2945            const unsigned attr = var->data.location - generic_base;
2946            const unsigned use_mask = (1 << slots) - 1;
2947            const char *const string = (target_index == MESA_SHADER_VERTEX)
2948               ? "vertex shader input" : "fragment shader output";
2949
2950            /* Generate a link error if the requested locations for this
2951             * attribute exceed the maximum allowed attribute location.
2952             */
2953            if (attr + slots > max_index) {
2954               linker_error(prog,
2955                           "insufficient contiguous locations "
2956                           "available for %s `%s' %d %d %d\n", string,
2957                           var->name, used_locations, use_mask, attr);
2958               return false;
2959            }
2960
2961            /* Generate a link error if the set of bits requested for this
2962             * attribute overlaps any previously allocated bits.
2963             */
2964            if ((~(use_mask << attr) & used_locations) != used_locations) {
2965               if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2966                  /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2967                   * 4.40 spec:
2968                   *
2969                   *    "Additionally, for fragment shader outputs, if two
2970                   *    variables are placed within the same location, they
2971                   *    must have the same underlying type (floating-point or
2972                   *    integer). No component aliasing of output variables or
2973                   *    members is allowed.
2974                   */
2975                  for (unsigned i = 0; i < assigned_attr; i++) {
2976                     unsigned assigned_slots =
2977                        assigned[i]->type->count_attribute_slots(false);
2978                     unsigned assig_attr =
2979                        assigned[i]->data.location - generic_base;
2980                     unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2981
2982                     if ((assigned_use_mask << assig_attr) &
2983                         (use_mask << attr)) {
2984
2985                        const glsl_type *assigned_type =
2986                           assigned[i]->type->without_array();
2987                        const glsl_type *type = var->type->without_array();
2988                        if (assigned_type->base_type != type->base_type) {
2989                           linker_error(prog, "types do not match for aliased"
2990                                        " %ss %s and %s\n", string,
2991                                        assigned[i]->name, var->name);
2992                           return false;
2993                        }
2994
2995                        unsigned assigned_component_mask =
2996                           ((1 << assigned_type->vector_elements) - 1) <<
2997                           assigned[i]->data.location_frac;
2998                        unsigned component_mask =
2999                           ((1 << type->vector_elements) - 1) <<
3000                           var->data.location_frac;
3001                        if (assigned_component_mask & component_mask) {
3002                           linker_error(prog, "overlapping component is "
3003                                        "assigned to %ss %s and %s "
3004                                        "(component=%d)\n",
3005                                        string, assigned[i]->name, var->name,
3006                                        var->data.location_frac);
3007                           return false;
3008                        }
3009                     }
3010                  }
3011               } else if (target_index == MESA_SHADER_FRAGMENT ||
3012                          (prog->IsES && prog->data->Version >= 300)) {
3013                  linker_error(prog, "overlapping location is assigned "
3014                               "to %s `%s' %d %d %d\n", string, var->name,
3015                               used_locations, use_mask, attr);
3016                  return false;
3017               } else {
3018                  linker_warning(prog, "overlapping location is assigned "
3019                                 "to %s `%s' %d %d %d\n", string, var->name,
3020                                 used_locations, use_mask, attr);
3021               }
3022            }
3023
3024            if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
3025               /* Only track assigned variables for non-ES fragment shaders
3026                * to avoid overflowing the array.
3027                *
3028                * At most one variable per fragment output component should
3029                * reach this.
3030                */
3031               assert(assigned_attr < ARRAY_SIZE(assigned));
3032               assigned[assigned_attr] = var;
3033               assigned_attr++;
3034            }
3035
3036            used_locations |= (use_mask << attr);
3037
3038            /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
3039             *
3040             * "A program with more than the value of MAX_VERTEX_ATTRIBS
3041             *  active attribute variables may fail to link, unless
3042             *  device-dependent optimizations are able to make the program
3043             *  fit within available hardware resources. For the purposes
3044             *  of this test, attribute variables of the type dvec3, dvec4,
3045             *  dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
3046             *  count as consuming twice as many attributes as equivalent
3047             *  single-precision types. While these types use the same number
3048             *  of generic attributes as their single-precision equivalents,
3049             *  implementations are permitted to consume two single-precision
3050             *  vectors of internal storage for each three- or four-component
3051             *  double-precision vector."
3052             *
3053             * Mark this attribute slot as taking up twice as much space
3054             * so we can count it properly against limits.  According to
3055             * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
3056             * is optional behavior, but it seems preferable.
3057             */
3058            if (var->type->without_array()->is_dual_slot())
3059               double_storage_locations |= (use_mask << attr);
3060         }
3061
3062         continue;
3063      }
3064
3065      if (num_attr >= max_index) {
3066         linker_error(prog, "too many %s (max %u)",
3067                      target_index == MESA_SHADER_VERTEX ?
3068                      "vertex shader inputs" : "fragment shader outputs",
3069                      max_index);
3070         return false;
3071      }
3072      to_assign[num_attr].slots = slots;
3073      to_assign[num_attr].var = var;
3074      num_attr++;
3075   }
3076
3077   if (!do_assignment)
3078      return true;
3079
3080   if (target_index == MESA_SHADER_VERTEX) {
3081      unsigned total_attribs_size =
3082         util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3083         util_bitcount(double_storage_locations);
3084      if (total_attribs_size > max_index) {
3085         linker_error(prog,
3086                      "attempt to use %d vertex attribute slots only %d available ",
3087                      total_attribs_size, max_index);
3088         return false;
3089      }
3090   }
3091
3092   /* If all of the attributes were assigned locations by the application (or
3093    * are built-in attributes with fixed locations), return early.  This should
3094    * be the common case.
3095    */
3096   if (num_attr == 0)
3097      return true;
3098
3099   qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
3100
3101   if (target_index == MESA_SHADER_VERTEX) {
3102      /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS.  It can
3103       * only be explicitly assigned by via glBindAttribLocation.  Mark it as
3104       * reserved to prevent it from being automatically allocated below.
3105       */
3106      find_deref_visitor find("gl_Vertex");
3107      find.run(sh->ir);
3108      if (find.variable_found())
3109         used_locations |= (1 << 0);
3110   }
3111
3112   for (unsigned i = 0; i < num_attr; i++) {
3113      /* Mask representing the contiguous slots that will be used by this
3114       * attribute.
3115       */
3116      const unsigned use_mask = (1 << to_assign[i].slots) - 1;
3117
3118      int location = find_available_slots(used_locations, to_assign[i].slots);
3119
3120      if (location < 0) {
3121         const char *const string = (target_index == MESA_SHADER_VERTEX)
3122            ? "vertex shader input" : "fragment shader output";
3123
3124         linker_error(prog,
3125                      "insufficient contiguous locations "
3126                      "available for %s `%s'\n",
3127                      string, to_assign[i].var->name);
3128         return false;
3129      }
3130
3131      to_assign[i].var->data.location = generic_base + location;
3132      to_assign[i].var->data.is_unmatched_generic_inout = 0;
3133      used_locations |= (use_mask << location);
3134
3135      if (to_assign[i].var->type->without_array()->is_dual_slot())
3136         double_storage_locations |= (use_mask << location);
3137   }
3138
3139   /* Now that we have all the locations, from the GL 4.5 core spec, section
3140    * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3141    * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3142    * as equivalent single-precision types.
3143    */
3144   if (target_index == MESA_SHADER_VERTEX) {
3145      unsigned total_attribs_size =
3146         util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3147         util_bitcount(double_storage_locations);
3148      if (total_attribs_size > max_index) {
3149         linker_error(prog,
3150                      "attempt to use %d vertex attribute slots only %d available ",
3151                      total_attribs_size, max_index);
3152         return false;
3153      }
3154   }
3155
3156   return true;
3157}
3158
3159/**
3160 * Match explicit locations of outputs to inputs and deactivate the
3161 * unmatch flag if found so we don't optimise them away.
3162 */
3163static void
3164match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3165                                 gl_linked_shader *consumer)
3166{
3167   glsl_symbol_table parameters;
3168   ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3169      { {NULL, NULL} };
3170
3171   /* Find all shader outputs in the "producer" stage.
3172    */
3173   foreach_in_list(ir_instruction, node, producer->ir) {
3174      ir_variable *const var = node->as_variable();
3175
3176      if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3177         continue;
3178
3179      if (var->data.explicit_location &&
3180          var->data.location >= VARYING_SLOT_VAR0) {
3181         const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3182         if (explicit_locations[idx][var->data.location_frac] == NULL)
3183            explicit_locations[idx][var->data.location_frac] = var;
3184      }
3185   }
3186
3187   /* Match inputs to outputs */
3188   foreach_in_list(ir_instruction, node, consumer->ir) {
3189      ir_variable *const input = node->as_variable();
3190
3191      if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3192         continue;
3193
3194      ir_variable *output = NULL;
3195      if (input->data.explicit_location
3196          && input->data.location >= VARYING_SLOT_VAR0) {
3197         output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3198            [input->data.location_frac];
3199
3200         if (output != NULL){
3201            input->data.is_unmatched_generic_inout = 0;
3202            output->data.is_unmatched_generic_inout = 0;
3203         }
3204      }
3205   }
3206}
3207
3208/**
3209 * Store the gl_FragDepth layout in the gl_shader_program struct.
3210 */
3211static void
3212store_fragdepth_layout(struct gl_shader_program *prog)
3213{
3214   if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3215      return;
3216   }
3217
3218   struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3219
3220   /* We don't look up the gl_FragDepth symbol directly because if
3221    * gl_FragDepth is not used in the shader, it's removed from the IR.
3222    * However, the symbol won't be removed from the symbol table.
3223    *
3224    * We're only interested in the cases where the variable is NOT removed
3225    * from the IR.
3226    */
3227   foreach_in_list(ir_instruction, node, ir) {
3228      ir_variable *const var = node->as_variable();
3229
3230      if (var == NULL || var->data.mode != ir_var_shader_out) {
3231         continue;
3232      }
3233
3234      if (strcmp(var->name, "gl_FragDepth") == 0) {
3235         switch (var->data.depth_layout) {
3236         case ir_depth_layout_none:
3237            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3238            return;
3239         case ir_depth_layout_any:
3240            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3241            return;
3242         case ir_depth_layout_greater:
3243            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3244            return;
3245         case ir_depth_layout_less:
3246            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3247            return;
3248         case ir_depth_layout_unchanged:
3249            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3250            return;
3251         default:
3252            assert(0);
3253            return;
3254         }
3255      }
3256   }
3257}
3258
3259/**
3260 * Validate the resources used by a program versus the implementation limits
3261 */
3262static void
3263check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3264{
3265   unsigned total_uniform_blocks = 0;
3266   unsigned total_shader_storage_blocks = 0;
3267
3268   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3269      struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3270
3271      if (sh == NULL)
3272         continue;
3273
3274      if (sh->Program->info.num_textures >
3275          ctx->Const.Program[i].MaxTextureImageUnits) {
3276         linker_error(prog, "Too many %s shader texture samplers\n",
3277                      _mesa_shader_stage_to_string(i));
3278      }
3279
3280      if (sh->num_uniform_components >
3281          ctx->Const.Program[i].MaxUniformComponents) {
3282         if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3283            linker_warning(prog, "Too many %s shader default uniform block "
3284                           "components, but the driver will try to optimize "
3285                           "them out; this is non-portable out-of-spec "
3286                           "behavior\n",
3287                           _mesa_shader_stage_to_string(i));
3288         } else {
3289            linker_error(prog, "Too many %s shader default uniform block "
3290                         "components\n",
3291                         _mesa_shader_stage_to_string(i));
3292         }
3293      }
3294
3295      if (sh->num_combined_uniform_components >
3296          ctx->Const.Program[i].MaxCombinedUniformComponents) {
3297         if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3298            linker_warning(prog, "Too many %s shader uniform components, "
3299                           "but the driver will try to optimize them out; "
3300                           "this is non-portable out-of-spec behavior\n",
3301                           _mesa_shader_stage_to_string(i));
3302         } else {
3303            linker_error(prog, "Too many %s shader uniform components\n",
3304                         _mesa_shader_stage_to_string(i));
3305         }
3306      }
3307
3308      total_shader_storage_blocks += sh->Program->info.num_ssbos;
3309      total_uniform_blocks += sh->Program->info.num_ubos;
3310
3311      const unsigned max_uniform_blocks =
3312         ctx->Const.Program[i].MaxUniformBlocks;
3313      if (max_uniform_blocks < sh->Program->info.num_ubos) {
3314         linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3315                      _mesa_shader_stage_to_string(i),
3316                      sh->Program->info.num_ubos, max_uniform_blocks);
3317      }
3318
3319      const unsigned max_shader_storage_blocks =
3320         ctx->Const.Program[i].MaxShaderStorageBlocks;
3321      if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3322         linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3323                      _mesa_shader_stage_to_string(i),
3324                      sh->Program->info.num_ssbos, max_shader_storage_blocks);
3325      }
3326   }
3327
3328   if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3329      linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3330                   total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3331   }
3332
3333   if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3334      linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3335                   total_shader_storage_blocks,
3336                   ctx->Const.MaxCombinedShaderStorageBlocks);
3337   }
3338
3339   for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3340      if (prog->data->UniformBlocks[i].UniformBufferSize >
3341          ctx->Const.MaxUniformBlockSize) {
3342         linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3343                      prog->data->UniformBlocks[i].Name,
3344                      prog->data->UniformBlocks[i].UniformBufferSize,
3345                      ctx->Const.MaxUniformBlockSize);
3346      }
3347   }
3348
3349   for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3350      if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3351          ctx->Const.MaxShaderStorageBlockSize) {
3352         linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3353                      prog->data->ShaderStorageBlocks[i].Name,
3354                      prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3355                      ctx->Const.MaxShaderStorageBlockSize);
3356      }
3357   }
3358}
3359
3360static void
3361link_calculate_subroutine_compat(struct gl_shader_program *prog)
3362{
3363   unsigned mask = prog->data->linked_stages;
3364   while (mask) {
3365      const int i = u_bit_scan(&mask);
3366      struct gl_program *p = prog->_LinkedShaders[i]->Program;
3367
3368      for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3369         if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3370            continue;
3371
3372         struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3373
3374         if (!uni)
3375            continue;
3376
3377         int count = 0;
3378         if (p->sh.NumSubroutineFunctions == 0) {
3379            linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3380            continue;
3381         }
3382         for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3383            struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3384            for (int k = 0; k < fn->num_compat_types; k++) {
3385               if (fn->types[k] == uni->type) {
3386                  count++;
3387                  break;
3388               }
3389            }
3390         }
3391         uni->num_compatible_subroutines = count;
3392      }
3393   }
3394}
3395
3396static void
3397check_subroutine_resources(struct gl_shader_program *prog)
3398{
3399   unsigned mask = prog->data->linked_stages;
3400   while (mask) {
3401      const int i = u_bit_scan(&mask);
3402      struct gl_program *p = prog->_LinkedShaders[i]->Program;
3403
3404      if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3405         linker_error(prog, "Too many %s shader subroutine uniforms\n",
3406                      _mesa_shader_stage_to_string(i));
3407      }
3408   }
3409}
3410/**
3411 * Validate shader image resources.
3412 */
3413static void
3414check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3415{
3416   unsigned total_image_units = 0;
3417   unsigned fragment_outputs = 0;
3418   unsigned total_shader_storage_blocks = 0;
3419
3420   if (!ctx->Extensions.ARB_shader_image_load_store)
3421      return;
3422
3423   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3424      struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3425
3426      if (sh) {
3427         if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3428            linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3429                         _mesa_shader_stage_to_string(i),
3430                         sh->Program->info.num_images,
3431                         ctx->Const.Program[i].MaxImageUniforms);
3432
3433         total_image_units += sh->Program->info.num_images;
3434         total_shader_storage_blocks += sh->Program->info.num_ssbos;
3435
3436         if (i == MESA_SHADER_FRAGMENT) {
3437            foreach_in_list(ir_instruction, node, sh->ir) {
3438               ir_variable *var = node->as_variable();
3439               if (var && var->data.mode == ir_var_shader_out)
3440                  /* since there are no double fs outputs - pass false */
3441                  fragment_outputs += var->type->count_attribute_slots(false);
3442            }
3443         }
3444      }
3445   }
3446
3447   if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3448      linker_error(prog, "Too many combined image uniforms\n");
3449
3450   if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3451       ctx->Const.MaxCombinedShaderOutputResources)
3452      linker_error(prog, "Too many combined image uniforms, shader storage "
3453                         " buffers and fragment outputs\n");
3454}
3455
3456
3457/**
3458 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3459 * for a variable, checks for overlaps between other uniforms using explicit
3460 * locations.
3461 */
3462static int
3463reserve_explicit_locations(struct gl_shader_program *prog,
3464                           string_to_uint_map *map, ir_variable *var)
3465{
3466   unsigned slots = var->type->uniform_locations();
3467   unsigned max_loc = var->data.location + slots - 1;
3468   unsigned return_value = slots;
3469
3470   /* Resize remap table if locations do not fit in the current one. */
3471   if (max_loc + 1 > prog->NumUniformRemapTable) {
3472      prog->UniformRemapTable =
3473         reralloc(prog, prog->UniformRemapTable,
3474                  gl_uniform_storage *,
3475                  max_loc + 1);
3476
3477      if (!prog->UniformRemapTable) {
3478         linker_error(prog, "Out of memory during linking.\n");
3479         return -1;
3480      }
3481
3482      /* Initialize allocated space. */
3483      for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3484         prog->UniformRemapTable[i] = NULL;
3485
3486      prog->NumUniformRemapTable = max_loc + 1;
3487   }
3488
3489   for (unsigned i = 0; i < slots; i++) {
3490      unsigned loc = var->data.location + i;
3491
3492      /* Check if location is already used. */
3493      if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3494
3495         /* Possibly same uniform from a different stage, this is ok. */
3496         unsigned hash_loc;
3497         if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3498            return_value = 0;
3499            continue;
3500         }
3501
3502         /* ARB_explicit_uniform_location specification states:
3503          *
3504          *     "No two default-block uniform variables in the program can have
3505          *     the same location, even if they are unused, otherwise a compiler
3506          *     or linker error will be generated."
3507          */
3508         linker_error(prog,
3509                      "location qualifier for uniform %s overlaps "
3510                      "previously used location\n",
3511                      var->name);
3512         return -1;
3513      }
3514
3515      /* Initialize location as inactive before optimization
3516       * rounds and location assignment.
3517       */
3518      prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3519   }
3520
3521   /* Note, base location used for arrays. */
3522   map->put(var->data.location, var->name);
3523
3524   return return_value;
3525}
3526
3527static bool
3528reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3529                                      struct gl_program *p,
3530                                      ir_variable *var)
3531{
3532   unsigned slots = var->type->uniform_locations();
3533   unsigned max_loc = var->data.location + slots - 1;
3534
3535   /* Resize remap table if locations do not fit in the current one. */
3536   if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3537      p->sh.SubroutineUniformRemapTable =
3538         reralloc(p, p->sh.SubroutineUniformRemapTable,
3539                  gl_uniform_storage *,
3540                  max_loc + 1);
3541
3542      if (!p->sh.SubroutineUniformRemapTable) {
3543         linker_error(prog, "Out of memory during linking.\n");
3544         return false;
3545      }
3546
3547      /* Initialize allocated space. */
3548      for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3549         p->sh.SubroutineUniformRemapTable[i] = NULL;
3550
3551      p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3552   }
3553
3554   for (unsigned i = 0; i < slots; i++) {
3555      unsigned loc = var->data.location + i;
3556
3557      /* Check if location is already used. */
3558      if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3559
3560         /* ARB_explicit_uniform_location specification states:
3561          *     "No two subroutine uniform variables can have the same location
3562          *     in the same shader stage, otherwise a compiler or linker error
3563          *     will be generated."
3564          */
3565         linker_error(prog,
3566                      "location qualifier for uniform %s overlaps "
3567                      "previously used location\n",
3568                      var->name);
3569         return false;
3570      }
3571
3572      /* Initialize location as inactive before optimization
3573       * rounds and location assignment.
3574       */
3575      p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3576   }
3577
3578   return true;
3579}
3580/**
3581 * Check and reserve all explicit uniform locations, called before
3582 * any optimizations happen to handle also inactive uniforms and
3583 * inactive array elements that may get trimmed away.
3584 */
3585static void
3586check_explicit_uniform_locations(struct gl_context *ctx,
3587                                 struct gl_shader_program *prog)
3588{
3589   prog->NumExplicitUniformLocations = 0;
3590
3591   if (!ctx->Extensions.ARB_explicit_uniform_location)
3592      return;
3593
3594   /* This map is used to detect if overlapping explicit locations
3595    * occur with the same uniform (from different stage) or a different one.
3596    */
3597   string_to_uint_map *uniform_map = new string_to_uint_map;
3598
3599   if (!uniform_map) {
3600      linker_error(prog, "Out of memory during linking.\n");
3601      return;
3602   }
3603
3604   unsigned entries_total = 0;
3605   unsigned mask = prog->data->linked_stages;
3606   while (mask) {
3607      const int i = u_bit_scan(&mask);
3608      struct gl_program *p = prog->_LinkedShaders[i]->Program;
3609
3610      foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3611         ir_variable *var = node->as_variable();
3612         if (!var || var->data.mode != ir_var_uniform)
3613            continue;
3614
3615         if (var->data.explicit_location) {
3616            bool ret = false;
3617            if (var->type->without_array()->is_subroutine())
3618               ret = reserve_subroutine_explicit_locations(prog, p, var);
3619            else {
3620               int slots = reserve_explicit_locations(prog, uniform_map,
3621                                                      var);
3622               if (slots != -1) {
3623                  ret = true;
3624                  entries_total += slots;
3625               }
3626            }
3627            if (!ret) {
3628               delete uniform_map;
3629               return;
3630            }
3631         }
3632      }
3633   }
3634
3635   link_util_update_empty_uniform_locations(prog);
3636
3637   delete uniform_map;
3638   prog->NumExplicitUniformLocations = entries_total;
3639}
3640
3641static bool
3642should_add_buffer_variable(struct gl_shader_program *shProg,
3643                           GLenum type, const char *name)
3644{
3645   bool found_interface = false;
3646   unsigned block_name_len = 0;
3647   const char *block_name_dot = strchr(name, '.');
3648
3649   /* These rules only apply to buffer variables. So we return
3650    * true for the rest of types.
3651    */
3652   if (type != GL_BUFFER_VARIABLE)
3653      return true;
3654
3655   for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3656      const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3657      block_name_len = strlen(block_name);
3658
3659      const char *block_square_bracket = strchr(block_name, '[');
3660      if (block_square_bracket) {
3661         /* The block is part of an array of named interfaces,
3662          * for the name comparison we ignore the "[x]" part.
3663          */
3664         block_name_len -= strlen(block_square_bracket);
3665      }
3666
3667      if (block_name_dot) {
3668         /* Check if the variable name starts with the interface
3669          * name. The interface name (if present) should have the
3670          * length than the interface block name we are comparing to.
3671          */
3672         unsigned len = strlen(name) - strlen(block_name_dot);
3673         if (len != block_name_len)
3674            continue;
3675      }
3676
3677      if (strncmp(block_name, name, block_name_len) == 0) {
3678         found_interface = true;
3679         break;
3680      }
3681   }
3682
3683   /* We remove the interface name from the buffer variable name,
3684    * including the dot that follows it.
3685    */
3686   if (found_interface)
3687      name = name + block_name_len + 1;
3688
3689   /* The ARB_program_interface_query spec says:
3690    *
3691    *     "For an active shader storage block member declared as an array, an
3692    *     entry will be generated only for the first array element, regardless
3693    *     of its type.  For arrays of aggregate types, the enumeration rules
3694    *     are applied recursively for the single enumerated array element."
3695    */
3696   const char *struct_first_dot = strchr(name, '.');
3697   const char *first_square_bracket = strchr(name, '[');
3698
3699   /* The buffer variable is on top level and it is not an array */
3700   if (!first_square_bracket) {
3701      return true;
3702   /* The shader storage block member is a struct, then generate the entry */
3703   } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3704      return true;
3705   } else {
3706      /* Shader storage block member is an array, only generate an entry for the
3707       * first array element.
3708       */
3709      if (strncmp(first_square_bracket, "[0]", 3) == 0)
3710         return true;
3711   }
3712
3713   return false;
3714}
3715
3716/* Function checks if a variable var is a packed varying and
3717 * if given name is part of packed varying's list.
3718 *
3719 * If a variable is a packed varying, it has a name like
3720 * 'packed:a,b,c' where a, b and c are separate variables.
3721 */
3722static bool
3723included_in_packed_varying(ir_variable *var, const char *name)
3724{
3725   if (strncmp(var->name, "packed:", 7) != 0)
3726      return false;
3727
3728   char *list = strdup(var->name + 7);
3729   assert(list);
3730
3731   bool found = false;
3732   char *saveptr;
3733   char *token = strtok_r(list, ",", &saveptr);
3734   while (token) {
3735      if (strcmp(token, name) == 0) {
3736         found = true;
3737         break;
3738      }
3739      token = strtok_r(NULL, ",", &saveptr);
3740   }
3741   free(list);
3742   return found;
3743}
3744
3745/**
3746 * Function builds a stage reference bitmask from variable name.
3747 */
3748static uint8_t
3749build_stageref(struct gl_shader_program *shProg, const char *name,
3750               unsigned mode)
3751{
3752   uint8_t stages = 0;
3753
3754   /* Note, that we assume MAX 8 stages, if there will be more stages, type
3755    * used for reference mask in gl_program_resource will need to be changed.
3756    */
3757   assert(MESA_SHADER_STAGES < 8);
3758
3759   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3760      struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3761      if (!sh)
3762         continue;
3763
3764      /* Shader symbol table may contain variables that have
3765       * been optimized away. Search IR for the variable instead.
3766       */
3767      foreach_in_list(ir_instruction, node, sh->ir) {
3768         ir_variable *var = node->as_variable();
3769         if (var) {
3770            unsigned baselen = strlen(var->name);
3771
3772            if (included_in_packed_varying(var, name)) {
3773                  stages |= (1 << i);
3774                  break;
3775            }
3776
3777            /* Type needs to match if specified, otherwise we might
3778             * pick a variable with same name but different interface.
3779             */
3780            if (var->data.mode != mode)
3781               continue;
3782
3783            if (strncmp(var->name, name, baselen) == 0) {
3784               /* Check for exact name matches but also check for arrays and
3785                * structs.
3786                */
3787               if (name[baselen] == '\0' ||
3788                   name[baselen] == '[' ||
3789                   name[baselen] == '.') {
3790                  stages |= (1 << i);
3791                  break;
3792               }
3793            }
3794         }
3795      }
3796   }
3797   return stages;
3798}
3799
3800/**
3801 * Create gl_shader_variable from ir_variable class.
3802 */
3803static gl_shader_variable *
3804create_shader_variable(struct gl_shader_program *shProg,
3805                       const ir_variable *in,
3806                       const char *name, const glsl_type *type,
3807                       const glsl_type *interface_type,
3808                       bool use_implicit_location, int location,
3809                       const glsl_type *outermost_struct_type)
3810{
3811   /* Allocate zero-initialized memory to ensure that bitfield padding
3812    * is zero.
3813    */
3814   gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3815   if (!out)
3816      return NULL;
3817
3818   /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3819    * expect to see gl_VertexID in the program resource list.  Pretend.
3820    */
3821   if (in->data.mode == ir_var_system_value &&
3822       in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3823      out->name = ralloc_strdup(shProg, "gl_VertexID");
3824   } else if ((in->data.mode == ir_var_shader_out &&
3825               in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3826              (in->data.mode == ir_var_system_value &&
3827               in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3828      out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3829      type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3830   } else if ((in->data.mode == ir_var_shader_out &&
3831               in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3832              (in->data.mode == ir_var_system_value &&
3833               in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3834      out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3835      type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3836   } else {
3837      out->name = ralloc_strdup(shProg, name);
3838   }
3839
3840   if (!out->name)
3841      return NULL;
3842
3843   /* The ARB_program_interface_query spec says:
3844    *
3845    *     "Not all active variables are assigned valid locations; the
3846    *     following variables will have an effective location of -1:
3847    *
3848    *      * uniforms declared as atomic counters;
3849    *
3850    *      * members of a uniform block;
3851    *
3852    *      * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3853    *
3854    *      * inputs or outputs not declared with a "location" layout
3855    *        qualifier, except for vertex shader inputs and fragment shader
3856    *        outputs."
3857    */
3858   if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3859       !(in->data.explicit_location || use_implicit_location)) {
3860      out->location = -1;
3861   } else {
3862      out->location = location;
3863   }
3864
3865   out->type = type;
3866   out->outermost_struct_type = outermost_struct_type;
3867   out->interface_type = interface_type;
3868   out->component = in->data.location_frac;
3869   out->index = in->data.index;
3870   out->patch = in->data.patch;
3871   out->mode = in->data.mode;
3872   out->interpolation = in->data.interpolation;
3873   out->explicit_location = in->data.explicit_location;
3874   out->precision = in->data.precision;
3875
3876   return out;
3877}
3878
3879static bool
3880add_shader_variable(const struct gl_context *ctx,
3881                    struct gl_shader_program *shProg,
3882                    struct set *resource_set,
3883                    unsigned stage_mask,
3884                    GLenum programInterface, ir_variable *var,
3885                    const char *name, const glsl_type *type,
3886                    bool use_implicit_location, int location,
3887                    bool inouts_share_location,
3888                    const glsl_type *outermost_struct_type = NULL)
3889{
3890   const glsl_type *interface_type = var->get_interface_type();
3891
3892   if (outermost_struct_type == NULL) {
3893      if (var->data.from_named_ifc_block) {
3894         const char *interface_name = interface_type->name;
3895
3896         if (interface_type->is_array()) {
3897            /* Issue #16 of the ARB_program_interface_query spec says:
3898             *
3899             * "* If a variable is a member of an interface block without an
3900             *    instance name, it is enumerated using just the variable name.
3901             *
3902             *  * If a variable is a member of an interface block with an
3903             *    instance name, it is enumerated as "BlockName.Member", where
3904             *    "BlockName" is the name of the interface block (not the
3905             *    instance name) and "Member" is the name of the variable."
3906             *
3907             * In particular, it indicates that it should be "BlockName",
3908             * not "BlockName[array length]".  The conformance suite and
3909             * dEQP both require this behavior.
3910             *
3911             * Here, we unwrap the extra array level added by named interface
3912             * block array lowering so we have the correct variable type.  We
3913             * also unwrap the interface type when constructing the name.
3914             *
3915             * We leave interface_type the same so that ES 3.x SSO pipeline
3916             * validation can enforce the rules requiring array length to
3917             * match on interface blocks.
3918             */
3919            type = type->fields.array;
3920
3921            interface_name = interface_type->fields.array->name;
3922         }
3923
3924         name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3925      }
3926   }
3927
3928   switch (type->base_type) {
3929   case GLSL_TYPE_STRUCT: {
3930      /* The ARB_program_interface_query spec says:
3931       *
3932       *     "For an active variable declared as a structure, a separate entry
3933       *     will be generated for each active structure member.  The name of
3934       *     each entry is formed by concatenating the name of the structure,
3935       *     the "."  character, and the name of the structure member.  If a
3936       *     structure member to enumerate is itself a structure or array,
3937       *     these enumeration rules are applied recursively."
3938       */
3939      if (outermost_struct_type == NULL)
3940         outermost_struct_type = type;
3941
3942      unsigned field_location = location;
3943      for (unsigned i = 0; i < type->length; i++) {
3944         const struct glsl_struct_field *field = &type->fields.structure[i];
3945         char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3946         if (!add_shader_variable(ctx, shProg, resource_set,
3947                                  stage_mask, programInterface,
3948                                  var, field_name, field->type,
3949                                  use_implicit_location, field_location,
3950                                  false, outermost_struct_type))
3951            return false;
3952
3953         field_location += field->type->count_attribute_slots(false);
3954      }
3955      return true;
3956   }
3957
3958   case GLSL_TYPE_ARRAY: {
3959      /* The ARB_program_interface_query spec says:
3960       *
3961       *     "For an active variable declared as an array of basic types, a
3962       *      single entry will be generated, with its name string formed by
3963       *      concatenating the name of the array and the string "[0]"."
3964       *
3965       *     "For an active variable declared as an array of an aggregate data
3966       *      type (structures or arrays), a separate entry will be generated
3967       *      for each active array element, unless noted immediately below.
3968       *      The name of each entry is formed by concatenating the name of
3969       *      the array, the "[" character, an integer identifying the element
3970       *      number, and the "]" character.  These enumeration rules are
3971       *      applied recursively, treating each enumerated array element as a
3972       *      separate active variable."
3973       */
3974      const struct glsl_type *array_type = type->fields.array;
3975      if (array_type->base_type == GLSL_TYPE_STRUCT ||
3976          array_type->base_type == GLSL_TYPE_ARRAY) {
3977         unsigned elem_location = location;
3978         unsigned stride = inouts_share_location ? 0 :
3979                           array_type->count_attribute_slots(false);
3980         for (unsigned i = 0; i < type->length; i++) {
3981            char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i);
3982            if (!add_shader_variable(ctx, shProg, resource_set,
3983                                     stage_mask, programInterface,
3984                                     var, elem, array_type,
3985                                     use_implicit_location, elem_location,
3986                                     false, outermost_struct_type))
3987               return false;
3988            elem_location += stride;
3989         }
3990         return true;
3991      }
3992      /* fallthrough */
3993   }
3994
3995   default: {
3996      /* The ARB_program_interface_query spec says:
3997       *
3998       *     "For an active variable declared as a single instance of a basic
3999       *     type, a single entry will be generated, using the variable name
4000       *     from the shader source."
4001       */
4002      gl_shader_variable *sha_v =
4003         create_shader_variable(shProg, var, name, type, interface_type,
4004                                use_implicit_location, location,
4005                                outermost_struct_type);
4006      if (!sha_v)
4007         return false;
4008
4009      return link_util_add_program_resource(shProg, resource_set,
4010                                            programInterface, sha_v, stage_mask);
4011   }
4012   }
4013}
4014
4015static bool
4016inout_has_same_location(const ir_variable *var, unsigned stage)
4017{
4018   if (!var->data.patch &&
4019       ((var->data.mode == ir_var_shader_out &&
4020         stage == MESA_SHADER_TESS_CTRL) ||
4021        (var->data.mode == ir_var_shader_in &&
4022         (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
4023          stage == MESA_SHADER_GEOMETRY))))
4024      return true;
4025   else
4026      return false;
4027}
4028
4029static bool
4030add_interface_variables(const struct gl_context *ctx,
4031                        struct gl_shader_program *shProg,
4032                        struct set *resource_set,
4033                        unsigned stage, GLenum programInterface)
4034{
4035   exec_list *ir = shProg->_LinkedShaders[stage]->ir;
4036
4037   foreach_in_list(ir_instruction, node, ir) {
4038      ir_variable *var = node->as_variable();
4039
4040      if (!var || var->data.how_declared == ir_var_hidden)
4041         continue;
4042
4043      int loc_bias;
4044
4045      switch (var->data.mode) {
4046      case ir_var_system_value:
4047      case ir_var_shader_in:
4048         if (programInterface != GL_PROGRAM_INPUT)
4049            continue;
4050         loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
4051                                                  : int(VARYING_SLOT_VAR0);
4052         break;
4053      case ir_var_shader_out:
4054         if (programInterface != GL_PROGRAM_OUTPUT)
4055            continue;
4056         loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
4057                                                    : int(VARYING_SLOT_VAR0);
4058         break;
4059      default:
4060         continue;
4061      };
4062
4063      if (var->data.patch)
4064         loc_bias = int(VARYING_SLOT_PATCH0);
4065
4066      /* Skip packed varyings, packed varyings are handled separately
4067       * by add_packed_varyings.
4068       */
4069      if (strncmp(var->name, "packed:", 7) == 0)
4070         continue;
4071
4072      /* Skip fragdata arrays, these are handled separately
4073       * by add_fragdata_arrays.
4074       */
4075      if (strncmp(var->name, "gl_out_FragData", 15) == 0)
4076         continue;
4077
4078      const bool vs_input_or_fs_output =
4079         (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
4080         (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
4081
4082      if (!add_shader_variable(ctx, shProg, resource_set,
4083                               1 << stage, programInterface,
4084                               var, var->name, var->type, vs_input_or_fs_output,
4085                               var->data.location - loc_bias,
4086                               inout_has_same_location(var, stage)))
4087         return false;
4088   }
4089   return true;
4090}
4091
4092static bool
4093add_packed_varyings(const struct gl_context *ctx,
4094                    struct gl_shader_program *shProg,
4095                    struct set *resource_set,
4096                    int stage, GLenum type)
4097{
4098   struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
4099   GLenum iface;
4100
4101   if (!sh || !sh->packed_varyings)
4102      return true;
4103
4104   foreach_in_list(ir_instruction, node, sh->packed_varyings) {
4105      ir_variable *var = node->as_variable();
4106      if (var) {
4107         switch (var->data.mode) {
4108         case ir_var_shader_in:
4109            iface = GL_PROGRAM_INPUT;
4110            break;
4111         case ir_var_shader_out:
4112            iface = GL_PROGRAM_OUTPUT;
4113            break;
4114         default:
4115            unreachable("unexpected type");
4116         }
4117
4118         if (type == iface) {
4119            const int stage_mask =
4120               build_stageref(shProg, var->name, var->data.mode);
4121            if (!add_shader_variable(ctx, shProg, resource_set,
4122                                     stage_mask,
4123                                     iface, var, var->name, var->type, false,
4124                                     var->data.location - VARYING_SLOT_VAR0,
4125                                     inout_has_same_location(var, stage)))
4126               return false;
4127         }
4128      }
4129   }
4130   return true;
4131}
4132
4133static bool
4134add_fragdata_arrays(const struct gl_context *ctx,
4135                    struct gl_shader_program *shProg,
4136                    struct set *resource_set)
4137{
4138   struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4139
4140   if (!sh || !sh->fragdata_arrays)
4141      return true;
4142
4143   foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4144      ir_variable *var = node->as_variable();
4145      if (var) {
4146         assert(var->data.mode == ir_var_shader_out);
4147
4148         if (!add_shader_variable(ctx, shProg, resource_set,
4149                                  1 << MESA_SHADER_FRAGMENT,
4150                                  GL_PROGRAM_OUTPUT, var, var->name, var->type,
4151                                  true, var->data.location - FRAG_RESULT_DATA0,
4152                                  false))
4153            return false;
4154      }
4155   }
4156   return true;
4157}
4158
4159static char*
4160get_top_level_name(const char *name)
4161{
4162   const char *first_dot = strchr(name, '.');
4163   const char *first_square_bracket = strchr(name, '[');
4164   int name_size = 0;
4165
4166   /* The ARB_program_interface_query spec says:
4167    *
4168    *     "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4169    *     the number of active array elements of the top-level shader storage
4170    *     block member containing to the active variable is written to
4171    *     <params>.  If the top-level block member is not declared as an
4172    *     array, the value one is written to <params>.  If the top-level block
4173    *     member is an array with no declared size, the value zero is written
4174    *     to <params>."
4175    */
4176
4177   /* The buffer variable is on top level.*/
4178   if (!first_square_bracket && !first_dot)
4179      name_size = strlen(name);
4180   else if ((!first_square_bracket ||
4181            (first_dot && first_dot < first_square_bracket)))
4182      name_size = first_dot - name;
4183   else
4184      name_size = first_square_bracket - name;
4185
4186   return strndup(name, name_size);
4187}
4188
4189static char*
4190get_var_name(const char *name)
4191{
4192   const char *first_dot = strchr(name, '.');
4193
4194   if (!first_dot)
4195      return strdup(name);
4196
4197   return strndup(first_dot+1, strlen(first_dot) - 1);
4198}
4199
4200static bool
4201is_top_level_shader_storage_block_member(const char* name,
4202                                         const char* interface_name,
4203                                         const char* field_name)
4204{
4205   bool result = false;
4206
4207   /* If the given variable is already a top-level shader storage
4208    * block member, then return array_size = 1.
4209    * We could have two possibilities: if we have an instanced
4210    * shader storage block or not instanced.
4211    *
4212    * For the first, we check create a name as it was in top level and
4213    * compare it with the real name. If they are the same, then
4214    * the variable is already at top-level.
4215    *
4216    * Full instanced name is: interface name + '.' + var name +
4217    *    NULL character
4218    */
4219   int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4220   char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4221   if (!full_instanced_name) {
4222      fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4223      return false;
4224   }
4225
4226   util_snprintf(full_instanced_name, name_length, "%s.%s",
4227                 interface_name, field_name);
4228
4229   /* Check if its top-level shader storage block member of an
4230    * instanced interface block, or of a unnamed interface block.
4231    */
4232   if (strcmp(name, full_instanced_name) == 0 ||
4233       strcmp(name, field_name) == 0)
4234      result = true;
4235
4236   free(full_instanced_name);
4237   return result;
4238}
4239
4240static int
4241get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4242               char *interface_name, char *var_name)
4243{
4244   /* The ARB_program_interface_query spec says:
4245    *
4246    *     "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4247    *     the number of active array elements of the top-level shader storage
4248    *     block member containing to the active variable is written to
4249    *     <params>.  If the top-level block member is not declared as an
4250    *     array, the value one is written to <params>.  If the top-level block
4251    *     member is an array with no declared size, the value zero is written
4252    *     to <params>."
4253    */
4254   if (is_top_level_shader_storage_block_member(uni->name,
4255                                                interface_name,
4256                                                var_name))
4257      return  1;
4258   else if (field->type->is_unsized_array())
4259      return 0;
4260   else if (field->type->is_array())
4261      return field->type->length;
4262
4263   return 1;
4264}
4265
4266static int
4267get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
4268                 const glsl_type *iface, const glsl_struct_field *field,
4269                 char *interface_name, char *var_name)
4270{
4271   /* The ARB_program_interface_query spec says:
4272    *
4273    *     "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4274    *     identifying the stride between array elements of the top-level
4275    *     shader storage block member containing the active variable is
4276    *     written to <params>.  For top-level block members declared as
4277    *     arrays, the value written is the difference, in basic machine units,
4278    *     between the offsets of the active variable for consecutive elements
4279    *     in the top-level array.  For top-level block members not declared as
4280    *     an array, zero is written to <params>."
4281    */
4282   if (field->type->is_array()) {
4283      const enum glsl_matrix_layout matrix_layout =
4284         glsl_matrix_layout(field->matrix_layout);
4285      bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4286      const glsl_type *array_type = field->type->fields.array;
4287
4288      if (is_top_level_shader_storage_block_member(uni->name,
4289                                                   interface_name,
4290                                                   var_name))
4291         return 0;
4292
4293      if (GLSL_INTERFACE_PACKING_STD140 ==
4294          iface->
4295             get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
4296         if (array_type->is_record() || array_type->is_array())
4297            return glsl_align(array_type->std140_size(row_major), 16);
4298         else
4299            return MAX2(array_type->std140_base_alignment(row_major), 16);
4300      } else {
4301         return array_type->std430_array_stride(row_major);
4302      }
4303   }
4304   return 0;
4305}
4306
4307static void
4308calculate_array_size_and_stride(struct gl_context *ctx,
4309                                struct gl_shader_program *shProg,
4310                                struct gl_uniform_storage *uni)
4311{
4312   int block_index = uni->block_index;
4313   int array_size = -1;
4314   int array_stride = -1;
4315   char *var_name = get_top_level_name(uni->name);
4316   char *interface_name =
4317      get_top_level_name(uni->is_shader_storage ?
4318                         shProg->data->ShaderStorageBlocks[block_index].Name :
4319                         shProg->data->UniformBlocks[block_index].Name);
4320
4321   if (strcmp(var_name, interface_name) == 0) {
4322      /* Deal with instanced array of SSBOs */
4323      char *temp_name = get_var_name(uni->name);
4324      if (!temp_name) {
4325         linker_error(shProg, "Out of memory during linking.\n");
4326         goto write_top_level_array_size_and_stride;
4327      }
4328      free(var_name);
4329      var_name = get_top_level_name(temp_name);
4330      free(temp_name);
4331      if (!var_name) {
4332         linker_error(shProg, "Out of memory during linking.\n");
4333         goto write_top_level_array_size_and_stride;
4334      }
4335   }
4336
4337   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4338      const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4339      if (sh == NULL)
4340         continue;
4341
4342      foreach_in_list(ir_instruction, node, sh->ir) {
4343         ir_variable *var = node->as_variable();
4344         if (!var || !var->get_interface_type() ||
4345             var->data.mode != ir_var_shader_storage)
4346            continue;
4347
4348         const glsl_type *iface = var->get_interface_type();
4349
4350         if (strcmp(interface_name, iface->name) != 0)
4351            continue;
4352
4353         for (unsigned i = 0; i < iface->length; i++) {
4354            const glsl_struct_field *field = &iface->fields.structure[i];
4355            if (strcmp(field->name, var_name) != 0)
4356               continue;
4357
4358            array_stride = get_array_stride(ctx, uni, iface, field,
4359                                            interface_name, var_name);
4360            array_size = get_array_size(uni, field, interface_name, var_name);
4361            goto write_top_level_array_size_and_stride;
4362         }
4363      }
4364   }
4365write_top_level_array_size_and_stride:
4366   free(interface_name);
4367   free(var_name);
4368   uni->top_level_array_stride = array_stride;
4369   uni->top_level_array_size = array_size;
4370}
4371
4372/**
4373 * Builds up a list of program resources that point to existing
4374 * resource data.
4375 */
4376void
4377build_program_resource_list(struct gl_context *ctx,
4378                            struct gl_shader_program *shProg)
4379{
4380   /* Rebuild resource list. */
4381   if (shProg->data->ProgramResourceList) {
4382      ralloc_free(shProg->data->ProgramResourceList);
4383      shProg->data->ProgramResourceList = NULL;
4384      shProg->data->NumProgramResourceList = 0;
4385   }
4386
4387   int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4388
4389   /* Determine first input and final output stage. These are used to
4390    * detect which variables should be enumerated in the resource list
4391    * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4392    */
4393   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4394      if (!shProg->_LinkedShaders[i])
4395         continue;
4396      if (input_stage == MESA_SHADER_STAGES)
4397         input_stage = i;
4398      output_stage = i;
4399   }
4400
4401   /* Empty shader, no resources. */
4402   if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4403      return;
4404
4405   struct set *resource_set = _mesa_set_create(NULL,
4406                                               _mesa_hash_pointer,
4407                                               _mesa_key_pointer_equal);
4408
4409   /* Program interface needs to expose varyings in case of SSO. */
4410   if (shProg->SeparateShader) {
4411      if (!add_packed_varyings(ctx, shProg, resource_set,
4412                               input_stage, GL_PROGRAM_INPUT))
4413         return;
4414
4415      if (!add_packed_varyings(ctx, shProg, resource_set,
4416                               output_stage, GL_PROGRAM_OUTPUT))
4417         return;
4418   }
4419
4420   if (!add_fragdata_arrays(ctx, shProg, resource_set))
4421      return;
4422
4423   /* Add inputs and outputs to the resource list. */
4424   if (!add_interface_variables(ctx, shProg, resource_set,
4425                                input_stage, GL_PROGRAM_INPUT))
4426      return;
4427
4428   if (!add_interface_variables(ctx, shProg, resource_set,
4429                                output_stage, GL_PROGRAM_OUTPUT))
4430      return;
4431
4432   if (shProg->last_vert_prog) {
4433      struct gl_transform_feedback_info *linked_xfb =
4434         shProg->last_vert_prog->sh.LinkedTransformFeedback;
4435
4436      /* Add transform feedback varyings. */
4437      if (linked_xfb->NumVarying > 0) {
4438         for (int i = 0; i < linked_xfb->NumVarying; i++) {
4439            if (!link_util_add_program_resource(shProg, resource_set,
4440                                                GL_TRANSFORM_FEEDBACK_VARYING,
4441                                                &linked_xfb->Varyings[i], 0))
4442            return;
4443         }
4444      }
4445
4446      /* Add transform feedback buffers. */
4447      for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4448         if ((linked_xfb->ActiveBuffers >> i) & 1) {
4449            linked_xfb->Buffers[i].Binding = i;
4450            if (!link_util_add_program_resource(shProg, resource_set,
4451                                                GL_TRANSFORM_FEEDBACK_BUFFER,
4452                                                &linked_xfb->Buffers[i], 0))
4453            return;
4454         }
4455      }
4456   }
4457
4458   /* Add uniforms from uniform storage. */
4459   for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4460      /* Do not add uniforms internally used by Mesa. */
4461      if (shProg->data->UniformStorage[i].hidden)
4462         continue;
4463
4464      uint8_t stageref =
4465         build_stageref(shProg, shProg->data->UniformStorage[i].name,
4466                        ir_var_uniform);
4467
4468      /* Add stagereferences for uniforms in a uniform block. */
4469      bool is_shader_storage =
4470        shProg->data->UniformStorage[i].is_shader_storage;
4471      int block_index = shProg->data->UniformStorage[i].block_index;
4472      if (block_index != -1) {
4473         stageref |= is_shader_storage ?
4474            shProg->data->ShaderStorageBlocks[block_index].stageref :
4475            shProg->data->UniformBlocks[block_index].stageref;
4476      }
4477
4478      GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4479      if (!should_add_buffer_variable(shProg, type,
4480                                      shProg->data->UniformStorage[i].name))
4481         continue;
4482
4483      if (is_shader_storage) {
4484         calculate_array_size_and_stride(ctx, shProg,
4485                                         &shProg->data->UniformStorage[i]);
4486      }
4487
4488      if (!link_util_add_program_resource(shProg, resource_set, type,
4489                                          &shProg->data->UniformStorage[i], stageref))
4490         return;
4491   }
4492
4493   /* Add program uniform blocks. */
4494   for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4495      if (!link_util_add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4496                                          &shProg->data->UniformBlocks[i], 0))
4497         return;
4498   }
4499
4500   /* Add program shader storage blocks. */
4501   for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4502      if (!link_util_add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4503                                          &shProg->data->ShaderStorageBlocks[i], 0))
4504         return;
4505   }
4506
4507   /* Add atomic counter buffers. */
4508   for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4509      if (!link_util_add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4510                                          &shProg->data->AtomicBuffers[i], 0))
4511         return;
4512   }
4513
4514   for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4515      GLenum type;
4516      if (!shProg->data->UniformStorage[i].hidden)
4517         continue;
4518
4519      for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4520         if (!shProg->data->UniformStorage[i].opaque[j].active ||
4521             !shProg->data->UniformStorage[i].type->is_subroutine())
4522            continue;
4523
4524         type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4525         /* add shader subroutines */
4526         if (!link_util_add_program_resource(shProg, resource_set,
4527                                             type, &shProg->data->UniformStorage[i], 0))
4528            return;
4529      }
4530   }
4531
4532   unsigned mask = shProg->data->linked_stages;
4533   while (mask) {
4534      const int i = u_bit_scan(&mask);
4535      struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4536
4537      GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4538      for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4539         if (!link_util_add_program_resource(shProg, resource_set,
4540                                             type, &p->sh.SubroutineFunctions[j], 0))
4541            return;
4542      }
4543   }
4544
4545   _mesa_set_destroy(resource_set, NULL);
4546}
4547
4548/**
4549 * This check is done to make sure we allow only constant expression
4550 * indexing and "constant-index-expression" (indexing with an expression
4551 * that includes loop induction variable).
4552 */
4553static bool
4554validate_sampler_array_indexing(struct gl_context *ctx,
4555                                struct gl_shader_program *prog)
4556{
4557   dynamic_sampler_array_indexing_visitor v;
4558   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4559      if (prog->_LinkedShaders[i] == NULL)
4560         continue;
4561
4562      bool no_dynamic_indexing =
4563         ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4564
4565      /* Search for array derefs in shader. */
4566      v.run(prog->_LinkedShaders[i]->ir);
4567      if (v.uses_dynamic_sampler_array_indexing()) {
4568         const char *msg = "sampler arrays indexed with non-constant "
4569                           "expressions is forbidden in GLSL %s %u";
4570         /* Backend has indicated that it has no dynamic indexing support. */
4571         if (no_dynamic_indexing) {
4572            linker_error(prog, msg, prog->IsES ? "ES" : "",
4573                         prog->data->Version);
4574            return false;
4575         } else {
4576            linker_warning(prog, msg, prog->IsES ? "ES" : "",
4577                           prog->data->Version);
4578         }
4579      }
4580   }
4581   return true;
4582}
4583
4584static void
4585link_assign_subroutine_types(struct gl_shader_program *prog)
4586{
4587   unsigned mask = prog->data->linked_stages;
4588   while (mask) {
4589      const int i = u_bit_scan(&mask);
4590      gl_program *p = prog->_LinkedShaders[i]->Program;
4591
4592      p->sh.MaxSubroutineFunctionIndex = 0;
4593      foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4594         ir_function *fn = node->as_function();
4595         if (!fn)
4596            continue;
4597
4598         if (fn->is_subroutine)
4599            p->sh.NumSubroutineUniformTypes++;
4600
4601         if (!fn->num_subroutine_types)
4602            continue;
4603
4604         /* these should have been calculated earlier. */
4605         assert(fn->subroutine_index != -1);
4606         if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4607            linker_error(prog, "Too many subroutine functions declared.\n");
4608            return;
4609         }
4610         p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4611                                            struct gl_subroutine_function,
4612                                            p->sh.NumSubroutineFunctions + 1);
4613         p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4614         p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4615         p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4616            ralloc_array(p, const struct glsl_type *,
4617                         fn->num_subroutine_types);
4618
4619         /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4620          * GLSL 4.5 spec:
4621          *
4622          *    "Each subroutine with an index qualifier in the shader must be
4623          *    given a unique index, otherwise a compile or link error will be
4624          *    generated."
4625          */
4626         for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4627            if (p->sh.SubroutineFunctions[j].index != -1 &&
4628                p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4629               linker_error(prog, "each subroutine index qualifier in the "
4630                            "shader must be unique\n");
4631               return;
4632            }
4633         }
4634         p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4635            fn->subroutine_index;
4636
4637         if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4638            p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4639
4640         for (int j = 0; j < fn->num_subroutine_types; j++)
4641            p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4642         p->sh.NumSubroutineFunctions++;
4643      }
4644   }
4645}
4646
4647static void
4648verify_subroutine_associated_funcs(struct gl_shader_program *prog)
4649{
4650   unsigned mask = prog->data->linked_stages;
4651   while (mask) {
4652      const int i = u_bit_scan(&mask);
4653      gl_program *p = prog->_LinkedShaders[i]->Program;
4654      glsl_symbol_table *symbols = prog->_LinkedShaders[i]->symbols;
4655
4656      /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
4657       *
4658       *   "A program will fail to compile or link if any shader
4659       *    or stage contains two or more functions with the same
4660       *    name if the name is associated with a subroutine type."
4661       */
4662      for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4663         unsigned definitions = 0;
4664         char *name = p->sh.SubroutineFunctions[j].name;
4665         ir_function *fn = symbols->get_function(name);
4666
4667         /* Calculate number of function definitions with the same name */
4668         foreach_in_list(ir_function_signature, sig, &fn->signatures) {
4669            if (sig->is_defined) {
4670               if (++definitions > 1) {
4671                  linker_error(prog, "%s shader contains two or more function "
4672                               "definitions with name `%s', which is "
4673                               "associated with a subroutine type.\n",
4674                               _mesa_shader_stage_to_string(i),
4675                               fn->name);
4676                  return;
4677               }
4678            }
4679         }
4680      }
4681   }
4682}
4683
4684
4685static void
4686set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4687{
4688   assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4689
4690   foreach_in_list(ir_instruction, node, ir) {
4691      ir_variable *const var = node->as_variable();
4692
4693      if (var == NULL || var->data.mode != io_mode)
4694         continue;
4695
4696      /* Don't set always active on builtins that haven't been redeclared */
4697      if (var->data.how_declared == ir_var_declared_implicitly)
4698         continue;
4699
4700      var->data.always_active_io = true;
4701   }
4702}
4703
4704/**
4705 * When separate shader programs are enabled, only input/outputs between
4706 * the stages of a multi-stage separate program can be safely removed
4707 * from the shader interface. Other inputs/outputs must remain active.
4708 */
4709static void
4710disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4711{
4712   unsigned first, last;
4713   assert(prog->SeparateShader);
4714
4715   first = MESA_SHADER_STAGES;
4716   last = 0;
4717
4718   /* Determine first and last stage. Excluding the compute stage */
4719   for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4720      if (!prog->_LinkedShaders[i])
4721         continue;
4722      if (first == MESA_SHADER_STAGES)
4723         first = i;
4724      last = i;
4725   }
4726
4727   if (first == MESA_SHADER_STAGES)
4728      return;
4729
4730   for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4731      gl_linked_shader *sh = prog->_LinkedShaders[stage];
4732      if (!sh)
4733         continue;
4734
4735      /* Prevent the removal of inputs to the first and outputs from the last
4736       * stage, unless they are the initial pipeline inputs or final pipeline
4737       * outputs, respectively.
4738       *
4739       * The removal of IO between shaders in the same program is always
4740       * allowed.
4741       */
4742      if (stage == first && stage != MESA_SHADER_VERTEX)
4743         set_always_active_io(sh->ir, ir_var_shader_in);
4744      if (stage == last && stage != MESA_SHADER_FRAGMENT)
4745         set_always_active_io(sh->ir, ir_var_shader_out);
4746   }
4747}
4748
4749static void
4750link_and_validate_uniforms(struct gl_context *ctx,
4751                           struct gl_shader_program *prog)
4752{
4753   update_array_sizes(prog);
4754   link_assign_uniform_locations(prog, ctx);
4755
4756   link_assign_atomic_counter_resources(ctx, prog);
4757   link_calculate_subroutine_compat(prog);
4758   check_resources(ctx, prog);
4759   check_subroutine_resources(prog);
4760   check_image_resources(ctx, prog);
4761   link_check_atomic_counter_resources(ctx, prog);
4762}
4763
4764static bool
4765link_varyings_and_uniforms(unsigned first, unsigned last,
4766                           struct gl_context *ctx,
4767                           struct gl_shader_program *prog, void *mem_ctx)
4768{
4769   /* Mark all generic shader inputs and outputs as unpaired. */
4770   for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4771      if (prog->_LinkedShaders[i] != NULL) {
4772         link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4773      }
4774   }
4775
4776   unsigned prev = first;
4777   for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4778      if (prog->_LinkedShaders[i] == NULL)
4779         continue;
4780
4781      match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4782                                       prog->_LinkedShaders[i]);
4783      prev = i;
4784   }
4785
4786   if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4787                                            MESA_SHADER_VERTEX, true)) {
4788      return false;
4789   }
4790
4791   if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4792                                            MESA_SHADER_FRAGMENT, true)) {
4793      return false;
4794   }
4795
4796   prog->last_vert_prog = NULL;
4797   for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4798      if (prog->_LinkedShaders[i] == NULL)
4799         continue;
4800
4801      prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4802      break;
4803   }
4804
4805   if (!link_varyings(prog, first, last, ctx, mem_ctx))
4806      return false;
4807
4808   link_and_validate_uniforms(ctx, prog);
4809
4810   if (!prog->data->LinkStatus)
4811      return false;
4812
4813   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4814      if (prog->_LinkedShaders[i] == NULL)
4815         continue;
4816
4817      const struct gl_shader_compiler_options *options =
4818         &ctx->Const.ShaderCompilerOptions[i];
4819
4820      if (options->LowerBufferInterfaceBlocks)
4821         lower_ubo_reference(prog->_LinkedShaders[i],
4822                             options->ClampBlockIndicesToArrayBounds,
4823                             ctx->Const.UseSTD430AsDefaultPacking);
4824
4825      if (i == MESA_SHADER_COMPUTE)
4826         lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
4827
4828      lower_vector_derefs(prog->_LinkedShaders[i]);
4829      do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4830   }
4831
4832   return true;
4833}
4834
4835static void
4836linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4837                         unsigned stage)
4838{
4839      if (ctx->Const.GLSLOptimizeConservatively) {
4840         /* Run it just once. */
4841         do_common_optimization(ir, true, false,
4842                                &ctx->Const.ShaderCompilerOptions[stage],
4843                                ctx->Const.NativeIntegers);
4844      } else {
4845         /* Repeat it until it stops making changes. */
4846         while (do_common_optimization(ir, true, false,
4847                                       &ctx->Const.ShaderCompilerOptions[stage],
4848                                       ctx->Const.NativeIntegers))
4849            ;
4850      }
4851}
4852
4853void
4854link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4855{
4856   prog->data->LinkStatus = LINKING_SUCCESS; /* All error paths will set this to false */
4857   prog->data->Validated = false;
4858
4859   /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4860    *
4861    *     "Linking can fail for a variety of reasons as specified in the
4862    *     OpenGL Shading Language Specification, as well as any of the
4863    *     following reasons:
4864    *
4865    *     - No shader objects are attached to program."
4866    *
4867    * The Compatibility Profile specification does not list the error.  In
4868    * Compatibility Profile missing shader stages are replaced by
4869    * fixed-function.  This applies to the case where all stages are
4870    * missing.
4871    */
4872   if (prog->NumShaders == 0) {
4873      if (ctx->API != API_OPENGL_COMPAT)
4874         linker_error(prog, "no shaders attached to the program\n");
4875      return;
4876   }
4877
4878#ifdef ENABLE_SHADER_CACHE
4879   if (shader_cache_read_program_metadata(ctx, prog))
4880      return;
4881#endif
4882
4883   void *mem_ctx = ralloc_context(NULL); // temporary linker context
4884
4885   prog->ARB_fragment_coord_conventions_enable = false;
4886
4887   /* Separate the shaders into groups based on their type.
4888    */
4889   struct gl_shader **shader_list[MESA_SHADER_STAGES];
4890   unsigned num_shaders[MESA_SHADER_STAGES];
4891
4892   for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4893      shader_list[i] = (struct gl_shader **)
4894         calloc(prog->NumShaders, sizeof(struct gl_shader *));
4895      num_shaders[i] = 0;
4896   }
4897
4898   unsigned min_version = UINT_MAX;
4899   unsigned max_version = 0;
4900   for (unsigned i = 0; i < prog->NumShaders; i++) {
4901      min_version = MIN2(min_version, prog->Shaders[i]->Version);
4902      max_version = MAX2(max_version, prog->Shaders[i]->Version);
4903
4904      if (!ctx->Const.AllowGLSLRelaxedES &&
4905          prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4906         linker_error(prog, "all shaders must use same shading "
4907                      "language version\n");
4908         goto done;
4909      }
4910
4911      if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4912         prog->ARB_fragment_coord_conventions_enable = true;
4913      }
4914
4915      gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4916      shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4917      num_shaders[shader_type]++;
4918   }
4919
4920   /* In desktop GLSL, different shader versions may be linked together.  In
4921    * GLSL ES, all shader versions must be the same.
4922    */
4923   if (!ctx->Const.AllowGLSLRelaxedES && prog->Shaders[0]->IsES &&
4924       min_version != max_version) {
4925      linker_error(prog, "all shaders must use same shading "
4926                   "language version\n");
4927      goto done;
4928   }
4929
4930   prog->data->Version = max_version;
4931   prog->IsES = prog->Shaders[0]->IsES;
4932
4933   /* Some shaders have to be linked with some other shaders present.
4934    */
4935   if (!prog->SeparateShader) {
4936      if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4937          num_shaders[MESA_SHADER_VERTEX] == 0) {
4938         linker_error(prog, "Geometry shader must be linked with "
4939                      "vertex shader\n");
4940         goto done;
4941      }
4942      if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4943          num_shaders[MESA_SHADER_VERTEX] == 0) {
4944         linker_error(prog, "Tessellation evaluation shader must be linked "
4945                      "with vertex shader\n");
4946         goto done;
4947      }
4948      if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4949          num_shaders[MESA_SHADER_VERTEX] == 0) {
4950         linker_error(prog, "Tessellation control shader must be linked with "
4951                      "vertex shader\n");
4952         goto done;
4953      }
4954
4955      /* Section 7.3 of the OpenGL ES 3.2 specification says:
4956       *
4957       *    "Linking can fail for [...] any of the following reasons:
4958       *
4959       *     * program contains an object to form a tessellation control
4960       *       shader [...] and [...] the program is not separable and
4961       *       contains no object to form a tessellation evaluation shader"
4962       *
4963       * The OpenGL spec is contradictory. It allows linking without a tess
4964       * eval shader, but that can only be used with transform feedback and
4965       * rasterization disabled. However, transform feedback isn't allowed
4966       * with GL_PATCHES, so it can't be used.
4967       *
4968       * More investigation showed that the idea of transform feedback after
4969       * a tess control shader was dropped, because some hw vendors couldn't
4970       * support tessellation without a tess eval shader, but the linker
4971       * section wasn't updated to reflect that.
4972       *
4973       * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4974       * spec bug.
4975       *
4976       * Do what's reasonable and always require a tess eval shader if a tess
4977       * control shader is present.
4978       */
4979      if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4980          num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4981         linker_error(prog, "Tessellation control shader must be linked with "
4982                      "tessellation evaluation shader\n");
4983         goto done;
4984      }
4985
4986      if (prog->IsES) {
4987         if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4988             num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4989            linker_error(prog, "GLSL ES requires non-separable programs "
4990                         "containing a tessellation evaluation shader to also "
4991                         "be linked with a tessellation control shader\n");
4992            goto done;
4993         }
4994      }
4995   }
4996
4997   /* Compute shaders have additional restrictions. */
4998   if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
4999       num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
5000      linker_error(prog, "Compute shaders may not be linked with any other "
5001                   "type of shader\n");
5002   }
5003
5004   /* Link all shaders for a particular stage and validate the result.
5005    */
5006   for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5007      if (num_shaders[stage] > 0) {
5008         gl_linked_shader *const sh =
5009            link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
5010                                    num_shaders[stage], false);
5011
5012         if (!prog->data->LinkStatus) {
5013            if (sh)
5014               _mesa_delete_linked_shader(ctx, sh);
5015            goto done;
5016         }
5017
5018         switch (stage) {
5019         case MESA_SHADER_VERTEX:
5020            validate_vertex_shader_executable(prog, sh, ctx);
5021            break;
5022         case MESA_SHADER_TESS_CTRL:
5023            /* nothing to be done */
5024            break;
5025         case MESA_SHADER_TESS_EVAL:
5026            validate_tess_eval_shader_executable(prog, sh, ctx);
5027            break;
5028         case MESA_SHADER_GEOMETRY:
5029            validate_geometry_shader_executable(prog, sh, ctx);
5030            break;
5031         case MESA_SHADER_FRAGMENT:
5032            validate_fragment_shader_executable(prog, sh);
5033            break;
5034         }
5035         if (!prog->data->LinkStatus) {
5036            if (sh)
5037               _mesa_delete_linked_shader(ctx, sh);
5038            goto done;
5039         }
5040
5041         prog->_LinkedShaders[stage] = sh;
5042         prog->data->linked_stages |= 1 << stage;
5043      }
5044   }
5045
5046   /* Here begins the inter-stage linking phase.  Some initial validation is
5047    * performed, then locations are assigned for uniforms, attributes, and
5048    * varyings.
5049    */
5050   cross_validate_uniforms(ctx, prog);
5051   if (!prog->data->LinkStatus)
5052      goto done;
5053
5054   unsigned first, last, prev;
5055
5056   first = MESA_SHADER_STAGES;
5057   last = 0;
5058
5059   /* Determine first and last stage. */
5060   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5061      if (!prog->_LinkedShaders[i])
5062         continue;
5063      if (first == MESA_SHADER_STAGES)
5064         first = i;
5065      last = i;
5066   }
5067
5068   check_explicit_uniform_locations(ctx, prog);
5069   link_assign_subroutine_types(prog);
5070   verify_subroutine_associated_funcs(prog);
5071
5072   if (!prog->data->LinkStatus)
5073      goto done;
5074
5075   resize_tes_inputs(ctx, prog);
5076
5077   /* Validate the inputs of each stage with the output of the preceding
5078    * stage.
5079    */
5080   prev = first;
5081   for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
5082      if (prog->_LinkedShaders[i] == NULL)
5083         continue;
5084
5085      validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
5086                                       prog->_LinkedShaders[i]);
5087      if (!prog->data->LinkStatus)
5088         goto done;
5089
5090      cross_validate_outputs_to_inputs(ctx, prog,
5091                                       prog->_LinkedShaders[prev],
5092                                       prog->_LinkedShaders[i]);
5093      if (!prog->data->LinkStatus)
5094         goto done;
5095
5096      prev = i;
5097   }
5098
5099   /* The cross validation of outputs/inputs above validates explicit locations
5100    * but for SSO programs we need to do this also for the inputs in the
5101    * first stage and outputs of the last stage included in the program, since
5102    * there is no cross validation for these.
5103    */
5104   if (prog->SeparateShader)
5105      validate_sso_explicit_locations(ctx, prog,
5106                                      (gl_shader_stage) first,
5107                                      (gl_shader_stage) last);
5108
5109   /* Cross-validate uniform blocks between shader stages */
5110   validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
5111   if (!prog->data->LinkStatus)
5112      goto done;
5113
5114   for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
5115      if (prog->_LinkedShaders[i] != NULL)
5116         lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
5117   }
5118
5119   if (prog->IsES && prog->data->Version == 100)
5120      if (!validate_invariant_builtins(prog,
5121            prog->_LinkedShaders[MESA_SHADER_VERTEX],
5122            prog->_LinkedShaders[MESA_SHADER_FRAGMENT]))
5123         goto done;
5124
5125   /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
5126    * it before optimization because we want most of the checks to get
5127    * dropped thanks to constant propagation.
5128    *
5129    * This rule also applies to GLSL ES 3.00.
5130    */
5131   if (max_version >= (prog->IsES ? 300 : 130)) {
5132      struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
5133      if (sh) {
5134         lower_discard_flow(sh->ir);
5135      }
5136   }
5137
5138   if (prog->SeparateShader)
5139      disable_varying_optimizations_for_sso(prog);
5140
5141   /* Process UBOs */
5142   if (!interstage_cross_validate_uniform_blocks(prog, false))
5143      goto done;
5144
5145   /* Process SSBOs */
5146   if (!interstage_cross_validate_uniform_blocks(prog, true))
5147      goto done;
5148
5149   /* Do common optimization before assigning storage for attributes,
5150    * uniforms, and varyings.  Later optimization could possibly make
5151    * some of that unused.
5152    */
5153   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5154      if (prog->_LinkedShaders[i] == NULL)
5155         continue;
5156
5157      detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
5158      if (!prog->data->LinkStatus)
5159         goto done;
5160
5161      if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
5162         lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
5163      }
5164
5165      if (ctx->Const.LowerTessLevel) {
5166         lower_tess_level(prog->_LinkedShaders[i]);
5167      }
5168
5169      /* Section 13.46 (Vertex Attribute Aliasing) of the OpenGL ES 3.2
5170       * specification says:
5171       *
5172       *    "In general, the behavior of GLSL ES should not depend on compiler
5173       *    optimizations which might be implementation-dependent. Name matching
5174       *    rules in most languages, including C++ from which GLSL ES is derived,
5175       *    are based on declarations rather than use.
5176       *
5177       *    RESOLUTION: The existence of aliasing is determined by declarations
5178       *    present after preprocessing."
5179       *
5180       * Because of this rule, we do a 'dry-run' of attribute assignment for
5181       * vertex shader inputs here.
5182       */
5183      if (prog->IsES && i == MESA_SHADER_VERTEX) {
5184         if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
5185                                                  MESA_SHADER_VERTEX, false)) {
5186            goto done;
5187         }
5188      }
5189
5190      /* Call opts before lowering const arrays to uniforms so we can const
5191       * propagate any elements accessed directly.
5192       */
5193      linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5194
5195      /* Call opts after lowering const arrays to copy propagate things. */
5196      if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
5197         linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5198
5199      propagate_invariance(prog->_LinkedShaders[i]->ir);
5200   }
5201
5202   /* Validation for special cases where we allow sampler array indexing
5203    * with loop induction variable. This check emits a warning or error
5204    * depending if backend can handle dynamic indexing.
5205    */
5206   if ((!prog->IsES && prog->data->Version < 130) ||
5207       (prog->IsES && prog->data->Version < 300)) {
5208      if (!validate_sampler_array_indexing(ctx, prog))
5209         goto done;
5210   }
5211
5212   /* Check and validate stream emissions in geometry shaders */
5213   validate_geometry_shader_emissions(ctx, prog);
5214
5215   store_fragdepth_layout(prog);
5216
5217   if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
5218      goto done;
5219
5220   /* Linking varyings can cause some extra, useless swizzles to be generated
5221    * due to packing and unpacking.
5222    */
5223   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5224      if (prog->_LinkedShaders[i] == NULL)
5225         continue;
5226
5227      optimize_swizzles(prog->_LinkedShaders[i]->ir);
5228   }
5229
5230   /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5231    * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5232    * anything about shader linking when one of the shaders (vertex or
5233    * fragment shader) is absent. So, the extension shouldn't change the
5234    * behavior specified in GLSL specification.
5235    *
5236    * From OpenGL ES 3.1 specification (7.3 Program Objects):
5237    *     "Linking can fail for a variety of reasons as specified in the
5238    *     OpenGL ES Shading Language Specification, as well as any of the
5239    *     following reasons:
5240    *
5241    *     ...
5242    *
5243    *     * program contains objects to form either a vertex shader or
5244    *       fragment shader, and program is not separable, and does not
5245    *       contain objects to form both a vertex shader and fragment
5246    *       shader."
5247    *
5248    * However, the only scenario in 3.1+ where we don't require them both is
5249    * when we have a compute shader. For example:
5250    *
5251    * - No shaders is a link error.
5252    * - Geom or Tess without a Vertex shader is a link error which means we
5253    *   always require a Vertex shader and hence a Fragment shader.
5254    * - Finally a Compute shader linked with any other stage is a link error.
5255    */
5256   if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5257       num_shaders[MESA_SHADER_COMPUTE] == 0) {
5258      if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5259         linker_error(prog, "program lacks a vertex shader\n");
5260      } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5261         linker_error(prog, "program lacks a fragment shader\n");
5262      }
5263   }
5264
5265done:
5266   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5267      free(shader_list[i]);
5268      if (prog->_LinkedShaders[i] == NULL)
5269         continue;
5270
5271      /* Do a final validation step to make sure that the IR wasn't
5272       * invalidated by any modifications performed after intrastage linking.
5273       */
5274      validate_ir_tree(prog->_LinkedShaders[i]->ir);
5275
5276      /* Retain any live IR, but trash the rest. */
5277      reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5278
5279      /* The symbol table in the linked shaders may contain references to
5280       * variables that were removed (e.g., unused uniforms).  Since it may
5281       * contain junk, there is no possible valid use.  Delete it and set the
5282       * pointer to NULL.
5283       */
5284      delete prog->_LinkedShaders[i]->symbols;
5285      prog->_LinkedShaders[i]->symbols = NULL;
5286   }
5287
5288   ralloc_free(mem_ctx);
5289}
5290