linker.cpp revision 7e102996
1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24/** 25 * \file linker.cpp 26 * GLSL linker implementation 27 * 28 * Given a set of shaders that are to be linked to generate a final program, 29 * there are three distinct stages. 30 * 31 * In the first stage shaders are partitioned into groups based on the shader 32 * type. All shaders of a particular type (e.g., vertex shaders) are linked 33 * together. 34 * 35 * - Undefined references in each shader are resolve to definitions in 36 * another shader. 37 * - Types and qualifiers of uniforms, outputs, and global variables defined 38 * in multiple shaders with the same name are verified to be the same. 39 * - Initializers for uniforms and global variables defined 40 * in multiple shaders with the same name are verified to be the same. 41 * 42 * The result, in the terminology of the GLSL spec, is a set of shader 43 * executables for each processing unit. 44 * 45 * After the first stage is complete, a series of semantic checks are performed 46 * on each of the shader executables. 47 * 48 * - Each shader executable must define a \c main function. 49 * - Each vertex shader executable must write to \c gl_Position. 50 * - Each fragment shader executable must write to either \c gl_FragData or 51 * \c gl_FragColor. 52 * 53 * In the final stage individual shader executables are linked to create a 54 * complete exectuable. 55 * 56 * - Types of uniforms defined in multiple shader stages with the same name 57 * are verified to be the same. 58 * - Initializers for uniforms defined in multiple shader stages with the 59 * same name are verified to be the same. 60 * - Types and qualifiers of outputs defined in one stage are verified to 61 * be the same as the types and qualifiers of inputs defined with the same 62 * name in a later stage. 63 * 64 * \author Ian Romanick <ian.d.romanick@intel.com> 65 */ 66 67#include <ctype.h> 68#include "util/strndup.h" 69#include "glsl_symbol_table.h" 70#include "glsl_parser_extras.h" 71#include "ir.h" 72#include "program.h" 73#include "program/prog_instruction.h" 74#include "program/program.h" 75#include "util/mesa-sha1.h" 76#include "util/set.h" 77#include "string_to_uint_map.h" 78#include "linker.h" 79#include "linker_util.h" 80#include "link_varyings.h" 81#include "ir_optimization.h" 82#include "ir_rvalue_visitor.h" 83#include "ir_uniform.h" 84#include "builtin_functions.h" 85#include "shader_cache.h" 86#include "util/u_string.h" 87#include "util/u_math.h" 88 89#include "main/imports.h" 90#include "main/shaderobj.h" 91#include "main/enums.h" 92#include "main/mtypes.h" 93 94 95namespace { 96 97struct find_variable { 98 const char *name; 99 bool found; 100 101 find_variable(const char *name) : name(name), found(false) {} 102}; 103 104/** 105 * Visitor that determines whether or not a variable is ever written. 106 * 107 * Use \ref find_assignments for convenience. 108 */ 109class find_assignment_visitor : public ir_hierarchical_visitor { 110public: 111 find_assignment_visitor(unsigned num_vars, 112 find_variable * const *vars) 113 : num_variables(num_vars), num_found(0), variables(vars) 114 { 115 } 116 117 virtual ir_visitor_status visit_enter(ir_assignment *ir) 118 { 119 ir_variable *const var = ir->lhs->variable_referenced(); 120 121 return check_variable_name(var->name); 122 } 123 124 virtual ir_visitor_status visit_enter(ir_call *ir) 125 { 126 foreach_two_lists(formal_node, &ir->callee->parameters, 127 actual_node, &ir->actual_parameters) { 128 ir_rvalue *param_rval = (ir_rvalue *) actual_node; 129 ir_variable *sig_param = (ir_variable *) formal_node; 130 131 if (sig_param->data.mode == ir_var_function_out || 132 sig_param->data.mode == ir_var_function_inout) { 133 ir_variable *var = param_rval->variable_referenced(); 134 if (var && check_variable_name(var->name) == visit_stop) 135 return visit_stop; 136 } 137 } 138 139 if (ir->return_deref != NULL) { 140 ir_variable *const var = ir->return_deref->variable_referenced(); 141 142 if (check_variable_name(var->name) == visit_stop) 143 return visit_stop; 144 } 145 146 return visit_continue_with_parent; 147 } 148 149private: 150 ir_visitor_status check_variable_name(const char *name) 151 { 152 for (unsigned i = 0; i < num_variables; ++i) { 153 if (strcmp(variables[i]->name, name) == 0) { 154 if (!variables[i]->found) { 155 variables[i]->found = true; 156 157 assert(num_found < num_variables); 158 if (++num_found == num_variables) 159 return visit_stop; 160 } 161 break; 162 } 163 } 164 165 return visit_continue_with_parent; 166 } 167 168private: 169 unsigned num_variables; /**< Number of variables to find */ 170 unsigned num_found; /**< Number of variables already found */ 171 find_variable * const *variables; /**< Variables to find */ 172}; 173 174/** 175 * Determine whether or not any of NULL-terminated list of variables is ever 176 * written to. 177 */ 178static void 179find_assignments(exec_list *ir, find_variable * const *vars) 180{ 181 unsigned num_variables = 0; 182 183 for (find_variable * const *v = vars; *v; ++v) 184 num_variables++; 185 186 find_assignment_visitor visitor(num_variables, vars); 187 visitor.run(ir); 188} 189 190/** 191 * Determine whether or not the given variable is ever written to. 192 */ 193static void 194find_assignments(exec_list *ir, find_variable *var) 195{ 196 find_assignment_visitor visitor(1, &var); 197 visitor.run(ir); 198} 199 200/** 201 * Visitor that determines whether or not a variable is ever read. 202 */ 203class find_deref_visitor : public ir_hierarchical_visitor { 204public: 205 find_deref_visitor(const char *name) 206 : name(name), found(false) 207 { 208 /* empty */ 209 } 210 211 virtual ir_visitor_status visit(ir_dereference_variable *ir) 212 { 213 if (strcmp(this->name, ir->var->name) == 0) { 214 this->found = true; 215 return visit_stop; 216 } 217 218 return visit_continue; 219 } 220 221 bool variable_found() const 222 { 223 return this->found; 224 } 225 226private: 227 const char *name; /**< Find writes to a variable with this name. */ 228 bool found; /**< Was a write to the variable found? */ 229}; 230 231 232/** 233 * A visitor helper that provides methods for updating the types of 234 * ir_dereferences. Classes that update variable types (say, updating 235 * array sizes) will want to use this so that dereference types stay in sync. 236 */ 237class deref_type_updater : public ir_hierarchical_visitor { 238public: 239 virtual ir_visitor_status visit(ir_dereference_variable *ir) 240 { 241 ir->type = ir->var->type; 242 return visit_continue; 243 } 244 245 virtual ir_visitor_status visit_leave(ir_dereference_array *ir) 246 { 247 const glsl_type *const vt = ir->array->type; 248 if (vt->is_array()) 249 ir->type = vt->fields.array; 250 return visit_continue; 251 } 252 253 virtual ir_visitor_status visit_leave(ir_dereference_record *ir) 254 { 255 ir->type = ir->record->type->fields.structure[ir->field_idx].type; 256 return visit_continue; 257 } 258}; 259 260 261class array_resize_visitor : public deref_type_updater { 262public: 263 unsigned num_vertices; 264 gl_shader_program *prog; 265 gl_shader_stage stage; 266 267 array_resize_visitor(unsigned num_vertices, 268 gl_shader_program *prog, 269 gl_shader_stage stage) 270 { 271 this->num_vertices = num_vertices; 272 this->prog = prog; 273 this->stage = stage; 274 } 275 276 virtual ~array_resize_visitor() 277 { 278 /* empty */ 279 } 280 281 virtual ir_visitor_status visit(ir_variable *var) 282 { 283 if (!var->type->is_array() || var->data.mode != ir_var_shader_in || 284 var->data.patch) 285 return visit_continue; 286 287 unsigned size = var->type->length; 288 289 if (stage == MESA_SHADER_GEOMETRY) { 290 /* Generate a link error if the shader has declared this array with 291 * an incorrect size. 292 */ 293 if (!var->data.implicit_sized_array && 294 size && size != this->num_vertices) { 295 linker_error(this->prog, "size of array %s declared as %u, " 296 "but number of input vertices is %u\n", 297 var->name, size, this->num_vertices); 298 return visit_continue; 299 } 300 301 /* Generate a link error if the shader attempts to access an input 302 * array using an index too large for its actual size assigned at 303 * link time. 304 */ 305 if (var->data.max_array_access >= (int)this->num_vertices) { 306 linker_error(this->prog, "%s shader accesses element %i of " 307 "%s, but only %i input vertices\n", 308 _mesa_shader_stage_to_string(this->stage), 309 var->data.max_array_access, var->name, this->num_vertices); 310 return visit_continue; 311 } 312 } 313 314 var->type = glsl_type::get_array_instance(var->type->fields.array, 315 this->num_vertices); 316 var->data.max_array_access = this->num_vertices - 1; 317 318 return visit_continue; 319 } 320}; 321 322/** 323 * Visitor that determines the highest stream id to which a (geometry) shader 324 * emits vertices. It also checks whether End{Stream}Primitive is ever called. 325 */ 326class find_emit_vertex_visitor : public ir_hierarchical_visitor { 327public: 328 find_emit_vertex_visitor(int max_allowed) 329 : max_stream_allowed(max_allowed), 330 invalid_stream_id(0), 331 invalid_stream_id_from_emit_vertex(false), 332 end_primitive_found(false), 333 uses_non_zero_stream(false) 334 { 335 /* empty */ 336 } 337 338 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir) 339 { 340 int stream_id = ir->stream_id(); 341 342 if (stream_id < 0) { 343 invalid_stream_id = stream_id; 344 invalid_stream_id_from_emit_vertex = true; 345 return visit_stop; 346 } 347 348 if (stream_id > max_stream_allowed) { 349 invalid_stream_id = stream_id; 350 invalid_stream_id_from_emit_vertex = true; 351 return visit_stop; 352 } 353 354 if (stream_id != 0) 355 uses_non_zero_stream = true; 356 357 return visit_continue; 358 } 359 360 virtual ir_visitor_status visit_leave(ir_end_primitive *ir) 361 { 362 end_primitive_found = true; 363 364 int stream_id = ir->stream_id(); 365 366 if (stream_id < 0) { 367 invalid_stream_id = stream_id; 368 invalid_stream_id_from_emit_vertex = false; 369 return visit_stop; 370 } 371 372 if (stream_id > max_stream_allowed) { 373 invalid_stream_id = stream_id; 374 invalid_stream_id_from_emit_vertex = false; 375 return visit_stop; 376 } 377 378 if (stream_id != 0) 379 uses_non_zero_stream = true; 380 381 return visit_continue; 382 } 383 384 bool error() 385 { 386 return invalid_stream_id != 0; 387 } 388 389 const char *error_func() 390 { 391 return invalid_stream_id_from_emit_vertex ? 392 "EmitStreamVertex" : "EndStreamPrimitive"; 393 } 394 395 int error_stream() 396 { 397 return invalid_stream_id; 398 } 399 400 bool uses_streams() 401 { 402 return uses_non_zero_stream; 403 } 404 405 bool uses_end_primitive() 406 { 407 return end_primitive_found; 408 } 409 410private: 411 int max_stream_allowed; 412 int invalid_stream_id; 413 bool invalid_stream_id_from_emit_vertex; 414 bool end_primitive_found; 415 bool uses_non_zero_stream; 416}; 417 418/* Class that finds array derefs and check if indexes are dynamic. */ 419class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor 420{ 421public: 422 dynamic_sampler_array_indexing_visitor() : 423 dynamic_sampler_array_indexing(false) 424 { 425 } 426 427 ir_visitor_status visit_enter(ir_dereference_array *ir) 428 { 429 if (!ir->variable_referenced()) 430 return visit_continue; 431 432 if (!ir->variable_referenced()->type->contains_sampler()) 433 return visit_continue; 434 435 if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) { 436 dynamic_sampler_array_indexing = true; 437 return visit_stop; 438 } 439 return visit_continue; 440 } 441 442 bool uses_dynamic_sampler_array_indexing() 443 { 444 return dynamic_sampler_array_indexing; 445 } 446 447private: 448 bool dynamic_sampler_array_indexing; 449}; 450 451} /* anonymous namespace */ 452 453void 454linker_error(gl_shader_program *prog, const char *fmt, ...) 455{ 456 va_list ap; 457 458 ralloc_strcat(&prog->data->InfoLog, "error: "); 459 va_start(ap, fmt); 460 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap); 461 va_end(ap); 462 463 prog->data->LinkStatus = LINKING_FAILURE; 464} 465 466 467void 468linker_warning(gl_shader_program *prog, const char *fmt, ...) 469{ 470 va_list ap; 471 472 ralloc_strcat(&prog->data->InfoLog, "warning: "); 473 va_start(ap, fmt); 474 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap); 475 va_end(ap); 476 477} 478 479 480/** 481 * Given a string identifying a program resource, break it into a base name 482 * and an optional array index in square brackets. 483 * 484 * If an array index is present, \c out_base_name_end is set to point to the 485 * "[" that precedes the array index, and the array index itself is returned 486 * as a long. 487 * 488 * If no array index is present (or if the array index is negative or 489 * mal-formed), \c out_base_name_end, is set to point to the null terminator 490 * at the end of the input string, and -1 is returned. 491 * 492 * Only the final array index is parsed; if the string contains other array 493 * indices (or structure field accesses), they are left in the base name. 494 * 495 * No attempt is made to check that the base name is properly formed; 496 * typically the caller will look up the base name in a hash table, so 497 * ill-formed base names simply turn into hash table lookup failures. 498 */ 499long 500parse_program_resource_name(const GLchar *name, 501 const GLchar **out_base_name_end) 502{ 503 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says: 504 * 505 * "When an integer array element or block instance number is part of 506 * the name string, it will be specified in decimal form without a "+" 507 * or "-" sign or any extra leading zeroes. Additionally, the name 508 * string will not include white space anywhere in the string." 509 */ 510 511 const size_t len = strlen(name); 512 *out_base_name_end = name + len; 513 514 if (len == 0 || name[len-1] != ']') 515 return -1; 516 517 /* Walk backwards over the string looking for a non-digit character. This 518 * had better be the opening bracket for an array index. 519 * 520 * Initially, i specifies the location of the ']'. Since the string may 521 * contain only the ']' charcater, walk backwards very carefully. 522 */ 523 unsigned i; 524 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i) 525 /* empty */ ; 526 527 if ((i == 0) || name[i-1] != '[') 528 return -1; 529 530 long array_index = strtol(&name[i], NULL, 10); 531 if (array_index < 0) 532 return -1; 533 534 /* Check for leading zero */ 535 if (name[i] == '0' && name[i+1] != ']') 536 return -1; 537 538 *out_base_name_end = name + (i - 1); 539 return array_index; 540} 541 542 543void 544link_invalidate_variable_locations(exec_list *ir) 545{ 546 foreach_in_list(ir_instruction, node, ir) { 547 ir_variable *const var = node->as_variable(); 548 549 if (var == NULL) 550 continue; 551 552 /* Only assign locations for variables that lack an explicit location. 553 * Explicit locations are set for all built-in variables, generic vertex 554 * shader inputs (via layout(location=...)), and generic fragment shader 555 * outputs (also via layout(location=...)). 556 */ 557 if (!var->data.explicit_location) { 558 var->data.location = -1; 559 var->data.location_frac = 0; 560 } 561 562 /* ir_variable::is_unmatched_generic_inout is used by the linker while 563 * connecting outputs from one stage to inputs of the next stage. 564 */ 565 if (var->data.explicit_location && 566 var->data.location < VARYING_SLOT_VAR0) { 567 var->data.is_unmatched_generic_inout = 0; 568 } else { 569 var->data.is_unmatched_generic_inout = 1; 570 } 571 } 572} 573 574 575/** 576 * Set clip_distance_array_size based and cull_distance_array_size on the given 577 * shader. 578 * 579 * Also check for errors based on incorrect usage of gl_ClipVertex and 580 * gl_ClipDistance and gl_CullDistance. 581 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance 582 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances. 583 * 584 * Return false if an error was reported. 585 */ 586static void 587analyze_clip_cull_usage(struct gl_shader_program *prog, 588 struct gl_linked_shader *shader, 589 struct gl_context *ctx, 590 GLuint *clip_distance_array_size, 591 GLuint *cull_distance_array_size) 592{ 593 *clip_distance_array_size = 0; 594 *cull_distance_array_size = 0; 595 596 if (prog->data->Version >= (prog->IsES ? 300 : 130)) { 597 /* From section 7.1 (Vertex Shader Special Variables) of the 598 * GLSL 1.30 spec: 599 * 600 * "It is an error for a shader to statically write both 601 * gl_ClipVertex and gl_ClipDistance." 602 * 603 * This does not apply to GLSL ES shaders, since GLSL ES defines neither 604 * gl_ClipVertex nor gl_ClipDistance. However with 605 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0. 606 */ 607 find_variable gl_ClipDistance("gl_ClipDistance"); 608 find_variable gl_CullDistance("gl_CullDistance"); 609 find_variable gl_ClipVertex("gl_ClipVertex"); 610 find_variable * const variables[] = { 611 &gl_ClipDistance, 612 &gl_CullDistance, 613 !prog->IsES ? &gl_ClipVertex : NULL, 614 NULL 615 }; 616 find_assignments(shader->ir, variables); 617 618 /* From the ARB_cull_distance spec: 619 * 620 * It is a compile-time or link-time error for the set of shaders forming 621 * a program to statically read or write both gl_ClipVertex and either 622 * gl_ClipDistance or gl_CullDistance. 623 * 624 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define 625 * gl_ClipVertex. 626 */ 627 if (!prog->IsES) { 628 if (gl_ClipVertex.found && gl_ClipDistance.found) { 629 linker_error(prog, "%s shader writes to both `gl_ClipVertex' " 630 "and `gl_ClipDistance'\n", 631 _mesa_shader_stage_to_string(shader->Stage)); 632 return; 633 } 634 if (gl_ClipVertex.found && gl_CullDistance.found) { 635 linker_error(prog, "%s shader writes to both `gl_ClipVertex' " 636 "and `gl_CullDistance'\n", 637 _mesa_shader_stage_to_string(shader->Stage)); 638 return; 639 } 640 } 641 642 if (gl_ClipDistance.found) { 643 ir_variable *clip_distance_var = 644 shader->symbols->get_variable("gl_ClipDistance"); 645 assert(clip_distance_var); 646 *clip_distance_array_size = clip_distance_var->type->length; 647 } 648 if (gl_CullDistance.found) { 649 ir_variable *cull_distance_var = 650 shader->symbols->get_variable("gl_CullDistance"); 651 assert(cull_distance_var); 652 *cull_distance_array_size = cull_distance_var->type->length; 653 } 654 /* From the ARB_cull_distance spec: 655 * 656 * It is a compile-time or link-time error for the set of shaders forming 657 * a program to have the sum of the sizes of the gl_ClipDistance and 658 * gl_CullDistance arrays to be larger than 659 * gl_MaxCombinedClipAndCullDistances. 660 */ 661 if ((*clip_distance_array_size + *cull_distance_array_size) > 662 ctx->Const.MaxClipPlanes) { 663 linker_error(prog, "%s shader: the combined size of " 664 "'gl_ClipDistance' and 'gl_CullDistance' size cannot " 665 "be larger than " 666 "gl_MaxCombinedClipAndCullDistances (%u)", 667 _mesa_shader_stage_to_string(shader->Stage), 668 ctx->Const.MaxClipPlanes); 669 } 670 } 671} 672 673 674/** 675 * Verify that a vertex shader executable meets all semantic requirements. 676 * 677 * Also sets info.clip_distance_array_size and 678 * info.cull_distance_array_size as a side effect. 679 * 680 * \param shader Vertex shader executable to be verified 681 */ 682static void 683validate_vertex_shader_executable(struct gl_shader_program *prog, 684 struct gl_linked_shader *shader, 685 struct gl_context *ctx) 686{ 687 if (shader == NULL) 688 return; 689 690 /* From the GLSL 1.10 spec, page 48: 691 * 692 * "The variable gl_Position is available only in the vertex 693 * language and is intended for writing the homogeneous vertex 694 * position. All executions of a well-formed vertex shader 695 * executable must write a value into this variable. [...] The 696 * variable gl_Position is available only in the vertex 697 * language and is intended for writing the homogeneous vertex 698 * position. All executions of a well-formed vertex shader 699 * executable must write a value into this variable." 700 * 701 * while in GLSL 1.40 this text is changed to: 702 * 703 * "The variable gl_Position is available only in the vertex 704 * language and is intended for writing the homogeneous vertex 705 * position. It can be written at any time during shader 706 * execution. It may also be read back by a vertex shader 707 * after being written. This value will be used by primitive 708 * assembly, clipping, culling, and other fixed functionality 709 * operations, if present, that operate on primitives after 710 * vertex processing has occurred. Its value is undefined if 711 * the vertex shader executable does not write gl_Position." 712 * 713 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to 714 * gl_Position is not an error. 715 */ 716 if (prog->data->Version < (prog->IsES ? 300 : 140)) { 717 find_variable gl_Position("gl_Position"); 718 find_assignments(shader->ir, &gl_Position); 719 if (!gl_Position.found) { 720 if (prog->IsES) { 721 linker_warning(prog, 722 "vertex shader does not write to `gl_Position'. " 723 "Its value is undefined. \n"); 724 } else { 725 linker_error(prog, 726 "vertex shader does not write to `gl_Position'. \n"); 727 } 728 return; 729 } 730 } 731 732 analyze_clip_cull_usage(prog, shader, ctx, 733 &shader->Program->info.clip_distance_array_size, 734 &shader->Program->info.cull_distance_array_size); 735} 736 737static void 738validate_tess_eval_shader_executable(struct gl_shader_program *prog, 739 struct gl_linked_shader *shader, 740 struct gl_context *ctx) 741{ 742 if (shader == NULL) 743 return; 744 745 analyze_clip_cull_usage(prog, shader, ctx, 746 &shader->Program->info.clip_distance_array_size, 747 &shader->Program->info.cull_distance_array_size); 748} 749 750 751/** 752 * Verify that a fragment shader executable meets all semantic requirements 753 * 754 * \param shader Fragment shader executable to be verified 755 */ 756static void 757validate_fragment_shader_executable(struct gl_shader_program *prog, 758 struct gl_linked_shader *shader) 759{ 760 if (shader == NULL) 761 return; 762 763 find_variable gl_FragColor("gl_FragColor"); 764 find_variable gl_FragData("gl_FragData"); 765 find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL }; 766 find_assignments(shader->ir, variables); 767 768 if (gl_FragColor.found && gl_FragData.found) { 769 linker_error(prog, "fragment shader writes to both " 770 "`gl_FragColor' and `gl_FragData'\n"); 771 } 772} 773 774/** 775 * Verify that a geometry shader executable meets all semantic requirements 776 * 777 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand 778 * info.cull_distance_array_size as a side effect. 779 * 780 * \param shader Geometry shader executable to be verified 781 */ 782static void 783validate_geometry_shader_executable(struct gl_shader_program *prog, 784 struct gl_linked_shader *shader, 785 struct gl_context *ctx) 786{ 787 if (shader == NULL) 788 return; 789 790 unsigned num_vertices = 791 vertices_per_prim(shader->Program->info.gs.input_primitive); 792 prog->Geom.VerticesIn = num_vertices; 793 794 analyze_clip_cull_usage(prog, shader, ctx, 795 &shader->Program->info.clip_distance_array_size, 796 &shader->Program->info.cull_distance_array_size); 797} 798 799/** 800 * Check if geometry shaders emit to non-zero streams and do corresponding 801 * validations. 802 */ 803static void 804validate_geometry_shader_emissions(struct gl_context *ctx, 805 struct gl_shader_program *prog) 806{ 807 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY]; 808 809 if (sh != NULL) { 810 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1); 811 emit_vertex.run(sh->ir); 812 if (emit_vertex.error()) { 813 linker_error(prog, "Invalid call %s(%d). Accepted values for the " 814 "stream parameter are in the range [0, %d].\n", 815 emit_vertex.error_func(), 816 emit_vertex.error_stream(), 817 ctx->Const.MaxVertexStreams - 1); 818 } 819 prog->Geom.UsesStreams = emit_vertex.uses_streams(); 820 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive(); 821 822 /* From the ARB_gpu_shader5 spec: 823 * 824 * "Multiple vertex streams are supported only if the output primitive 825 * type is declared to be "points". A program will fail to link if it 826 * contains a geometry shader calling EmitStreamVertex() or 827 * EndStreamPrimitive() if its output primitive type is not "points". 828 * 829 * However, in the same spec: 830 * 831 * "The function EmitVertex() is equivalent to calling EmitStreamVertex() 832 * with <stream> set to zero." 833 * 834 * And: 835 * 836 * "The function EndPrimitive() is equivalent to calling 837 * EndStreamPrimitive() with <stream> set to zero." 838 * 839 * Since we can call EmitVertex() and EndPrimitive() when we output 840 * primitives other than points, calling EmitStreamVertex(0) or 841 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia 842 * does. Currently we only set prog->Geom.UsesStreams to TRUE when 843 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero 844 * stream. 845 */ 846 if (prog->Geom.UsesStreams && 847 sh->Program->info.gs.output_primitive != GL_POINTS) { 848 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) " 849 "with n>0 requires point output\n"); 850 } 851 } 852} 853 854bool 855validate_intrastage_arrays(struct gl_shader_program *prog, 856 ir_variable *const var, 857 ir_variable *const existing) 858{ 859 /* Consider the types to be "the same" if both types are arrays 860 * of the same type and one of the arrays is implicitly sized. 861 * In addition, set the type of the linked variable to the 862 * explicitly sized array. 863 */ 864 if (var->type->is_array() && existing->type->is_array()) { 865 if ((var->type->fields.array == existing->type->fields.array) && 866 ((var->type->length == 0)|| (existing->type->length == 0))) { 867 if (var->type->length != 0) { 868 if ((int)var->type->length <= existing->data.max_array_access) { 869 linker_error(prog, "%s `%s' declared as type " 870 "`%s' but outermost dimension has an index" 871 " of `%i'\n", 872 mode_string(var), 873 var->name, var->type->name, 874 existing->data.max_array_access); 875 } 876 existing->type = var->type; 877 return true; 878 } else if (existing->type->length != 0) { 879 if((int)existing->type->length <= var->data.max_array_access && 880 !existing->data.from_ssbo_unsized_array) { 881 linker_error(prog, "%s `%s' declared as type " 882 "`%s' but outermost dimension has an index" 883 " of `%i'\n", 884 mode_string(var), 885 var->name, existing->type->name, 886 var->data.max_array_access); 887 } 888 return true; 889 } 890 } 891 } 892 return false; 893} 894 895 896/** 897 * Perform validation of global variables used across multiple shaders 898 */ 899static void 900cross_validate_globals(struct gl_context *ctx, struct gl_shader_program *prog, 901 struct exec_list *ir, glsl_symbol_table *variables, 902 bool uniforms_only) 903{ 904 foreach_in_list(ir_instruction, node, ir) { 905 ir_variable *const var = node->as_variable(); 906 907 if (var == NULL) 908 continue; 909 910 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage)) 911 continue; 912 913 /* don't cross validate subroutine uniforms */ 914 if (var->type->contains_subroutine()) 915 continue; 916 917 /* Don't cross validate interface instances. These are only relevant 918 * inside a shader. The cross validation is done at the Interface Block 919 * name level. 920 */ 921 if (var->is_interface_instance()) 922 continue; 923 924 /* Don't cross validate temporaries that are at global scope. These 925 * will eventually get pulled into the shaders 'main'. 926 */ 927 if (var->data.mode == ir_var_temporary) 928 continue; 929 930 /* If a global with this name has already been seen, verify that the 931 * new instance has the same type. In addition, if the globals have 932 * initializers, the values of the initializers must be the same. 933 */ 934 ir_variable *const existing = variables->get_variable(var->name); 935 if (existing != NULL) { 936 /* Check if types match. */ 937 if (var->type != existing->type) { 938 if (!validate_intrastage_arrays(prog, var, existing)) { 939 /* If it is an unsized array in a Shader Storage Block, 940 * two different shaders can access to different elements. 941 * Because of that, they might be converted to different 942 * sized arrays, then check that they are compatible but 943 * ignore the array size. 944 */ 945 if (!(var->data.mode == ir_var_shader_storage && 946 var->data.from_ssbo_unsized_array && 947 existing->data.mode == ir_var_shader_storage && 948 existing->data.from_ssbo_unsized_array && 949 var->type->gl_type == existing->type->gl_type)) { 950 linker_error(prog, "%s `%s' declared as type " 951 "`%s' and type `%s'\n", 952 mode_string(var), 953 var->name, var->type->name, 954 existing->type->name); 955 return; 956 } 957 } 958 } 959 960 if (var->data.explicit_location) { 961 if (existing->data.explicit_location 962 && (var->data.location != existing->data.location)) { 963 linker_error(prog, "explicit locations for %s " 964 "`%s' have differing values\n", 965 mode_string(var), var->name); 966 return; 967 } 968 969 if (var->data.location_frac != existing->data.location_frac) { 970 linker_error(prog, "explicit components for %s `%s' have " 971 "differing values\n", mode_string(var), var->name); 972 return; 973 } 974 975 existing->data.location = var->data.location; 976 existing->data.explicit_location = true; 977 } else { 978 /* Check if uniform with implicit location was marked explicit 979 * by earlier shader stage. If so, mark it explicit in this stage 980 * too to make sure later processing does not treat it as 981 * implicit one. 982 */ 983 if (existing->data.explicit_location) { 984 var->data.location = existing->data.location; 985 var->data.explicit_location = true; 986 } 987 } 988 989 /* From the GLSL 4.20 specification: 990 * "A link error will result if two compilation units in a program 991 * specify different integer-constant bindings for the same 992 * opaque-uniform name. However, it is not an error to specify a 993 * binding on some but not all declarations for the same name" 994 */ 995 if (var->data.explicit_binding) { 996 if (existing->data.explicit_binding && 997 var->data.binding != existing->data.binding) { 998 linker_error(prog, "explicit bindings for %s " 999 "`%s' have differing values\n", 1000 mode_string(var), var->name); 1001 return; 1002 } 1003 1004 existing->data.binding = var->data.binding; 1005 existing->data.explicit_binding = true; 1006 } 1007 1008 if (var->type->contains_atomic() && 1009 var->data.offset != existing->data.offset) { 1010 linker_error(prog, "offset specifications for %s " 1011 "`%s' have differing values\n", 1012 mode_string(var), var->name); 1013 return; 1014 } 1015 1016 /* Validate layout qualifiers for gl_FragDepth. 1017 * 1018 * From the AMD/ARB_conservative_depth specs: 1019 * 1020 * "If gl_FragDepth is redeclared in any fragment shader in a 1021 * program, it must be redeclared in all fragment shaders in 1022 * that program that have static assignments to 1023 * gl_FragDepth. All redeclarations of gl_FragDepth in all 1024 * fragment shaders in a single program must have the same set 1025 * of qualifiers." 1026 */ 1027 if (strcmp(var->name, "gl_FragDepth") == 0) { 1028 bool layout_declared = var->data.depth_layout != ir_depth_layout_none; 1029 bool layout_differs = 1030 var->data.depth_layout != existing->data.depth_layout; 1031 1032 if (layout_declared && layout_differs) { 1033 linker_error(prog, 1034 "All redeclarations of gl_FragDepth in all " 1035 "fragment shaders in a single program must have " 1036 "the same set of qualifiers.\n"); 1037 } 1038 1039 if (var->data.used && layout_differs) { 1040 linker_error(prog, 1041 "If gl_FragDepth is redeclared with a layout " 1042 "qualifier in any fragment shader, it must be " 1043 "redeclared with the same layout qualifier in " 1044 "all fragment shaders that have assignments to " 1045 "gl_FragDepth\n"); 1046 } 1047 } 1048 1049 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says: 1050 * 1051 * "If a shared global has multiple initializers, the 1052 * initializers must all be constant expressions, and they 1053 * must all have the same value. Otherwise, a link error will 1054 * result. (A shared global having only one initializer does 1055 * not require that initializer to be a constant expression.)" 1056 * 1057 * Previous to 4.20 the GLSL spec simply said that initializers 1058 * must have the same value. In this case of non-constant 1059 * initializers, this was impossible to determine. As a result, 1060 * no vendor actually implemented that behavior. The 4.20 1061 * behavior matches the implemented behavior of at least one other 1062 * vendor, so we'll implement that for all GLSL versions. 1063 */ 1064 if (var->constant_initializer != NULL) { 1065 if (existing->constant_initializer != NULL) { 1066 if (!var->constant_initializer->has_value(existing->constant_initializer)) { 1067 linker_error(prog, "initializers for %s " 1068 "`%s' have differing values\n", 1069 mode_string(var), var->name); 1070 return; 1071 } 1072 } else { 1073 /* If the first-seen instance of a particular uniform did 1074 * not have an initializer but a later instance does, 1075 * replace the former with the later. 1076 */ 1077 variables->replace_variable(existing->name, var); 1078 } 1079 } 1080 1081 if (var->data.has_initializer) { 1082 if (existing->data.has_initializer 1083 && (var->constant_initializer == NULL 1084 || existing->constant_initializer == NULL)) { 1085 linker_error(prog, 1086 "shared global variable `%s' has multiple " 1087 "non-constant initializers.\n", 1088 var->name); 1089 return; 1090 } 1091 } 1092 1093 if (existing->data.explicit_invariant != var->data.explicit_invariant) { 1094 linker_error(prog, "declarations for %s `%s' have " 1095 "mismatching invariant qualifiers\n", 1096 mode_string(var), var->name); 1097 return; 1098 } 1099 if (existing->data.centroid != var->data.centroid) { 1100 linker_error(prog, "declarations for %s `%s' have " 1101 "mismatching centroid qualifiers\n", 1102 mode_string(var), var->name); 1103 return; 1104 } 1105 if (existing->data.sample != var->data.sample) { 1106 linker_error(prog, "declarations for %s `%s` have " 1107 "mismatching sample qualifiers\n", 1108 mode_string(var), var->name); 1109 return; 1110 } 1111 if (existing->data.image_format != var->data.image_format) { 1112 linker_error(prog, "declarations for %s `%s` have " 1113 "mismatching image format qualifiers\n", 1114 mode_string(var), var->name); 1115 return; 1116 } 1117 1118 /* Check the precision qualifier matches for uniform variables on 1119 * GLSL ES. 1120 */ 1121 if (!ctx->Const.AllowGLSLRelaxedES && 1122 prog->IsES && !var->get_interface_type() && 1123 existing->data.precision != var->data.precision) { 1124 if ((existing->data.used && var->data.used) || prog->data->Version >= 300) { 1125 linker_error(prog, "declarations for %s `%s` have " 1126 "mismatching precision qualifiers\n", 1127 mode_string(var), var->name); 1128 return; 1129 } else { 1130 linker_warning(prog, "declarations for %s `%s` have " 1131 "mismatching precision qualifiers\n", 1132 mode_string(var), var->name); 1133 } 1134 } 1135 1136 /* In OpenGL GLSL 3.20 spec, section 4.3.9: 1137 * 1138 * "It is a link-time error if any particular shader interface 1139 * contains: 1140 * 1141 * - two different blocks, each having no instance name, and each 1142 * having a member of the same name, or 1143 * 1144 * - a variable outside a block, and a block with no instance name, 1145 * where the variable has the same name as a member in the block." 1146 */ 1147 const glsl_type *var_itype = var->get_interface_type(); 1148 const glsl_type *existing_itype = existing->get_interface_type(); 1149 if (var_itype != existing_itype) { 1150 if (!var_itype || !existing_itype) { 1151 linker_error(prog, "declarations for %s `%s` are inside block " 1152 "`%s` and outside a block", 1153 mode_string(var), var->name, 1154 var_itype ? var_itype->name : existing_itype->name); 1155 return; 1156 } else if (strcmp(var_itype->name, existing_itype->name) != 0) { 1157 linker_error(prog, "declarations for %s `%s` are inside blocks " 1158 "`%s` and `%s`", 1159 mode_string(var), var->name, 1160 existing_itype->name, 1161 var_itype->name); 1162 return; 1163 } 1164 } 1165 } else 1166 variables->add_variable(var); 1167 } 1168} 1169 1170 1171/** 1172 * Perform validation of uniforms used across multiple shader stages 1173 */ 1174static void 1175cross_validate_uniforms(struct gl_context *ctx, 1176 struct gl_shader_program *prog) 1177{ 1178 glsl_symbol_table variables; 1179 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1180 if (prog->_LinkedShaders[i] == NULL) 1181 continue; 1182 1183 cross_validate_globals(ctx, prog, prog->_LinkedShaders[i]->ir, 1184 &variables, true); 1185 } 1186} 1187 1188/** 1189 * Accumulates the array of buffer blocks and checks that all definitions of 1190 * blocks agree on their contents. 1191 */ 1192static bool 1193interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog, 1194 bool validate_ssbo) 1195{ 1196 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES]; 1197 struct gl_uniform_block *blks = NULL; 1198 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks : 1199 &prog->data->NumUniformBlocks; 1200 1201 unsigned max_num_buffer_blocks = 0; 1202 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1203 if (prog->_LinkedShaders[i]) { 1204 if (validate_ssbo) { 1205 max_num_buffer_blocks += 1206 prog->_LinkedShaders[i]->Program->info.num_ssbos; 1207 } else { 1208 max_num_buffer_blocks += 1209 prog->_LinkedShaders[i]->Program->info.num_ubos; 1210 } 1211 } 1212 } 1213 1214 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1215 struct gl_linked_shader *sh = prog->_LinkedShaders[i]; 1216 1217 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks]; 1218 for (unsigned int j = 0; j < max_num_buffer_blocks; j++) 1219 InterfaceBlockStageIndex[i][j] = -1; 1220 1221 if (sh == NULL) 1222 continue; 1223 1224 unsigned sh_num_blocks; 1225 struct gl_uniform_block **sh_blks; 1226 if (validate_ssbo) { 1227 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos; 1228 sh_blks = sh->Program->sh.ShaderStorageBlocks; 1229 } else { 1230 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos; 1231 sh_blks = sh->Program->sh.UniformBlocks; 1232 } 1233 1234 for (unsigned int j = 0; j < sh_num_blocks; j++) { 1235 int index = link_cross_validate_uniform_block(prog->data, &blks, 1236 num_blks, sh_blks[j]); 1237 1238 if (index == -1) { 1239 linker_error(prog, "buffer block `%s' has mismatching " 1240 "definitions\n", sh_blks[j]->Name); 1241 1242 for (unsigned k = 0; k <= i; k++) { 1243 delete[] InterfaceBlockStageIndex[k]; 1244 } 1245 1246 /* Reset the block count. This will help avoid various segfaults 1247 * from api calls that assume the array exists due to the count 1248 * being non-zero. 1249 */ 1250 *num_blks = 0; 1251 return false; 1252 } 1253 1254 InterfaceBlockStageIndex[i][index] = j; 1255 } 1256 } 1257 1258 /* Update per stage block pointers to point to the program list. 1259 * FIXME: We should be able to free the per stage blocks here. 1260 */ 1261 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1262 for (unsigned j = 0; j < *num_blks; j++) { 1263 int stage_index = InterfaceBlockStageIndex[i][j]; 1264 1265 if (stage_index != -1) { 1266 struct gl_linked_shader *sh = prog->_LinkedShaders[i]; 1267 1268 struct gl_uniform_block **sh_blks = validate_ssbo ? 1269 sh->Program->sh.ShaderStorageBlocks : 1270 sh->Program->sh.UniformBlocks; 1271 1272 blks[j].stageref |= sh_blks[stage_index]->stageref; 1273 sh_blks[stage_index] = &blks[j]; 1274 } 1275 } 1276 } 1277 1278 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1279 delete[] InterfaceBlockStageIndex[i]; 1280 } 1281 1282 if (validate_ssbo) 1283 prog->data->ShaderStorageBlocks = blks; 1284 else 1285 prog->data->UniformBlocks = blks; 1286 1287 return true; 1288} 1289 1290/** 1291 * Verifies the invariance of built-in special variables. 1292 */ 1293static bool 1294validate_invariant_builtins(struct gl_shader_program *prog, 1295 const gl_linked_shader *vert, 1296 const gl_linked_shader *frag) 1297{ 1298 const ir_variable *var_vert; 1299 const ir_variable *var_frag; 1300 1301 if (!vert || !frag) 1302 return true; 1303 1304 /* 1305 * From OpenGL ES Shading Language 1.0 specification 1306 * (4.6.4 Invariance and Linkage): 1307 * "The invariance of varyings that are declared in both the vertex and 1308 * fragment shaders must match. For the built-in special variables, 1309 * gl_FragCoord can only be declared invariant if and only if 1310 * gl_Position is declared invariant. Similarly gl_PointCoord can only 1311 * be declared invariant if and only if gl_PointSize is declared 1312 * invariant. It is an error to declare gl_FrontFacing as invariant. 1313 * The invariance of gl_FrontFacing is the same as the invariance of 1314 * gl_Position." 1315 */ 1316 var_frag = frag->symbols->get_variable("gl_FragCoord"); 1317 if (var_frag && var_frag->data.invariant) { 1318 var_vert = vert->symbols->get_variable("gl_Position"); 1319 if (var_vert && !var_vert->data.invariant) { 1320 linker_error(prog, 1321 "fragment shader built-in `%s' has invariant qualifier, " 1322 "but vertex shader built-in `%s' lacks invariant qualifier\n", 1323 var_frag->name, var_vert->name); 1324 return false; 1325 } 1326 } 1327 1328 var_frag = frag->symbols->get_variable("gl_PointCoord"); 1329 if (var_frag && var_frag->data.invariant) { 1330 var_vert = vert->symbols->get_variable("gl_PointSize"); 1331 if (var_vert && !var_vert->data.invariant) { 1332 linker_error(prog, 1333 "fragment shader built-in `%s' has invariant qualifier, " 1334 "but vertex shader built-in `%s' lacks invariant qualifier\n", 1335 var_frag->name, var_vert->name); 1336 return false; 1337 } 1338 } 1339 1340 var_frag = frag->symbols->get_variable("gl_FrontFacing"); 1341 if (var_frag && var_frag->data.invariant) { 1342 linker_error(prog, 1343 "fragment shader built-in `%s' can not be declared as invariant\n", 1344 var_frag->name); 1345 return false; 1346 } 1347 1348 return true; 1349} 1350 1351/** 1352 * Populates a shaders symbol table with all global declarations 1353 */ 1354static void 1355populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols) 1356{ 1357 sh->symbols = new(sh) glsl_symbol_table; 1358 1359 _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols); 1360} 1361 1362 1363/** 1364 * Remap variables referenced in an instruction tree 1365 * 1366 * This is used when instruction trees are cloned from one shader and placed in 1367 * another. These trees will contain references to \c ir_variable nodes that 1368 * do not exist in the target shader. This function finds these \c ir_variable 1369 * references and replaces the references with matching variables in the target 1370 * shader. 1371 * 1372 * If there is no matching variable in the target shader, a clone of the 1373 * \c ir_variable is made and added to the target shader. The new variable is 1374 * added to \b both the instruction stream and the symbol table. 1375 * 1376 * \param inst IR tree that is to be processed. 1377 * \param symbols Symbol table containing global scope symbols in the 1378 * linked shader. 1379 * \param instructions Instruction stream where new variable declarations 1380 * should be added. 1381 */ 1382static void 1383remap_variables(ir_instruction *inst, struct gl_linked_shader *target, 1384 hash_table *temps) 1385{ 1386 class remap_visitor : public ir_hierarchical_visitor { 1387 public: 1388 remap_visitor(struct gl_linked_shader *target, hash_table *temps) 1389 { 1390 this->target = target; 1391 this->symbols = target->symbols; 1392 this->instructions = target->ir; 1393 this->temps = temps; 1394 } 1395 1396 virtual ir_visitor_status visit(ir_dereference_variable *ir) 1397 { 1398 if (ir->var->data.mode == ir_var_temporary) { 1399 hash_entry *entry = _mesa_hash_table_search(temps, ir->var); 1400 ir_variable *var = entry ? (ir_variable *) entry->data : NULL; 1401 1402 assert(var != NULL); 1403 ir->var = var; 1404 return visit_continue; 1405 } 1406 1407 ir_variable *const existing = 1408 this->symbols->get_variable(ir->var->name); 1409 if (existing != NULL) 1410 ir->var = existing; 1411 else { 1412 ir_variable *copy = ir->var->clone(this->target, NULL); 1413 1414 this->symbols->add_variable(copy); 1415 this->instructions->push_head(copy); 1416 ir->var = copy; 1417 } 1418 1419 return visit_continue; 1420 } 1421 1422 private: 1423 struct gl_linked_shader *target; 1424 glsl_symbol_table *symbols; 1425 exec_list *instructions; 1426 hash_table *temps; 1427 }; 1428 1429 remap_visitor v(target, temps); 1430 1431 inst->accept(&v); 1432} 1433 1434 1435/** 1436 * Move non-declarations from one instruction stream to another 1437 * 1438 * The intended usage pattern of this function is to pass the pointer to the 1439 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node 1440 * pointer) for \c last and \c false for \c make_copies on the first 1441 * call. Successive calls pass the return value of the previous call for 1442 * \c last and \c true for \c make_copies. 1443 * 1444 * \param instructions Source instruction stream 1445 * \param last Instruction after which new instructions should be 1446 * inserted in the target instruction stream 1447 * \param make_copies Flag selecting whether instructions in \c instructions 1448 * should be copied (via \c ir_instruction::clone) into the 1449 * target list or moved. 1450 * 1451 * \return 1452 * The new "last" instruction in the target instruction stream. This pointer 1453 * is suitable for use as the \c last parameter of a later call to this 1454 * function. 1455 */ 1456static exec_node * 1457move_non_declarations(exec_list *instructions, exec_node *last, 1458 bool make_copies, gl_linked_shader *target) 1459{ 1460 hash_table *temps = NULL; 1461 1462 if (make_copies) 1463 temps = _mesa_pointer_hash_table_create(NULL); 1464 1465 foreach_in_list_safe(ir_instruction, inst, instructions) { 1466 if (inst->as_function()) 1467 continue; 1468 1469 ir_variable *var = inst->as_variable(); 1470 if ((var != NULL) && (var->data.mode != ir_var_temporary)) 1471 continue; 1472 1473 assert(inst->as_assignment() 1474 || inst->as_call() 1475 || inst->as_if() /* for initializers with the ?: operator */ 1476 || ((var != NULL) && (var->data.mode == ir_var_temporary))); 1477 1478 if (make_copies) { 1479 inst = inst->clone(target, NULL); 1480 1481 if (var != NULL) 1482 _mesa_hash_table_insert(temps, var, inst); 1483 else 1484 remap_variables(inst, target, temps); 1485 } else { 1486 inst->remove(); 1487 } 1488 1489 last->insert_after(inst); 1490 last = inst; 1491 } 1492 1493 if (make_copies) 1494 _mesa_hash_table_destroy(temps, NULL); 1495 1496 return last; 1497} 1498 1499 1500/** 1501 * This class is only used in link_intrastage_shaders() below but declaring 1502 * it inside that function leads to compiler warnings with some versions of 1503 * gcc. 1504 */ 1505class array_sizing_visitor : public deref_type_updater { 1506public: 1507 array_sizing_visitor() 1508 : mem_ctx(ralloc_context(NULL)), 1509 unnamed_interfaces(_mesa_pointer_hash_table_create(NULL)) 1510 { 1511 } 1512 1513 ~array_sizing_visitor() 1514 { 1515 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL); 1516 ralloc_free(this->mem_ctx); 1517 } 1518 1519 virtual ir_visitor_status visit(ir_variable *var) 1520 { 1521 const glsl_type *type_without_array; 1522 bool implicit_sized_array = var->data.implicit_sized_array; 1523 fixup_type(&var->type, var->data.max_array_access, 1524 var->data.from_ssbo_unsized_array, 1525 &implicit_sized_array); 1526 var->data.implicit_sized_array = implicit_sized_array; 1527 type_without_array = var->type->without_array(); 1528 if (var->type->is_interface()) { 1529 if (interface_contains_unsized_arrays(var->type)) { 1530 const glsl_type *new_type = 1531 resize_interface_members(var->type, 1532 var->get_max_ifc_array_access(), 1533 var->is_in_shader_storage_block()); 1534 var->type = new_type; 1535 var->change_interface_type(new_type); 1536 } 1537 } else if (type_without_array->is_interface()) { 1538 if (interface_contains_unsized_arrays(type_without_array)) { 1539 const glsl_type *new_type = 1540 resize_interface_members(type_without_array, 1541 var->get_max_ifc_array_access(), 1542 var->is_in_shader_storage_block()); 1543 var->change_interface_type(new_type); 1544 var->type = update_interface_members_array(var->type, new_type); 1545 } 1546 } else if (const glsl_type *ifc_type = var->get_interface_type()) { 1547 /* Store a pointer to the variable in the unnamed_interfaces 1548 * hashtable. 1549 */ 1550 hash_entry *entry = 1551 _mesa_hash_table_search(this->unnamed_interfaces, 1552 ifc_type); 1553 1554 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL; 1555 1556 if (interface_vars == NULL) { 1557 interface_vars = rzalloc_array(mem_ctx, ir_variable *, 1558 ifc_type->length); 1559 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type, 1560 interface_vars); 1561 } 1562 unsigned index = ifc_type->field_index(var->name); 1563 assert(index < ifc_type->length); 1564 assert(interface_vars[index] == NULL); 1565 interface_vars[index] = var; 1566 } 1567 return visit_continue; 1568 } 1569 1570 /** 1571 * For each unnamed interface block that was discovered while running the 1572 * visitor, adjust the interface type to reflect the newly assigned array 1573 * sizes, and fix up the ir_variable nodes to point to the new interface 1574 * type. 1575 */ 1576 void fixup_unnamed_interface_types() 1577 { 1578 hash_table_call_foreach(this->unnamed_interfaces, 1579 fixup_unnamed_interface_type, NULL); 1580 } 1581 1582private: 1583 /** 1584 * If the type pointed to by \c type represents an unsized array, replace 1585 * it with a sized array whose size is determined by max_array_access. 1586 */ 1587 static void fixup_type(const glsl_type **type, unsigned max_array_access, 1588 bool from_ssbo_unsized_array, bool *implicit_sized) 1589 { 1590 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) { 1591 *type = glsl_type::get_array_instance((*type)->fields.array, 1592 max_array_access + 1); 1593 *implicit_sized = true; 1594 assert(*type != NULL); 1595 } 1596 } 1597 1598 static const glsl_type * 1599 update_interface_members_array(const glsl_type *type, 1600 const glsl_type *new_interface_type) 1601 { 1602 const glsl_type *element_type = type->fields.array; 1603 if (element_type->is_array()) { 1604 const glsl_type *new_array_type = 1605 update_interface_members_array(element_type, new_interface_type); 1606 return glsl_type::get_array_instance(new_array_type, type->length); 1607 } else { 1608 return glsl_type::get_array_instance(new_interface_type, 1609 type->length); 1610 } 1611 } 1612 1613 /** 1614 * Determine whether the given interface type contains unsized arrays (if 1615 * it doesn't, array_sizing_visitor doesn't need to process it). 1616 */ 1617 static bool interface_contains_unsized_arrays(const glsl_type *type) 1618 { 1619 for (unsigned i = 0; i < type->length; i++) { 1620 const glsl_type *elem_type = type->fields.structure[i].type; 1621 if (elem_type->is_unsized_array()) 1622 return true; 1623 } 1624 return false; 1625 } 1626 1627 /** 1628 * Create a new interface type based on the given type, with unsized arrays 1629 * replaced by sized arrays whose size is determined by 1630 * max_ifc_array_access. 1631 */ 1632 static const glsl_type * 1633 resize_interface_members(const glsl_type *type, 1634 const int *max_ifc_array_access, 1635 bool is_ssbo) 1636 { 1637 unsigned num_fields = type->length; 1638 glsl_struct_field *fields = new glsl_struct_field[num_fields]; 1639 memcpy(fields, type->fields.structure, 1640 num_fields * sizeof(*fields)); 1641 for (unsigned i = 0; i < num_fields; i++) { 1642 bool implicit_sized_array = fields[i].implicit_sized_array; 1643 /* If SSBO last member is unsized array, we don't replace it by a sized 1644 * array. 1645 */ 1646 if (is_ssbo && i == (num_fields - 1)) 1647 fixup_type(&fields[i].type, max_ifc_array_access[i], 1648 true, &implicit_sized_array); 1649 else 1650 fixup_type(&fields[i].type, max_ifc_array_access[i], 1651 false, &implicit_sized_array); 1652 fields[i].implicit_sized_array = implicit_sized_array; 1653 } 1654 glsl_interface_packing packing = 1655 (glsl_interface_packing) type->interface_packing; 1656 bool row_major = (bool) type->interface_row_major; 1657 const glsl_type *new_ifc_type = 1658 glsl_type::get_interface_instance(fields, num_fields, 1659 packing, row_major, type->name); 1660 delete [] fields; 1661 return new_ifc_type; 1662 } 1663 1664 static void fixup_unnamed_interface_type(const void *key, void *data, 1665 void *) 1666 { 1667 const glsl_type *ifc_type = (const glsl_type *) key; 1668 ir_variable **interface_vars = (ir_variable **) data; 1669 unsigned num_fields = ifc_type->length; 1670 glsl_struct_field *fields = new glsl_struct_field[num_fields]; 1671 memcpy(fields, ifc_type->fields.structure, 1672 num_fields * sizeof(*fields)); 1673 bool interface_type_changed = false; 1674 for (unsigned i = 0; i < num_fields; i++) { 1675 if (interface_vars[i] != NULL && 1676 fields[i].type != interface_vars[i]->type) { 1677 fields[i].type = interface_vars[i]->type; 1678 interface_type_changed = true; 1679 } 1680 } 1681 if (!interface_type_changed) { 1682 delete [] fields; 1683 return; 1684 } 1685 glsl_interface_packing packing = 1686 (glsl_interface_packing) ifc_type->interface_packing; 1687 bool row_major = (bool) ifc_type->interface_row_major; 1688 const glsl_type *new_ifc_type = 1689 glsl_type::get_interface_instance(fields, num_fields, packing, 1690 row_major, ifc_type->name); 1691 delete [] fields; 1692 for (unsigned i = 0; i < num_fields; i++) { 1693 if (interface_vars[i] != NULL) 1694 interface_vars[i]->change_interface_type(new_ifc_type); 1695 } 1696 } 1697 1698 /** 1699 * Memory context used to allocate the data in \c unnamed_interfaces. 1700 */ 1701 void *mem_ctx; 1702 1703 /** 1704 * Hash table from const glsl_type * to an array of ir_variable *'s 1705 * pointing to the ir_variables constituting each unnamed interface block. 1706 */ 1707 hash_table *unnamed_interfaces; 1708}; 1709 1710static bool 1711validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx, 1712 struct gl_shader_program *prog) 1713{ 1714 /* We will validate doubles at a later stage */ 1715 if (prog->TransformFeedback.BufferStride[idx] % 4) { 1716 linker_error(prog, "invalid qualifier xfb_stride=%d must be a " 1717 "multiple of 4 or if its applied to a type that is " 1718 "or contains a double a multiple of 8.", 1719 prog->TransformFeedback.BufferStride[idx]); 1720 return false; 1721 } 1722 1723 if (prog->TransformFeedback.BufferStride[idx] / 4 > 1724 ctx->Const.MaxTransformFeedbackInterleavedComponents) { 1725 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS " 1726 "limit has been exceeded."); 1727 return false; 1728 } 1729 1730 return true; 1731} 1732 1733/** 1734 * Check for conflicting xfb_stride default qualifiers and store buffer stride 1735 * for later use. 1736 */ 1737static void 1738link_xfb_stride_layout_qualifiers(struct gl_context *ctx, 1739 struct gl_shader_program *prog, 1740 struct gl_shader **shader_list, 1741 unsigned num_shaders) 1742{ 1743 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) { 1744 prog->TransformFeedback.BufferStride[i] = 0; 1745 } 1746 1747 for (unsigned i = 0; i < num_shaders; i++) { 1748 struct gl_shader *shader = shader_list[i]; 1749 1750 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) { 1751 if (shader->TransformFeedbackBufferStride[j]) { 1752 if (prog->TransformFeedback.BufferStride[j] == 0) { 1753 prog->TransformFeedback.BufferStride[j] = 1754 shader->TransformFeedbackBufferStride[j]; 1755 if (!validate_xfb_buffer_stride(ctx, j, prog)) 1756 return; 1757 } else if (prog->TransformFeedback.BufferStride[j] != 1758 shader->TransformFeedbackBufferStride[j]){ 1759 linker_error(prog, 1760 "intrastage shaders defined with conflicting " 1761 "xfb_stride for buffer %d (%d and %d)\n", j, 1762 prog->TransformFeedback.BufferStride[j], 1763 shader->TransformFeedbackBufferStride[j]); 1764 return; 1765 } 1766 } 1767 } 1768 } 1769} 1770 1771/** 1772 * Check for conflicting bindless/bound sampler/image layout qualifiers at 1773 * global scope. 1774 */ 1775static void 1776link_bindless_layout_qualifiers(struct gl_shader_program *prog, 1777 struct gl_shader **shader_list, 1778 unsigned num_shaders) 1779{ 1780 bool bindless_sampler, bindless_image; 1781 bool bound_sampler, bound_image; 1782 1783 bindless_sampler = bindless_image = false; 1784 bound_sampler = bound_image = false; 1785 1786 for (unsigned i = 0; i < num_shaders; i++) { 1787 struct gl_shader *shader = shader_list[i]; 1788 1789 if (shader->bindless_sampler) 1790 bindless_sampler = true; 1791 if (shader->bindless_image) 1792 bindless_image = true; 1793 if (shader->bound_sampler) 1794 bound_sampler = true; 1795 if (shader->bound_image) 1796 bound_image = true; 1797 1798 if ((bindless_sampler && bound_sampler) || 1799 (bindless_image && bound_image)) { 1800 /* From section 4.4.6 of the ARB_bindless_texture spec: 1801 * 1802 * "If both bindless_sampler and bound_sampler, or bindless_image 1803 * and bound_image, are declared at global scope in any 1804 * compilation unit, a link- time error will be generated." 1805 */ 1806 linker_error(prog, "both bindless_sampler and bound_sampler, or " 1807 "bindless_image and bound_image, can't be declared at " 1808 "global scope"); 1809 } 1810 } 1811} 1812 1813/** 1814 * Performs the cross-validation of tessellation control shader vertices and 1815 * layout qualifiers for the attached tessellation control shaders, 1816 * and propagates them to the linked TCS and linked shader program. 1817 */ 1818static void 1819link_tcs_out_layout_qualifiers(struct gl_shader_program *prog, 1820 struct gl_program *gl_prog, 1821 struct gl_shader **shader_list, 1822 unsigned num_shaders) 1823{ 1824 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL) 1825 return; 1826 1827 gl_prog->info.tess.tcs_vertices_out = 0; 1828 1829 /* From the GLSL 4.0 spec (chapter 4.3.8.2): 1830 * 1831 * "All tessellation control shader layout declarations in a program 1832 * must specify the same output patch vertex count. There must be at 1833 * least one layout qualifier specifying an output patch vertex count 1834 * in any program containing tessellation control shaders; however, 1835 * such a declaration is not required in all tessellation control 1836 * shaders." 1837 */ 1838 1839 for (unsigned i = 0; i < num_shaders; i++) { 1840 struct gl_shader *shader = shader_list[i]; 1841 1842 if (shader->info.TessCtrl.VerticesOut != 0) { 1843 if (gl_prog->info.tess.tcs_vertices_out != 0 && 1844 gl_prog->info.tess.tcs_vertices_out != 1845 (unsigned) shader->info.TessCtrl.VerticesOut) { 1846 linker_error(prog, "tessellation control shader defined with " 1847 "conflicting output vertex count (%d and %d)\n", 1848 gl_prog->info.tess.tcs_vertices_out, 1849 shader->info.TessCtrl.VerticesOut); 1850 return; 1851 } 1852 gl_prog->info.tess.tcs_vertices_out = 1853 shader->info.TessCtrl.VerticesOut; 1854 } 1855 } 1856 1857 /* Just do the intrastage -> interstage propagation right now, 1858 * since we already know we're in the right type of shader program 1859 * for doing it. 1860 */ 1861 if (gl_prog->info.tess.tcs_vertices_out == 0) { 1862 linker_error(prog, "tessellation control shader didn't declare " 1863 "vertices out layout qualifier\n"); 1864 return; 1865 } 1866} 1867 1868 1869/** 1870 * Performs the cross-validation of tessellation evaluation shader 1871 * primitive type, vertex spacing, ordering and point_mode layout qualifiers 1872 * for the attached tessellation evaluation shaders, and propagates them 1873 * to the linked TES and linked shader program. 1874 */ 1875static void 1876link_tes_in_layout_qualifiers(struct gl_shader_program *prog, 1877 struct gl_program *gl_prog, 1878 struct gl_shader **shader_list, 1879 unsigned num_shaders) 1880{ 1881 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL) 1882 return; 1883 1884 int point_mode = -1; 1885 unsigned vertex_order = 0; 1886 1887 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN; 1888 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED; 1889 1890 /* From the GLSL 4.0 spec (chapter 4.3.8.1): 1891 * 1892 * "At least one tessellation evaluation shader (compilation unit) in 1893 * a program must declare a primitive mode in its input layout. 1894 * Declaration vertex spacing, ordering, and point mode identifiers is 1895 * optional. It is not required that all tessellation evaluation 1896 * shaders in a program declare a primitive mode. If spacing or 1897 * vertex ordering declarations are omitted, the tessellation 1898 * primitive generator will use equal spacing or counter-clockwise 1899 * vertex ordering, respectively. If a point mode declaration is 1900 * omitted, the tessellation primitive generator will produce lines or 1901 * triangles according to the primitive mode." 1902 */ 1903 1904 for (unsigned i = 0; i < num_shaders; i++) { 1905 struct gl_shader *shader = shader_list[i]; 1906 1907 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) { 1908 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN && 1909 gl_prog->info.tess.primitive_mode != 1910 shader->info.TessEval.PrimitiveMode) { 1911 linker_error(prog, "tessellation evaluation shader defined with " 1912 "conflicting input primitive modes.\n"); 1913 return; 1914 } 1915 gl_prog->info.tess.primitive_mode = 1916 shader->info.TessEval.PrimitiveMode; 1917 } 1918 1919 if (shader->info.TessEval.Spacing != 0) { 1920 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing != 1921 shader->info.TessEval.Spacing) { 1922 linker_error(prog, "tessellation evaluation shader defined with " 1923 "conflicting vertex spacing.\n"); 1924 return; 1925 } 1926 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing; 1927 } 1928 1929 if (shader->info.TessEval.VertexOrder != 0) { 1930 if (vertex_order != 0 && 1931 vertex_order != shader->info.TessEval.VertexOrder) { 1932 linker_error(prog, "tessellation evaluation shader defined with " 1933 "conflicting ordering.\n"); 1934 return; 1935 } 1936 vertex_order = shader->info.TessEval.VertexOrder; 1937 } 1938 1939 if (shader->info.TessEval.PointMode != -1) { 1940 if (point_mode != -1 && 1941 point_mode != shader->info.TessEval.PointMode) { 1942 linker_error(prog, "tessellation evaluation shader defined with " 1943 "conflicting point modes.\n"); 1944 return; 1945 } 1946 point_mode = shader->info.TessEval.PointMode; 1947 } 1948 1949 } 1950 1951 /* Just do the intrastage -> interstage propagation right now, 1952 * since we already know we're in the right type of shader program 1953 * for doing it. 1954 */ 1955 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) { 1956 linker_error(prog, 1957 "tessellation evaluation shader didn't declare input " 1958 "primitive modes.\n"); 1959 return; 1960 } 1961 1962 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED) 1963 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL; 1964 1965 if (vertex_order == 0 || vertex_order == GL_CCW) 1966 gl_prog->info.tess.ccw = true; 1967 else 1968 gl_prog->info.tess.ccw = false; 1969 1970 1971 if (point_mode == -1 || point_mode == GL_FALSE) 1972 gl_prog->info.tess.point_mode = false; 1973 else 1974 gl_prog->info.tess.point_mode = true; 1975} 1976 1977 1978/** 1979 * Performs the cross-validation of layout qualifiers specified in 1980 * redeclaration of gl_FragCoord for the attached fragment shaders, 1981 * and propagates them to the linked FS and linked shader program. 1982 */ 1983static void 1984link_fs_inout_layout_qualifiers(struct gl_shader_program *prog, 1985 struct gl_linked_shader *linked_shader, 1986 struct gl_shader **shader_list, 1987 unsigned num_shaders) 1988{ 1989 bool redeclares_gl_fragcoord = false; 1990 bool uses_gl_fragcoord = false; 1991 bool origin_upper_left = false; 1992 bool pixel_center_integer = false; 1993 1994 if (linked_shader->Stage != MESA_SHADER_FRAGMENT || 1995 (prog->data->Version < 150 && 1996 !prog->ARB_fragment_coord_conventions_enable)) 1997 return; 1998 1999 for (unsigned i = 0; i < num_shaders; i++) { 2000 struct gl_shader *shader = shader_list[i]; 2001 /* From the GLSL 1.50 spec, page 39: 2002 * 2003 * "If gl_FragCoord is redeclared in any fragment shader in a program, 2004 * it must be redeclared in all the fragment shaders in that program 2005 * that have a static use gl_FragCoord." 2006 */ 2007 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord && 2008 shader->uses_gl_fragcoord) 2009 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord && 2010 uses_gl_fragcoord)) { 2011 linker_error(prog, "fragment shader defined with conflicting " 2012 "layout qualifiers for gl_FragCoord\n"); 2013 } 2014 2015 /* From the GLSL 1.50 spec, page 39: 2016 * 2017 * "All redeclarations of gl_FragCoord in all fragment shaders in a 2018 * single program must have the same set of qualifiers." 2019 */ 2020 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord && 2021 (shader->origin_upper_left != origin_upper_left || 2022 shader->pixel_center_integer != pixel_center_integer)) { 2023 linker_error(prog, "fragment shader defined with conflicting " 2024 "layout qualifiers for gl_FragCoord\n"); 2025 } 2026 2027 /* Update the linked shader state. Note that uses_gl_fragcoord should 2028 * accumulate the results. The other values should replace. If there 2029 * are multiple redeclarations, all the fields except uses_gl_fragcoord 2030 * are already known to be the same. 2031 */ 2032 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) { 2033 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord; 2034 uses_gl_fragcoord |= shader->uses_gl_fragcoord; 2035 origin_upper_left = shader->origin_upper_left; 2036 pixel_center_integer = shader->pixel_center_integer; 2037 } 2038 2039 linked_shader->Program->info.fs.early_fragment_tests |= 2040 shader->EarlyFragmentTests || shader->PostDepthCoverage; 2041 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage; 2042 linked_shader->Program->info.fs.post_depth_coverage |= 2043 shader->PostDepthCoverage; 2044 linked_shader->Program->info.fs.pixel_interlock_ordered |= 2045 shader->PixelInterlockOrdered; 2046 linked_shader->Program->info.fs.pixel_interlock_unordered |= 2047 shader->PixelInterlockUnordered; 2048 linked_shader->Program->info.fs.sample_interlock_ordered |= 2049 shader->SampleInterlockOrdered; 2050 linked_shader->Program->info.fs.sample_interlock_unordered |= 2051 shader->SampleInterlockUnordered; 2052 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport; 2053 } 2054 2055 linked_shader->Program->info.fs.pixel_center_integer = pixel_center_integer; 2056 linked_shader->Program->info.fs.origin_upper_left = origin_upper_left; 2057} 2058 2059/** 2060 * Performs the cross-validation of geometry shader max_vertices and 2061 * primitive type layout qualifiers for the attached geometry shaders, 2062 * and propagates them to the linked GS and linked shader program. 2063 */ 2064static void 2065link_gs_inout_layout_qualifiers(struct gl_shader_program *prog, 2066 struct gl_program *gl_prog, 2067 struct gl_shader **shader_list, 2068 unsigned num_shaders) 2069{ 2070 /* No in/out qualifiers defined for anything but GLSL 1.50+ 2071 * geometry shaders so far. 2072 */ 2073 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY || 2074 prog->data->Version < 150) 2075 return; 2076 2077 int vertices_out = -1; 2078 2079 gl_prog->info.gs.invocations = 0; 2080 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN; 2081 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN; 2082 2083 /* From the GLSL 1.50 spec, page 46: 2084 * 2085 * "All geometry shader output layout declarations in a program 2086 * must declare the same layout and same value for 2087 * max_vertices. There must be at least one geometry output 2088 * layout declaration somewhere in a program, but not all 2089 * geometry shaders (compilation units) are required to 2090 * declare it." 2091 */ 2092 2093 for (unsigned i = 0; i < num_shaders; i++) { 2094 struct gl_shader *shader = shader_list[i]; 2095 2096 if (shader->info.Geom.InputType != PRIM_UNKNOWN) { 2097 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN && 2098 gl_prog->info.gs.input_primitive != 2099 shader->info.Geom.InputType) { 2100 linker_error(prog, "geometry shader defined with conflicting " 2101 "input types\n"); 2102 return; 2103 } 2104 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType; 2105 } 2106 2107 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) { 2108 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN && 2109 gl_prog->info.gs.output_primitive != 2110 shader->info.Geom.OutputType) { 2111 linker_error(prog, "geometry shader defined with conflicting " 2112 "output types\n"); 2113 return; 2114 } 2115 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType; 2116 } 2117 2118 if (shader->info.Geom.VerticesOut != -1) { 2119 if (vertices_out != -1 && 2120 vertices_out != shader->info.Geom.VerticesOut) { 2121 linker_error(prog, "geometry shader defined with conflicting " 2122 "output vertex count (%d and %d)\n", 2123 vertices_out, shader->info.Geom.VerticesOut); 2124 return; 2125 } 2126 vertices_out = shader->info.Geom.VerticesOut; 2127 } 2128 2129 if (shader->info.Geom.Invocations != 0) { 2130 if (gl_prog->info.gs.invocations != 0 && 2131 gl_prog->info.gs.invocations != 2132 (unsigned) shader->info.Geom.Invocations) { 2133 linker_error(prog, "geometry shader defined with conflicting " 2134 "invocation count (%d and %d)\n", 2135 gl_prog->info.gs.invocations, 2136 shader->info.Geom.Invocations); 2137 return; 2138 } 2139 gl_prog->info.gs.invocations = shader->info.Geom.Invocations; 2140 } 2141 } 2142 2143 /* Just do the intrastage -> interstage propagation right now, 2144 * since we already know we're in the right type of shader program 2145 * for doing it. 2146 */ 2147 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) { 2148 linker_error(prog, 2149 "geometry shader didn't declare primitive input type\n"); 2150 return; 2151 } 2152 2153 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) { 2154 linker_error(prog, 2155 "geometry shader didn't declare primitive output type\n"); 2156 return; 2157 } 2158 2159 if (vertices_out == -1) { 2160 linker_error(prog, 2161 "geometry shader didn't declare max_vertices\n"); 2162 return; 2163 } else { 2164 gl_prog->info.gs.vertices_out = vertices_out; 2165 } 2166 2167 if (gl_prog->info.gs.invocations == 0) 2168 gl_prog->info.gs.invocations = 1; 2169} 2170 2171 2172/** 2173 * Perform cross-validation of compute shader local_size_{x,y,z} layout and 2174 * derivative arrangement qualifiers for the attached compute shaders, and 2175 * propagate them to the linked CS and linked shader program. 2176 */ 2177static void 2178link_cs_input_layout_qualifiers(struct gl_shader_program *prog, 2179 struct gl_program *gl_prog, 2180 struct gl_shader **shader_list, 2181 unsigned num_shaders) 2182{ 2183 /* This function is called for all shader stages, but it only has an effect 2184 * for compute shaders. 2185 */ 2186 if (gl_prog->info.stage != MESA_SHADER_COMPUTE) 2187 return; 2188 2189 for (int i = 0; i < 3; i++) 2190 gl_prog->info.cs.local_size[i] = 0; 2191 2192 gl_prog->info.cs.local_size_variable = false; 2193 2194 gl_prog->info.cs.derivative_group = DERIVATIVE_GROUP_NONE; 2195 2196 /* From the ARB_compute_shader spec, in the section describing local size 2197 * declarations: 2198 * 2199 * If multiple compute shaders attached to a single program object 2200 * declare local work-group size, the declarations must be identical; 2201 * otherwise a link-time error results. Furthermore, if a program 2202 * object contains any compute shaders, at least one must contain an 2203 * input layout qualifier specifying the local work sizes of the 2204 * program, or a link-time error will occur. 2205 */ 2206 for (unsigned sh = 0; sh < num_shaders; sh++) { 2207 struct gl_shader *shader = shader_list[sh]; 2208 2209 if (shader->info.Comp.LocalSize[0] != 0) { 2210 if (gl_prog->info.cs.local_size[0] != 0) { 2211 for (int i = 0; i < 3; i++) { 2212 if (gl_prog->info.cs.local_size[i] != 2213 shader->info.Comp.LocalSize[i]) { 2214 linker_error(prog, "compute shader defined with conflicting " 2215 "local sizes\n"); 2216 return; 2217 } 2218 } 2219 } 2220 for (int i = 0; i < 3; i++) { 2221 gl_prog->info.cs.local_size[i] = 2222 shader->info.Comp.LocalSize[i]; 2223 } 2224 } else if (shader->info.Comp.LocalSizeVariable) { 2225 if (gl_prog->info.cs.local_size[0] != 0) { 2226 /* The ARB_compute_variable_group_size spec says: 2227 * 2228 * If one compute shader attached to a program declares a 2229 * variable local group size and a second compute shader 2230 * attached to the same program declares a fixed local group 2231 * size, a link-time error results. 2232 */ 2233 linker_error(prog, "compute shader defined with both fixed and " 2234 "variable local group size\n"); 2235 return; 2236 } 2237 gl_prog->info.cs.local_size_variable = true; 2238 } 2239 2240 enum gl_derivative_group group = shader->info.Comp.DerivativeGroup; 2241 if (group != DERIVATIVE_GROUP_NONE) { 2242 if (gl_prog->info.cs.derivative_group != DERIVATIVE_GROUP_NONE && 2243 gl_prog->info.cs.derivative_group != group) { 2244 linker_error(prog, "compute shader defined with conflicting " 2245 "derivative groups\n"); 2246 return; 2247 } 2248 gl_prog->info.cs.derivative_group = group; 2249 } 2250 } 2251 2252 /* Just do the intrastage -> interstage propagation right now, 2253 * since we already know we're in the right type of shader program 2254 * for doing it. 2255 */ 2256 if (gl_prog->info.cs.local_size[0] == 0 && 2257 !gl_prog->info.cs.local_size_variable) { 2258 linker_error(prog, "compute shader must contain a fixed or a variable " 2259 "local group size\n"); 2260 return; 2261 } 2262 2263 if (gl_prog->info.cs.derivative_group == DERIVATIVE_GROUP_QUADS) { 2264 if (gl_prog->info.cs.local_size[0] % 2 != 0) { 2265 linker_error(prog, "derivative_group_quadsNV must be used with a " 2266 "local group size whose first dimension " 2267 "is a multiple of 2\n"); 2268 return; 2269 } 2270 if (gl_prog->info.cs.local_size[1] % 2 != 0) { 2271 linker_error(prog, "derivative_group_quadsNV must be used with a local" 2272 "group size whose second dimension " 2273 "is a multiple of 2\n"); 2274 return; 2275 } 2276 } else if (gl_prog->info.cs.derivative_group == DERIVATIVE_GROUP_LINEAR) { 2277 if ((gl_prog->info.cs.local_size[0] * 2278 gl_prog->info.cs.local_size[1] * 2279 gl_prog->info.cs.local_size[2]) % 4 != 0) { 2280 linker_error(prog, "derivative_group_linearNV must be used with a " 2281 "local group size whose total number of invocations " 2282 "is a multiple of 4\n"); 2283 return; 2284 } 2285 } 2286} 2287 2288/** 2289 * Link all out variables on a single stage which are not 2290 * directly used in a shader with the main function. 2291 */ 2292static void 2293link_output_variables(struct gl_linked_shader *linked_shader, 2294 struct gl_shader **shader_list, 2295 unsigned num_shaders) 2296{ 2297 struct glsl_symbol_table *symbols = linked_shader->symbols; 2298 2299 for (unsigned i = 0; i < num_shaders; i++) { 2300 2301 /* Skip shader object with main function */ 2302 if (shader_list[i]->symbols->get_function("main")) 2303 continue; 2304 2305 foreach_in_list(ir_instruction, ir, shader_list[i]->ir) { 2306 if (ir->ir_type != ir_type_variable) 2307 continue; 2308 2309 ir_variable *var = (ir_variable *) ir; 2310 2311 if (var->data.mode == ir_var_shader_out && 2312 !symbols->get_variable(var->name)) { 2313 var = var->clone(linked_shader, NULL); 2314 symbols->add_variable(var); 2315 linked_shader->ir->push_head(var); 2316 } 2317 } 2318 } 2319 2320 return; 2321} 2322 2323 2324/** 2325 * Combine a group of shaders for a single stage to generate a linked shader 2326 * 2327 * \note 2328 * If this function is supplied a single shader, it is cloned, and the new 2329 * shader is returned. 2330 */ 2331struct gl_linked_shader * 2332link_intrastage_shaders(void *mem_ctx, 2333 struct gl_context *ctx, 2334 struct gl_shader_program *prog, 2335 struct gl_shader **shader_list, 2336 unsigned num_shaders, 2337 bool allow_missing_main) 2338{ 2339 struct gl_uniform_block *ubo_blocks = NULL; 2340 struct gl_uniform_block *ssbo_blocks = NULL; 2341 unsigned num_ubo_blocks = 0; 2342 unsigned num_ssbo_blocks = 0; 2343 2344 /* Check that global variables defined in multiple shaders are consistent. 2345 */ 2346 glsl_symbol_table variables; 2347 for (unsigned i = 0; i < num_shaders; i++) { 2348 if (shader_list[i] == NULL) 2349 continue; 2350 cross_validate_globals(ctx, prog, shader_list[i]->ir, &variables, 2351 false); 2352 } 2353 2354 if (!prog->data->LinkStatus) 2355 return NULL; 2356 2357 /* Check that interface blocks defined in multiple shaders are consistent. 2358 */ 2359 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list, 2360 num_shaders); 2361 if (!prog->data->LinkStatus) 2362 return NULL; 2363 2364 /* Check that there is only a single definition of each function signature 2365 * across all shaders. 2366 */ 2367 for (unsigned i = 0; i < (num_shaders - 1); i++) { 2368 foreach_in_list(ir_instruction, node, shader_list[i]->ir) { 2369 ir_function *const f = node->as_function(); 2370 2371 if (f == NULL) 2372 continue; 2373 2374 for (unsigned j = i + 1; j < num_shaders; j++) { 2375 ir_function *const other = 2376 shader_list[j]->symbols->get_function(f->name); 2377 2378 /* If the other shader has no function (and therefore no function 2379 * signatures) with the same name, skip to the next shader. 2380 */ 2381 if (other == NULL) 2382 continue; 2383 2384 foreach_in_list(ir_function_signature, sig, &f->signatures) { 2385 if (!sig->is_defined) 2386 continue; 2387 2388 ir_function_signature *other_sig = 2389 other->exact_matching_signature(NULL, &sig->parameters); 2390 2391 if (other_sig != NULL && other_sig->is_defined) { 2392 linker_error(prog, "function `%s' is multiply defined\n", 2393 f->name); 2394 return NULL; 2395 } 2396 } 2397 } 2398 } 2399 } 2400 2401 /* Find the shader that defines main, and make a clone of it. 2402 * 2403 * Starting with the clone, search for undefined references. If one is 2404 * found, find the shader that defines it. Clone the reference and add 2405 * it to the shader. Repeat until there are no undefined references or 2406 * until a reference cannot be resolved. 2407 */ 2408 gl_shader *main = NULL; 2409 for (unsigned i = 0; i < num_shaders; i++) { 2410 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) { 2411 main = shader_list[i]; 2412 break; 2413 } 2414 } 2415 2416 if (main == NULL && allow_missing_main) 2417 main = shader_list[0]; 2418 2419 if (main == NULL) { 2420 linker_error(prog, "%s shader lacks `main'\n", 2421 _mesa_shader_stage_to_string(shader_list[0]->Stage)); 2422 return NULL; 2423 } 2424 2425 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader); 2426 linked->Stage = shader_list[0]->Stage; 2427 2428 /* Create program and attach it to the linked shader */ 2429 struct gl_program *gl_prog = 2430 ctx->Driver.NewProgram(ctx, 2431 _mesa_shader_stage_to_program(shader_list[0]->Stage), 2432 prog->Name, false); 2433 if (!gl_prog) { 2434 prog->data->LinkStatus = LINKING_FAILURE; 2435 _mesa_delete_linked_shader(ctx, linked); 2436 return NULL; 2437 } 2438 2439 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data); 2440 2441 /* Don't use _mesa_reference_program() just take ownership */ 2442 linked->Program = gl_prog; 2443 2444 linked->ir = new(linked) exec_list; 2445 clone_ir_list(mem_ctx, linked->ir, main->ir); 2446 2447 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders); 2448 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); 2449 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); 2450 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); 2451 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); 2452 2453 if (linked->Stage != MESA_SHADER_FRAGMENT) 2454 link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders); 2455 2456 link_bindless_layout_qualifiers(prog, shader_list, num_shaders); 2457 2458 populate_symbol_table(linked, shader_list[0]->symbols); 2459 2460 /* The pointer to the main function in the final linked shader (i.e., the 2461 * copy of the original shader that contained the main function). 2462 */ 2463 ir_function_signature *const main_sig = 2464 _mesa_get_main_function_signature(linked->symbols); 2465 2466 /* Move any instructions other than variable declarations or function 2467 * declarations into main. 2468 */ 2469 if (main_sig != NULL) { 2470 exec_node *insertion_point = 2471 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false, 2472 linked); 2473 2474 for (unsigned i = 0; i < num_shaders; i++) { 2475 if (shader_list[i] == main) 2476 continue; 2477 2478 insertion_point = move_non_declarations(shader_list[i]->ir, 2479 insertion_point, true, linked); 2480 } 2481 } 2482 2483 if (!link_function_calls(prog, linked, shader_list, num_shaders)) { 2484 _mesa_delete_linked_shader(ctx, linked); 2485 return NULL; 2486 } 2487 2488 if (linked->Stage != MESA_SHADER_FRAGMENT) 2489 link_output_variables(linked, shader_list, num_shaders); 2490 2491 /* Make a pass over all variable declarations to ensure that arrays with 2492 * unspecified sizes have a size specified. The size is inferred from the 2493 * max_array_access field. 2494 */ 2495 array_sizing_visitor v; 2496 v.run(linked->ir); 2497 v.fixup_unnamed_interface_types(); 2498 2499 /* Link up uniform blocks defined within this stage. */ 2500 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks, 2501 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks); 2502 2503 if (!prog->data->LinkStatus) { 2504 _mesa_delete_linked_shader(ctx, linked); 2505 return NULL; 2506 } 2507 2508 /* Copy ubo blocks to linked shader list */ 2509 linked->Program->sh.UniformBlocks = 2510 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks); 2511 ralloc_steal(linked, ubo_blocks); 2512 for (unsigned i = 0; i < num_ubo_blocks; i++) { 2513 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i]; 2514 } 2515 linked->Program->info.num_ubos = num_ubo_blocks; 2516 2517 /* Copy ssbo blocks to linked shader list */ 2518 linked->Program->sh.ShaderStorageBlocks = 2519 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks); 2520 ralloc_steal(linked, ssbo_blocks); 2521 for (unsigned i = 0; i < num_ssbo_blocks; i++) { 2522 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i]; 2523 } 2524 linked->Program->info.num_ssbos = num_ssbo_blocks; 2525 2526 /* At this point linked should contain all of the linked IR, so 2527 * validate it to make sure nothing went wrong. 2528 */ 2529 validate_ir_tree(linked->ir); 2530 2531 /* Set the size of geometry shader input arrays */ 2532 if (linked->Stage == MESA_SHADER_GEOMETRY) { 2533 unsigned num_vertices = 2534 vertices_per_prim(gl_prog->info.gs.input_primitive); 2535 array_resize_visitor input_resize_visitor(num_vertices, prog, 2536 MESA_SHADER_GEOMETRY); 2537 foreach_in_list(ir_instruction, ir, linked->ir) { 2538 ir->accept(&input_resize_visitor); 2539 } 2540 } 2541 2542 if (ctx->Const.VertexID_is_zero_based) 2543 lower_vertex_id(linked); 2544 2545 if (ctx->Const.LowerCsDerivedVariables) 2546 lower_cs_derived(linked); 2547 2548#ifdef DEBUG 2549 /* Compute the source checksum. */ 2550 linked->SourceChecksum = 0; 2551 for (unsigned i = 0; i < num_shaders; i++) { 2552 if (shader_list[i] == NULL) 2553 continue; 2554 linked->SourceChecksum ^= shader_list[i]->SourceChecksum; 2555 } 2556#endif 2557 2558 return linked; 2559} 2560 2561/** 2562 * Update the sizes of linked shader uniform arrays to the maximum 2563 * array index used. 2564 * 2565 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec: 2566 * 2567 * If one or more elements of an array are active, 2568 * GetActiveUniform will return the name of the array in name, 2569 * subject to the restrictions listed above. The type of the array 2570 * is returned in type. The size parameter contains the highest 2571 * array element index used, plus one. The compiler or linker 2572 * determines the highest index used. There will be only one 2573 * active uniform reported by the GL per uniform array. 2574 2575 */ 2576static void 2577update_array_sizes(struct gl_shader_program *prog) 2578{ 2579 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 2580 if (prog->_LinkedShaders[i] == NULL) 2581 continue; 2582 2583 bool types_were_updated = false; 2584 2585 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { 2586 ir_variable *const var = node->as_variable(); 2587 2588 if ((var == NULL) || (var->data.mode != ir_var_uniform) || 2589 !var->type->is_array()) 2590 continue; 2591 2592 /* GL_ARB_uniform_buffer_object says that std140 uniforms 2593 * will not be eliminated. Since we always do std140, just 2594 * don't resize arrays in UBOs. 2595 * 2596 * Atomic counters are supposed to get deterministic 2597 * locations assigned based on the declaration ordering and 2598 * sizes, array compaction would mess that up. 2599 * 2600 * Subroutine uniforms are not removed. 2601 */ 2602 if (var->is_in_buffer_block() || var->type->contains_atomic() || 2603 var->type->contains_subroutine() || var->constant_initializer) 2604 continue; 2605 2606 int size = var->data.max_array_access; 2607 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) { 2608 if (prog->_LinkedShaders[j] == NULL) 2609 continue; 2610 2611 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) { 2612 ir_variable *other_var = node2->as_variable(); 2613 if (!other_var) 2614 continue; 2615 2616 if (strcmp(var->name, other_var->name) == 0 && 2617 other_var->data.max_array_access > size) { 2618 size = other_var->data.max_array_access; 2619 } 2620 } 2621 } 2622 2623 if (size + 1 != (int)var->type->length) { 2624 /* If this is a built-in uniform (i.e., it's backed by some 2625 * fixed-function state), adjust the number of state slots to 2626 * match the new array size. The number of slots per array entry 2627 * is not known. It seems safe to assume that the total number of 2628 * slots is an integer multiple of the number of array elements. 2629 * Determine the number of slots per array element by dividing by 2630 * the old (total) size. 2631 */ 2632 const unsigned num_slots = var->get_num_state_slots(); 2633 if (num_slots > 0) { 2634 var->set_num_state_slots((size + 1) 2635 * (num_slots / var->type->length)); 2636 } 2637 2638 var->type = glsl_type::get_array_instance(var->type->fields.array, 2639 size + 1); 2640 types_were_updated = true; 2641 } 2642 } 2643 2644 /* Update the types of dereferences in case we changed any. */ 2645 if (types_were_updated) { 2646 deref_type_updater v; 2647 v.run(prog->_LinkedShaders[i]->ir); 2648 } 2649 } 2650} 2651 2652/** 2653 * Resize tessellation evaluation per-vertex inputs to the size of 2654 * tessellation control per-vertex outputs. 2655 */ 2656static void 2657resize_tes_inputs(struct gl_context *ctx, 2658 struct gl_shader_program *prog) 2659{ 2660 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL) 2661 return; 2662 2663 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL]; 2664 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL]; 2665 2666 /* If no control shader is present, then the TES inputs are statically 2667 * sized to MaxPatchVertices; the actual size of the arrays won't be 2668 * known until draw time. 2669 */ 2670 const int num_vertices = tcs 2671 ? tcs->Program->info.tess.tcs_vertices_out 2672 : ctx->Const.MaxPatchVertices; 2673 2674 array_resize_visitor input_resize_visitor(num_vertices, prog, 2675 MESA_SHADER_TESS_EVAL); 2676 foreach_in_list(ir_instruction, ir, tes->ir) { 2677 ir->accept(&input_resize_visitor); 2678 } 2679 2680 if (tcs) { 2681 /* Convert the gl_PatchVerticesIn system value into a constant, since 2682 * the value is known at this point. 2683 */ 2684 foreach_in_list(ir_instruction, ir, tes->ir) { 2685 ir_variable *var = ir->as_variable(); 2686 if (var && var->data.mode == ir_var_system_value && 2687 var->data.location == SYSTEM_VALUE_VERTICES_IN) { 2688 void *mem_ctx = ralloc_parent(var); 2689 var->data.location = 0; 2690 var->data.explicit_location = false; 2691 var->data.mode = ir_var_auto; 2692 var->constant_value = new(mem_ctx) ir_constant(num_vertices); 2693 } 2694 } 2695 } 2696} 2697 2698/** 2699 * Find a contiguous set of available bits in a bitmask. 2700 * 2701 * \param used_mask Bits representing used (1) and unused (0) locations 2702 * \param needed_count Number of contiguous bits needed. 2703 * 2704 * \return 2705 * Base location of the available bits on success or -1 on failure. 2706 */ 2707static int 2708find_available_slots(unsigned used_mask, unsigned needed_count) 2709{ 2710 unsigned needed_mask = (1 << needed_count) - 1; 2711 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count; 2712 2713 /* The comparison to 32 is redundant, but without it GCC emits "warning: 2714 * cannot optimize possibly infinite loops" for the loop below. 2715 */ 2716 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32)) 2717 return -1; 2718 2719 for (int i = 0; i <= max_bit_to_test; i++) { 2720 if ((needed_mask & ~used_mask) == needed_mask) 2721 return i; 2722 2723 needed_mask <<= 1; 2724 } 2725 2726 return -1; 2727} 2728 2729 2730#define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1)) 2731 2732/** 2733 * Assign locations for either VS inputs or FS outputs. 2734 * 2735 * \param mem_ctx Temporary ralloc context used for linking. 2736 * \param prog Shader program whose variables need locations 2737 * assigned. 2738 * \param constants Driver specific constant values for the program. 2739 * \param target_index Selector for the program target to receive location 2740 * assignmnets. Must be either \c MESA_SHADER_VERTEX or 2741 * \c MESA_SHADER_FRAGMENT. 2742 * \param do_assignment Whether we are actually marking the assignment or we 2743 * are just doing a dry-run checking. 2744 * 2745 * \return 2746 * If locations are (or can be, in case of dry-running) successfully assigned, 2747 * true is returned. Otherwise an error is emitted to the shader link log and 2748 * false is returned. 2749 */ 2750static bool 2751assign_attribute_or_color_locations(void *mem_ctx, 2752 gl_shader_program *prog, 2753 struct gl_constants *constants, 2754 unsigned target_index, 2755 bool do_assignment) 2756{ 2757 /* Maximum number of generic locations. This corresponds to either the 2758 * maximum number of draw buffers or the maximum number of generic 2759 * attributes. 2760 */ 2761 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ? 2762 constants->Program[target_index].MaxAttribs : 2763 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers); 2764 2765 /* Mark invalid locations as being used. 2766 */ 2767 unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index); 2768 unsigned double_storage_locations = 0; 2769 2770 assert((target_index == MESA_SHADER_VERTEX) 2771 || (target_index == MESA_SHADER_FRAGMENT)); 2772 2773 gl_linked_shader *const sh = prog->_LinkedShaders[target_index]; 2774 if (sh == NULL) 2775 return true; 2776 2777 /* Operate in a total of four passes. 2778 * 2779 * 1. Invalidate the location assignments for all vertex shader inputs. 2780 * 2781 * 2. Assign locations for inputs that have user-defined (via 2782 * glBindVertexAttribLocation) locations and outputs that have 2783 * user-defined locations (via glBindFragDataLocation). 2784 * 2785 * 3. Sort the attributes without assigned locations by number of slots 2786 * required in decreasing order. Fragmentation caused by attribute 2787 * locations assigned by the application may prevent large attributes 2788 * from having enough contiguous space. 2789 * 2790 * 4. Assign locations to any inputs without assigned locations. 2791 */ 2792 2793 const int generic_base = (target_index == MESA_SHADER_VERTEX) 2794 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0; 2795 2796 const enum ir_variable_mode direction = 2797 (target_index == MESA_SHADER_VERTEX) 2798 ? ir_var_shader_in : ir_var_shader_out; 2799 2800 2801 /* Temporary storage for the set of attributes that need locations assigned. 2802 */ 2803 struct temp_attr { 2804 unsigned slots; 2805 ir_variable *var; 2806 2807 /* Used below in the call to qsort. */ 2808 static int compare(const void *a, const void *b) 2809 { 2810 const temp_attr *const l = (const temp_attr *) a; 2811 const temp_attr *const r = (const temp_attr *) b; 2812 2813 /* Reversed because we want a descending order sort below. */ 2814 return r->slots - l->slots; 2815 } 2816 } to_assign[32]; 2817 assert(max_index <= 32); 2818 2819 /* Temporary array for the set of attributes that have locations assigned, 2820 * for the purpose of checking overlapping slots/components of (non-ES) 2821 * fragment shader outputs. 2822 */ 2823 ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */ 2824 unsigned assigned_attr = 0; 2825 2826 unsigned num_attr = 0; 2827 2828 foreach_in_list(ir_instruction, node, sh->ir) { 2829 ir_variable *const var = node->as_variable(); 2830 2831 if ((var == NULL) || (var->data.mode != (unsigned) direction)) 2832 continue; 2833 2834 if (var->data.explicit_location) { 2835 var->data.is_unmatched_generic_inout = 0; 2836 if ((var->data.location >= (int)(max_index + generic_base)) 2837 || (var->data.location < 0)) { 2838 linker_error(prog, 2839 "invalid explicit location %d specified for `%s'\n", 2840 (var->data.location < 0) 2841 ? var->data.location 2842 : var->data.location - generic_base, 2843 var->name); 2844 return false; 2845 } 2846 } else if (target_index == MESA_SHADER_VERTEX) { 2847 unsigned binding; 2848 2849 if (prog->AttributeBindings->get(binding, var->name)) { 2850 assert(binding >= VERT_ATTRIB_GENERIC0); 2851 var->data.location = binding; 2852 var->data.is_unmatched_generic_inout = 0; 2853 } 2854 } else if (target_index == MESA_SHADER_FRAGMENT) { 2855 unsigned binding; 2856 unsigned index; 2857 const char *name = var->name; 2858 const glsl_type *type = var->type; 2859 2860 while (type) { 2861 /* Check if there's a binding for the variable name */ 2862 if (prog->FragDataBindings->get(binding, name)) { 2863 assert(binding >= FRAG_RESULT_DATA0); 2864 var->data.location = binding; 2865 var->data.is_unmatched_generic_inout = 0; 2866 2867 if (prog->FragDataIndexBindings->get(index, name)) { 2868 var->data.index = index; 2869 } 2870 break; 2871 } 2872 2873 /* If not, but it's an array type, look for name[0] */ 2874 if (type->is_array()) { 2875 name = ralloc_asprintf(mem_ctx, "%s[0]", name); 2876 type = type->fields.array; 2877 continue; 2878 } 2879 2880 break; 2881 } 2882 } 2883 2884 if (strcmp(var->name, "gl_LastFragData") == 0) 2885 continue; 2886 2887 /* From GL4.5 core spec, section 15.2 (Shader Execution): 2888 * 2889 * "Output binding assignments will cause LinkProgram to fail: 2890 * ... 2891 * If the program has an active output assigned to a location greater 2892 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has 2893 * an active output assigned an index greater than or equal to one;" 2894 */ 2895 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 && 2896 var->data.location - generic_base >= 2897 (int) constants->MaxDualSourceDrawBuffers) { 2898 linker_error(prog, 2899 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS " 2900 "with index %u for %s\n", 2901 var->data.location - generic_base, var->data.index, 2902 var->name); 2903 return false; 2904 } 2905 2906 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX); 2907 2908 /* If the variable is not a built-in and has a location statically 2909 * assigned in the shader (presumably via a layout qualifier), make sure 2910 * that it doesn't collide with other assigned locations. Otherwise, 2911 * add it to the list of variables that need linker-assigned locations. 2912 */ 2913 if (var->data.location != -1) { 2914 if (var->data.location >= generic_base && var->data.index < 1) { 2915 /* From page 61 of the OpenGL 4.0 spec: 2916 * 2917 * "LinkProgram will fail if the attribute bindings assigned 2918 * by BindAttribLocation do not leave not enough space to 2919 * assign a location for an active matrix attribute or an 2920 * active attribute array, both of which require multiple 2921 * contiguous generic attributes." 2922 * 2923 * I think above text prohibits the aliasing of explicit and 2924 * automatic assignments. But, aliasing is allowed in manual 2925 * assignments of attribute locations. See below comments for 2926 * the details. 2927 * 2928 * From OpenGL 4.0 spec, page 61: 2929 * 2930 * "It is possible for an application to bind more than one 2931 * attribute name to the same location. This is referred to as 2932 * aliasing. This will only work if only one of the aliased 2933 * attributes is active in the executable program, or if no 2934 * path through the shader consumes more than one attribute of 2935 * a set of attributes aliased to the same location. A link 2936 * error can occur if the linker determines that every path 2937 * through the shader consumes multiple aliased attributes, 2938 * but implementations are not required to generate an error 2939 * in this case." 2940 * 2941 * From GLSL 4.30 spec, page 54: 2942 * 2943 * "A program will fail to link if any two non-vertex shader 2944 * input variables are assigned to the same location. For 2945 * vertex shaders, multiple input variables may be assigned 2946 * to the same location using either layout qualifiers or via 2947 * the OpenGL API. However, such aliasing is intended only to 2948 * support vertex shaders where each execution path accesses 2949 * at most one input per each location. Implementations are 2950 * permitted, but not required, to generate link-time errors 2951 * if they detect that every path through the vertex shader 2952 * executable accesses multiple inputs assigned to any single 2953 * location. For all shader types, a program will fail to link 2954 * if explicit location assignments leave the linker unable 2955 * to find space for other variables without explicit 2956 * assignments." 2957 * 2958 * From OpenGL ES 3.0 spec, page 56: 2959 * 2960 * "Binding more than one attribute name to the same location 2961 * is referred to as aliasing, and is not permitted in OpenGL 2962 * ES Shading Language 3.00 vertex shaders. LinkProgram will 2963 * fail when this condition exists. However, aliasing is 2964 * possible in OpenGL ES Shading Language 1.00 vertex shaders. 2965 * This will only work if only one of the aliased attributes 2966 * is active in the executable program, or if no path through 2967 * the shader consumes more than one attribute of a set of 2968 * attributes aliased to the same location. A link error can 2969 * occur if the linker determines that every path through the 2970 * shader consumes multiple aliased attributes, but implemen- 2971 * tations are not required to generate an error in this case." 2972 * 2973 * After looking at above references from OpenGL, OpenGL ES and 2974 * GLSL specifications, we allow aliasing of vertex input variables 2975 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0. 2976 * 2977 * NOTE: This is not required by the spec but its worth mentioning 2978 * here that we're not doing anything to make sure that no path 2979 * through the vertex shader executable accesses multiple inputs 2980 * assigned to any single location. 2981 */ 2982 2983 /* Mask representing the contiguous slots that will be used by 2984 * this attribute. 2985 */ 2986 const unsigned attr = var->data.location - generic_base; 2987 const unsigned use_mask = (1 << slots) - 1; 2988 const char *const string = (target_index == MESA_SHADER_VERTEX) 2989 ? "vertex shader input" : "fragment shader output"; 2990 2991 /* Generate a link error if the requested locations for this 2992 * attribute exceed the maximum allowed attribute location. 2993 */ 2994 if (attr + slots > max_index) { 2995 linker_error(prog, 2996 "insufficient contiguous locations " 2997 "available for %s `%s' %d %d %d\n", string, 2998 var->name, used_locations, use_mask, attr); 2999 return false; 3000 } 3001 3002 /* Generate a link error if the set of bits requested for this 3003 * attribute overlaps any previously allocated bits. 3004 */ 3005 if ((~(use_mask << attr) & used_locations) != used_locations) { 3006 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) { 3007 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL 3008 * 4.40 spec: 3009 * 3010 * "Additionally, for fragment shader outputs, if two 3011 * variables are placed within the same location, they 3012 * must have the same underlying type (floating-point or 3013 * integer). No component aliasing of output variables or 3014 * members is allowed. 3015 */ 3016 for (unsigned i = 0; i < assigned_attr; i++) { 3017 unsigned assigned_slots = 3018 assigned[i]->type->count_attribute_slots(false); 3019 unsigned assig_attr = 3020 assigned[i]->data.location - generic_base; 3021 unsigned assigned_use_mask = (1 << assigned_slots) - 1; 3022 3023 if ((assigned_use_mask << assig_attr) & 3024 (use_mask << attr)) { 3025 3026 const glsl_type *assigned_type = 3027 assigned[i]->type->without_array(); 3028 const glsl_type *type = var->type->without_array(); 3029 if (assigned_type->base_type != type->base_type) { 3030 linker_error(prog, "types do not match for aliased" 3031 " %ss %s and %s\n", string, 3032 assigned[i]->name, var->name); 3033 return false; 3034 } 3035 3036 unsigned assigned_component_mask = 3037 ((1 << assigned_type->vector_elements) - 1) << 3038 assigned[i]->data.location_frac; 3039 unsigned component_mask = 3040 ((1 << type->vector_elements) - 1) << 3041 var->data.location_frac; 3042 if (assigned_component_mask & component_mask) { 3043 linker_error(prog, "overlapping component is " 3044 "assigned to %ss %s and %s " 3045 "(component=%d)\n", 3046 string, assigned[i]->name, var->name, 3047 var->data.location_frac); 3048 return false; 3049 } 3050 } 3051 } 3052 } else if (target_index == MESA_SHADER_FRAGMENT || 3053 (prog->IsES && prog->data->Version >= 300)) { 3054 linker_error(prog, "overlapping location is assigned " 3055 "to %s `%s' %d %d %d\n", string, var->name, 3056 used_locations, use_mask, attr); 3057 return false; 3058 } else { 3059 linker_warning(prog, "overlapping location is assigned " 3060 "to %s `%s' %d %d %d\n", string, var->name, 3061 used_locations, use_mask, attr); 3062 } 3063 } 3064 3065 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) { 3066 /* Only track assigned variables for non-ES fragment shaders 3067 * to avoid overflowing the array. 3068 * 3069 * At most one variable per fragment output component should 3070 * reach this. 3071 */ 3072 assert(assigned_attr < ARRAY_SIZE(assigned)); 3073 assigned[assigned_attr] = var; 3074 assigned_attr++; 3075 } 3076 3077 used_locations |= (use_mask << attr); 3078 3079 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes): 3080 * 3081 * "A program with more than the value of MAX_VERTEX_ATTRIBS 3082 * active attribute variables may fail to link, unless 3083 * device-dependent optimizations are able to make the program 3084 * fit within available hardware resources. For the purposes 3085 * of this test, attribute variables of the type dvec3, dvec4, 3086 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may 3087 * count as consuming twice as many attributes as equivalent 3088 * single-precision types. While these types use the same number 3089 * of generic attributes as their single-precision equivalents, 3090 * implementations are permitted to consume two single-precision 3091 * vectors of internal storage for each three- or four-component 3092 * double-precision vector." 3093 * 3094 * Mark this attribute slot as taking up twice as much space 3095 * so we can count it properly against limits. According to 3096 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this 3097 * is optional behavior, but it seems preferable. 3098 */ 3099 if (var->type->without_array()->is_dual_slot()) 3100 double_storage_locations |= (use_mask << attr); 3101 } 3102 3103 continue; 3104 } 3105 3106 if (num_attr >= max_index) { 3107 linker_error(prog, "too many %s (max %u)", 3108 target_index == MESA_SHADER_VERTEX ? 3109 "vertex shader inputs" : "fragment shader outputs", 3110 max_index); 3111 return false; 3112 } 3113 to_assign[num_attr].slots = slots; 3114 to_assign[num_attr].var = var; 3115 num_attr++; 3116 } 3117 3118 if (!do_assignment) 3119 return true; 3120 3121 if (target_index == MESA_SHADER_VERTEX) { 3122 unsigned total_attribs_size = 3123 util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) + 3124 util_bitcount(double_storage_locations); 3125 if (total_attribs_size > max_index) { 3126 linker_error(prog, 3127 "attempt to use %d vertex attribute slots only %d available ", 3128 total_attribs_size, max_index); 3129 return false; 3130 } 3131 } 3132 3133 /* If all of the attributes were assigned locations by the application (or 3134 * are built-in attributes with fixed locations), return early. This should 3135 * be the common case. 3136 */ 3137 if (num_attr == 0) 3138 return true; 3139 3140 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare); 3141 3142 if (target_index == MESA_SHADER_VERTEX) { 3143 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can 3144 * only be explicitly assigned by via glBindAttribLocation. Mark it as 3145 * reserved to prevent it from being automatically allocated below. 3146 */ 3147 find_deref_visitor find("gl_Vertex"); 3148 find.run(sh->ir); 3149 if (find.variable_found()) 3150 used_locations |= (1 << 0); 3151 } 3152 3153 for (unsigned i = 0; i < num_attr; i++) { 3154 /* Mask representing the contiguous slots that will be used by this 3155 * attribute. 3156 */ 3157 const unsigned use_mask = (1 << to_assign[i].slots) - 1; 3158 3159 int location = find_available_slots(used_locations, to_assign[i].slots); 3160 3161 if (location < 0) { 3162 const char *const string = (target_index == MESA_SHADER_VERTEX) 3163 ? "vertex shader input" : "fragment shader output"; 3164 3165 linker_error(prog, 3166 "insufficient contiguous locations " 3167 "available for %s `%s'\n", 3168 string, to_assign[i].var->name); 3169 return false; 3170 } 3171 3172 to_assign[i].var->data.location = generic_base + location; 3173 to_assign[i].var->data.is_unmatched_generic_inout = 0; 3174 used_locations |= (use_mask << location); 3175 3176 if (to_assign[i].var->type->without_array()->is_dual_slot()) 3177 double_storage_locations |= (use_mask << location); 3178 } 3179 3180 /* Now that we have all the locations, from the GL 4.5 core spec, section 3181 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3, 3182 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes 3183 * as equivalent single-precision types. 3184 */ 3185 if (target_index == MESA_SHADER_VERTEX) { 3186 unsigned total_attribs_size = 3187 util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) + 3188 util_bitcount(double_storage_locations); 3189 if (total_attribs_size > max_index) { 3190 linker_error(prog, 3191 "attempt to use %d vertex attribute slots only %d available ", 3192 total_attribs_size, max_index); 3193 return false; 3194 } 3195 } 3196 3197 return true; 3198} 3199 3200/** 3201 * Match explicit locations of outputs to inputs and deactivate the 3202 * unmatch flag if found so we don't optimise them away. 3203 */ 3204static void 3205match_explicit_outputs_to_inputs(gl_linked_shader *producer, 3206 gl_linked_shader *consumer) 3207{ 3208 glsl_symbol_table parameters; 3209 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] = 3210 { {NULL, NULL} }; 3211 3212 /* Find all shader outputs in the "producer" stage. 3213 */ 3214 foreach_in_list(ir_instruction, node, producer->ir) { 3215 ir_variable *const var = node->as_variable(); 3216 3217 if ((var == NULL) || (var->data.mode != ir_var_shader_out)) 3218 continue; 3219 3220 if (var->data.explicit_location && 3221 var->data.location >= VARYING_SLOT_VAR0) { 3222 const unsigned idx = var->data.location - VARYING_SLOT_VAR0; 3223 if (explicit_locations[idx][var->data.location_frac] == NULL) 3224 explicit_locations[idx][var->data.location_frac] = var; 3225 3226 /* Always match TCS outputs. They are shared by all invocations 3227 * within a patch and can be used as shared memory. 3228 */ 3229 if (producer->Stage == MESA_SHADER_TESS_CTRL) 3230 var->data.is_unmatched_generic_inout = 0; 3231 } 3232 } 3233 3234 /* Match inputs to outputs */ 3235 foreach_in_list(ir_instruction, node, consumer->ir) { 3236 ir_variable *const input = node->as_variable(); 3237 3238 if ((input == NULL) || (input->data.mode != ir_var_shader_in)) 3239 continue; 3240 3241 ir_variable *output = NULL; 3242 if (input->data.explicit_location 3243 && input->data.location >= VARYING_SLOT_VAR0) { 3244 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0] 3245 [input->data.location_frac]; 3246 3247 if (output != NULL){ 3248 input->data.is_unmatched_generic_inout = 0; 3249 output->data.is_unmatched_generic_inout = 0; 3250 } 3251 } 3252 } 3253} 3254 3255/** 3256 * Store the gl_FragDepth layout in the gl_shader_program struct. 3257 */ 3258static void 3259store_fragdepth_layout(struct gl_shader_program *prog) 3260{ 3261 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) { 3262 return; 3263 } 3264 3265 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir; 3266 3267 /* We don't look up the gl_FragDepth symbol directly because if 3268 * gl_FragDepth is not used in the shader, it's removed from the IR. 3269 * However, the symbol won't be removed from the symbol table. 3270 * 3271 * We're only interested in the cases where the variable is NOT removed 3272 * from the IR. 3273 */ 3274 foreach_in_list(ir_instruction, node, ir) { 3275 ir_variable *const var = node->as_variable(); 3276 3277 if (var == NULL || var->data.mode != ir_var_shader_out) { 3278 continue; 3279 } 3280 3281 if (strcmp(var->name, "gl_FragDepth") == 0) { 3282 switch (var->data.depth_layout) { 3283 case ir_depth_layout_none: 3284 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE; 3285 return; 3286 case ir_depth_layout_any: 3287 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY; 3288 return; 3289 case ir_depth_layout_greater: 3290 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER; 3291 return; 3292 case ir_depth_layout_less: 3293 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS; 3294 return; 3295 case ir_depth_layout_unchanged: 3296 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED; 3297 return; 3298 default: 3299 assert(0); 3300 return; 3301 } 3302 } 3303 } 3304} 3305 3306/** 3307 * Validate the resources used by a program versus the implementation limits 3308 */ 3309static void 3310check_resources(struct gl_context *ctx, struct gl_shader_program *prog) 3311{ 3312 unsigned total_uniform_blocks = 0; 3313 unsigned total_shader_storage_blocks = 0; 3314 3315 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 3316 struct gl_linked_shader *sh = prog->_LinkedShaders[i]; 3317 3318 if (sh == NULL) 3319 continue; 3320 3321 if (sh->Program->info.num_textures > 3322 ctx->Const.Program[i].MaxTextureImageUnits) { 3323 linker_error(prog, "Too many %s shader texture samplers\n", 3324 _mesa_shader_stage_to_string(i)); 3325 } 3326 3327 if (sh->num_uniform_components > 3328 ctx->Const.Program[i].MaxUniformComponents) { 3329 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) { 3330 linker_warning(prog, "Too many %s shader default uniform block " 3331 "components, but the driver will try to optimize " 3332 "them out; this is non-portable out-of-spec " 3333 "behavior\n", 3334 _mesa_shader_stage_to_string(i)); 3335 } else { 3336 linker_error(prog, "Too many %s shader default uniform block " 3337 "components\n", 3338 _mesa_shader_stage_to_string(i)); 3339 } 3340 } 3341 3342 if (sh->num_combined_uniform_components > 3343 ctx->Const.Program[i].MaxCombinedUniformComponents) { 3344 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) { 3345 linker_warning(prog, "Too many %s shader uniform components, " 3346 "but the driver will try to optimize them out; " 3347 "this is non-portable out-of-spec behavior\n", 3348 _mesa_shader_stage_to_string(i)); 3349 } else { 3350 linker_error(prog, "Too many %s shader uniform components\n", 3351 _mesa_shader_stage_to_string(i)); 3352 } 3353 } 3354 3355 total_shader_storage_blocks += sh->Program->info.num_ssbos; 3356 total_uniform_blocks += sh->Program->info.num_ubos; 3357 3358 const unsigned max_uniform_blocks = 3359 ctx->Const.Program[i].MaxUniformBlocks; 3360 if (max_uniform_blocks < sh->Program->info.num_ubos) { 3361 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n", 3362 _mesa_shader_stage_to_string(i), 3363 sh->Program->info.num_ubos, max_uniform_blocks); 3364 } 3365 3366 const unsigned max_shader_storage_blocks = 3367 ctx->Const.Program[i].MaxShaderStorageBlocks; 3368 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) { 3369 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n", 3370 _mesa_shader_stage_to_string(i), 3371 sh->Program->info.num_ssbos, max_shader_storage_blocks); 3372 } 3373 } 3374 3375 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) { 3376 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n", 3377 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks); 3378 } 3379 3380 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) { 3381 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n", 3382 total_shader_storage_blocks, 3383 ctx->Const.MaxCombinedShaderStorageBlocks); 3384 } 3385 3386 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) { 3387 if (prog->data->UniformBlocks[i].UniformBufferSize > 3388 ctx->Const.MaxUniformBlockSize) { 3389 linker_error(prog, "Uniform block %s too big (%d/%d)\n", 3390 prog->data->UniformBlocks[i].Name, 3391 prog->data->UniformBlocks[i].UniformBufferSize, 3392 ctx->Const.MaxUniformBlockSize); 3393 } 3394 } 3395 3396 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) { 3397 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize > 3398 ctx->Const.MaxShaderStorageBlockSize) { 3399 linker_error(prog, "Shader storage block %s too big (%d/%d)\n", 3400 prog->data->ShaderStorageBlocks[i].Name, 3401 prog->data->ShaderStorageBlocks[i].UniformBufferSize, 3402 ctx->Const.MaxShaderStorageBlockSize); 3403 } 3404 } 3405} 3406 3407static void 3408link_calculate_subroutine_compat(struct gl_shader_program *prog) 3409{ 3410 unsigned mask = prog->data->linked_stages; 3411 while (mask) { 3412 const int i = u_bit_scan(&mask); 3413 struct gl_program *p = prog->_LinkedShaders[i]->Program; 3414 3415 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) { 3416 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) 3417 continue; 3418 3419 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j]; 3420 3421 if (!uni) 3422 continue; 3423 3424 int count = 0; 3425 if (p->sh.NumSubroutineFunctions == 0) { 3426 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name); 3427 continue; 3428 } 3429 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) { 3430 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f]; 3431 for (int k = 0; k < fn->num_compat_types; k++) { 3432 if (fn->types[k] == uni->type) { 3433 count++; 3434 break; 3435 } 3436 } 3437 } 3438 uni->num_compatible_subroutines = count; 3439 } 3440 } 3441} 3442 3443static void 3444check_subroutine_resources(struct gl_shader_program *prog) 3445{ 3446 unsigned mask = prog->data->linked_stages; 3447 while (mask) { 3448 const int i = u_bit_scan(&mask); 3449 struct gl_program *p = prog->_LinkedShaders[i]->Program; 3450 3451 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) { 3452 linker_error(prog, "Too many %s shader subroutine uniforms\n", 3453 _mesa_shader_stage_to_string(i)); 3454 } 3455 } 3456} 3457/** 3458 * Validate shader image resources. 3459 */ 3460static void 3461check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog) 3462{ 3463 unsigned total_image_units = 0; 3464 unsigned fragment_outputs = 0; 3465 unsigned total_shader_storage_blocks = 0; 3466 3467 if (!ctx->Extensions.ARB_shader_image_load_store) 3468 return; 3469 3470 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 3471 struct gl_linked_shader *sh = prog->_LinkedShaders[i]; 3472 3473 if (sh) { 3474 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms) 3475 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n", 3476 _mesa_shader_stage_to_string(i), 3477 sh->Program->info.num_images, 3478 ctx->Const.Program[i].MaxImageUniforms); 3479 3480 total_image_units += sh->Program->info.num_images; 3481 total_shader_storage_blocks += sh->Program->info.num_ssbos; 3482 3483 if (i == MESA_SHADER_FRAGMENT) { 3484 foreach_in_list(ir_instruction, node, sh->ir) { 3485 ir_variable *var = node->as_variable(); 3486 if (var && var->data.mode == ir_var_shader_out) 3487 /* since there are no double fs outputs - pass false */ 3488 fragment_outputs += var->type->count_attribute_slots(false); 3489 } 3490 } 3491 } 3492 } 3493 3494 if (total_image_units > ctx->Const.MaxCombinedImageUniforms) 3495 linker_error(prog, "Too many combined image uniforms\n"); 3496 3497 if (total_image_units + fragment_outputs + total_shader_storage_blocks > 3498 ctx->Const.MaxCombinedShaderOutputResources) 3499 linker_error(prog, "Too many combined image uniforms, shader storage " 3500 " buffers and fragment outputs\n"); 3501} 3502 3503 3504/** 3505 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION 3506 * for a variable, checks for overlaps between other uniforms using explicit 3507 * locations. 3508 */ 3509static int 3510reserve_explicit_locations(struct gl_shader_program *prog, 3511 string_to_uint_map *map, ir_variable *var) 3512{ 3513 unsigned slots = var->type->uniform_locations(); 3514 unsigned max_loc = var->data.location + slots - 1; 3515 unsigned return_value = slots; 3516 3517 /* Resize remap table if locations do not fit in the current one. */ 3518 if (max_loc + 1 > prog->NumUniformRemapTable) { 3519 prog->UniformRemapTable = 3520 reralloc(prog, prog->UniformRemapTable, 3521 gl_uniform_storage *, 3522 max_loc + 1); 3523 3524 if (!prog->UniformRemapTable) { 3525 linker_error(prog, "Out of memory during linking.\n"); 3526 return -1; 3527 } 3528 3529 /* Initialize allocated space. */ 3530 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++) 3531 prog->UniformRemapTable[i] = NULL; 3532 3533 prog->NumUniformRemapTable = max_loc + 1; 3534 } 3535 3536 for (unsigned i = 0; i < slots; i++) { 3537 unsigned loc = var->data.location + i; 3538 3539 /* Check if location is already used. */ 3540 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) { 3541 3542 /* Possibly same uniform from a different stage, this is ok. */ 3543 unsigned hash_loc; 3544 if (map->get(hash_loc, var->name) && hash_loc == loc - i) { 3545 return_value = 0; 3546 continue; 3547 } 3548 3549 /* ARB_explicit_uniform_location specification states: 3550 * 3551 * "No two default-block uniform variables in the program can have 3552 * the same location, even if they are unused, otherwise a compiler 3553 * or linker error will be generated." 3554 */ 3555 linker_error(prog, 3556 "location qualifier for uniform %s overlaps " 3557 "previously used location\n", 3558 var->name); 3559 return -1; 3560 } 3561 3562 /* Initialize location as inactive before optimization 3563 * rounds and location assignment. 3564 */ 3565 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION; 3566 } 3567 3568 /* Note, base location used for arrays. */ 3569 map->put(var->data.location, var->name); 3570 3571 return return_value; 3572} 3573 3574static bool 3575reserve_subroutine_explicit_locations(struct gl_shader_program *prog, 3576 struct gl_program *p, 3577 ir_variable *var) 3578{ 3579 unsigned slots = var->type->uniform_locations(); 3580 unsigned max_loc = var->data.location + slots - 1; 3581 3582 /* Resize remap table if locations do not fit in the current one. */ 3583 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) { 3584 p->sh.SubroutineUniformRemapTable = 3585 reralloc(p, p->sh.SubroutineUniformRemapTable, 3586 gl_uniform_storage *, 3587 max_loc + 1); 3588 3589 if (!p->sh.SubroutineUniformRemapTable) { 3590 linker_error(prog, "Out of memory during linking.\n"); 3591 return false; 3592 } 3593 3594 /* Initialize allocated space. */ 3595 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++) 3596 p->sh.SubroutineUniformRemapTable[i] = NULL; 3597 3598 p->sh.NumSubroutineUniformRemapTable = max_loc + 1; 3599 } 3600 3601 for (unsigned i = 0; i < slots; i++) { 3602 unsigned loc = var->data.location + i; 3603 3604 /* Check if location is already used. */ 3605 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) { 3606 3607 /* ARB_explicit_uniform_location specification states: 3608 * "No two subroutine uniform variables can have the same location 3609 * in the same shader stage, otherwise a compiler or linker error 3610 * will be generated." 3611 */ 3612 linker_error(prog, 3613 "location qualifier for uniform %s overlaps " 3614 "previously used location\n", 3615 var->name); 3616 return false; 3617 } 3618 3619 /* Initialize location as inactive before optimization 3620 * rounds and location assignment. 3621 */ 3622 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION; 3623 } 3624 3625 return true; 3626} 3627/** 3628 * Check and reserve all explicit uniform locations, called before 3629 * any optimizations happen to handle also inactive uniforms and 3630 * inactive array elements that may get trimmed away. 3631 */ 3632static void 3633check_explicit_uniform_locations(struct gl_context *ctx, 3634 struct gl_shader_program *prog) 3635{ 3636 prog->NumExplicitUniformLocations = 0; 3637 3638 if (!ctx->Extensions.ARB_explicit_uniform_location) 3639 return; 3640 3641 /* This map is used to detect if overlapping explicit locations 3642 * occur with the same uniform (from different stage) or a different one. 3643 */ 3644 string_to_uint_map *uniform_map = new string_to_uint_map; 3645 3646 if (!uniform_map) { 3647 linker_error(prog, "Out of memory during linking.\n"); 3648 return; 3649 } 3650 3651 unsigned entries_total = 0; 3652 unsigned mask = prog->data->linked_stages; 3653 while (mask) { 3654 const int i = u_bit_scan(&mask); 3655 struct gl_program *p = prog->_LinkedShaders[i]->Program; 3656 3657 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { 3658 ir_variable *var = node->as_variable(); 3659 if (!var || var->data.mode != ir_var_uniform) 3660 continue; 3661 3662 if (var->data.explicit_location) { 3663 bool ret = false; 3664 if (var->type->without_array()->is_subroutine()) 3665 ret = reserve_subroutine_explicit_locations(prog, p, var); 3666 else { 3667 int slots = reserve_explicit_locations(prog, uniform_map, 3668 var); 3669 if (slots != -1) { 3670 ret = true; 3671 entries_total += slots; 3672 } 3673 } 3674 if (!ret) { 3675 delete uniform_map; 3676 return; 3677 } 3678 } 3679 } 3680 } 3681 3682 link_util_update_empty_uniform_locations(prog); 3683 3684 delete uniform_map; 3685 prog->NumExplicitUniformLocations = entries_total; 3686} 3687 3688static bool 3689should_add_buffer_variable(struct gl_shader_program *shProg, 3690 GLenum type, const char *name) 3691{ 3692 bool found_interface = false; 3693 unsigned block_name_len = 0; 3694 const char *block_name_dot = strchr(name, '.'); 3695 3696 /* These rules only apply to buffer variables. So we return 3697 * true for the rest of types. 3698 */ 3699 if (type != GL_BUFFER_VARIABLE) 3700 return true; 3701 3702 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) { 3703 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name; 3704 block_name_len = strlen(block_name); 3705 3706 const char *block_square_bracket = strchr(block_name, '['); 3707 if (block_square_bracket) { 3708 /* The block is part of an array of named interfaces, 3709 * for the name comparison we ignore the "[x]" part. 3710 */ 3711 block_name_len -= strlen(block_square_bracket); 3712 } 3713 3714 if (block_name_dot) { 3715 /* Check if the variable name starts with the interface 3716 * name. The interface name (if present) should have the 3717 * length than the interface block name we are comparing to. 3718 */ 3719 unsigned len = strlen(name) - strlen(block_name_dot); 3720 if (len != block_name_len) 3721 continue; 3722 } 3723 3724 if (strncmp(block_name, name, block_name_len) == 0) { 3725 found_interface = true; 3726 break; 3727 } 3728 } 3729 3730 /* We remove the interface name from the buffer variable name, 3731 * including the dot that follows it. 3732 */ 3733 if (found_interface) 3734 name = name + block_name_len + 1; 3735 3736 /* The ARB_program_interface_query spec says: 3737 * 3738 * "For an active shader storage block member declared as an array, an 3739 * entry will be generated only for the first array element, regardless 3740 * of its type. For arrays of aggregate types, the enumeration rules 3741 * are applied recursively for the single enumerated array element." 3742 */ 3743 const char *struct_first_dot = strchr(name, '.'); 3744 const char *first_square_bracket = strchr(name, '['); 3745 3746 /* The buffer variable is on top level and it is not an array */ 3747 if (!first_square_bracket) { 3748 return true; 3749 /* The shader storage block member is a struct, then generate the entry */ 3750 } else if (struct_first_dot && struct_first_dot < first_square_bracket) { 3751 return true; 3752 } else { 3753 /* Shader storage block member is an array, only generate an entry for the 3754 * first array element. 3755 */ 3756 if (strncmp(first_square_bracket, "[0]", 3) == 0) 3757 return true; 3758 } 3759 3760 return false; 3761} 3762 3763/* Function checks if a variable var is a packed varying and 3764 * if given name is part of packed varying's list. 3765 * 3766 * If a variable is a packed varying, it has a name like 3767 * 'packed:a,b,c' where a, b and c are separate variables. 3768 */ 3769static bool 3770included_in_packed_varying(ir_variable *var, const char *name) 3771{ 3772 if (strncmp(var->name, "packed:", 7) != 0) 3773 return false; 3774 3775 char *list = strdup(var->name + 7); 3776 assert(list); 3777 3778 bool found = false; 3779 char *saveptr; 3780 char *token = strtok_r(list, ",", &saveptr); 3781 while (token) { 3782 if (strcmp(token, name) == 0) { 3783 found = true; 3784 break; 3785 } 3786 token = strtok_r(NULL, ",", &saveptr); 3787 } 3788 free(list); 3789 return found; 3790} 3791 3792/** 3793 * Function builds a stage reference bitmask from variable name. 3794 */ 3795static uint8_t 3796build_stageref(struct gl_shader_program *shProg, const char *name, 3797 unsigned mode) 3798{ 3799 uint8_t stages = 0; 3800 3801 /* Note, that we assume MAX 8 stages, if there will be more stages, type 3802 * used for reference mask in gl_program_resource will need to be changed. 3803 */ 3804 assert(MESA_SHADER_STAGES < 8); 3805 3806 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 3807 struct gl_linked_shader *sh = shProg->_LinkedShaders[i]; 3808 if (!sh) 3809 continue; 3810 3811 /* Shader symbol table may contain variables that have 3812 * been optimized away. Search IR for the variable instead. 3813 */ 3814 foreach_in_list(ir_instruction, node, sh->ir) { 3815 ir_variable *var = node->as_variable(); 3816 if (var) { 3817 unsigned baselen = strlen(var->name); 3818 3819 if (included_in_packed_varying(var, name)) { 3820 stages |= (1 << i); 3821 break; 3822 } 3823 3824 /* Type needs to match if specified, otherwise we might 3825 * pick a variable with same name but different interface. 3826 */ 3827 if (var->data.mode != mode) 3828 continue; 3829 3830 if (strncmp(var->name, name, baselen) == 0) { 3831 /* Check for exact name matches but also check for arrays and 3832 * structs. 3833 */ 3834 if (name[baselen] == '\0' || 3835 name[baselen] == '[' || 3836 name[baselen] == '.') { 3837 stages |= (1 << i); 3838 break; 3839 } 3840 } 3841 } 3842 } 3843 } 3844 return stages; 3845} 3846 3847/** 3848 * Create gl_shader_variable from ir_variable class. 3849 */ 3850static gl_shader_variable * 3851create_shader_variable(struct gl_shader_program *shProg, 3852 const ir_variable *in, 3853 const char *name, const glsl_type *type, 3854 const glsl_type *interface_type, 3855 bool use_implicit_location, int location, 3856 const glsl_type *outermost_struct_type) 3857{ 3858 /* Allocate zero-initialized memory to ensure that bitfield padding 3859 * is zero. 3860 */ 3861 gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable); 3862 if (!out) 3863 return NULL; 3864 3865 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications 3866 * expect to see gl_VertexID in the program resource list. Pretend. 3867 */ 3868 if (in->data.mode == ir_var_system_value && 3869 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) { 3870 out->name = ralloc_strdup(shProg, "gl_VertexID"); 3871 } else if ((in->data.mode == ir_var_shader_out && 3872 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) || 3873 (in->data.mode == ir_var_system_value && 3874 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) { 3875 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter"); 3876 type = glsl_type::get_array_instance(glsl_type::float_type, 4); 3877 } else if ((in->data.mode == ir_var_shader_out && 3878 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) || 3879 (in->data.mode == ir_var_system_value && 3880 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) { 3881 out->name = ralloc_strdup(shProg, "gl_TessLevelInner"); 3882 type = glsl_type::get_array_instance(glsl_type::float_type, 2); 3883 } else { 3884 out->name = ralloc_strdup(shProg, name); 3885 } 3886 3887 if (!out->name) 3888 return NULL; 3889 3890 /* The ARB_program_interface_query spec says: 3891 * 3892 * "Not all active variables are assigned valid locations; the 3893 * following variables will have an effective location of -1: 3894 * 3895 * * uniforms declared as atomic counters; 3896 * 3897 * * members of a uniform block; 3898 * 3899 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and 3900 * 3901 * * inputs or outputs not declared with a "location" layout 3902 * qualifier, except for vertex shader inputs and fragment shader 3903 * outputs." 3904 */ 3905 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) || 3906 !(in->data.explicit_location || use_implicit_location)) { 3907 out->location = -1; 3908 } else { 3909 out->location = location; 3910 } 3911 3912 out->type = type; 3913 out->outermost_struct_type = outermost_struct_type; 3914 out->interface_type = interface_type; 3915 out->component = in->data.location_frac; 3916 out->index = in->data.index; 3917 out->patch = in->data.patch; 3918 out->mode = in->data.mode; 3919 out->interpolation = in->data.interpolation; 3920 out->explicit_location = in->data.explicit_location; 3921 out->precision = in->data.precision; 3922 3923 return out; 3924} 3925 3926static bool 3927add_shader_variable(const struct gl_context *ctx, 3928 struct gl_shader_program *shProg, 3929 struct set *resource_set, 3930 unsigned stage_mask, 3931 GLenum programInterface, ir_variable *var, 3932 const char *name, const glsl_type *type, 3933 bool use_implicit_location, int location, 3934 bool inouts_share_location, 3935 const glsl_type *outermost_struct_type = NULL) 3936{ 3937 const glsl_type *interface_type = var->get_interface_type(); 3938 3939 if (outermost_struct_type == NULL) { 3940 if (var->data.from_named_ifc_block) { 3941 const char *interface_name = interface_type->name; 3942 3943 if (interface_type->is_array()) { 3944 /* Issue #16 of the ARB_program_interface_query spec says: 3945 * 3946 * "* If a variable is a member of an interface block without an 3947 * instance name, it is enumerated using just the variable name. 3948 * 3949 * * If a variable is a member of an interface block with an 3950 * instance name, it is enumerated as "BlockName.Member", where 3951 * "BlockName" is the name of the interface block (not the 3952 * instance name) and "Member" is the name of the variable." 3953 * 3954 * In particular, it indicates that it should be "BlockName", 3955 * not "BlockName[array length]". The conformance suite and 3956 * dEQP both require this behavior. 3957 * 3958 * Here, we unwrap the extra array level added by named interface 3959 * block array lowering so we have the correct variable type. We 3960 * also unwrap the interface type when constructing the name. 3961 * 3962 * We leave interface_type the same so that ES 3.x SSO pipeline 3963 * validation can enforce the rules requiring array length to 3964 * match on interface blocks. 3965 */ 3966 type = type->fields.array; 3967 3968 interface_name = interface_type->fields.array->name; 3969 } 3970 3971 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name); 3972 } 3973 } 3974 3975 switch (type->base_type) { 3976 case GLSL_TYPE_STRUCT: { 3977 /* The ARB_program_interface_query spec says: 3978 * 3979 * "For an active variable declared as a structure, a separate entry 3980 * will be generated for each active structure member. The name of 3981 * each entry is formed by concatenating the name of the structure, 3982 * the "." character, and the name of the structure member. If a 3983 * structure member to enumerate is itself a structure or array, 3984 * these enumeration rules are applied recursively." 3985 */ 3986 if (outermost_struct_type == NULL) 3987 outermost_struct_type = type; 3988 3989 unsigned field_location = location; 3990 for (unsigned i = 0; i < type->length; i++) { 3991 const struct glsl_struct_field *field = &type->fields.structure[i]; 3992 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name); 3993 if (!add_shader_variable(ctx, shProg, resource_set, 3994 stage_mask, programInterface, 3995 var, field_name, field->type, 3996 use_implicit_location, field_location, 3997 false, outermost_struct_type)) 3998 return false; 3999 4000 field_location += field->type->count_attribute_slots(false); 4001 } 4002 return true; 4003 } 4004 4005 case GLSL_TYPE_ARRAY: { 4006 /* The ARB_program_interface_query spec says: 4007 * 4008 * "For an active variable declared as an array of basic types, a 4009 * single entry will be generated, with its name string formed by 4010 * concatenating the name of the array and the string "[0]"." 4011 * 4012 * "For an active variable declared as an array of an aggregate data 4013 * type (structures or arrays), a separate entry will be generated 4014 * for each active array element, unless noted immediately below. 4015 * The name of each entry is formed by concatenating the name of 4016 * the array, the "[" character, an integer identifying the element 4017 * number, and the "]" character. These enumeration rules are 4018 * applied recursively, treating each enumerated array element as a 4019 * separate active variable." 4020 */ 4021 const struct glsl_type *array_type = type->fields.array; 4022 if (array_type->base_type == GLSL_TYPE_STRUCT || 4023 array_type->base_type == GLSL_TYPE_ARRAY) { 4024 unsigned elem_location = location; 4025 unsigned stride = inouts_share_location ? 0 : 4026 array_type->count_attribute_slots(false); 4027 for (unsigned i = 0; i < type->length; i++) { 4028 char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i); 4029 if (!add_shader_variable(ctx, shProg, resource_set, 4030 stage_mask, programInterface, 4031 var, elem, array_type, 4032 use_implicit_location, elem_location, 4033 false, outermost_struct_type)) 4034 return false; 4035 elem_location += stride; 4036 } 4037 return true; 4038 } 4039 /* fallthrough */ 4040 } 4041 4042 default: { 4043 /* The ARB_program_interface_query spec says: 4044 * 4045 * "For an active variable declared as a single instance of a basic 4046 * type, a single entry will be generated, using the variable name 4047 * from the shader source." 4048 */ 4049 gl_shader_variable *sha_v = 4050 create_shader_variable(shProg, var, name, type, interface_type, 4051 use_implicit_location, location, 4052 outermost_struct_type); 4053 if (!sha_v) 4054 return false; 4055 4056 return link_util_add_program_resource(shProg, resource_set, 4057 programInterface, sha_v, stage_mask); 4058 } 4059 } 4060} 4061 4062static bool 4063inout_has_same_location(const ir_variable *var, unsigned stage) 4064{ 4065 if (!var->data.patch && 4066 ((var->data.mode == ir_var_shader_out && 4067 stage == MESA_SHADER_TESS_CTRL) || 4068 (var->data.mode == ir_var_shader_in && 4069 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL || 4070 stage == MESA_SHADER_GEOMETRY)))) 4071 return true; 4072 else 4073 return false; 4074} 4075 4076static bool 4077add_interface_variables(const struct gl_context *ctx, 4078 struct gl_shader_program *shProg, 4079 struct set *resource_set, 4080 unsigned stage, GLenum programInterface) 4081{ 4082 exec_list *ir = shProg->_LinkedShaders[stage]->ir; 4083 4084 foreach_in_list(ir_instruction, node, ir) { 4085 ir_variable *var = node->as_variable(); 4086 4087 if (!var || var->data.how_declared == ir_var_hidden) 4088 continue; 4089 4090 int loc_bias; 4091 4092 switch (var->data.mode) { 4093 case ir_var_system_value: 4094 case ir_var_shader_in: 4095 if (programInterface != GL_PROGRAM_INPUT) 4096 continue; 4097 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0) 4098 : int(VARYING_SLOT_VAR0); 4099 break; 4100 case ir_var_shader_out: 4101 if (programInterface != GL_PROGRAM_OUTPUT) 4102 continue; 4103 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0) 4104 : int(VARYING_SLOT_VAR0); 4105 break; 4106 default: 4107 continue; 4108 }; 4109 4110 if (var->data.patch) 4111 loc_bias = int(VARYING_SLOT_PATCH0); 4112 4113 /* Skip packed varyings, packed varyings are handled separately 4114 * by add_packed_varyings. 4115 */ 4116 if (strncmp(var->name, "packed:", 7) == 0) 4117 continue; 4118 4119 /* Skip fragdata arrays, these are handled separately 4120 * by add_fragdata_arrays. 4121 */ 4122 if (strncmp(var->name, "gl_out_FragData", 15) == 0) 4123 continue; 4124 4125 const bool vs_input_or_fs_output = 4126 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) || 4127 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out); 4128 4129 if (!add_shader_variable(ctx, shProg, resource_set, 4130 1 << stage, programInterface, 4131 var, var->name, var->type, vs_input_or_fs_output, 4132 var->data.location - loc_bias, 4133 inout_has_same_location(var, stage))) 4134 return false; 4135 } 4136 return true; 4137} 4138 4139static bool 4140add_packed_varyings(const struct gl_context *ctx, 4141 struct gl_shader_program *shProg, 4142 struct set *resource_set, 4143 int stage, GLenum type) 4144{ 4145 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage]; 4146 GLenum iface; 4147 4148 if (!sh || !sh->packed_varyings) 4149 return true; 4150 4151 foreach_in_list(ir_instruction, node, sh->packed_varyings) { 4152 ir_variable *var = node->as_variable(); 4153 if (var) { 4154 switch (var->data.mode) { 4155 case ir_var_shader_in: 4156 iface = GL_PROGRAM_INPUT; 4157 break; 4158 case ir_var_shader_out: 4159 iface = GL_PROGRAM_OUTPUT; 4160 break; 4161 default: 4162 unreachable("unexpected type"); 4163 } 4164 4165 if (type == iface) { 4166 const int stage_mask = 4167 build_stageref(shProg, var->name, var->data.mode); 4168 if (!add_shader_variable(ctx, shProg, resource_set, 4169 stage_mask, 4170 iface, var, var->name, var->type, false, 4171 var->data.location - VARYING_SLOT_VAR0, 4172 inout_has_same_location(var, stage))) 4173 return false; 4174 } 4175 } 4176 } 4177 return true; 4178} 4179 4180static bool 4181add_fragdata_arrays(const struct gl_context *ctx, 4182 struct gl_shader_program *shProg, 4183 struct set *resource_set) 4184{ 4185 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT]; 4186 4187 if (!sh || !sh->fragdata_arrays) 4188 return true; 4189 4190 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) { 4191 ir_variable *var = node->as_variable(); 4192 if (var) { 4193 assert(var->data.mode == ir_var_shader_out); 4194 4195 if (!add_shader_variable(ctx, shProg, resource_set, 4196 1 << MESA_SHADER_FRAGMENT, 4197 GL_PROGRAM_OUTPUT, var, var->name, var->type, 4198 true, var->data.location - FRAG_RESULT_DATA0, 4199 false)) 4200 return false; 4201 } 4202 } 4203 return true; 4204} 4205 4206static char* 4207get_top_level_name(const char *name) 4208{ 4209 const char *first_dot = strchr(name, '.'); 4210 const char *first_square_bracket = strchr(name, '['); 4211 int name_size = 0; 4212 4213 /* The ARB_program_interface_query spec says: 4214 * 4215 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying 4216 * the number of active array elements of the top-level shader storage 4217 * block member containing to the active variable is written to 4218 * <params>. If the top-level block member is not declared as an 4219 * array, the value one is written to <params>. If the top-level block 4220 * member is an array with no declared size, the value zero is written 4221 * to <params>." 4222 */ 4223 4224 /* The buffer variable is on top level.*/ 4225 if (!first_square_bracket && !first_dot) 4226 name_size = strlen(name); 4227 else if ((!first_square_bracket || 4228 (first_dot && first_dot < first_square_bracket))) 4229 name_size = first_dot - name; 4230 else 4231 name_size = first_square_bracket - name; 4232 4233 return strndup(name, name_size); 4234} 4235 4236static char* 4237get_var_name(const char *name) 4238{ 4239 const char *first_dot = strchr(name, '.'); 4240 4241 if (!first_dot) 4242 return strdup(name); 4243 4244 return strndup(first_dot+1, strlen(first_dot) - 1); 4245} 4246 4247static bool 4248is_top_level_shader_storage_block_member(const char* name, 4249 const char* interface_name, 4250 const char* field_name) 4251{ 4252 bool result = false; 4253 4254 /* If the given variable is already a top-level shader storage 4255 * block member, then return array_size = 1. 4256 * We could have two possibilities: if we have an instanced 4257 * shader storage block or not instanced. 4258 * 4259 * For the first, we check create a name as it was in top level and 4260 * compare it with the real name. If they are the same, then 4261 * the variable is already at top-level. 4262 * 4263 * Full instanced name is: interface name + '.' + var name + 4264 * NULL character 4265 */ 4266 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1; 4267 char *full_instanced_name = (char *) calloc(name_length, sizeof(char)); 4268 if (!full_instanced_name) { 4269 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__); 4270 return false; 4271 } 4272 4273 util_snprintf(full_instanced_name, name_length, "%s.%s", 4274 interface_name, field_name); 4275 4276 /* Check if its top-level shader storage block member of an 4277 * instanced interface block, or of a unnamed interface block. 4278 */ 4279 if (strcmp(name, full_instanced_name) == 0 || 4280 strcmp(name, field_name) == 0) 4281 result = true; 4282 4283 free(full_instanced_name); 4284 return result; 4285} 4286 4287static int 4288get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field, 4289 char *interface_name, char *var_name) 4290{ 4291 /* The ARB_program_interface_query spec says: 4292 * 4293 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying 4294 * the number of active array elements of the top-level shader storage 4295 * block member containing to the active variable is written to 4296 * <params>. If the top-level block member is not declared as an 4297 * array, the value one is written to <params>. If the top-level block 4298 * member is an array with no declared size, the value zero is written 4299 * to <params>." 4300 */ 4301 if (is_top_level_shader_storage_block_member(uni->name, 4302 interface_name, 4303 var_name)) 4304 return 1; 4305 else if (field->type->is_unsized_array()) 4306 return 0; 4307 else if (field->type->is_array()) 4308 return field->type->length; 4309 4310 return 1; 4311} 4312 4313static int 4314get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni, 4315 const glsl_type *iface, const glsl_struct_field *field, 4316 char *interface_name, char *var_name) 4317{ 4318 /* The ARB_program_interface_query spec says: 4319 * 4320 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer 4321 * identifying the stride between array elements of the top-level 4322 * shader storage block member containing the active variable is 4323 * written to <params>. For top-level block members declared as 4324 * arrays, the value written is the difference, in basic machine units, 4325 * between the offsets of the active variable for consecutive elements 4326 * in the top-level array. For top-level block members not declared as 4327 * an array, zero is written to <params>." 4328 */ 4329 if (field->type->is_array()) { 4330 const enum glsl_matrix_layout matrix_layout = 4331 glsl_matrix_layout(field->matrix_layout); 4332 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR; 4333 const glsl_type *array_type = field->type->fields.array; 4334 4335 if (is_top_level_shader_storage_block_member(uni->name, 4336 interface_name, 4337 var_name)) 4338 return 0; 4339 4340 if (GLSL_INTERFACE_PACKING_STD140 == 4341 iface-> 4342 get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) { 4343 if (array_type->is_struct() || array_type->is_array()) 4344 return glsl_align(array_type->std140_size(row_major), 16); 4345 else 4346 return MAX2(array_type->std140_base_alignment(row_major), 16); 4347 } else { 4348 return array_type->std430_array_stride(row_major); 4349 } 4350 } 4351 return 0; 4352} 4353 4354static void 4355calculate_array_size_and_stride(struct gl_context *ctx, 4356 struct gl_shader_program *shProg, 4357 struct gl_uniform_storage *uni) 4358{ 4359 int block_index = uni->block_index; 4360 int array_size = -1; 4361 int array_stride = -1; 4362 char *var_name = get_top_level_name(uni->name); 4363 char *interface_name = 4364 get_top_level_name(uni->is_shader_storage ? 4365 shProg->data->ShaderStorageBlocks[block_index].Name : 4366 shProg->data->UniformBlocks[block_index].Name); 4367 4368 if (strcmp(var_name, interface_name) == 0) { 4369 /* Deal with instanced array of SSBOs */ 4370 char *temp_name = get_var_name(uni->name); 4371 if (!temp_name) { 4372 linker_error(shProg, "Out of memory during linking.\n"); 4373 goto write_top_level_array_size_and_stride; 4374 } 4375 free(var_name); 4376 var_name = get_top_level_name(temp_name); 4377 free(temp_name); 4378 if (!var_name) { 4379 linker_error(shProg, "Out of memory during linking.\n"); 4380 goto write_top_level_array_size_and_stride; 4381 } 4382 } 4383 4384 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 4385 const gl_linked_shader *sh = shProg->_LinkedShaders[i]; 4386 if (sh == NULL) 4387 continue; 4388 4389 foreach_in_list(ir_instruction, node, sh->ir) { 4390 ir_variable *var = node->as_variable(); 4391 if (!var || !var->get_interface_type() || 4392 var->data.mode != ir_var_shader_storage) 4393 continue; 4394 4395 const glsl_type *iface = var->get_interface_type(); 4396 4397 if (strcmp(interface_name, iface->name) != 0) 4398 continue; 4399 4400 for (unsigned i = 0; i < iface->length; i++) { 4401 const glsl_struct_field *field = &iface->fields.structure[i]; 4402 if (strcmp(field->name, var_name) != 0) 4403 continue; 4404 4405 array_stride = get_array_stride(ctx, uni, iface, field, 4406 interface_name, var_name); 4407 array_size = get_array_size(uni, field, interface_name, var_name); 4408 goto write_top_level_array_size_and_stride; 4409 } 4410 } 4411 } 4412write_top_level_array_size_and_stride: 4413 free(interface_name); 4414 free(var_name); 4415 uni->top_level_array_stride = array_stride; 4416 uni->top_level_array_size = array_size; 4417} 4418 4419/** 4420 * Builds up a list of program resources that point to existing 4421 * resource data. 4422 */ 4423void 4424build_program_resource_list(struct gl_context *ctx, 4425 struct gl_shader_program *shProg) 4426{ 4427 /* Rebuild resource list. */ 4428 if (shProg->data->ProgramResourceList) { 4429 ralloc_free(shProg->data->ProgramResourceList); 4430 shProg->data->ProgramResourceList = NULL; 4431 shProg->data->NumProgramResourceList = 0; 4432 } 4433 4434 int input_stage = MESA_SHADER_STAGES, output_stage = 0; 4435 4436 /* Determine first input and final output stage. These are used to 4437 * detect which variables should be enumerated in the resource list 4438 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT. 4439 */ 4440 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 4441 if (!shProg->_LinkedShaders[i]) 4442 continue; 4443 if (input_stage == MESA_SHADER_STAGES) 4444 input_stage = i; 4445 output_stage = i; 4446 } 4447 4448 /* Empty shader, no resources. */ 4449 if (input_stage == MESA_SHADER_STAGES && output_stage == 0) 4450 return; 4451 4452 struct set *resource_set = _mesa_pointer_set_create(NULL); 4453 4454 /* Program interface needs to expose varyings in case of SSO. */ 4455 if (shProg->SeparateShader) { 4456 if (!add_packed_varyings(ctx, shProg, resource_set, 4457 input_stage, GL_PROGRAM_INPUT)) 4458 return; 4459 4460 if (!add_packed_varyings(ctx, shProg, resource_set, 4461 output_stage, GL_PROGRAM_OUTPUT)) 4462 return; 4463 } 4464 4465 if (!add_fragdata_arrays(ctx, shProg, resource_set)) 4466 return; 4467 4468 /* Add inputs and outputs to the resource list. */ 4469 if (!add_interface_variables(ctx, shProg, resource_set, 4470 input_stage, GL_PROGRAM_INPUT)) 4471 return; 4472 4473 if (!add_interface_variables(ctx, shProg, resource_set, 4474 output_stage, GL_PROGRAM_OUTPUT)) 4475 return; 4476 4477 if (shProg->last_vert_prog) { 4478 struct gl_transform_feedback_info *linked_xfb = 4479 shProg->last_vert_prog->sh.LinkedTransformFeedback; 4480 4481 /* Add transform feedback varyings. */ 4482 if (linked_xfb->NumVarying > 0) { 4483 for (int i = 0; i < linked_xfb->NumVarying; i++) { 4484 if (!link_util_add_program_resource(shProg, resource_set, 4485 GL_TRANSFORM_FEEDBACK_VARYING, 4486 &linked_xfb->Varyings[i], 0)) 4487 return; 4488 } 4489 } 4490 4491 /* Add transform feedback buffers. */ 4492 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) { 4493 if ((linked_xfb->ActiveBuffers >> i) & 1) { 4494 linked_xfb->Buffers[i].Binding = i; 4495 if (!link_util_add_program_resource(shProg, resource_set, 4496 GL_TRANSFORM_FEEDBACK_BUFFER, 4497 &linked_xfb->Buffers[i], 0)) 4498 return; 4499 } 4500 } 4501 } 4502 4503 /* Add uniforms from uniform storage. */ 4504 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) { 4505 /* Do not add uniforms internally used by Mesa. */ 4506 if (shProg->data->UniformStorage[i].hidden) 4507 continue; 4508 4509 uint8_t stageref = 4510 build_stageref(shProg, shProg->data->UniformStorage[i].name, 4511 ir_var_uniform); 4512 4513 /* Add stagereferences for uniforms in a uniform block. */ 4514 bool is_shader_storage = 4515 shProg->data->UniformStorage[i].is_shader_storage; 4516 int block_index = shProg->data->UniformStorage[i].block_index; 4517 if (block_index != -1) { 4518 stageref |= is_shader_storage ? 4519 shProg->data->ShaderStorageBlocks[block_index].stageref : 4520 shProg->data->UniformBlocks[block_index].stageref; 4521 } 4522 4523 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM; 4524 if (!should_add_buffer_variable(shProg, type, 4525 shProg->data->UniformStorage[i].name)) 4526 continue; 4527 4528 if (is_shader_storage) { 4529 calculate_array_size_and_stride(ctx, shProg, 4530 &shProg->data->UniformStorage[i]); 4531 } 4532 4533 if (!link_util_add_program_resource(shProg, resource_set, type, 4534 &shProg->data->UniformStorage[i], stageref)) 4535 return; 4536 } 4537 4538 /* Add program uniform blocks. */ 4539 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) { 4540 if (!link_util_add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK, 4541 &shProg->data->UniformBlocks[i], 0)) 4542 return; 4543 } 4544 4545 /* Add program shader storage blocks. */ 4546 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) { 4547 if (!link_util_add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK, 4548 &shProg->data->ShaderStorageBlocks[i], 0)) 4549 return; 4550 } 4551 4552 /* Add atomic counter buffers. */ 4553 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) { 4554 if (!link_util_add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER, 4555 &shProg->data->AtomicBuffers[i], 0)) 4556 return; 4557 } 4558 4559 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) { 4560 GLenum type; 4561 if (!shProg->data->UniformStorage[i].hidden) 4562 continue; 4563 4564 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) { 4565 if (!shProg->data->UniformStorage[i].opaque[j].active || 4566 !shProg->data->UniformStorage[i].type->is_subroutine()) 4567 continue; 4568 4569 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j); 4570 /* add shader subroutines */ 4571 if (!link_util_add_program_resource(shProg, resource_set, 4572 type, &shProg->data->UniformStorage[i], 0)) 4573 return; 4574 } 4575 } 4576 4577 unsigned mask = shProg->data->linked_stages; 4578 while (mask) { 4579 const int i = u_bit_scan(&mask); 4580 struct gl_program *p = shProg->_LinkedShaders[i]->Program; 4581 4582 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i); 4583 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) { 4584 if (!link_util_add_program_resource(shProg, resource_set, 4585 type, &p->sh.SubroutineFunctions[j], 0)) 4586 return; 4587 } 4588 } 4589 4590 _mesa_set_destroy(resource_set, NULL); 4591} 4592 4593/** 4594 * This check is done to make sure we allow only constant expression 4595 * indexing and "constant-index-expression" (indexing with an expression 4596 * that includes loop induction variable). 4597 */ 4598static bool 4599validate_sampler_array_indexing(struct gl_context *ctx, 4600 struct gl_shader_program *prog) 4601{ 4602 dynamic_sampler_array_indexing_visitor v; 4603 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 4604 if (prog->_LinkedShaders[i] == NULL) 4605 continue; 4606 4607 bool no_dynamic_indexing = 4608 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler; 4609 4610 /* Search for array derefs in shader. */ 4611 v.run(prog->_LinkedShaders[i]->ir); 4612 if (v.uses_dynamic_sampler_array_indexing()) { 4613 const char *msg = "sampler arrays indexed with non-constant " 4614 "expressions is forbidden in GLSL %s %u"; 4615 /* Backend has indicated that it has no dynamic indexing support. */ 4616 if (no_dynamic_indexing) { 4617 linker_error(prog, msg, prog->IsES ? "ES" : "", 4618 prog->data->Version); 4619 return false; 4620 } else { 4621 linker_warning(prog, msg, prog->IsES ? "ES" : "", 4622 prog->data->Version); 4623 } 4624 } 4625 } 4626 return true; 4627} 4628 4629static void 4630link_assign_subroutine_types(struct gl_shader_program *prog) 4631{ 4632 unsigned mask = prog->data->linked_stages; 4633 while (mask) { 4634 const int i = u_bit_scan(&mask); 4635 gl_program *p = prog->_LinkedShaders[i]->Program; 4636 4637 p->sh.MaxSubroutineFunctionIndex = 0; 4638 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { 4639 ir_function *fn = node->as_function(); 4640 if (!fn) 4641 continue; 4642 4643 if (fn->is_subroutine) 4644 p->sh.NumSubroutineUniformTypes++; 4645 4646 if (!fn->num_subroutine_types) 4647 continue; 4648 4649 /* these should have been calculated earlier. */ 4650 assert(fn->subroutine_index != -1); 4651 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) { 4652 linker_error(prog, "Too many subroutine functions declared.\n"); 4653 return; 4654 } 4655 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions, 4656 struct gl_subroutine_function, 4657 p->sh.NumSubroutineFunctions + 1); 4658 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name); 4659 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types; 4660 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types = 4661 ralloc_array(p, const struct glsl_type *, 4662 fn->num_subroutine_types); 4663 4664 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the 4665 * GLSL 4.5 spec: 4666 * 4667 * "Each subroutine with an index qualifier in the shader must be 4668 * given a unique index, otherwise a compile or link error will be 4669 * generated." 4670 */ 4671 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) { 4672 if (p->sh.SubroutineFunctions[j].index != -1 && 4673 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) { 4674 linker_error(prog, "each subroutine index qualifier in the " 4675 "shader must be unique\n"); 4676 return; 4677 } 4678 } 4679 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index = 4680 fn->subroutine_index; 4681 4682 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex) 4683 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index; 4684 4685 for (int j = 0; j < fn->num_subroutine_types; j++) 4686 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j]; 4687 p->sh.NumSubroutineFunctions++; 4688 } 4689 } 4690} 4691 4692static void 4693verify_subroutine_associated_funcs(struct gl_shader_program *prog) 4694{ 4695 unsigned mask = prog->data->linked_stages; 4696 while (mask) { 4697 const int i = u_bit_scan(&mask); 4698 gl_program *p = prog->_LinkedShaders[i]->Program; 4699 glsl_symbol_table *symbols = prog->_LinkedShaders[i]->symbols; 4700 4701 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says: 4702 * 4703 * "A program will fail to compile or link if any shader 4704 * or stage contains two or more functions with the same 4705 * name if the name is associated with a subroutine type." 4706 */ 4707 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) { 4708 unsigned definitions = 0; 4709 char *name = p->sh.SubroutineFunctions[j].name; 4710 ir_function *fn = symbols->get_function(name); 4711 4712 /* Calculate number of function definitions with the same name */ 4713 foreach_in_list(ir_function_signature, sig, &fn->signatures) { 4714 if (sig->is_defined) { 4715 if (++definitions > 1) { 4716 linker_error(prog, "%s shader contains two or more function " 4717 "definitions with name `%s', which is " 4718 "associated with a subroutine type.\n", 4719 _mesa_shader_stage_to_string(i), 4720 fn->name); 4721 return; 4722 } 4723 } 4724 } 4725 } 4726 } 4727} 4728 4729 4730static void 4731set_always_active_io(exec_list *ir, ir_variable_mode io_mode) 4732{ 4733 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out); 4734 4735 foreach_in_list(ir_instruction, node, ir) { 4736 ir_variable *const var = node->as_variable(); 4737 4738 if (var == NULL || var->data.mode != io_mode) 4739 continue; 4740 4741 /* Don't set always active on builtins that haven't been redeclared */ 4742 if (var->data.how_declared == ir_var_declared_implicitly) 4743 continue; 4744 4745 var->data.always_active_io = true; 4746 } 4747} 4748 4749/** 4750 * When separate shader programs are enabled, only input/outputs between 4751 * the stages of a multi-stage separate program can be safely removed 4752 * from the shader interface. Other inputs/outputs must remain active. 4753 */ 4754static void 4755disable_varying_optimizations_for_sso(struct gl_shader_program *prog) 4756{ 4757 unsigned first, last; 4758 assert(prog->SeparateShader); 4759 4760 first = MESA_SHADER_STAGES; 4761 last = 0; 4762 4763 /* Determine first and last stage. Excluding the compute stage */ 4764 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) { 4765 if (!prog->_LinkedShaders[i]) 4766 continue; 4767 if (first == MESA_SHADER_STAGES) 4768 first = i; 4769 last = i; 4770 } 4771 4772 if (first == MESA_SHADER_STAGES) 4773 return; 4774 4775 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) { 4776 gl_linked_shader *sh = prog->_LinkedShaders[stage]; 4777 if (!sh) 4778 continue; 4779 4780 /* Prevent the removal of inputs to the first and outputs from the last 4781 * stage, unless they are the initial pipeline inputs or final pipeline 4782 * outputs, respectively. 4783 * 4784 * The removal of IO between shaders in the same program is always 4785 * allowed. 4786 */ 4787 if (stage == first && stage != MESA_SHADER_VERTEX) 4788 set_always_active_io(sh->ir, ir_var_shader_in); 4789 if (stage == last && stage != MESA_SHADER_FRAGMENT) 4790 set_always_active_io(sh->ir, ir_var_shader_out); 4791 } 4792} 4793 4794static void 4795link_and_validate_uniforms(struct gl_context *ctx, 4796 struct gl_shader_program *prog) 4797{ 4798 update_array_sizes(prog); 4799 link_assign_uniform_locations(prog, ctx); 4800 4801 link_assign_atomic_counter_resources(ctx, prog); 4802 link_calculate_subroutine_compat(prog); 4803 check_resources(ctx, prog); 4804 check_subroutine_resources(prog); 4805 check_image_resources(ctx, prog); 4806 link_check_atomic_counter_resources(ctx, prog); 4807} 4808 4809static bool 4810link_varyings_and_uniforms(unsigned first, unsigned last, 4811 struct gl_context *ctx, 4812 struct gl_shader_program *prog, void *mem_ctx) 4813{ 4814 /* Mark all generic shader inputs and outputs as unpaired. */ 4815 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) { 4816 if (prog->_LinkedShaders[i] != NULL) { 4817 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir); 4818 } 4819 } 4820 4821 unsigned prev = first; 4822 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) { 4823 if (prog->_LinkedShaders[i] == NULL) 4824 continue; 4825 4826 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev], 4827 prog->_LinkedShaders[i]); 4828 prev = i; 4829 } 4830 4831 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const, 4832 MESA_SHADER_VERTEX, true)) { 4833 return false; 4834 } 4835 4836 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const, 4837 MESA_SHADER_FRAGMENT, true)) { 4838 return false; 4839 } 4840 4841 prog->last_vert_prog = NULL; 4842 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) { 4843 if (prog->_LinkedShaders[i] == NULL) 4844 continue; 4845 4846 prog->last_vert_prog = prog->_LinkedShaders[i]->Program; 4847 break; 4848 } 4849 4850 if (!link_varyings(prog, first, last, ctx, mem_ctx)) 4851 return false; 4852 4853 link_and_validate_uniforms(ctx, prog); 4854 4855 if (!prog->data->LinkStatus) 4856 return false; 4857 4858 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 4859 if (prog->_LinkedShaders[i] == NULL) 4860 continue; 4861 4862 const struct gl_shader_compiler_options *options = 4863 &ctx->Const.ShaderCompilerOptions[i]; 4864 4865 if (options->LowerBufferInterfaceBlocks) 4866 lower_ubo_reference(prog->_LinkedShaders[i], 4867 options->ClampBlockIndicesToArrayBounds, 4868 ctx->Const.UseSTD430AsDefaultPacking); 4869 4870 if (i == MESA_SHADER_COMPUTE) 4871 lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]); 4872 4873 lower_vector_derefs(prog->_LinkedShaders[i]); 4874 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir); 4875 } 4876 4877 return true; 4878} 4879 4880static void 4881linker_optimisation_loop(struct gl_context *ctx, exec_list *ir, 4882 unsigned stage) 4883{ 4884 if (ctx->Const.GLSLOptimizeConservatively) { 4885 /* Run it just once. */ 4886 do_common_optimization(ir, true, false, 4887 &ctx->Const.ShaderCompilerOptions[stage], 4888 ctx->Const.NativeIntegers); 4889 } else { 4890 /* Repeat it until it stops making changes. */ 4891 while (do_common_optimization(ir, true, false, 4892 &ctx->Const.ShaderCompilerOptions[stage], 4893 ctx->Const.NativeIntegers)) 4894 ; 4895 } 4896} 4897 4898void 4899link_shaders(struct gl_context *ctx, struct gl_shader_program *prog) 4900{ 4901 prog->data->LinkStatus = LINKING_SUCCESS; /* All error paths will set this to false */ 4902 prog->data->Validated = false; 4903 4904 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says: 4905 * 4906 * "Linking can fail for a variety of reasons as specified in the 4907 * OpenGL Shading Language Specification, as well as any of the 4908 * following reasons: 4909 * 4910 * - No shader objects are attached to program." 4911 * 4912 * The Compatibility Profile specification does not list the error. In 4913 * Compatibility Profile missing shader stages are replaced by 4914 * fixed-function. This applies to the case where all stages are 4915 * missing. 4916 */ 4917 if (prog->NumShaders == 0) { 4918 if (ctx->API != API_OPENGL_COMPAT) 4919 linker_error(prog, "no shaders attached to the program\n"); 4920 return; 4921 } 4922 4923#ifdef ENABLE_SHADER_CACHE 4924 if (shader_cache_read_program_metadata(ctx, prog)) 4925 return; 4926#endif 4927 4928 void *mem_ctx = ralloc_context(NULL); // temporary linker context 4929 4930 prog->ARB_fragment_coord_conventions_enable = false; 4931 4932 /* Separate the shaders into groups based on their type. 4933 */ 4934 struct gl_shader **shader_list[MESA_SHADER_STAGES]; 4935 unsigned num_shaders[MESA_SHADER_STAGES]; 4936 4937 for (int i = 0; i < MESA_SHADER_STAGES; i++) { 4938 shader_list[i] = (struct gl_shader **) 4939 calloc(prog->NumShaders, sizeof(struct gl_shader *)); 4940 num_shaders[i] = 0; 4941 } 4942 4943 unsigned min_version = UINT_MAX; 4944 unsigned max_version = 0; 4945 for (unsigned i = 0; i < prog->NumShaders; i++) { 4946 min_version = MIN2(min_version, prog->Shaders[i]->Version); 4947 max_version = MAX2(max_version, prog->Shaders[i]->Version); 4948 4949 if (!ctx->Const.AllowGLSLRelaxedES && 4950 prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) { 4951 linker_error(prog, "all shaders must use same shading " 4952 "language version\n"); 4953 goto done; 4954 } 4955 4956 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) { 4957 prog->ARB_fragment_coord_conventions_enable = true; 4958 } 4959 4960 gl_shader_stage shader_type = prog->Shaders[i]->Stage; 4961 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i]; 4962 num_shaders[shader_type]++; 4963 } 4964 4965 /* In desktop GLSL, different shader versions may be linked together. In 4966 * GLSL ES, all shader versions must be the same. 4967 */ 4968 if (!ctx->Const.AllowGLSLRelaxedES && prog->Shaders[0]->IsES && 4969 min_version != max_version) { 4970 linker_error(prog, "all shaders must use same shading " 4971 "language version\n"); 4972 goto done; 4973 } 4974 4975 prog->data->Version = max_version; 4976 prog->IsES = prog->Shaders[0]->IsES; 4977 4978 /* Some shaders have to be linked with some other shaders present. 4979 */ 4980 if (!prog->SeparateShader) { 4981 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 && 4982 num_shaders[MESA_SHADER_VERTEX] == 0) { 4983 linker_error(prog, "Geometry shader must be linked with " 4984 "vertex shader\n"); 4985 goto done; 4986 } 4987 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 && 4988 num_shaders[MESA_SHADER_VERTEX] == 0) { 4989 linker_error(prog, "Tessellation evaluation shader must be linked " 4990 "with vertex shader\n"); 4991 goto done; 4992 } 4993 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 && 4994 num_shaders[MESA_SHADER_VERTEX] == 0) { 4995 linker_error(prog, "Tessellation control shader must be linked with " 4996 "vertex shader\n"); 4997 goto done; 4998 } 4999 5000 /* Section 7.3 of the OpenGL ES 3.2 specification says: 5001 * 5002 * "Linking can fail for [...] any of the following reasons: 5003 * 5004 * * program contains an object to form a tessellation control 5005 * shader [...] and [...] the program is not separable and 5006 * contains no object to form a tessellation evaluation shader" 5007 * 5008 * The OpenGL spec is contradictory. It allows linking without a tess 5009 * eval shader, but that can only be used with transform feedback and 5010 * rasterization disabled. However, transform feedback isn't allowed 5011 * with GL_PATCHES, so it can't be used. 5012 * 5013 * More investigation showed that the idea of transform feedback after 5014 * a tess control shader was dropped, because some hw vendors couldn't 5015 * support tessellation without a tess eval shader, but the linker 5016 * section wasn't updated to reflect that. 5017 * 5018 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this 5019 * spec bug. 5020 * 5021 * Do what's reasonable and always require a tess eval shader if a tess 5022 * control shader is present. 5023 */ 5024 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 && 5025 num_shaders[MESA_SHADER_TESS_EVAL] == 0) { 5026 linker_error(prog, "Tessellation control shader must be linked with " 5027 "tessellation evaluation shader\n"); 5028 goto done; 5029 } 5030 5031 if (prog->IsES) { 5032 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 && 5033 num_shaders[MESA_SHADER_TESS_CTRL] == 0) { 5034 linker_error(prog, "GLSL ES requires non-separable programs " 5035 "containing a tessellation evaluation shader to also " 5036 "be linked with a tessellation control shader\n"); 5037 goto done; 5038 } 5039 } 5040 } 5041 5042 /* Compute shaders have additional restrictions. */ 5043 if (num_shaders[MESA_SHADER_COMPUTE] > 0 && 5044 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) { 5045 linker_error(prog, "Compute shaders may not be linked with any other " 5046 "type of shader\n"); 5047 } 5048 5049 /* Link all shaders for a particular stage and validate the result. 5050 */ 5051 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) { 5052 if (num_shaders[stage] > 0) { 5053 gl_linked_shader *const sh = 5054 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage], 5055 num_shaders[stage], false); 5056 5057 if (!prog->data->LinkStatus) { 5058 if (sh) 5059 _mesa_delete_linked_shader(ctx, sh); 5060 goto done; 5061 } 5062 5063 switch (stage) { 5064 case MESA_SHADER_VERTEX: 5065 validate_vertex_shader_executable(prog, sh, ctx); 5066 break; 5067 case MESA_SHADER_TESS_CTRL: 5068 /* nothing to be done */ 5069 break; 5070 case MESA_SHADER_TESS_EVAL: 5071 validate_tess_eval_shader_executable(prog, sh, ctx); 5072 break; 5073 case MESA_SHADER_GEOMETRY: 5074 validate_geometry_shader_executable(prog, sh, ctx); 5075 break; 5076 case MESA_SHADER_FRAGMENT: 5077 validate_fragment_shader_executable(prog, sh); 5078 break; 5079 } 5080 if (!prog->data->LinkStatus) { 5081 if (sh) 5082 _mesa_delete_linked_shader(ctx, sh); 5083 goto done; 5084 } 5085 5086 prog->_LinkedShaders[stage] = sh; 5087 prog->data->linked_stages |= 1 << stage; 5088 } 5089 } 5090 5091 /* Here begins the inter-stage linking phase. Some initial validation is 5092 * performed, then locations are assigned for uniforms, attributes, and 5093 * varyings. 5094 */ 5095 cross_validate_uniforms(ctx, prog); 5096 if (!prog->data->LinkStatus) 5097 goto done; 5098 5099 unsigned first, last, prev; 5100 5101 first = MESA_SHADER_STAGES; 5102 last = 0; 5103 5104 /* Determine first and last stage. */ 5105 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 5106 if (!prog->_LinkedShaders[i]) 5107 continue; 5108 if (first == MESA_SHADER_STAGES) 5109 first = i; 5110 last = i; 5111 } 5112 5113 check_explicit_uniform_locations(ctx, prog); 5114 link_assign_subroutine_types(prog); 5115 verify_subroutine_associated_funcs(prog); 5116 5117 if (!prog->data->LinkStatus) 5118 goto done; 5119 5120 resize_tes_inputs(ctx, prog); 5121 5122 /* Validate the inputs of each stage with the output of the preceding 5123 * stage. 5124 */ 5125 prev = first; 5126 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) { 5127 if (prog->_LinkedShaders[i] == NULL) 5128 continue; 5129 5130 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev], 5131 prog->_LinkedShaders[i]); 5132 if (!prog->data->LinkStatus) 5133 goto done; 5134 5135 cross_validate_outputs_to_inputs(ctx, prog, 5136 prog->_LinkedShaders[prev], 5137 prog->_LinkedShaders[i]); 5138 if (!prog->data->LinkStatus) 5139 goto done; 5140 5141 prev = i; 5142 } 5143 5144 /* The cross validation of outputs/inputs above validates interstage 5145 * explicit locations. We need to do this also for the inputs in the first 5146 * stage and outputs of the last stage included in the program, since there 5147 * is no cross validation for these. 5148 */ 5149 validate_first_and_last_interface_explicit_locations(ctx, prog, 5150 (gl_shader_stage) first, 5151 (gl_shader_stage) last); 5152 5153 /* Cross-validate uniform blocks between shader stages */ 5154 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders); 5155 if (!prog->data->LinkStatus) 5156 goto done; 5157 5158 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) { 5159 if (prog->_LinkedShaders[i] != NULL) 5160 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]); 5161 } 5162 5163 if (prog->IsES && prog->data->Version == 100) 5164 if (!validate_invariant_builtins(prog, 5165 prog->_LinkedShaders[MESA_SHADER_VERTEX], 5166 prog->_LinkedShaders[MESA_SHADER_FRAGMENT])) 5167 goto done; 5168 5169 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do 5170 * it before optimization because we want most of the checks to get 5171 * dropped thanks to constant propagation. 5172 * 5173 * This rule also applies to GLSL ES 3.00. 5174 */ 5175 if (max_version >= (prog->IsES ? 300 : 130)) { 5176 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]; 5177 if (sh) { 5178 lower_discard_flow(sh->ir); 5179 } 5180 } 5181 5182 if (prog->SeparateShader) 5183 disable_varying_optimizations_for_sso(prog); 5184 5185 /* Process UBOs */ 5186 if (!interstage_cross_validate_uniform_blocks(prog, false)) 5187 goto done; 5188 5189 /* Process SSBOs */ 5190 if (!interstage_cross_validate_uniform_blocks(prog, true)) 5191 goto done; 5192 5193 /* Do common optimization before assigning storage for attributes, 5194 * uniforms, and varyings. Later optimization could possibly make 5195 * some of that unused. 5196 */ 5197 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 5198 if (prog->_LinkedShaders[i] == NULL) 5199 continue; 5200 5201 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir); 5202 if (!prog->data->LinkStatus) 5203 goto done; 5204 5205 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) { 5206 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]); 5207 } 5208 5209 if (ctx->Const.LowerTessLevel) { 5210 lower_tess_level(prog->_LinkedShaders[i]); 5211 } 5212 5213 /* Section 13.46 (Vertex Attribute Aliasing) of the OpenGL ES 3.2 5214 * specification says: 5215 * 5216 * "In general, the behavior of GLSL ES should not depend on compiler 5217 * optimizations which might be implementation-dependent. Name matching 5218 * rules in most languages, including C++ from which GLSL ES is derived, 5219 * are based on declarations rather than use. 5220 * 5221 * RESOLUTION: The existence of aliasing is determined by declarations 5222 * present after preprocessing." 5223 * 5224 * Because of this rule, we do a 'dry-run' of attribute assignment for 5225 * vertex shader inputs here. 5226 */ 5227 if (prog->IsES && i == MESA_SHADER_VERTEX) { 5228 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const, 5229 MESA_SHADER_VERTEX, false)) { 5230 goto done; 5231 } 5232 } 5233 5234 /* Call opts before lowering const arrays to uniforms so we can const 5235 * propagate any elements accessed directly. 5236 */ 5237 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i); 5238 5239 /* Call opts after lowering const arrays to copy propagate things. */ 5240 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i)) 5241 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i); 5242 5243 propagate_invariance(prog->_LinkedShaders[i]->ir); 5244 } 5245 5246 /* Validation for special cases where we allow sampler array indexing 5247 * with loop induction variable. This check emits a warning or error 5248 * depending if backend can handle dynamic indexing. 5249 */ 5250 if ((!prog->IsES && prog->data->Version < 130) || 5251 (prog->IsES && prog->data->Version < 300)) { 5252 if (!validate_sampler_array_indexing(ctx, prog)) 5253 goto done; 5254 } 5255 5256 /* Check and validate stream emissions in geometry shaders */ 5257 validate_geometry_shader_emissions(ctx, prog); 5258 5259 store_fragdepth_layout(prog); 5260 5261 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx)) 5262 goto done; 5263 5264 /* Linking varyings can cause some extra, useless swizzles to be generated 5265 * due to packing and unpacking. 5266 */ 5267 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 5268 if (prog->_LinkedShaders[i] == NULL) 5269 continue; 5270 5271 optimize_swizzles(prog->_LinkedShaders[i]->ir); 5272 } 5273 5274 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both 5275 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say 5276 * anything about shader linking when one of the shaders (vertex or 5277 * fragment shader) is absent. So, the extension shouldn't change the 5278 * behavior specified in GLSL specification. 5279 * 5280 * From OpenGL ES 3.1 specification (7.3 Program Objects): 5281 * "Linking can fail for a variety of reasons as specified in the 5282 * OpenGL ES Shading Language Specification, as well as any of the 5283 * following reasons: 5284 * 5285 * ... 5286 * 5287 * * program contains objects to form either a vertex shader or 5288 * fragment shader, and program is not separable, and does not 5289 * contain objects to form both a vertex shader and fragment 5290 * shader." 5291 * 5292 * However, the only scenario in 3.1+ where we don't require them both is 5293 * when we have a compute shader. For example: 5294 * 5295 * - No shaders is a link error. 5296 * - Geom or Tess without a Vertex shader is a link error which means we 5297 * always require a Vertex shader and hence a Fragment shader. 5298 * - Finally a Compute shader linked with any other stage is a link error. 5299 */ 5300 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 && 5301 num_shaders[MESA_SHADER_COMPUTE] == 0) { 5302 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) { 5303 linker_error(prog, "program lacks a vertex shader\n"); 5304 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) { 5305 linker_error(prog, "program lacks a fragment shader\n"); 5306 } 5307 } 5308 5309done: 5310 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 5311 free(shader_list[i]); 5312 if (prog->_LinkedShaders[i] == NULL) 5313 continue; 5314 5315 /* Do a final validation step to make sure that the IR wasn't 5316 * invalidated by any modifications performed after intrastage linking. 5317 */ 5318 validate_ir_tree(prog->_LinkedShaders[i]->ir); 5319 5320 /* Retain any live IR, but trash the rest. */ 5321 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir); 5322 5323 /* The symbol table in the linked shaders may contain references to 5324 * variables that were removed (e.g., unused uniforms). Since it may 5325 * contain junk, there is no possible valid use. Delete it and set the 5326 * pointer to NULL. 5327 */ 5328 delete prog->_LinkedShaders[i]->symbols; 5329 prog->_LinkedShaders[i]->symbols = NULL; 5330 } 5331 5332 ralloc_free(mem_ctx); 5333} 5334