linker.cpp revision 7e102996
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type.  All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 *   - Undefined references in each shader are resolve to definitions in
36 *     another shader.
37 *   - Types and qualifiers of uniforms, outputs, and global variables defined
38 *     in multiple shaders with the same name are verified to be the same.
39 *   - Initializers for uniforms and global variables defined
40 *     in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 *   - Each shader executable must define a \c main function.
49 *   - Each vertex shader executable must write to \c gl_Position.
50 *   - Each fragment shader executable must write to either \c gl_FragData or
51 *     \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 *   - Types of uniforms defined in multiple shader stages with the same name
57 *     are verified to be the same.
58 *   - Initializers for uniforms defined in multiple shader stages with the
59 *     same name are verified to be the same.
60 *   - Types and qualifiers of outputs defined in one stage are verified to
61 *     be the same as the types and qualifiers of inputs defined with the same
62 *     name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67#include <ctype.h>
68#include "util/strndup.h"
69#include "glsl_symbol_table.h"
70#include "glsl_parser_extras.h"
71#include "ir.h"
72#include "program.h"
73#include "program/prog_instruction.h"
74#include "program/program.h"
75#include "util/mesa-sha1.h"
76#include "util/set.h"
77#include "string_to_uint_map.h"
78#include "linker.h"
79#include "linker_util.h"
80#include "link_varyings.h"
81#include "ir_optimization.h"
82#include "ir_rvalue_visitor.h"
83#include "ir_uniform.h"
84#include "builtin_functions.h"
85#include "shader_cache.h"
86#include "util/u_string.h"
87#include "util/u_math.h"
88
89#include "main/imports.h"
90#include "main/shaderobj.h"
91#include "main/enums.h"
92#include "main/mtypes.h"
93
94
95namespace {
96
97struct find_variable {
98   const char *name;
99   bool found;
100
101   find_variable(const char *name) : name(name), found(false) {}
102};
103
104/**
105 * Visitor that determines whether or not a variable is ever written.
106 *
107 * Use \ref find_assignments for convenience.
108 */
109class find_assignment_visitor : public ir_hierarchical_visitor {
110public:
111   find_assignment_visitor(unsigned num_vars,
112                           find_variable * const *vars)
113      : num_variables(num_vars), num_found(0), variables(vars)
114   {
115   }
116
117   virtual ir_visitor_status visit_enter(ir_assignment *ir)
118   {
119      ir_variable *const var = ir->lhs->variable_referenced();
120
121      return check_variable_name(var->name);
122   }
123
124   virtual ir_visitor_status visit_enter(ir_call *ir)
125   {
126      foreach_two_lists(formal_node, &ir->callee->parameters,
127                        actual_node, &ir->actual_parameters) {
128         ir_rvalue *param_rval = (ir_rvalue *) actual_node;
129         ir_variable *sig_param = (ir_variable *) formal_node;
130
131         if (sig_param->data.mode == ir_var_function_out ||
132             sig_param->data.mode == ir_var_function_inout) {
133            ir_variable *var = param_rval->variable_referenced();
134            if (var && check_variable_name(var->name) == visit_stop)
135               return visit_stop;
136         }
137      }
138
139      if (ir->return_deref != NULL) {
140         ir_variable *const var = ir->return_deref->variable_referenced();
141
142         if (check_variable_name(var->name) == visit_stop)
143            return visit_stop;
144      }
145
146      return visit_continue_with_parent;
147   }
148
149private:
150   ir_visitor_status check_variable_name(const char *name)
151   {
152      for (unsigned i = 0; i < num_variables; ++i) {
153         if (strcmp(variables[i]->name, name) == 0) {
154            if (!variables[i]->found) {
155               variables[i]->found = true;
156
157               assert(num_found < num_variables);
158               if (++num_found == num_variables)
159                  return visit_stop;
160            }
161            break;
162         }
163      }
164
165      return visit_continue_with_parent;
166   }
167
168private:
169   unsigned num_variables;           /**< Number of variables to find */
170   unsigned num_found;               /**< Number of variables already found */
171   find_variable * const *variables; /**< Variables to find */
172};
173
174/**
175 * Determine whether or not any of NULL-terminated list of variables is ever
176 * written to.
177 */
178static void
179find_assignments(exec_list *ir, find_variable * const *vars)
180{
181   unsigned num_variables = 0;
182
183   for (find_variable * const *v = vars; *v; ++v)
184      num_variables++;
185
186   find_assignment_visitor visitor(num_variables, vars);
187   visitor.run(ir);
188}
189
190/**
191 * Determine whether or not the given variable is ever written to.
192 */
193static void
194find_assignments(exec_list *ir, find_variable *var)
195{
196   find_assignment_visitor visitor(1, &var);
197   visitor.run(ir);
198}
199
200/**
201 * Visitor that determines whether or not a variable is ever read.
202 */
203class find_deref_visitor : public ir_hierarchical_visitor {
204public:
205   find_deref_visitor(const char *name)
206      : name(name), found(false)
207   {
208      /* empty */
209   }
210
211   virtual ir_visitor_status visit(ir_dereference_variable *ir)
212   {
213      if (strcmp(this->name, ir->var->name) == 0) {
214         this->found = true;
215         return visit_stop;
216      }
217
218      return visit_continue;
219   }
220
221   bool variable_found() const
222   {
223      return this->found;
224   }
225
226private:
227   const char *name;       /**< Find writes to a variable with this name. */
228   bool found;             /**< Was a write to the variable found? */
229};
230
231
232/**
233 * A visitor helper that provides methods for updating the types of
234 * ir_dereferences.  Classes that update variable types (say, updating
235 * array sizes) will want to use this so that dereference types stay in sync.
236 */
237class deref_type_updater : public ir_hierarchical_visitor {
238public:
239   virtual ir_visitor_status visit(ir_dereference_variable *ir)
240   {
241      ir->type = ir->var->type;
242      return visit_continue;
243   }
244
245   virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
246   {
247      const glsl_type *const vt = ir->array->type;
248      if (vt->is_array())
249         ir->type = vt->fields.array;
250      return visit_continue;
251   }
252
253   virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
254   {
255      ir->type = ir->record->type->fields.structure[ir->field_idx].type;
256      return visit_continue;
257   }
258};
259
260
261class array_resize_visitor : public deref_type_updater {
262public:
263   unsigned num_vertices;
264   gl_shader_program *prog;
265   gl_shader_stage stage;
266
267   array_resize_visitor(unsigned num_vertices,
268                        gl_shader_program *prog,
269                        gl_shader_stage stage)
270   {
271      this->num_vertices = num_vertices;
272      this->prog = prog;
273      this->stage = stage;
274   }
275
276   virtual ~array_resize_visitor()
277   {
278      /* empty */
279   }
280
281   virtual ir_visitor_status visit(ir_variable *var)
282   {
283      if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
284          var->data.patch)
285         return visit_continue;
286
287      unsigned size = var->type->length;
288
289      if (stage == MESA_SHADER_GEOMETRY) {
290         /* Generate a link error if the shader has declared this array with
291          * an incorrect size.
292          */
293         if (!var->data.implicit_sized_array &&
294             size && size != this->num_vertices) {
295            linker_error(this->prog, "size of array %s declared as %u, "
296                         "but number of input vertices is %u\n",
297                         var->name, size, this->num_vertices);
298            return visit_continue;
299         }
300
301         /* Generate a link error if the shader attempts to access an input
302          * array using an index too large for its actual size assigned at
303          * link time.
304          */
305         if (var->data.max_array_access >= (int)this->num_vertices) {
306            linker_error(this->prog, "%s shader accesses element %i of "
307                         "%s, but only %i input vertices\n",
308                         _mesa_shader_stage_to_string(this->stage),
309                         var->data.max_array_access, var->name, this->num_vertices);
310            return visit_continue;
311         }
312      }
313
314      var->type = glsl_type::get_array_instance(var->type->fields.array,
315                                                this->num_vertices);
316      var->data.max_array_access = this->num_vertices - 1;
317
318      return visit_continue;
319   }
320};
321
322/**
323 * Visitor that determines the highest stream id to which a (geometry) shader
324 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
325 */
326class find_emit_vertex_visitor : public ir_hierarchical_visitor {
327public:
328   find_emit_vertex_visitor(int max_allowed)
329      : max_stream_allowed(max_allowed),
330        invalid_stream_id(0),
331        invalid_stream_id_from_emit_vertex(false),
332        end_primitive_found(false),
333        uses_non_zero_stream(false)
334   {
335      /* empty */
336   }
337
338   virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
339   {
340      int stream_id = ir->stream_id();
341
342      if (stream_id < 0) {
343         invalid_stream_id = stream_id;
344         invalid_stream_id_from_emit_vertex = true;
345         return visit_stop;
346      }
347
348      if (stream_id > max_stream_allowed) {
349         invalid_stream_id = stream_id;
350         invalid_stream_id_from_emit_vertex = true;
351         return visit_stop;
352      }
353
354      if (stream_id != 0)
355         uses_non_zero_stream = true;
356
357      return visit_continue;
358   }
359
360   virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
361   {
362      end_primitive_found = true;
363
364      int stream_id = ir->stream_id();
365
366      if (stream_id < 0) {
367         invalid_stream_id = stream_id;
368         invalid_stream_id_from_emit_vertex = false;
369         return visit_stop;
370      }
371
372      if (stream_id > max_stream_allowed) {
373         invalid_stream_id = stream_id;
374         invalid_stream_id_from_emit_vertex = false;
375         return visit_stop;
376      }
377
378      if (stream_id != 0)
379         uses_non_zero_stream = true;
380
381      return visit_continue;
382   }
383
384   bool error()
385   {
386      return invalid_stream_id != 0;
387   }
388
389   const char *error_func()
390   {
391      return invalid_stream_id_from_emit_vertex ?
392         "EmitStreamVertex" : "EndStreamPrimitive";
393   }
394
395   int error_stream()
396   {
397      return invalid_stream_id;
398   }
399
400   bool uses_streams()
401   {
402      return uses_non_zero_stream;
403   }
404
405   bool uses_end_primitive()
406   {
407      return end_primitive_found;
408   }
409
410private:
411   int max_stream_allowed;
412   int invalid_stream_id;
413   bool invalid_stream_id_from_emit_vertex;
414   bool end_primitive_found;
415   bool uses_non_zero_stream;
416};
417
418/* Class that finds array derefs and check if indexes are dynamic. */
419class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
420{
421public:
422   dynamic_sampler_array_indexing_visitor() :
423      dynamic_sampler_array_indexing(false)
424   {
425   }
426
427   ir_visitor_status visit_enter(ir_dereference_array *ir)
428   {
429      if (!ir->variable_referenced())
430         return visit_continue;
431
432      if (!ir->variable_referenced()->type->contains_sampler())
433         return visit_continue;
434
435      if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
436         dynamic_sampler_array_indexing = true;
437         return visit_stop;
438      }
439      return visit_continue;
440   }
441
442   bool uses_dynamic_sampler_array_indexing()
443   {
444      return dynamic_sampler_array_indexing;
445   }
446
447private:
448   bool dynamic_sampler_array_indexing;
449};
450
451} /* anonymous namespace */
452
453void
454linker_error(gl_shader_program *prog, const char *fmt, ...)
455{
456   va_list ap;
457
458   ralloc_strcat(&prog->data->InfoLog, "error: ");
459   va_start(ap, fmt);
460   ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
461   va_end(ap);
462
463   prog->data->LinkStatus = LINKING_FAILURE;
464}
465
466
467void
468linker_warning(gl_shader_program *prog, const char *fmt, ...)
469{
470   va_list ap;
471
472   ralloc_strcat(&prog->data->InfoLog, "warning: ");
473   va_start(ap, fmt);
474   ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
475   va_end(ap);
476
477}
478
479
480/**
481 * Given a string identifying a program resource, break it into a base name
482 * and an optional array index in square brackets.
483 *
484 * If an array index is present, \c out_base_name_end is set to point to the
485 * "[" that precedes the array index, and the array index itself is returned
486 * as a long.
487 *
488 * If no array index is present (or if the array index is negative or
489 * mal-formed), \c out_base_name_end, is set to point to the null terminator
490 * at the end of the input string, and -1 is returned.
491 *
492 * Only the final array index is parsed; if the string contains other array
493 * indices (or structure field accesses), they are left in the base name.
494 *
495 * No attempt is made to check that the base name is properly formed;
496 * typically the caller will look up the base name in a hash table, so
497 * ill-formed base names simply turn into hash table lookup failures.
498 */
499long
500parse_program_resource_name(const GLchar *name,
501                            const GLchar **out_base_name_end)
502{
503   /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
504    *
505    *     "When an integer array element or block instance number is part of
506    *     the name string, it will be specified in decimal form without a "+"
507    *     or "-" sign or any extra leading zeroes. Additionally, the name
508    *     string will not include white space anywhere in the string."
509    */
510
511   const size_t len = strlen(name);
512   *out_base_name_end = name + len;
513
514   if (len == 0 || name[len-1] != ']')
515      return -1;
516
517   /* Walk backwards over the string looking for a non-digit character.  This
518    * had better be the opening bracket for an array index.
519    *
520    * Initially, i specifies the location of the ']'.  Since the string may
521    * contain only the ']' charcater, walk backwards very carefully.
522    */
523   unsigned i;
524   for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
525      /* empty */ ;
526
527   if ((i == 0) || name[i-1] != '[')
528      return -1;
529
530   long array_index = strtol(&name[i], NULL, 10);
531   if (array_index < 0)
532      return -1;
533
534   /* Check for leading zero */
535   if (name[i] == '0' && name[i+1] != ']')
536      return -1;
537
538   *out_base_name_end = name + (i - 1);
539   return array_index;
540}
541
542
543void
544link_invalidate_variable_locations(exec_list *ir)
545{
546   foreach_in_list(ir_instruction, node, ir) {
547      ir_variable *const var = node->as_variable();
548
549      if (var == NULL)
550         continue;
551
552      /* Only assign locations for variables that lack an explicit location.
553       * Explicit locations are set for all built-in variables, generic vertex
554       * shader inputs (via layout(location=...)), and generic fragment shader
555       * outputs (also via layout(location=...)).
556       */
557      if (!var->data.explicit_location) {
558         var->data.location = -1;
559         var->data.location_frac = 0;
560      }
561
562      /* ir_variable::is_unmatched_generic_inout is used by the linker while
563       * connecting outputs from one stage to inputs of the next stage.
564       */
565      if (var->data.explicit_location &&
566          var->data.location < VARYING_SLOT_VAR0) {
567         var->data.is_unmatched_generic_inout = 0;
568      } else {
569         var->data.is_unmatched_generic_inout = 1;
570      }
571   }
572}
573
574
575/**
576 * Set clip_distance_array_size based and cull_distance_array_size on the given
577 * shader.
578 *
579 * Also check for errors based on incorrect usage of gl_ClipVertex and
580 * gl_ClipDistance and gl_CullDistance.
581 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
582 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
583 *
584 * Return false if an error was reported.
585 */
586static void
587analyze_clip_cull_usage(struct gl_shader_program *prog,
588                        struct gl_linked_shader *shader,
589                        struct gl_context *ctx,
590                        GLuint *clip_distance_array_size,
591                        GLuint *cull_distance_array_size)
592{
593   *clip_distance_array_size = 0;
594   *cull_distance_array_size = 0;
595
596   if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
597      /* From section 7.1 (Vertex Shader Special Variables) of the
598       * GLSL 1.30 spec:
599       *
600       *   "It is an error for a shader to statically write both
601       *   gl_ClipVertex and gl_ClipDistance."
602       *
603       * This does not apply to GLSL ES shaders, since GLSL ES defines neither
604       * gl_ClipVertex nor gl_ClipDistance. However with
605       * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
606       */
607      find_variable gl_ClipDistance("gl_ClipDistance");
608      find_variable gl_CullDistance("gl_CullDistance");
609      find_variable gl_ClipVertex("gl_ClipVertex");
610      find_variable * const variables[] = {
611         &gl_ClipDistance,
612         &gl_CullDistance,
613         !prog->IsES ? &gl_ClipVertex : NULL,
614         NULL
615      };
616      find_assignments(shader->ir, variables);
617
618      /* From the ARB_cull_distance spec:
619       *
620       * It is a compile-time or link-time error for the set of shaders forming
621       * a program to statically read or write both gl_ClipVertex and either
622       * gl_ClipDistance or gl_CullDistance.
623       *
624       * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
625       * gl_ClipVertex.
626       */
627      if (!prog->IsES) {
628         if (gl_ClipVertex.found && gl_ClipDistance.found) {
629            linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
630                         "and `gl_ClipDistance'\n",
631                         _mesa_shader_stage_to_string(shader->Stage));
632            return;
633         }
634         if (gl_ClipVertex.found && gl_CullDistance.found) {
635            linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
636                         "and `gl_CullDistance'\n",
637                         _mesa_shader_stage_to_string(shader->Stage));
638            return;
639         }
640      }
641
642      if (gl_ClipDistance.found) {
643         ir_variable *clip_distance_var =
644                shader->symbols->get_variable("gl_ClipDistance");
645         assert(clip_distance_var);
646         *clip_distance_array_size = clip_distance_var->type->length;
647      }
648      if (gl_CullDistance.found) {
649         ir_variable *cull_distance_var =
650                shader->symbols->get_variable("gl_CullDistance");
651         assert(cull_distance_var);
652         *cull_distance_array_size = cull_distance_var->type->length;
653      }
654      /* From the ARB_cull_distance spec:
655       *
656       * It is a compile-time or link-time error for the set of shaders forming
657       * a program to have the sum of the sizes of the gl_ClipDistance and
658       * gl_CullDistance arrays to be larger than
659       * gl_MaxCombinedClipAndCullDistances.
660       */
661      if ((*clip_distance_array_size + *cull_distance_array_size) >
662          ctx->Const.MaxClipPlanes) {
663          linker_error(prog, "%s shader: the combined size of "
664                       "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
665                       "be larger than "
666                       "gl_MaxCombinedClipAndCullDistances (%u)",
667                       _mesa_shader_stage_to_string(shader->Stage),
668                       ctx->Const.MaxClipPlanes);
669      }
670   }
671}
672
673
674/**
675 * Verify that a vertex shader executable meets all semantic requirements.
676 *
677 * Also sets info.clip_distance_array_size and
678 * info.cull_distance_array_size as a side effect.
679 *
680 * \param shader  Vertex shader executable to be verified
681 */
682static void
683validate_vertex_shader_executable(struct gl_shader_program *prog,
684                                  struct gl_linked_shader *shader,
685                                  struct gl_context *ctx)
686{
687   if (shader == NULL)
688      return;
689
690   /* From the GLSL 1.10 spec, page 48:
691    *
692    *     "The variable gl_Position is available only in the vertex
693    *      language and is intended for writing the homogeneous vertex
694    *      position. All executions of a well-formed vertex shader
695    *      executable must write a value into this variable. [...] The
696    *      variable gl_Position is available only in the vertex
697    *      language and is intended for writing the homogeneous vertex
698    *      position. All executions of a well-formed vertex shader
699    *      executable must write a value into this variable."
700    *
701    * while in GLSL 1.40 this text is changed to:
702    *
703    *     "The variable gl_Position is available only in the vertex
704    *      language and is intended for writing the homogeneous vertex
705    *      position. It can be written at any time during shader
706    *      execution. It may also be read back by a vertex shader
707    *      after being written. This value will be used by primitive
708    *      assembly, clipping, culling, and other fixed functionality
709    *      operations, if present, that operate on primitives after
710    *      vertex processing has occurred. Its value is undefined if
711    *      the vertex shader executable does not write gl_Position."
712    *
713    * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
714    * gl_Position is not an error.
715    */
716   if (prog->data->Version < (prog->IsES ? 300 : 140)) {
717      find_variable gl_Position("gl_Position");
718      find_assignments(shader->ir, &gl_Position);
719      if (!gl_Position.found) {
720        if (prog->IsES) {
721          linker_warning(prog,
722                         "vertex shader does not write to `gl_Position'. "
723                         "Its value is undefined. \n");
724        } else {
725          linker_error(prog,
726                       "vertex shader does not write to `gl_Position'. \n");
727        }
728         return;
729      }
730   }
731
732   analyze_clip_cull_usage(prog, shader, ctx,
733                           &shader->Program->info.clip_distance_array_size,
734                           &shader->Program->info.cull_distance_array_size);
735}
736
737static void
738validate_tess_eval_shader_executable(struct gl_shader_program *prog,
739                                     struct gl_linked_shader *shader,
740                                     struct gl_context *ctx)
741{
742   if (shader == NULL)
743      return;
744
745   analyze_clip_cull_usage(prog, shader, ctx,
746                           &shader->Program->info.clip_distance_array_size,
747                           &shader->Program->info.cull_distance_array_size);
748}
749
750
751/**
752 * Verify that a fragment shader executable meets all semantic requirements
753 *
754 * \param shader  Fragment shader executable to be verified
755 */
756static void
757validate_fragment_shader_executable(struct gl_shader_program *prog,
758                                    struct gl_linked_shader *shader)
759{
760   if (shader == NULL)
761      return;
762
763   find_variable gl_FragColor("gl_FragColor");
764   find_variable gl_FragData("gl_FragData");
765   find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
766   find_assignments(shader->ir, variables);
767
768   if (gl_FragColor.found && gl_FragData.found) {
769      linker_error(prog,  "fragment shader writes to both "
770                   "`gl_FragColor' and `gl_FragData'\n");
771   }
772}
773
774/**
775 * Verify that a geometry shader executable meets all semantic requirements
776 *
777 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
778 * info.cull_distance_array_size as a side effect.
779 *
780 * \param shader Geometry shader executable to be verified
781 */
782static void
783validate_geometry_shader_executable(struct gl_shader_program *prog,
784                                    struct gl_linked_shader *shader,
785                                    struct gl_context *ctx)
786{
787   if (shader == NULL)
788      return;
789
790   unsigned num_vertices =
791      vertices_per_prim(shader->Program->info.gs.input_primitive);
792   prog->Geom.VerticesIn = num_vertices;
793
794   analyze_clip_cull_usage(prog, shader, ctx,
795                           &shader->Program->info.clip_distance_array_size,
796                           &shader->Program->info.cull_distance_array_size);
797}
798
799/**
800 * Check if geometry shaders emit to non-zero streams and do corresponding
801 * validations.
802 */
803static void
804validate_geometry_shader_emissions(struct gl_context *ctx,
805                                   struct gl_shader_program *prog)
806{
807   struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
808
809   if (sh != NULL) {
810      find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
811      emit_vertex.run(sh->ir);
812      if (emit_vertex.error()) {
813         linker_error(prog, "Invalid call %s(%d). Accepted values for the "
814                      "stream parameter are in the range [0, %d].\n",
815                      emit_vertex.error_func(),
816                      emit_vertex.error_stream(),
817                      ctx->Const.MaxVertexStreams - 1);
818      }
819      prog->Geom.UsesStreams = emit_vertex.uses_streams();
820      prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
821
822      /* From the ARB_gpu_shader5 spec:
823       *
824       *   "Multiple vertex streams are supported only if the output primitive
825       *    type is declared to be "points".  A program will fail to link if it
826       *    contains a geometry shader calling EmitStreamVertex() or
827       *    EndStreamPrimitive() if its output primitive type is not "points".
828       *
829       * However, in the same spec:
830       *
831       *   "The function EmitVertex() is equivalent to calling EmitStreamVertex()
832       *    with <stream> set to zero."
833       *
834       * And:
835       *
836       *   "The function EndPrimitive() is equivalent to calling
837       *    EndStreamPrimitive() with <stream> set to zero."
838       *
839       * Since we can call EmitVertex() and EndPrimitive() when we output
840       * primitives other than points, calling EmitStreamVertex(0) or
841       * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
842       * does. Currently we only set prog->Geom.UsesStreams to TRUE when
843       * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
844       * stream.
845       */
846      if (prog->Geom.UsesStreams &&
847          sh->Program->info.gs.output_primitive != GL_POINTS) {
848         linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
849                      "with n>0 requires point output\n");
850      }
851   }
852}
853
854bool
855validate_intrastage_arrays(struct gl_shader_program *prog,
856                           ir_variable *const var,
857                           ir_variable *const existing)
858{
859   /* Consider the types to be "the same" if both types are arrays
860    * of the same type and one of the arrays is implicitly sized.
861    * In addition, set the type of the linked variable to the
862    * explicitly sized array.
863    */
864   if (var->type->is_array() && existing->type->is_array()) {
865      if ((var->type->fields.array == existing->type->fields.array) &&
866          ((var->type->length == 0)|| (existing->type->length == 0))) {
867         if (var->type->length != 0) {
868            if ((int)var->type->length <= existing->data.max_array_access) {
869               linker_error(prog, "%s `%s' declared as type "
870                           "`%s' but outermost dimension has an index"
871                           " of `%i'\n",
872                           mode_string(var),
873                           var->name, var->type->name,
874                           existing->data.max_array_access);
875            }
876            existing->type = var->type;
877            return true;
878         } else if (existing->type->length != 0) {
879            if((int)existing->type->length <= var->data.max_array_access &&
880               !existing->data.from_ssbo_unsized_array) {
881               linker_error(prog, "%s `%s' declared as type "
882                           "`%s' but outermost dimension has an index"
883                           " of `%i'\n",
884                           mode_string(var),
885                           var->name, existing->type->name,
886                           var->data.max_array_access);
887            }
888            return true;
889         }
890      }
891   }
892   return false;
893}
894
895
896/**
897 * Perform validation of global variables used across multiple shaders
898 */
899static void
900cross_validate_globals(struct gl_context *ctx, struct gl_shader_program *prog,
901                       struct exec_list *ir, glsl_symbol_table *variables,
902                       bool uniforms_only)
903{
904   foreach_in_list(ir_instruction, node, ir) {
905      ir_variable *const var = node->as_variable();
906
907      if (var == NULL)
908         continue;
909
910      if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
911         continue;
912
913      /* don't cross validate subroutine uniforms */
914      if (var->type->contains_subroutine())
915         continue;
916
917      /* Don't cross validate interface instances. These are only relevant
918       * inside a shader. The cross validation is done at the Interface Block
919       * name level.
920       */
921      if (var->is_interface_instance())
922         continue;
923
924      /* Don't cross validate temporaries that are at global scope.  These
925       * will eventually get pulled into the shaders 'main'.
926       */
927      if (var->data.mode == ir_var_temporary)
928         continue;
929
930      /* If a global with this name has already been seen, verify that the
931       * new instance has the same type.  In addition, if the globals have
932       * initializers, the values of the initializers must be the same.
933       */
934      ir_variable *const existing = variables->get_variable(var->name);
935      if (existing != NULL) {
936         /* Check if types match. */
937         if (var->type != existing->type) {
938            if (!validate_intrastage_arrays(prog, var, existing)) {
939               /* If it is an unsized array in a Shader Storage Block,
940                * two different shaders can access to different elements.
941                * Because of that, they might be converted to different
942                * sized arrays, then check that they are compatible but
943                * ignore the array size.
944                */
945               if (!(var->data.mode == ir_var_shader_storage &&
946                     var->data.from_ssbo_unsized_array &&
947                     existing->data.mode == ir_var_shader_storage &&
948                     existing->data.from_ssbo_unsized_array &&
949                     var->type->gl_type == existing->type->gl_type)) {
950                  linker_error(prog, "%s `%s' declared as type "
951                                 "`%s' and type `%s'\n",
952                                 mode_string(var),
953                                 var->name, var->type->name,
954                                 existing->type->name);
955                  return;
956               }
957            }
958         }
959
960         if (var->data.explicit_location) {
961            if (existing->data.explicit_location
962                && (var->data.location != existing->data.location)) {
963               linker_error(prog, "explicit locations for %s "
964                            "`%s' have differing values\n",
965                            mode_string(var), var->name);
966               return;
967            }
968
969            if (var->data.location_frac != existing->data.location_frac) {
970               linker_error(prog, "explicit components for %s `%s' have "
971                            "differing values\n", mode_string(var), var->name);
972               return;
973            }
974
975            existing->data.location = var->data.location;
976            existing->data.explicit_location = true;
977         } else {
978            /* Check if uniform with implicit location was marked explicit
979             * by earlier shader stage. If so, mark it explicit in this stage
980             * too to make sure later processing does not treat it as
981             * implicit one.
982             */
983            if (existing->data.explicit_location) {
984               var->data.location = existing->data.location;
985               var->data.explicit_location = true;
986            }
987         }
988
989         /* From the GLSL 4.20 specification:
990          * "A link error will result if two compilation units in a program
991          *  specify different integer-constant bindings for the same
992          *  opaque-uniform name.  However, it is not an error to specify a
993          *  binding on some but not all declarations for the same name"
994          */
995         if (var->data.explicit_binding) {
996            if (existing->data.explicit_binding &&
997                var->data.binding != existing->data.binding) {
998               linker_error(prog, "explicit bindings for %s "
999                            "`%s' have differing values\n",
1000                            mode_string(var), var->name);
1001               return;
1002            }
1003
1004            existing->data.binding = var->data.binding;
1005            existing->data.explicit_binding = true;
1006         }
1007
1008         if (var->type->contains_atomic() &&
1009             var->data.offset != existing->data.offset) {
1010            linker_error(prog, "offset specifications for %s "
1011                         "`%s' have differing values\n",
1012                         mode_string(var), var->name);
1013            return;
1014         }
1015
1016         /* Validate layout qualifiers for gl_FragDepth.
1017          *
1018          * From the AMD/ARB_conservative_depth specs:
1019          *
1020          *    "If gl_FragDepth is redeclared in any fragment shader in a
1021          *    program, it must be redeclared in all fragment shaders in
1022          *    that program that have static assignments to
1023          *    gl_FragDepth. All redeclarations of gl_FragDepth in all
1024          *    fragment shaders in a single program must have the same set
1025          *    of qualifiers."
1026          */
1027         if (strcmp(var->name, "gl_FragDepth") == 0) {
1028            bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1029            bool layout_differs =
1030               var->data.depth_layout != existing->data.depth_layout;
1031
1032            if (layout_declared && layout_differs) {
1033               linker_error(prog,
1034                            "All redeclarations of gl_FragDepth in all "
1035                            "fragment shaders in a single program must have "
1036                            "the same set of qualifiers.\n");
1037            }
1038
1039            if (var->data.used && layout_differs) {
1040               linker_error(prog,
1041                            "If gl_FragDepth is redeclared with a layout "
1042                            "qualifier in any fragment shader, it must be "
1043                            "redeclared with the same layout qualifier in "
1044                            "all fragment shaders that have assignments to "
1045                            "gl_FragDepth\n");
1046            }
1047         }
1048
1049         /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1050          *
1051          *     "If a shared global has multiple initializers, the
1052          *     initializers must all be constant expressions, and they
1053          *     must all have the same value. Otherwise, a link error will
1054          *     result. (A shared global having only one initializer does
1055          *     not require that initializer to be a constant expression.)"
1056          *
1057          * Previous to 4.20 the GLSL spec simply said that initializers
1058          * must have the same value.  In this case of non-constant
1059          * initializers, this was impossible to determine.  As a result,
1060          * no vendor actually implemented that behavior.  The 4.20
1061          * behavior matches the implemented behavior of at least one other
1062          * vendor, so we'll implement that for all GLSL versions.
1063          */
1064         if (var->constant_initializer != NULL) {
1065            if (existing->constant_initializer != NULL) {
1066               if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1067                  linker_error(prog, "initializers for %s "
1068                               "`%s' have differing values\n",
1069                               mode_string(var), var->name);
1070                  return;
1071               }
1072            } else {
1073               /* If the first-seen instance of a particular uniform did
1074                * not have an initializer but a later instance does,
1075                * replace the former with the later.
1076                */
1077               variables->replace_variable(existing->name, var);
1078            }
1079         }
1080
1081         if (var->data.has_initializer) {
1082            if (existing->data.has_initializer
1083                && (var->constant_initializer == NULL
1084                    || existing->constant_initializer == NULL)) {
1085               linker_error(prog,
1086                            "shared global variable `%s' has multiple "
1087                            "non-constant initializers.\n",
1088                            var->name);
1089               return;
1090            }
1091         }
1092
1093         if (existing->data.explicit_invariant != var->data.explicit_invariant) {
1094            linker_error(prog, "declarations for %s `%s' have "
1095                         "mismatching invariant qualifiers\n",
1096                         mode_string(var), var->name);
1097            return;
1098         }
1099         if (existing->data.centroid != var->data.centroid) {
1100            linker_error(prog, "declarations for %s `%s' have "
1101                         "mismatching centroid qualifiers\n",
1102                         mode_string(var), var->name);
1103            return;
1104         }
1105         if (existing->data.sample != var->data.sample) {
1106            linker_error(prog, "declarations for %s `%s` have "
1107                         "mismatching sample qualifiers\n",
1108                         mode_string(var), var->name);
1109            return;
1110         }
1111         if (existing->data.image_format != var->data.image_format) {
1112            linker_error(prog, "declarations for %s `%s` have "
1113                         "mismatching image format qualifiers\n",
1114                         mode_string(var), var->name);
1115            return;
1116         }
1117
1118         /* Check the precision qualifier matches for uniform variables on
1119          * GLSL ES.
1120          */
1121         if (!ctx->Const.AllowGLSLRelaxedES &&
1122             prog->IsES && !var->get_interface_type() &&
1123             existing->data.precision != var->data.precision) {
1124            if ((existing->data.used && var->data.used) || prog->data->Version >= 300) {
1125               linker_error(prog, "declarations for %s `%s` have "
1126                            "mismatching precision qualifiers\n",
1127                            mode_string(var), var->name);
1128               return;
1129            } else {
1130               linker_warning(prog, "declarations for %s `%s` have "
1131                              "mismatching precision qualifiers\n",
1132                              mode_string(var), var->name);
1133            }
1134         }
1135
1136         /* In OpenGL GLSL 3.20 spec, section 4.3.9:
1137          *
1138          *   "It is a link-time error if any particular shader interface
1139          *    contains:
1140          *
1141          *    - two different blocks, each having no instance name, and each
1142          *      having a member of the same name, or
1143          *
1144          *    - a variable outside a block, and a block with no instance name,
1145          *      where the variable has the same name as a member in the block."
1146          */
1147         const glsl_type *var_itype = var->get_interface_type();
1148         const glsl_type *existing_itype = existing->get_interface_type();
1149         if (var_itype != existing_itype) {
1150            if (!var_itype || !existing_itype) {
1151               linker_error(prog, "declarations for %s `%s` are inside block "
1152                            "`%s` and outside a block",
1153                            mode_string(var), var->name,
1154                            var_itype ? var_itype->name : existing_itype->name);
1155               return;
1156            } else if (strcmp(var_itype->name, existing_itype->name) != 0) {
1157               linker_error(prog, "declarations for %s `%s` are inside blocks "
1158                            "`%s` and `%s`",
1159                            mode_string(var), var->name,
1160                            existing_itype->name,
1161                            var_itype->name);
1162               return;
1163            }
1164         }
1165      } else
1166         variables->add_variable(var);
1167   }
1168}
1169
1170
1171/**
1172 * Perform validation of uniforms used across multiple shader stages
1173 */
1174static void
1175cross_validate_uniforms(struct gl_context *ctx,
1176                        struct gl_shader_program *prog)
1177{
1178   glsl_symbol_table variables;
1179   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1180      if (prog->_LinkedShaders[i] == NULL)
1181         continue;
1182
1183      cross_validate_globals(ctx, prog, prog->_LinkedShaders[i]->ir,
1184                             &variables, true);
1185   }
1186}
1187
1188/**
1189 * Accumulates the array of buffer blocks and checks that all definitions of
1190 * blocks agree on their contents.
1191 */
1192static bool
1193interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1194                                         bool validate_ssbo)
1195{
1196   int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1197   struct gl_uniform_block *blks = NULL;
1198   unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1199      &prog->data->NumUniformBlocks;
1200
1201   unsigned max_num_buffer_blocks = 0;
1202   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1203      if (prog->_LinkedShaders[i]) {
1204         if (validate_ssbo) {
1205            max_num_buffer_blocks +=
1206               prog->_LinkedShaders[i]->Program->info.num_ssbos;
1207         } else {
1208            max_num_buffer_blocks +=
1209               prog->_LinkedShaders[i]->Program->info.num_ubos;
1210         }
1211      }
1212   }
1213
1214   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1215      struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1216
1217      InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1218      for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1219         InterfaceBlockStageIndex[i][j] = -1;
1220
1221      if (sh == NULL)
1222         continue;
1223
1224      unsigned sh_num_blocks;
1225      struct gl_uniform_block **sh_blks;
1226      if (validate_ssbo) {
1227         sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1228         sh_blks = sh->Program->sh.ShaderStorageBlocks;
1229      } else {
1230         sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1231         sh_blks = sh->Program->sh.UniformBlocks;
1232      }
1233
1234      for (unsigned int j = 0; j < sh_num_blocks; j++) {
1235         int index = link_cross_validate_uniform_block(prog->data, &blks,
1236                                                       num_blks, sh_blks[j]);
1237
1238         if (index == -1) {
1239            linker_error(prog, "buffer block `%s' has mismatching "
1240                         "definitions\n", sh_blks[j]->Name);
1241
1242            for (unsigned k = 0; k <= i; k++) {
1243               delete[] InterfaceBlockStageIndex[k];
1244            }
1245
1246            /* Reset the block count. This will help avoid various segfaults
1247             * from api calls that assume the array exists due to the count
1248             * being non-zero.
1249             */
1250            *num_blks = 0;
1251            return false;
1252         }
1253
1254         InterfaceBlockStageIndex[i][index] = j;
1255      }
1256   }
1257
1258   /* Update per stage block pointers to point to the program list.
1259    * FIXME: We should be able to free the per stage blocks here.
1260    */
1261   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1262      for (unsigned j = 0; j < *num_blks; j++) {
1263         int stage_index = InterfaceBlockStageIndex[i][j];
1264
1265         if (stage_index != -1) {
1266            struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1267
1268            struct gl_uniform_block **sh_blks = validate_ssbo ?
1269               sh->Program->sh.ShaderStorageBlocks :
1270               sh->Program->sh.UniformBlocks;
1271
1272            blks[j].stageref |= sh_blks[stage_index]->stageref;
1273            sh_blks[stage_index] = &blks[j];
1274         }
1275      }
1276   }
1277
1278   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1279      delete[] InterfaceBlockStageIndex[i];
1280   }
1281
1282   if (validate_ssbo)
1283      prog->data->ShaderStorageBlocks = blks;
1284   else
1285      prog->data->UniformBlocks = blks;
1286
1287   return true;
1288}
1289
1290/**
1291 * Verifies the invariance of built-in special variables.
1292 */
1293static bool
1294validate_invariant_builtins(struct gl_shader_program *prog,
1295                            const gl_linked_shader *vert,
1296                            const gl_linked_shader *frag)
1297{
1298   const ir_variable *var_vert;
1299   const ir_variable *var_frag;
1300
1301   if (!vert || !frag)
1302      return true;
1303
1304   /*
1305    * From OpenGL ES Shading Language 1.0 specification
1306    * (4.6.4 Invariance and Linkage):
1307    *     "The invariance of varyings that are declared in both the vertex and
1308    *     fragment shaders must match. For the built-in special variables,
1309    *     gl_FragCoord can only be declared invariant if and only if
1310    *     gl_Position is declared invariant. Similarly gl_PointCoord can only
1311    *     be declared invariant if and only if gl_PointSize is declared
1312    *     invariant. It is an error to declare gl_FrontFacing as invariant.
1313    *     The invariance of gl_FrontFacing is the same as the invariance of
1314    *     gl_Position."
1315    */
1316   var_frag = frag->symbols->get_variable("gl_FragCoord");
1317   if (var_frag && var_frag->data.invariant) {
1318      var_vert = vert->symbols->get_variable("gl_Position");
1319      if (var_vert && !var_vert->data.invariant) {
1320         linker_error(prog,
1321               "fragment shader built-in `%s' has invariant qualifier, "
1322               "but vertex shader built-in `%s' lacks invariant qualifier\n",
1323               var_frag->name, var_vert->name);
1324         return false;
1325      }
1326   }
1327
1328   var_frag = frag->symbols->get_variable("gl_PointCoord");
1329   if (var_frag && var_frag->data.invariant) {
1330      var_vert = vert->symbols->get_variable("gl_PointSize");
1331      if (var_vert && !var_vert->data.invariant) {
1332         linker_error(prog,
1333               "fragment shader built-in `%s' has invariant qualifier, "
1334               "but vertex shader built-in `%s' lacks invariant qualifier\n",
1335               var_frag->name, var_vert->name);
1336         return false;
1337      }
1338   }
1339
1340   var_frag = frag->symbols->get_variable("gl_FrontFacing");
1341   if (var_frag && var_frag->data.invariant) {
1342      linker_error(prog,
1343            "fragment shader built-in `%s' can not be declared as invariant\n",
1344            var_frag->name);
1345      return false;
1346   }
1347
1348   return true;
1349}
1350
1351/**
1352 * Populates a shaders symbol table with all global declarations
1353 */
1354static void
1355populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
1356{
1357   sh->symbols = new(sh) glsl_symbol_table;
1358
1359   _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
1360}
1361
1362
1363/**
1364 * Remap variables referenced in an instruction tree
1365 *
1366 * This is used when instruction trees are cloned from one shader and placed in
1367 * another.  These trees will contain references to \c ir_variable nodes that
1368 * do not exist in the target shader.  This function finds these \c ir_variable
1369 * references and replaces the references with matching variables in the target
1370 * shader.
1371 *
1372 * If there is no matching variable in the target shader, a clone of the
1373 * \c ir_variable is made and added to the target shader.  The new variable is
1374 * added to \b both the instruction stream and the symbol table.
1375 *
1376 * \param inst         IR tree that is to be processed.
1377 * \param symbols      Symbol table containing global scope symbols in the
1378 *                     linked shader.
1379 * \param instructions Instruction stream where new variable declarations
1380 *                     should be added.
1381 */
1382static void
1383remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1384                hash_table *temps)
1385{
1386   class remap_visitor : public ir_hierarchical_visitor {
1387   public:
1388         remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1389      {
1390         this->target = target;
1391         this->symbols = target->symbols;
1392         this->instructions = target->ir;
1393         this->temps = temps;
1394      }
1395
1396      virtual ir_visitor_status visit(ir_dereference_variable *ir)
1397      {
1398         if (ir->var->data.mode == ir_var_temporary) {
1399            hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1400            ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1401
1402            assert(var != NULL);
1403            ir->var = var;
1404            return visit_continue;
1405         }
1406
1407         ir_variable *const existing =
1408            this->symbols->get_variable(ir->var->name);
1409         if (existing != NULL)
1410            ir->var = existing;
1411         else {
1412            ir_variable *copy = ir->var->clone(this->target, NULL);
1413
1414            this->symbols->add_variable(copy);
1415            this->instructions->push_head(copy);
1416            ir->var = copy;
1417         }
1418
1419         return visit_continue;
1420      }
1421
1422   private:
1423      struct gl_linked_shader *target;
1424      glsl_symbol_table *symbols;
1425      exec_list *instructions;
1426      hash_table *temps;
1427   };
1428
1429   remap_visitor v(target, temps);
1430
1431   inst->accept(&v);
1432}
1433
1434
1435/**
1436 * Move non-declarations from one instruction stream to another
1437 *
1438 * The intended usage pattern of this function is to pass the pointer to the
1439 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1440 * pointer) for \c last and \c false for \c make_copies on the first
1441 * call.  Successive calls pass the return value of the previous call for
1442 * \c last and \c true for \c make_copies.
1443 *
1444 * \param instructions Source instruction stream
1445 * \param last         Instruction after which new instructions should be
1446 *                     inserted in the target instruction stream
1447 * \param make_copies  Flag selecting whether instructions in \c instructions
1448 *                     should be copied (via \c ir_instruction::clone) into the
1449 *                     target list or moved.
1450 *
1451 * \return
1452 * The new "last" instruction in the target instruction stream.  This pointer
1453 * is suitable for use as the \c last parameter of a later call to this
1454 * function.
1455 */
1456static exec_node *
1457move_non_declarations(exec_list *instructions, exec_node *last,
1458                      bool make_copies, gl_linked_shader *target)
1459{
1460   hash_table *temps = NULL;
1461
1462   if (make_copies)
1463      temps = _mesa_pointer_hash_table_create(NULL);
1464
1465   foreach_in_list_safe(ir_instruction, inst, instructions) {
1466      if (inst->as_function())
1467         continue;
1468
1469      ir_variable *var = inst->as_variable();
1470      if ((var != NULL) && (var->data.mode != ir_var_temporary))
1471         continue;
1472
1473      assert(inst->as_assignment()
1474             || inst->as_call()
1475             || inst->as_if() /* for initializers with the ?: operator */
1476             || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1477
1478      if (make_copies) {
1479         inst = inst->clone(target, NULL);
1480
1481         if (var != NULL)
1482            _mesa_hash_table_insert(temps, var, inst);
1483         else
1484            remap_variables(inst, target, temps);
1485      } else {
1486         inst->remove();
1487      }
1488
1489      last->insert_after(inst);
1490      last = inst;
1491   }
1492
1493   if (make_copies)
1494      _mesa_hash_table_destroy(temps, NULL);
1495
1496   return last;
1497}
1498
1499
1500/**
1501 * This class is only used in link_intrastage_shaders() below but declaring
1502 * it inside that function leads to compiler warnings with some versions of
1503 * gcc.
1504 */
1505class array_sizing_visitor : public deref_type_updater {
1506public:
1507   array_sizing_visitor()
1508      : mem_ctx(ralloc_context(NULL)),
1509        unnamed_interfaces(_mesa_pointer_hash_table_create(NULL))
1510   {
1511   }
1512
1513   ~array_sizing_visitor()
1514   {
1515      _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1516      ralloc_free(this->mem_ctx);
1517   }
1518
1519   virtual ir_visitor_status visit(ir_variable *var)
1520   {
1521      const glsl_type *type_without_array;
1522      bool implicit_sized_array = var->data.implicit_sized_array;
1523      fixup_type(&var->type, var->data.max_array_access,
1524                 var->data.from_ssbo_unsized_array,
1525                 &implicit_sized_array);
1526      var->data.implicit_sized_array = implicit_sized_array;
1527      type_without_array = var->type->without_array();
1528      if (var->type->is_interface()) {
1529         if (interface_contains_unsized_arrays(var->type)) {
1530            const glsl_type *new_type =
1531               resize_interface_members(var->type,
1532                                        var->get_max_ifc_array_access(),
1533                                        var->is_in_shader_storage_block());
1534            var->type = new_type;
1535            var->change_interface_type(new_type);
1536         }
1537      } else if (type_without_array->is_interface()) {
1538         if (interface_contains_unsized_arrays(type_without_array)) {
1539            const glsl_type *new_type =
1540               resize_interface_members(type_without_array,
1541                                        var->get_max_ifc_array_access(),
1542                                        var->is_in_shader_storage_block());
1543            var->change_interface_type(new_type);
1544            var->type = update_interface_members_array(var->type, new_type);
1545         }
1546      } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1547         /* Store a pointer to the variable in the unnamed_interfaces
1548          * hashtable.
1549          */
1550         hash_entry *entry =
1551               _mesa_hash_table_search(this->unnamed_interfaces,
1552                                       ifc_type);
1553
1554         ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1555
1556         if (interface_vars == NULL) {
1557            interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1558                                           ifc_type->length);
1559            _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1560                                    interface_vars);
1561         }
1562         unsigned index = ifc_type->field_index(var->name);
1563         assert(index < ifc_type->length);
1564         assert(interface_vars[index] == NULL);
1565         interface_vars[index] = var;
1566      }
1567      return visit_continue;
1568   }
1569
1570   /**
1571    * For each unnamed interface block that was discovered while running the
1572    * visitor, adjust the interface type to reflect the newly assigned array
1573    * sizes, and fix up the ir_variable nodes to point to the new interface
1574    * type.
1575    */
1576   void fixup_unnamed_interface_types()
1577   {
1578      hash_table_call_foreach(this->unnamed_interfaces,
1579                              fixup_unnamed_interface_type, NULL);
1580   }
1581
1582private:
1583   /**
1584    * If the type pointed to by \c type represents an unsized array, replace
1585    * it with a sized array whose size is determined by max_array_access.
1586    */
1587   static void fixup_type(const glsl_type **type, unsigned max_array_access,
1588                          bool from_ssbo_unsized_array, bool *implicit_sized)
1589   {
1590      if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1591         *type = glsl_type::get_array_instance((*type)->fields.array,
1592                                               max_array_access + 1);
1593         *implicit_sized = true;
1594         assert(*type != NULL);
1595      }
1596   }
1597
1598   static const glsl_type *
1599   update_interface_members_array(const glsl_type *type,
1600                                  const glsl_type *new_interface_type)
1601   {
1602      const glsl_type *element_type = type->fields.array;
1603      if (element_type->is_array()) {
1604         const glsl_type *new_array_type =
1605            update_interface_members_array(element_type, new_interface_type);
1606         return glsl_type::get_array_instance(new_array_type, type->length);
1607      } else {
1608         return glsl_type::get_array_instance(new_interface_type,
1609                                              type->length);
1610      }
1611   }
1612
1613   /**
1614    * Determine whether the given interface type contains unsized arrays (if
1615    * it doesn't, array_sizing_visitor doesn't need to process it).
1616    */
1617   static bool interface_contains_unsized_arrays(const glsl_type *type)
1618   {
1619      for (unsigned i = 0; i < type->length; i++) {
1620         const glsl_type *elem_type = type->fields.structure[i].type;
1621         if (elem_type->is_unsized_array())
1622            return true;
1623      }
1624      return false;
1625   }
1626
1627   /**
1628    * Create a new interface type based on the given type, with unsized arrays
1629    * replaced by sized arrays whose size is determined by
1630    * max_ifc_array_access.
1631    */
1632   static const glsl_type *
1633   resize_interface_members(const glsl_type *type,
1634                            const int *max_ifc_array_access,
1635                            bool is_ssbo)
1636   {
1637      unsigned num_fields = type->length;
1638      glsl_struct_field *fields = new glsl_struct_field[num_fields];
1639      memcpy(fields, type->fields.structure,
1640             num_fields * sizeof(*fields));
1641      for (unsigned i = 0; i < num_fields; i++) {
1642         bool implicit_sized_array = fields[i].implicit_sized_array;
1643         /* If SSBO last member is unsized array, we don't replace it by a sized
1644          * array.
1645          */
1646         if (is_ssbo && i == (num_fields - 1))
1647            fixup_type(&fields[i].type, max_ifc_array_access[i],
1648                       true, &implicit_sized_array);
1649         else
1650            fixup_type(&fields[i].type, max_ifc_array_access[i],
1651                       false, &implicit_sized_array);
1652         fields[i].implicit_sized_array = implicit_sized_array;
1653      }
1654      glsl_interface_packing packing =
1655         (glsl_interface_packing) type->interface_packing;
1656      bool row_major = (bool) type->interface_row_major;
1657      const glsl_type *new_ifc_type =
1658         glsl_type::get_interface_instance(fields, num_fields,
1659                                           packing, row_major, type->name);
1660      delete [] fields;
1661      return new_ifc_type;
1662   }
1663
1664   static void fixup_unnamed_interface_type(const void *key, void *data,
1665                                            void *)
1666   {
1667      const glsl_type *ifc_type = (const glsl_type *) key;
1668      ir_variable **interface_vars = (ir_variable **) data;
1669      unsigned num_fields = ifc_type->length;
1670      glsl_struct_field *fields = new glsl_struct_field[num_fields];
1671      memcpy(fields, ifc_type->fields.structure,
1672             num_fields * sizeof(*fields));
1673      bool interface_type_changed = false;
1674      for (unsigned i = 0; i < num_fields; i++) {
1675         if (interface_vars[i] != NULL &&
1676             fields[i].type != interface_vars[i]->type) {
1677            fields[i].type = interface_vars[i]->type;
1678            interface_type_changed = true;
1679         }
1680      }
1681      if (!interface_type_changed) {
1682         delete [] fields;
1683         return;
1684      }
1685      glsl_interface_packing packing =
1686         (glsl_interface_packing) ifc_type->interface_packing;
1687      bool row_major = (bool) ifc_type->interface_row_major;
1688      const glsl_type *new_ifc_type =
1689         glsl_type::get_interface_instance(fields, num_fields, packing,
1690                                           row_major, ifc_type->name);
1691      delete [] fields;
1692      for (unsigned i = 0; i < num_fields; i++) {
1693         if (interface_vars[i] != NULL)
1694            interface_vars[i]->change_interface_type(new_ifc_type);
1695      }
1696   }
1697
1698   /**
1699    * Memory context used to allocate the data in \c unnamed_interfaces.
1700    */
1701   void *mem_ctx;
1702
1703   /**
1704    * Hash table from const glsl_type * to an array of ir_variable *'s
1705    * pointing to the ir_variables constituting each unnamed interface block.
1706    */
1707   hash_table *unnamed_interfaces;
1708};
1709
1710static bool
1711validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1712                           struct gl_shader_program *prog)
1713{
1714   /* We will validate doubles at a later stage */
1715   if (prog->TransformFeedback.BufferStride[idx] % 4) {
1716      linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1717                   "multiple of 4 or if its applied to a type that is "
1718                   "or contains a double a multiple of 8.",
1719                   prog->TransformFeedback.BufferStride[idx]);
1720      return false;
1721   }
1722
1723   if (prog->TransformFeedback.BufferStride[idx] / 4 >
1724       ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1725      linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1726                   "limit has been exceeded.");
1727      return false;
1728   }
1729
1730   return true;
1731}
1732
1733/**
1734 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1735 * for later use.
1736 */
1737static void
1738link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1739                                  struct gl_shader_program *prog,
1740                                  struct gl_shader **shader_list,
1741                                  unsigned num_shaders)
1742{
1743   for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1744      prog->TransformFeedback.BufferStride[i] = 0;
1745   }
1746
1747   for (unsigned i = 0; i < num_shaders; i++) {
1748      struct gl_shader *shader = shader_list[i];
1749
1750      for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1751         if (shader->TransformFeedbackBufferStride[j]) {
1752            if (prog->TransformFeedback.BufferStride[j] == 0) {
1753               prog->TransformFeedback.BufferStride[j] =
1754                  shader->TransformFeedbackBufferStride[j];
1755               if (!validate_xfb_buffer_stride(ctx, j, prog))
1756                  return;
1757            } else if (prog->TransformFeedback.BufferStride[j] !=
1758                       shader->TransformFeedbackBufferStride[j]){
1759               linker_error(prog,
1760                            "intrastage shaders defined with conflicting "
1761                            "xfb_stride for buffer %d (%d and %d)\n", j,
1762                            prog->TransformFeedback.BufferStride[j],
1763                            shader->TransformFeedbackBufferStride[j]);
1764               return;
1765            }
1766         }
1767      }
1768   }
1769}
1770
1771/**
1772 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1773 * global scope.
1774 */
1775static void
1776link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1777                                struct gl_shader **shader_list,
1778                                unsigned num_shaders)
1779{
1780   bool bindless_sampler, bindless_image;
1781   bool bound_sampler, bound_image;
1782
1783   bindless_sampler = bindless_image = false;
1784   bound_sampler = bound_image = false;
1785
1786   for (unsigned i = 0; i < num_shaders; i++) {
1787      struct gl_shader *shader = shader_list[i];
1788
1789      if (shader->bindless_sampler)
1790         bindless_sampler = true;
1791      if (shader->bindless_image)
1792         bindless_image = true;
1793      if (shader->bound_sampler)
1794         bound_sampler = true;
1795      if (shader->bound_image)
1796         bound_image = true;
1797
1798      if ((bindless_sampler && bound_sampler) ||
1799          (bindless_image && bound_image)) {
1800         /* From section 4.4.6 of the ARB_bindless_texture spec:
1801          *
1802          *     "If both bindless_sampler and bound_sampler, or bindless_image
1803          *      and bound_image, are declared at global scope in any
1804          *      compilation unit, a link- time error will be generated."
1805          */
1806         linker_error(prog, "both bindless_sampler and bound_sampler, or "
1807                      "bindless_image and bound_image, can't be declared at "
1808                      "global scope");
1809      }
1810   }
1811}
1812
1813/**
1814 * Performs the cross-validation of tessellation control shader vertices and
1815 * layout qualifiers for the attached tessellation control shaders,
1816 * and propagates them to the linked TCS and linked shader program.
1817 */
1818static void
1819link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1820                               struct gl_program *gl_prog,
1821                               struct gl_shader **shader_list,
1822                               unsigned num_shaders)
1823{
1824   if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1825      return;
1826
1827   gl_prog->info.tess.tcs_vertices_out = 0;
1828
1829   /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1830    *
1831    *     "All tessellation control shader layout declarations in a program
1832    *      must specify the same output patch vertex count.  There must be at
1833    *      least one layout qualifier specifying an output patch vertex count
1834    *      in any program containing tessellation control shaders; however,
1835    *      such a declaration is not required in all tessellation control
1836    *      shaders."
1837    */
1838
1839   for (unsigned i = 0; i < num_shaders; i++) {
1840      struct gl_shader *shader = shader_list[i];
1841
1842      if (shader->info.TessCtrl.VerticesOut != 0) {
1843         if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1844             gl_prog->info.tess.tcs_vertices_out !=
1845             (unsigned) shader->info.TessCtrl.VerticesOut) {
1846            linker_error(prog, "tessellation control shader defined with "
1847                         "conflicting output vertex count (%d and %d)\n",
1848                         gl_prog->info.tess.tcs_vertices_out,
1849                         shader->info.TessCtrl.VerticesOut);
1850            return;
1851         }
1852         gl_prog->info.tess.tcs_vertices_out =
1853            shader->info.TessCtrl.VerticesOut;
1854      }
1855   }
1856
1857   /* Just do the intrastage -> interstage propagation right now,
1858    * since we already know we're in the right type of shader program
1859    * for doing it.
1860    */
1861   if (gl_prog->info.tess.tcs_vertices_out == 0) {
1862      linker_error(prog, "tessellation control shader didn't declare "
1863                   "vertices out layout qualifier\n");
1864      return;
1865   }
1866}
1867
1868
1869/**
1870 * Performs the cross-validation of tessellation evaluation shader
1871 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1872 * for the attached tessellation evaluation shaders, and propagates them
1873 * to the linked TES and linked shader program.
1874 */
1875static void
1876link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1877                              struct gl_program *gl_prog,
1878                              struct gl_shader **shader_list,
1879                              unsigned num_shaders)
1880{
1881   if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1882      return;
1883
1884   int point_mode = -1;
1885   unsigned vertex_order = 0;
1886
1887   gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1888   gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1889
1890   /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1891    *
1892    *     "At least one tessellation evaluation shader (compilation unit) in
1893    *      a program must declare a primitive mode in its input layout.
1894    *      Declaration vertex spacing, ordering, and point mode identifiers is
1895    *      optional.  It is not required that all tessellation evaluation
1896    *      shaders in a program declare a primitive mode.  If spacing or
1897    *      vertex ordering declarations are omitted, the tessellation
1898    *      primitive generator will use equal spacing or counter-clockwise
1899    *      vertex ordering, respectively.  If a point mode declaration is
1900    *      omitted, the tessellation primitive generator will produce lines or
1901    *      triangles according to the primitive mode."
1902    */
1903
1904   for (unsigned i = 0; i < num_shaders; i++) {
1905      struct gl_shader *shader = shader_list[i];
1906
1907      if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1908         if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1909             gl_prog->info.tess.primitive_mode !=
1910             shader->info.TessEval.PrimitiveMode) {
1911            linker_error(prog, "tessellation evaluation shader defined with "
1912                         "conflicting input primitive modes.\n");
1913            return;
1914         }
1915         gl_prog->info.tess.primitive_mode =
1916            shader->info.TessEval.PrimitiveMode;
1917      }
1918
1919      if (shader->info.TessEval.Spacing != 0) {
1920         if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1921             shader->info.TessEval.Spacing) {
1922            linker_error(prog, "tessellation evaluation shader defined with "
1923                         "conflicting vertex spacing.\n");
1924            return;
1925         }
1926         gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1927      }
1928
1929      if (shader->info.TessEval.VertexOrder != 0) {
1930         if (vertex_order != 0 &&
1931             vertex_order != shader->info.TessEval.VertexOrder) {
1932            linker_error(prog, "tessellation evaluation shader defined with "
1933                         "conflicting ordering.\n");
1934            return;
1935         }
1936         vertex_order = shader->info.TessEval.VertexOrder;
1937      }
1938
1939      if (shader->info.TessEval.PointMode != -1) {
1940         if (point_mode != -1 &&
1941             point_mode != shader->info.TessEval.PointMode) {
1942            linker_error(prog, "tessellation evaluation shader defined with "
1943                         "conflicting point modes.\n");
1944            return;
1945         }
1946         point_mode = shader->info.TessEval.PointMode;
1947      }
1948
1949   }
1950
1951   /* Just do the intrastage -> interstage propagation right now,
1952    * since we already know we're in the right type of shader program
1953    * for doing it.
1954    */
1955   if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1956      linker_error(prog,
1957                   "tessellation evaluation shader didn't declare input "
1958                   "primitive modes.\n");
1959      return;
1960   }
1961
1962   if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1963      gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1964
1965   if (vertex_order == 0 || vertex_order == GL_CCW)
1966      gl_prog->info.tess.ccw = true;
1967   else
1968      gl_prog->info.tess.ccw = false;
1969
1970
1971   if (point_mode == -1 || point_mode == GL_FALSE)
1972      gl_prog->info.tess.point_mode = false;
1973   else
1974      gl_prog->info.tess.point_mode = true;
1975}
1976
1977
1978/**
1979 * Performs the cross-validation of layout qualifiers specified in
1980 * redeclaration of gl_FragCoord for the attached fragment shaders,
1981 * and propagates them to the linked FS and linked shader program.
1982 */
1983static void
1984link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1985                                struct gl_linked_shader *linked_shader,
1986                                struct gl_shader **shader_list,
1987                                unsigned num_shaders)
1988{
1989   bool redeclares_gl_fragcoord = false;
1990   bool uses_gl_fragcoord = false;
1991   bool origin_upper_left = false;
1992   bool pixel_center_integer = false;
1993
1994   if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1995       (prog->data->Version < 150 &&
1996        !prog->ARB_fragment_coord_conventions_enable))
1997      return;
1998
1999   for (unsigned i = 0; i < num_shaders; i++) {
2000      struct gl_shader *shader = shader_list[i];
2001      /* From the GLSL 1.50 spec, page 39:
2002       *
2003       *   "If gl_FragCoord is redeclared in any fragment shader in a program,
2004       *    it must be redeclared in all the fragment shaders in that program
2005       *    that have a static use gl_FragCoord."
2006       */
2007      if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
2008           shader->uses_gl_fragcoord)
2009          || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
2010              uses_gl_fragcoord)) {
2011             linker_error(prog, "fragment shader defined with conflicting "
2012                         "layout qualifiers for gl_FragCoord\n");
2013      }
2014
2015      /* From the GLSL 1.50 spec, page 39:
2016       *
2017       *   "All redeclarations of gl_FragCoord in all fragment shaders in a
2018       *    single program must have the same set of qualifiers."
2019       */
2020      if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
2021          (shader->origin_upper_left != origin_upper_left ||
2022           shader->pixel_center_integer != pixel_center_integer)) {
2023         linker_error(prog, "fragment shader defined with conflicting "
2024                      "layout qualifiers for gl_FragCoord\n");
2025      }
2026
2027      /* Update the linked shader state.  Note that uses_gl_fragcoord should
2028       * accumulate the results.  The other values should replace.  If there
2029       * are multiple redeclarations, all the fields except uses_gl_fragcoord
2030       * are already known to be the same.
2031       */
2032      if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
2033         redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
2034         uses_gl_fragcoord |= shader->uses_gl_fragcoord;
2035         origin_upper_left = shader->origin_upper_left;
2036         pixel_center_integer = shader->pixel_center_integer;
2037      }
2038
2039      linked_shader->Program->info.fs.early_fragment_tests |=
2040         shader->EarlyFragmentTests || shader->PostDepthCoverage;
2041      linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
2042      linked_shader->Program->info.fs.post_depth_coverage |=
2043         shader->PostDepthCoverage;
2044      linked_shader->Program->info.fs.pixel_interlock_ordered |=
2045         shader->PixelInterlockOrdered;
2046      linked_shader->Program->info.fs.pixel_interlock_unordered |=
2047         shader->PixelInterlockUnordered;
2048      linked_shader->Program->info.fs.sample_interlock_ordered |=
2049         shader->SampleInterlockOrdered;
2050      linked_shader->Program->info.fs.sample_interlock_unordered |=
2051         shader->SampleInterlockUnordered;
2052      linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
2053   }
2054
2055   linked_shader->Program->info.fs.pixel_center_integer = pixel_center_integer;
2056   linked_shader->Program->info.fs.origin_upper_left = origin_upper_left;
2057}
2058
2059/**
2060 * Performs the cross-validation of geometry shader max_vertices and
2061 * primitive type layout qualifiers for the attached geometry shaders,
2062 * and propagates them to the linked GS and linked shader program.
2063 */
2064static void
2065link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
2066                                struct gl_program *gl_prog,
2067                                struct gl_shader **shader_list,
2068                                unsigned num_shaders)
2069{
2070   /* No in/out qualifiers defined for anything but GLSL 1.50+
2071    * geometry shaders so far.
2072    */
2073   if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
2074       prog->data->Version < 150)
2075      return;
2076
2077   int vertices_out = -1;
2078
2079   gl_prog->info.gs.invocations = 0;
2080   gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
2081   gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
2082
2083   /* From the GLSL 1.50 spec, page 46:
2084    *
2085    *     "All geometry shader output layout declarations in a program
2086    *      must declare the same layout and same value for
2087    *      max_vertices. There must be at least one geometry output
2088    *      layout declaration somewhere in a program, but not all
2089    *      geometry shaders (compilation units) are required to
2090    *      declare it."
2091    */
2092
2093   for (unsigned i = 0; i < num_shaders; i++) {
2094      struct gl_shader *shader = shader_list[i];
2095
2096      if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
2097         if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
2098             gl_prog->info.gs.input_primitive !=
2099             shader->info.Geom.InputType) {
2100            linker_error(prog, "geometry shader defined with conflicting "
2101                         "input types\n");
2102            return;
2103         }
2104         gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2105      }
2106
2107      if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2108         if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2109             gl_prog->info.gs.output_primitive !=
2110             shader->info.Geom.OutputType) {
2111            linker_error(prog, "geometry shader defined with conflicting "
2112                         "output types\n");
2113            return;
2114         }
2115         gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2116      }
2117
2118      if (shader->info.Geom.VerticesOut != -1) {
2119         if (vertices_out != -1 &&
2120             vertices_out != shader->info.Geom.VerticesOut) {
2121            linker_error(prog, "geometry shader defined with conflicting "
2122                         "output vertex count (%d and %d)\n",
2123                         vertices_out, shader->info.Geom.VerticesOut);
2124            return;
2125         }
2126         vertices_out = shader->info.Geom.VerticesOut;
2127      }
2128
2129      if (shader->info.Geom.Invocations != 0) {
2130         if (gl_prog->info.gs.invocations != 0 &&
2131             gl_prog->info.gs.invocations !=
2132             (unsigned) shader->info.Geom.Invocations) {
2133            linker_error(prog, "geometry shader defined with conflicting "
2134                         "invocation count (%d and %d)\n",
2135                         gl_prog->info.gs.invocations,
2136                         shader->info.Geom.Invocations);
2137            return;
2138         }
2139         gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2140      }
2141   }
2142
2143   /* Just do the intrastage -> interstage propagation right now,
2144    * since we already know we're in the right type of shader program
2145    * for doing it.
2146    */
2147   if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2148      linker_error(prog,
2149                   "geometry shader didn't declare primitive input type\n");
2150      return;
2151   }
2152
2153   if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2154      linker_error(prog,
2155                   "geometry shader didn't declare primitive output type\n");
2156      return;
2157   }
2158
2159   if (vertices_out == -1) {
2160      linker_error(prog,
2161                   "geometry shader didn't declare max_vertices\n");
2162      return;
2163   } else {
2164      gl_prog->info.gs.vertices_out = vertices_out;
2165   }
2166
2167   if (gl_prog->info.gs.invocations == 0)
2168      gl_prog->info.gs.invocations = 1;
2169}
2170
2171
2172/**
2173 * Perform cross-validation of compute shader local_size_{x,y,z} layout and
2174 * derivative arrangement qualifiers for the attached compute shaders, and
2175 * propagate them to the linked CS and linked shader program.
2176 */
2177static void
2178link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2179                                struct gl_program *gl_prog,
2180                                struct gl_shader **shader_list,
2181                                unsigned num_shaders)
2182{
2183   /* This function is called for all shader stages, but it only has an effect
2184    * for compute shaders.
2185    */
2186   if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2187      return;
2188
2189   for (int i = 0; i < 3; i++)
2190      gl_prog->info.cs.local_size[i] = 0;
2191
2192   gl_prog->info.cs.local_size_variable = false;
2193
2194   gl_prog->info.cs.derivative_group = DERIVATIVE_GROUP_NONE;
2195
2196   /* From the ARB_compute_shader spec, in the section describing local size
2197    * declarations:
2198    *
2199    *     If multiple compute shaders attached to a single program object
2200    *     declare local work-group size, the declarations must be identical;
2201    *     otherwise a link-time error results. Furthermore, if a program
2202    *     object contains any compute shaders, at least one must contain an
2203    *     input layout qualifier specifying the local work sizes of the
2204    *     program, or a link-time error will occur.
2205    */
2206   for (unsigned sh = 0; sh < num_shaders; sh++) {
2207      struct gl_shader *shader = shader_list[sh];
2208
2209      if (shader->info.Comp.LocalSize[0] != 0) {
2210         if (gl_prog->info.cs.local_size[0] != 0) {
2211            for (int i = 0; i < 3; i++) {
2212               if (gl_prog->info.cs.local_size[i] !=
2213                   shader->info.Comp.LocalSize[i]) {
2214                  linker_error(prog, "compute shader defined with conflicting "
2215                               "local sizes\n");
2216                  return;
2217               }
2218            }
2219         }
2220         for (int i = 0; i < 3; i++) {
2221            gl_prog->info.cs.local_size[i] =
2222               shader->info.Comp.LocalSize[i];
2223         }
2224      } else if (shader->info.Comp.LocalSizeVariable) {
2225         if (gl_prog->info.cs.local_size[0] != 0) {
2226            /* The ARB_compute_variable_group_size spec says:
2227             *
2228             *     If one compute shader attached to a program declares a
2229             *     variable local group size and a second compute shader
2230             *     attached to the same program declares a fixed local group
2231             *     size, a link-time error results.
2232             */
2233            linker_error(prog, "compute shader defined with both fixed and "
2234                         "variable local group size\n");
2235            return;
2236         }
2237         gl_prog->info.cs.local_size_variable = true;
2238      }
2239
2240      enum gl_derivative_group group = shader->info.Comp.DerivativeGroup;
2241      if (group != DERIVATIVE_GROUP_NONE) {
2242         if (gl_prog->info.cs.derivative_group != DERIVATIVE_GROUP_NONE &&
2243             gl_prog->info.cs.derivative_group != group) {
2244            linker_error(prog, "compute shader defined with conflicting "
2245                         "derivative groups\n");
2246            return;
2247         }
2248         gl_prog->info.cs.derivative_group = group;
2249      }
2250   }
2251
2252   /* Just do the intrastage -> interstage propagation right now,
2253    * since we already know we're in the right type of shader program
2254    * for doing it.
2255    */
2256   if (gl_prog->info.cs.local_size[0] == 0 &&
2257       !gl_prog->info.cs.local_size_variable) {
2258      linker_error(prog, "compute shader must contain a fixed or a variable "
2259                         "local group size\n");
2260      return;
2261   }
2262
2263   if (gl_prog->info.cs.derivative_group == DERIVATIVE_GROUP_QUADS) {
2264      if (gl_prog->info.cs.local_size[0] % 2 != 0) {
2265         linker_error(prog, "derivative_group_quadsNV must be used with a "
2266                      "local group size whose first dimension "
2267                      "is a multiple of 2\n");
2268         return;
2269      }
2270      if (gl_prog->info.cs.local_size[1] % 2 != 0) {
2271         linker_error(prog, "derivative_group_quadsNV must be used with a local"
2272                      "group size whose second dimension "
2273                      "is a multiple of 2\n");
2274         return;
2275      }
2276   } else if (gl_prog->info.cs.derivative_group == DERIVATIVE_GROUP_LINEAR) {
2277      if ((gl_prog->info.cs.local_size[0] *
2278           gl_prog->info.cs.local_size[1] *
2279           gl_prog->info.cs.local_size[2]) % 4 != 0) {
2280         linker_error(prog, "derivative_group_linearNV must be used with a "
2281                      "local group size whose total number of invocations "
2282                      "is a multiple of 4\n");
2283         return;
2284      }
2285   }
2286}
2287
2288/**
2289 * Link all out variables on a single stage which are not
2290 * directly used in a shader with the main function.
2291 */
2292static void
2293link_output_variables(struct gl_linked_shader *linked_shader,
2294                      struct gl_shader **shader_list,
2295                      unsigned num_shaders)
2296{
2297   struct glsl_symbol_table *symbols = linked_shader->symbols;
2298
2299   for (unsigned i = 0; i < num_shaders; i++) {
2300
2301      /* Skip shader object with main function */
2302      if (shader_list[i]->symbols->get_function("main"))
2303         continue;
2304
2305      foreach_in_list(ir_instruction, ir, shader_list[i]->ir) {
2306         if (ir->ir_type != ir_type_variable)
2307            continue;
2308
2309         ir_variable *var = (ir_variable *) ir;
2310
2311         if (var->data.mode == ir_var_shader_out &&
2312               !symbols->get_variable(var->name)) {
2313            var = var->clone(linked_shader, NULL);
2314            symbols->add_variable(var);
2315            linked_shader->ir->push_head(var);
2316         }
2317      }
2318   }
2319
2320   return;
2321}
2322
2323
2324/**
2325 * Combine a group of shaders for a single stage to generate a linked shader
2326 *
2327 * \note
2328 * If this function is supplied a single shader, it is cloned, and the new
2329 * shader is returned.
2330 */
2331struct gl_linked_shader *
2332link_intrastage_shaders(void *mem_ctx,
2333                        struct gl_context *ctx,
2334                        struct gl_shader_program *prog,
2335                        struct gl_shader **shader_list,
2336                        unsigned num_shaders,
2337                        bool allow_missing_main)
2338{
2339   struct gl_uniform_block *ubo_blocks = NULL;
2340   struct gl_uniform_block *ssbo_blocks = NULL;
2341   unsigned num_ubo_blocks = 0;
2342   unsigned num_ssbo_blocks = 0;
2343
2344   /* Check that global variables defined in multiple shaders are consistent.
2345    */
2346   glsl_symbol_table variables;
2347   for (unsigned i = 0; i < num_shaders; i++) {
2348      if (shader_list[i] == NULL)
2349         continue;
2350      cross_validate_globals(ctx, prog, shader_list[i]->ir, &variables,
2351                             false);
2352   }
2353
2354   if (!prog->data->LinkStatus)
2355      return NULL;
2356
2357   /* Check that interface blocks defined in multiple shaders are consistent.
2358    */
2359   validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2360                                        num_shaders);
2361   if (!prog->data->LinkStatus)
2362      return NULL;
2363
2364   /* Check that there is only a single definition of each function signature
2365    * across all shaders.
2366    */
2367   for (unsigned i = 0; i < (num_shaders - 1); i++) {
2368      foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2369         ir_function *const f = node->as_function();
2370
2371         if (f == NULL)
2372            continue;
2373
2374         for (unsigned j = i + 1; j < num_shaders; j++) {
2375            ir_function *const other =
2376               shader_list[j]->symbols->get_function(f->name);
2377
2378            /* If the other shader has no function (and therefore no function
2379             * signatures) with the same name, skip to the next shader.
2380             */
2381            if (other == NULL)
2382               continue;
2383
2384            foreach_in_list(ir_function_signature, sig, &f->signatures) {
2385               if (!sig->is_defined)
2386                  continue;
2387
2388               ir_function_signature *other_sig =
2389                  other->exact_matching_signature(NULL, &sig->parameters);
2390
2391               if (other_sig != NULL && other_sig->is_defined) {
2392                  linker_error(prog, "function `%s' is multiply defined\n",
2393                               f->name);
2394                  return NULL;
2395               }
2396            }
2397         }
2398      }
2399   }
2400
2401   /* Find the shader that defines main, and make a clone of it.
2402    *
2403    * Starting with the clone, search for undefined references.  If one is
2404    * found, find the shader that defines it.  Clone the reference and add
2405    * it to the shader.  Repeat until there are no undefined references or
2406    * until a reference cannot be resolved.
2407    */
2408   gl_shader *main = NULL;
2409   for (unsigned i = 0; i < num_shaders; i++) {
2410      if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2411         main = shader_list[i];
2412         break;
2413      }
2414   }
2415
2416   if (main == NULL && allow_missing_main)
2417      main = shader_list[0];
2418
2419   if (main == NULL) {
2420      linker_error(prog, "%s shader lacks `main'\n",
2421                   _mesa_shader_stage_to_string(shader_list[0]->Stage));
2422      return NULL;
2423   }
2424
2425   gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2426   linked->Stage = shader_list[0]->Stage;
2427
2428   /* Create program and attach it to the linked shader */
2429   struct gl_program *gl_prog =
2430      ctx->Driver.NewProgram(ctx,
2431                             _mesa_shader_stage_to_program(shader_list[0]->Stage),
2432                             prog->Name, false);
2433   if (!gl_prog) {
2434      prog->data->LinkStatus = LINKING_FAILURE;
2435      _mesa_delete_linked_shader(ctx, linked);
2436      return NULL;
2437   }
2438
2439   _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2440
2441   /* Don't use _mesa_reference_program() just take ownership */
2442   linked->Program = gl_prog;
2443
2444   linked->ir = new(linked) exec_list;
2445   clone_ir_list(mem_ctx, linked->ir, main->ir);
2446
2447   link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2448   link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2449   link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2450   link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2451   link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2452
2453   if (linked->Stage != MESA_SHADER_FRAGMENT)
2454      link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2455
2456   link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2457
2458   populate_symbol_table(linked, shader_list[0]->symbols);
2459
2460   /* The pointer to the main function in the final linked shader (i.e., the
2461    * copy of the original shader that contained the main function).
2462    */
2463   ir_function_signature *const main_sig =
2464      _mesa_get_main_function_signature(linked->symbols);
2465
2466   /* Move any instructions other than variable declarations or function
2467    * declarations into main.
2468    */
2469   if (main_sig != NULL) {
2470      exec_node *insertion_point =
2471         move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2472                               linked);
2473
2474      for (unsigned i = 0; i < num_shaders; i++) {
2475         if (shader_list[i] == main)
2476            continue;
2477
2478         insertion_point = move_non_declarations(shader_list[i]->ir,
2479                                                 insertion_point, true, linked);
2480      }
2481   }
2482
2483   if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2484      _mesa_delete_linked_shader(ctx, linked);
2485      return NULL;
2486   }
2487
2488   if (linked->Stage != MESA_SHADER_FRAGMENT)
2489      link_output_variables(linked, shader_list, num_shaders);
2490
2491   /* Make a pass over all variable declarations to ensure that arrays with
2492    * unspecified sizes have a size specified.  The size is inferred from the
2493    * max_array_access field.
2494    */
2495   array_sizing_visitor v;
2496   v.run(linked->ir);
2497   v.fixup_unnamed_interface_types();
2498
2499   /* Link up uniform blocks defined within this stage. */
2500   link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2501                       &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2502
2503   if (!prog->data->LinkStatus) {
2504      _mesa_delete_linked_shader(ctx, linked);
2505      return NULL;
2506   }
2507
2508   /* Copy ubo blocks to linked shader list */
2509   linked->Program->sh.UniformBlocks =
2510      ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2511   ralloc_steal(linked, ubo_blocks);
2512   for (unsigned i = 0; i < num_ubo_blocks; i++) {
2513      linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2514   }
2515   linked->Program->info.num_ubos = num_ubo_blocks;
2516
2517   /* Copy ssbo blocks to linked shader list */
2518   linked->Program->sh.ShaderStorageBlocks =
2519      ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2520   ralloc_steal(linked, ssbo_blocks);
2521   for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2522      linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2523   }
2524   linked->Program->info.num_ssbos = num_ssbo_blocks;
2525
2526   /* At this point linked should contain all of the linked IR, so
2527    * validate it to make sure nothing went wrong.
2528    */
2529   validate_ir_tree(linked->ir);
2530
2531   /* Set the size of geometry shader input arrays */
2532   if (linked->Stage == MESA_SHADER_GEOMETRY) {
2533      unsigned num_vertices =
2534         vertices_per_prim(gl_prog->info.gs.input_primitive);
2535      array_resize_visitor input_resize_visitor(num_vertices, prog,
2536                                                MESA_SHADER_GEOMETRY);
2537      foreach_in_list(ir_instruction, ir, linked->ir) {
2538         ir->accept(&input_resize_visitor);
2539      }
2540   }
2541
2542   if (ctx->Const.VertexID_is_zero_based)
2543      lower_vertex_id(linked);
2544
2545   if (ctx->Const.LowerCsDerivedVariables)
2546      lower_cs_derived(linked);
2547
2548#ifdef DEBUG
2549   /* Compute the source checksum. */
2550   linked->SourceChecksum = 0;
2551   for (unsigned i = 0; i < num_shaders; i++) {
2552      if (shader_list[i] == NULL)
2553         continue;
2554      linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2555   }
2556#endif
2557
2558   return linked;
2559}
2560
2561/**
2562 * Update the sizes of linked shader uniform arrays to the maximum
2563 * array index used.
2564 *
2565 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2566 *
2567 *     If one or more elements of an array are active,
2568 *     GetActiveUniform will return the name of the array in name,
2569 *     subject to the restrictions listed above. The type of the array
2570 *     is returned in type. The size parameter contains the highest
2571 *     array element index used, plus one. The compiler or linker
2572 *     determines the highest index used.  There will be only one
2573 *     active uniform reported by the GL per uniform array.
2574
2575 */
2576static void
2577update_array_sizes(struct gl_shader_program *prog)
2578{
2579   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2580         if (prog->_LinkedShaders[i] == NULL)
2581            continue;
2582
2583      bool types_were_updated = false;
2584
2585      foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2586         ir_variable *const var = node->as_variable();
2587
2588         if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2589             !var->type->is_array())
2590            continue;
2591
2592         /* GL_ARB_uniform_buffer_object says that std140 uniforms
2593          * will not be eliminated.  Since we always do std140, just
2594          * don't resize arrays in UBOs.
2595          *
2596          * Atomic counters are supposed to get deterministic
2597          * locations assigned based on the declaration ordering and
2598          * sizes, array compaction would mess that up.
2599          *
2600          * Subroutine uniforms are not removed.
2601          */
2602         if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2603             var->type->contains_subroutine() || var->constant_initializer)
2604            continue;
2605
2606         int size = var->data.max_array_access;
2607         for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2608               if (prog->_LinkedShaders[j] == NULL)
2609                  continue;
2610
2611            foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2612               ir_variable *other_var = node2->as_variable();
2613               if (!other_var)
2614                  continue;
2615
2616               if (strcmp(var->name, other_var->name) == 0 &&
2617                   other_var->data.max_array_access > size) {
2618                  size = other_var->data.max_array_access;
2619               }
2620            }
2621         }
2622
2623         if (size + 1 != (int)var->type->length) {
2624            /* If this is a built-in uniform (i.e., it's backed by some
2625             * fixed-function state), adjust the number of state slots to
2626             * match the new array size.  The number of slots per array entry
2627             * is not known.  It seems safe to assume that the total number of
2628             * slots is an integer multiple of the number of array elements.
2629             * Determine the number of slots per array element by dividing by
2630             * the old (total) size.
2631             */
2632            const unsigned num_slots = var->get_num_state_slots();
2633            if (num_slots > 0) {
2634               var->set_num_state_slots((size + 1)
2635                                        * (num_slots / var->type->length));
2636            }
2637
2638            var->type = glsl_type::get_array_instance(var->type->fields.array,
2639                                                      size + 1);
2640            types_were_updated = true;
2641         }
2642      }
2643
2644      /* Update the types of dereferences in case we changed any. */
2645      if (types_were_updated) {
2646         deref_type_updater v;
2647         v.run(prog->_LinkedShaders[i]->ir);
2648      }
2649   }
2650}
2651
2652/**
2653 * Resize tessellation evaluation per-vertex inputs to the size of
2654 * tessellation control per-vertex outputs.
2655 */
2656static void
2657resize_tes_inputs(struct gl_context *ctx,
2658                  struct gl_shader_program *prog)
2659{
2660   if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2661      return;
2662
2663   gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2664   gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2665
2666   /* If no control shader is present, then the TES inputs are statically
2667    * sized to MaxPatchVertices; the actual size of the arrays won't be
2668    * known until draw time.
2669    */
2670   const int num_vertices = tcs
2671      ? tcs->Program->info.tess.tcs_vertices_out
2672      : ctx->Const.MaxPatchVertices;
2673
2674   array_resize_visitor input_resize_visitor(num_vertices, prog,
2675                                             MESA_SHADER_TESS_EVAL);
2676   foreach_in_list(ir_instruction, ir, tes->ir) {
2677      ir->accept(&input_resize_visitor);
2678   }
2679
2680   if (tcs) {
2681      /* Convert the gl_PatchVerticesIn system value into a constant, since
2682       * the value is known at this point.
2683       */
2684      foreach_in_list(ir_instruction, ir, tes->ir) {
2685         ir_variable *var = ir->as_variable();
2686         if (var && var->data.mode == ir_var_system_value &&
2687             var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2688            void *mem_ctx = ralloc_parent(var);
2689            var->data.location = 0;
2690            var->data.explicit_location = false;
2691            var->data.mode = ir_var_auto;
2692            var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2693         }
2694      }
2695   }
2696}
2697
2698/**
2699 * Find a contiguous set of available bits in a bitmask.
2700 *
2701 * \param used_mask     Bits representing used (1) and unused (0) locations
2702 * \param needed_count  Number of contiguous bits needed.
2703 *
2704 * \return
2705 * Base location of the available bits on success or -1 on failure.
2706 */
2707static int
2708find_available_slots(unsigned used_mask, unsigned needed_count)
2709{
2710   unsigned needed_mask = (1 << needed_count) - 1;
2711   const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2712
2713   /* The comparison to 32 is redundant, but without it GCC emits "warning:
2714    * cannot optimize possibly infinite loops" for the loop below.
2715    */
2716   if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2717      return -1;
2718
2719   for (int i = 0; i <= max_bit_to_test; i++) {
2720      if ((needed_mask & ~used_mask) == needed_mask)
2721         return i;
2722
2723      needed_mask <<= 1;
2724   }
2725
2726   return -1;
2727}
2728
2729
2730#define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1))
2731
2732/**
2733 * Assign locations for either VS inputs or FS outputs.
2734 *
2735 * \param mem_ctx        Temporary ralloc context used for linking.
2736 * \param prog           Shader program whose variables need locations
2737 *                       assigned.
2738 * \param constants      Driver specific constant values for the program.
2739 * \param target_index   Selector for the program target to receive location
2740 *                       assignmnets.  Must be either \c MESA_SHADER_VERTEX or
2741 *                       \c MESA_SHADER_FRAGMENT.
2742 * \param do_assignment  Whether we are actually marking the assignment or we
2743 *                       are just doing a dry-run checking.
2744 *
2745 * \return
2746 * If locations are (or can be, in case of dry-running) successfully assigned,
2747 * true is returned.  Otherwise an error is emitted to the shader link log and
2748 * false is returned.
2749 */
2750static bool
2751assign_attribute_or_color_locations(void *mem_ctx,
2752                                    gl_shader_program *prog,
2753                                    struct gl_constants *constants,
2754                                    unsigned target_index,
2755                                    bool do_assignment)
2756{
2757   /* Maximum number of generic locations.  This corresponds to either the
2758    * maximum number of draw buffers or the maximum number of generic
2759    * attributes.
2760    */
2761   unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2762      constants->Program[target_index].MaxAttribs :
2763      MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2764
2765   /* Mark invalid locations as being used.
2766    */
2767   unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index);
2768   unsigned double_storage_locations = 0;
2769
2770   assert((target_index == MESA_SHADER_VERTEX)
2771          || (target_index == MESA_SHADER_FRAGMENT));
2772
2773   gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2774   if (sh == NULL)
2775      return true;
2776
2777   /* Operate in a total of four passes.
2778    *
2779    * 1. Invalidate the location assignments for all vertex shader inputs.
2780    *
2781    * 2. Assign locations for inputs that have user-defined (via
2782    *    glBindVertexAttribLocation) locations and outputs that have
2783    *    user-defined locations (via glBindFragDataLocation).
2784    *
2785    * 3. Sort the attributes without assigned locations by number of slots
2786    *    required in decreasing order.  Fragmentation caused by attribute
2787    *    locations assigned by the application may prevent large attributes
2788    *    from having enough contiguous space.
2789    *
2790    * 4. Assign locations to any inputs without assigned locations.
2791    */
2792
2793   const int generic_base = (target_index == MESA_SHADER_VERTEX)
2794      ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2795
2796   const enum ir_variable_mode direction =
2797      (target_index == MESA_SHADER_VERTEX)
2798      ? ir_var_shader_in : ir_var_shader_out;
2799
2800
2801   /* Temporary storage for the set of attributes that need locations assigned.
2802    */
2803   struct temp_attr {
2804      unsigned slots;
2805      ir_variable *var;
2806
2807      /* Used below in the call to qsort. */
2808      static int compare(const void *a, const void *b)
2809      {
2810         const temp_attr *const l = (const temp_attr *) a;
2811         const temp_attr *const r = (const temp_attr *) b;
2812
2813         /* Reversed because we want a descending order sort below. */
2814         return r->slots - l->slots;
2815      }
2816   } to_assign[32];
2817   assert(max_index <= 32);
2818
2819   /* Temporary array for the set of attributes that have locations assigned,
2820    * for the purpose of checking overlapping slots/components of (non-ES)
2821    * fragment shader outputs.
2822    */
2823   ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
2824   unsigned assigned_attr = 0;
2825
2826   unsigned num_attr = 0;
2827
2828   foreach_in_list(ir_instruction, node, sh->ir) {
2829      ir_variable *const var = node->as_variable();
2830
2831      if ((var == NULL) || (var->data.mode != (unsigned) direction))
2832         continue;
2833
2834      if (var->data.explicit_location) {
2835         var->data.is_unmatched_generic_inout = 0;
2836         if ((var->data.location >= (int)(max_index + generic_base))
2837             || (var->data.location < 0)) {
2838            linker_error(prog,
2839                         "invalid explicit location %d specified for `%s'\n",
2840                         (var->data.location < 0)
2841                         ? var->data.location
2842                         : var->data.location - generic_base,
2843                         var->name);
2844            return false;
2845         }
2846      } else if (target_index == MESA_SHADER_VERTEX) {
2847         unsigned binding;
2848
2849         if (prog->AttributeBindings->get(binding, var->name)) {
2850            assert(binding >= VERT_ATTRIB_GENERIC0);
2851            var->data.location = binding;
2852            var->data.is_unmatched_generic_inout = 0;
2853         }
2854      } else if (target_index == MESA_SHADER_FRAGMENT) {
2855         unsigned binding;
2856         unsigned index;
2857         const char *name = var->name;
2858         const glsl_type *type = var->type;
2859
2860         while (type) {
2861            /* Check if there's a binding for the variable name */
2862            if (prog->FragDataBindings->get(binding, name)) {
2863               assert(binding >= FRAG_RESULT_DATA0);
2864               var->data.location = binding;
2865               var->data.is_unmatched_generic_inout = 0;
2866
2867               if (prog->FragDataIndexBindings->get(index, name)) {
2868                  var->data.index = index;
2869               }
2870               break;
2871            }
2872
2873            /* If not, but it's an array type, look for name[0] */
2874            if (type->is_array()) {
2875               name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2876               type = type->fields.array;
2877               continue;
2878            }
2879
2880            break;
2881         }
2882      }
2883
2884      if (strcmp(var->name, "gl_LastFragData") == 0)
2885         continue;
2886
2887      /* From GL4.5 core spec, section 15.2 (Shader Execution):
2888       *
2889       *     "Output binding assignments will cause LinkProgram to fail:
2890       *     ...
2891       *     If the program has an active output assigned to a location greater
2892       *     than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2893       *     an active output assigned an index greater than or equal to one;"
2894       */
2895      if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2896          var->data.location - generic_base >=
2897          (int) constants->MaxDualSourceDrawBuffers) {
2898         linker_error(prog,
2899                      "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2900                      "with index %u for %s\n",
2901                      var->data.location - generic_base, var->data.index,
2902                      var->name);
2903         return false;
2904      }
2905
2906      const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2907
2908      /* If the variable is not a built-in and has a location statically
2909       * assigned in the shader (presumably via a layout qualifier), make sure
2910       * that it doesn't collide with other assigned locations.  Otherwise,
2911       * add it to the list of variables that need linker-assigned locations.
2912       */
2913      if (var->data.location != -1) {
2914         if (var->data.location >= generic_base && var->data.index < 1) {
2915            /* From page 61 of the OpenGL 4.0 spec:
2916             *
2917             *     "LinkProgram will fail if the attribute bindings assigned
2918             *     by BindAttribLocation do not leave not enough space to
2919             *     assign a location for an active matrix attribute or an
2920             *     active attribute array, both of which require multiple
2921             *     contiguous generic attributes."
2922             *
2923             * I think above text prohibits the aliasing of explicit and
2924             * automatic assignments. But, aliasing is allowed in manual
2925             * assignments of attribute locations. See below comments for
2926             * the details.
2927             *
2928             * From OpenGL 4.0 spec, page 61:
2929             *
2930             *     "It is possible for an application to bind more than one
2931             *     attribute name to the same location. This is referred to as
2932             *     aliasing. This will only work if only one of the aliased
2933             *     attributes is active in the executable program, or if no
2934             *     path through the shader consumes more than one attribute of
2935             *     a set of attributes aliased to the same location. A link
2936             *     error can occur if the linker determines that every path
2937             *     through the shader consumes multiple aliased attributes,
2938             *     but implementations are not required to generate an error
2939             *     in this case."
2940             *
2941             * From GLSL 4.30 spec, page 54:
2942             *
2943             *    "A program will fail to link if any two non-vertex shader
2944             *     input variables are assigned to the same location. For
2945             *     vertex shaders, multiple input variables may be assigned
2946             *     to the same location using either layout qualifiers or via
2947             *     the OpenGL API. However, such aliasing is intended only to
2948             *     support vertex shaders where each execution path accesses
2949             *     at most one input per each location. Implementations are
2950             *     permitted, but not required, to generate link-time errors
2951             *     if they detect that every path through the vertex shader
2952             *     executable accesses multiple inputs assigned to any single
2953             *     location. For all shader types, a program will fail to link
2954             *     if explicit location assignments leave the linker unable
2955             *     to find space for other variables without explicit
2956             *     assignments."
2957             *
2958             * From OpenGL ES 3.0 spec, page 56:
2959             *
2960             *    "Binding more than one attribute name to the same location
2961             *     is referred to as aliasing, and is not permitted in OpenGL
2962             *     ES Shading Language 3.00 vertex shaders. LinkProgram will
2963             *     fail when this condition exists. However, aliasing is
2964             *     possible in OpenGL ES Shading Language 1.00 vertex shaders.
2965             *     This will only work if only one of the aliased attributes
2966             *     is active in the executable program, or if no path through
2967             *     the shader consumes more than one attribute of a set of
2968             *     attributes aliased to the same location. A link error can
2969             *     occur if the linker determines that every path through the
2970             *     shader consumes multiple aliased attributes, but implemen-
2971             *     tations are not required to generate an error in this case."
2972             *
2973             * After looking at above references from OpenGL, OpenGL ES and
2974             * GLSL specifications, we allow aliasing of vertex input variables
2975             * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2976             *
2977             * NOTE: This is not required by the spec but its worth mentioning
2978             * here that we're not doing anything to make sure that no path
2979             * through the vertex shader executable accesses multiple inputs
2980             * assigned to any single location.
2981             */
2982
2983            /* Mask representing the contiguous slots that will be used by
2984             * this attribute.
2985             */
2986            const unsigned attr = var->data.location - generic_base;
2987            const unsigned use_mask = (1 << slots) - 1;
2988            const char *const string = (target_index == MESA_SHADER_VERTEX)
2989               ? "vertex shader input" : "fragment shader output";
2990
2991            /* Generate a link error if the requested locations for this
2992             * attribute exceed the maximum allowed attribute location.
2993             */
2994            if (attr + slots > max_index) {
2995               linker_error(prog,
2996                           "insufficient contiguous locations "
2997                           "available for %s `%s' %d %d %d\n", string,
2998                           var->name, used_locations, use_mask, attr);
2999               return false;
3000            }
3001
3002            /* Generate a link error if the set of bits requested for this
3003             * attribute overlaps any previously allocated bits.
3004             */
3005            if ((~(use_mask << attr) & used_locations) != used_locations) {
3006               if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
3007                  /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
3008                   * 4.40 spec:
3009                   *
3010                   *    "Additionally, for fragment shader outputs, if two
3011                   *    variables are placed within the same location, they
3012                   *    must have the same underlying type (floating-point or
3013                   *    integer). No component aliasing of output variables or
3014                   *    members is allowed.
3015                   */
3016                  for (unsigned i = 0; i < assigned_attr; i++) {
3017                     unsigned assigned_slots =
3018                        assigned[i]->type->count_attribute_slots(false);
3019                     unsigned assig_attr =
3020                        assigned[i]->data.location - generic_base;
3021                     unsigned assigned_use_mask = (1 << assigned_slots) - 1;
3022
3023                     if ((assigned_use_mask << assig_attr) &
3024                         (use_mask << attr)) {
3025
3026                        const glsl_type *assigned_type =
3027                           assigned[i]->type->without_array();
3028                        const glsl_type *type = var->type->without_array();
3029                        if (assigned_type->base_type != type->base_type) {
3030                           linker_error(prog, "types do not match for aliased"
3031                                        " %ss %s and %s\n", string,
3032                                        assigned[i]->name, var->name);
3033                           return false;
3034                        }
3035
3036                        unsigned assigned_component_mask =
3037                           ((1 << assigned_type->vector_elements) - 1) <<
3038                           assigned[i]->data.location_frac;
3039                        unsigned component_mask =
3040                           ((1 << type->vector_elements) - 1) <<
3041                           var->data.location_frac;
3042                        if (assigned_component_mask & component_mask) {
3043                           linker_error(prog, "overlapping component is "
3044                                        "assigned to %ss %s and %s "
3045                                        "(component=%d)\n",
3046                                        string, assigned[i]->name, var->name,
3047                                        var->data.location_frac);
3048                           return false;
3049                        }
3050                     }
3051                  }
3052               } else if (target_index == MESA_SHADER_FRAGMENT ||
3053                          (prog->IsES && prog->data->Version >= 300)) {
3054                  linker_error(prog, "overlapping location is assigned "
3055                               "to %s `%s' %d %d %d\n", string, var->name,
3056                               used_locations, use_mask, attr);
3057                  return false;
3058               } else {
3059                  linker_warning(prog, "overlapping location is assigned "
3060                                 "to %s `%s' %d %d %d\n", string, var->name,
3061                                 used_locations, use_mask, attr);
3062               }
3063            }
3064
3065            if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
3066               /* Only track assigned variables for non-ES fragment shaders
3067                * to avoid overflowing the array.
3068                *
3069                * At most one variable per fragment output component should
3070                * reach this.
3071                */
3072               assert(assigned_attr < ARRAY_SIZE(assigned));
3073               assigned[assigned_attr] = var;
3074               assigned_attr++;
3075            }
3076
3077            used_locations |= (use_mask << attr);
3078
3079            /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
3080             *
3081             * "A program with more than the value of MAX_VERTEX_ATTRIBS
3082             *  active attribute variables may fail to link, unless
3083             *  device-dependent optimizations are able to make the program
3084             *  fit within available hardware resources. For the purposes
3085             *  of this test, attribute variables of the type dvec3, dvec4,
3086             *  dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
3087             *  count as consuming twice as many attributes as equivalent
3088             *  single-precision types. While these types use the same number
3089             *  of generic attributes as their single-precision equivalents,
3090             *  implementations are permitted to consume two single-precision
3091             *  vectors of internal storage for each three- or four-component
3092             *  double-precision vector."
3093             *
3094             * Mark this attribute slot as taking up twice as much space
3095             * so we can count it properly against limits.  According to
3096             * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
3097             * is optional behavior, but it seems preferable.
3098             */
3099            if (var->type->without_array()->is_dual_slot())
3100               double_storage_locations |= (use_mask << attr);
3101         }
3102
3103         continue;
3104      }
3105
3106      if (num_attr >= max_index) {
3107         linker_error(prog, "too many %s (max %u)",
3108                      target_index == MESA_SHADER_VERTEX ?
3109                      "vertex shader inputs" : "fragment shader outputs",
3110                      max_index);
3111         return false;
3112      }
3113      to_assign[num_attr].slots = slots;
3114      to_assign[num_attr].var = var;
3115      num_attr++;
3116   }
3117
3118   if (!do_assignment)
3119      return true;
3120
3121   if (target_index == MESA_SHADER_VERTEX) {
3122      unsigned total_attribs_size =
3123         util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3124         util_bitcount(double_storage_locations);
3125      if (total_attribs_size > max_index) {
3126         linker_error(prog,
3127                      "attempt to use %d vertex attribute slots only %d available ",
3128                      total_attribs_size, max_index);
3129         return false;
3130      }
3131   }
3132
3133   /* If all of the attributes were assigned locations by the application (or
3134    * are built-in attributes with fixed locations), return early.  This should
3135    * be the common case.
3136    */
3137   if (num_attr == 0)
3138      return true;
3139
3140   qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
3141
3142   if (target_index == MESA_SHADER_VERTEX) {
3143      /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS.  It can
3144       * only be explicitly assigned by via glBindAttribLocation.  Mark it as
3145       * reserved to prevent it from being automatically allocated below.
3146       */
3147      find_deref_visitor find("gl_Vertex");
3148      find.run(sh->ir);
3149      if (find.variable_found())
3150         used_locations |= (1 << 0);
3151   }
3152
3153   for (unsigned i = 0; i < num_attr; i++) {
3154      /* Mask representing the contiguous slots that will be used by this
3155       * attribute.
3156       */
3157      const unsigned use_mask = (1 << to_assign[i].slots) - 1;
3158
3159      int location = find_available_slots(used_locations, to_assign[i].slots);
3160
3161      if (location < 0) {
3162         const char *const string = (target_index == MESA_SHADER_VERTEX)
3163            ? "vertex shader input" : "fragment shader output";
3164
3165         linker_error(prog,
3166                      "insufficient contiguous locations "
3167                      "available for %s `%s'\n",
3168                      string, to_assign[i].var->name);
3169         return false;
3170      }
3171
3172      to_assign[i].var->data.location = generic_base + location;
3173      to_assign[i].var->data.is_unmatched_generic_inout = 0;
3174      used_locations |= (use_mask << location);
3175
3176      if (to_assign[i].var->type->without_array()->is_dual_slot())
3177         double_storage_locations |= (use_mask << location);
3178   }
3179
3180   /* Now that we have all the locations, from the GL 4.5 core spec, section
3181    * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3182    * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3183    * as equivalent single-precision types.
3184    */
3185   if (target_index == MESA_SHADER_VERTEX) {
3186      unsigned total_attribs_size =
3187         util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3188         util_bitcount(double_storage_locations);
3189      if (total_attribs_size > max_index) {
3190         linker_error(prog,
3191                      "attempt to use %d vertex attribute slots only %d available ",
3192                      total_attribs_size, max_index);
3193         return false;
3194      }
3195   }
3196
3197   return true;
3198}
3199
3200/**
3201 * Match explicit locations of outputs to inputs and deactivate the
3202 * unmatch flag if found so we don't optimise them away.
3203 */
3204static void
3205match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3206                                 gl_linked_shader *consumer)
3207{
3208   glsl_symbol_table parameters;
3209   ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3210      { {NULL, NULL} };
3211
3212   /* Find all shader outputs in the "producer" stage.
3213    */
3214   foreach_in_list(ir_instruction, node, producer->ir) {
3215      ir_variable *const var = node->as_variable();
3216
3217      if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3218         continue;
3219
3220      if (var->data.explicit_location &&
3221          var->data.location >= VARYING_SLOT_VAR0) {
3222         const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3223         if (explicit_locations[idx][var->data.location_frac] == NULL)
3224            explicit_locations[idx][var->data.location_frac] = var;
3225
3226         /* Always match TCS outputs. They are shared by all invocations
3227          * within a patch and can be used as shared memory.
3228          */
3229         if (producer->Stage == MESA_SHADER_TESS_CTRL)
3230            var->data.is_unmatched_generic_inout = 0;
3231      }
3232   }
3233
3234   /* Match inputs to outputs */
3235   foreach_in_list(ir_instruction, node, consumer->ir) {
3236      ir_variable *const input = node->as_variable();
3237
3238      if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3239         continue;
3240
3241      ir_variable *output = NULL;
3242      if (input->data.explicit_location
3243          && input->data.location >= VARYING_SLOT_VAR0) {
3244         output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3245            [input->data.location_frac];
3246
3247         if (output != NULL){
3248            input->data.is_unmatched_generic_inout = 0;
3249            output->data.is_unmatched_generic_inout = 0;
3250         }
3251      }
3252   }
3253}
3254
3255/**
3256 * Store the gl_FragDepth layout in the gl_shader_program struct.
3257 */
3258static void
3259store_fragdepth_layout(struct gl_shader_program *prog)
3260{
3261   if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3262      return;
3263   }
3264
3265   struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3266
3267   /* We don't look up the gl_FragDepth symbol directly because if
3268    * gl_FragDepth is not used in the shader, it's removed from the IR.
3269    * However, the symbol won't be removed from the symbol table.
3270    *
3271    * We're only interested in the cases where the variable is NOT removed
3272    * from the IR.
3273    */
3274   foreach_in_list(ir_instruction, node, ir) {
3275      ir_variable *const var = node->as_variable();
3276
3277      if (var == NULL || var->data.mode != ir_var_shader_out) {
3278         continue;
3279      }
3280
3281      if (strcmp(var->name, "gl_FragDepth") == 0) {
3282         switch (var->data.depth_layout) {
3283         case ir_depth_layout_none:
3284            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3285            return;
3286         case ir_depth_layout_any:
3287            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3288            return;
3289         case ir_depth_layout_greater:
3290            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3291            return;
3292         case ir_depth_layout_less:
3293            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3294            return;
3295         case ir_depth_layout_unchanged:
3296            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3297            return;
3298         default:
3299            assert(0);
3300            return;
3301         }
3302      }
3303   }
3304}
3305
3306/**
3307 * Validate the resources used by a program versus the implementation limits
3308 */
3309static void
3310check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3311{
3312   unsigned total_uniform_blocks = 0;
3313   unsigned total_shader_storage_blocks = 0;
3314
3315   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3316      struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3317
3318      if (sh == NULL)
3319         continue;
3320
3321      if (sh->Program->info.num_textures >
3322          ctx->Const.Program[i].MaxTextureImageUnits) {
3323         linker_error(prog, "Too many %s shader texture samplers\n",
3324                      _mesa_shader_stage_to_string(i));
3325      }
3326
3327      if (sh->num_uniform_components >
3328          ctx->Const.Program[i].MaxUniformComponents) {
3329         if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3330            linker_warning(prog, "Too many %s shader default uniform block "
3331                           "components, but the driver will try to optimize "
3332                           "them out; this is non-portable out-of-spec "
3333                           "behavior\n",
3334                           _mesa_shader_stage_to_string(i));
3335         } else {
3336            linker_error(prog, "Too many %s shader default uniform block "
3337                         "components\n",
3338                         _mesa_shader_stage_to_string(i));
3339         }
3340      }
3341
3342      if (sh->num_combined_uniform_components >
3343          ctx->Const.Program[i].MaxCombinedUniformComponents) {
3344         if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3345            linker_warning(prog, "Too many %s shader uniform components, "
3346                           "but the driver will try to optimize them out; "
3347                           "this is non-portable out-of-spec behavior\n",
3348                           _mesa_shader_stage_to_string(i));
3349         } else {
3350            linker_error(prog, "Too many %s shader uniform components\n",
3351                         _mesa_shader_stage_to_string(i));
3352         }
3353      }
3354
3355      total_shader_storage_blocks += sh->Program->info.num_ssbos;
3356      total_uniform_blocks += sh->Program->info.num_ubos;
3357
3358      const unsigned max_uniform_blocks =
3359         ctx->Const.Program[i].MaxUniformBlocks;
3360      if (max_uniform_blocks < sh->Program->info.num_ubos) {
3361         linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3362                      _mesa_shader_stage_to_string(i),
3363                      sh->Program->info.num_ubos, max_uniform_blocks);
3364      }
3365
3366      const unsigned max_shader_storage_blocks =
3367         ctx->Const.Program[i].MaxShaderStorageBlocks;
3368      if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3369         linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3370                      _mesa_shader_stage_to_string(i),
3371                      sh->Program->info.num_ssbos, max_shader_storage_blocks);
3372      }
3373   }
3374
3375   if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3376      linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3377                   total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3378   }
3379
3380   if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3381      linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3382                   total_shader_storage_blocks,
3383                   ctx->Const.MaxCombinedShaderStorageBlocks);
3384   }
3385
3386   for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3387      if (prog->data->UniformBlocks[i].UniformBufferSize >
3388          ctx->Const.MaxUniformBlockSize) {
3389         linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3390                      prog->data->UniformBlocks[i].Name,
3391                      prog->data->UniformBlocks[i].UniformBufferSize,
3392                      ctx->Const.MaxUniformBlockSize);
3393      }
3394   }
3395
3396   for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3397      if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3398          ctx->Const.MaxShaderStorageBlockSize) {
3399         linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3400                      prog->data->ShaderStorageBlocks[i].Name,
3401                      prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3402                      ctx->Const.MaxShaderStorageBlockSize);
3403      }
3404   }
3405}
3406
3407static void
3408link_calculate_subroutine_compat(struct gl_shader_program *prog)
3409{
3410   unsigned mask = prog->data->linked_stages;
3411   while (mask) {
3412      const int i = u_bit_scan(&mask);
3413      struct gl_program *p = prog->_LinkedShaders[i]->Program;
3414
3415      for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3416         if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3417            continue;
3418
3419         struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3420
3421         if (!uni)
3422            continue;
3423
3424         int count = 0;
3425         if (p->sh.NumSubroutineFunctions == 0) {
3426            linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3427            continue;
3428         }
3429         for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3430            struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3431            for (int k = 0; k < fn->num_compat_types; k++) {
3432               if (fn->types[k] == uni->type) {
3433                  count++;
3434                  break;
3435               }
3436            }
3437         }
3438         uni->num_compatible_subroutines = count;
3439      }
3440   }
3441}
3442
3443static void
3444check_subroutine_resources(struct gl_shader_program *prog)
3445{
3446   unsigned mask = prog->data->linked_stages;
3447   while (mask) {
3448      const int i = u_bit_scan(&mask);
3449      struct gl_program *p = prog->_LinkedShaders[i]->Program;
3450
3451      if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3452         linker_error(prog, "Too many %s shader subroutine uniforms\n",
3453                      _mesa_shader_stage_to_string(i));
3454      }
3455   }
3456}
3457/**
3458 * Validate shader image resources.
3459 */
3460static void
3461check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3462{
3463   unsigned total_image_units = 0;
3464   unsigned fragment_outputs = 0;
3465   unsigned total_shader_storage_blocks = 0;
3466
3467   if (!ctx->Extensions.ARB_shader_image_load_store)
3468      return;
3469
3470   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3471      struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3472
3473      if (sh) {
3474         if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3475            linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3476                         _mesa_shader_stage_to_string(i),
3477                         sh->Program->info.num_images,
3478                         ctx->Const.Program[i].MaxImageUniforms);
3479
3480         total_image_units += sh->Program->info.num_images;
3481         total_shader_storage_blocks += sh->Program->info.num_ssbos;
3482
3483         if (i == MESA_SHADER_FRAGMENT) {
3484            foreach_in_list(ir_instruction, node, sh->ir) {
3485               ir_variable *var = node->as_variable();
3486               if (var && var->data.mode == ir_var_shader_out)
3487                  /* since there are no double fs outputs - pass false */
3488                  fragment_outputs += var->type->count_attribute_slots(false);
3489            }
3490         }
3491      }
3492   }
3493
3494   if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3495      linker_error(prog, "Too many combined image uniforms\n");
3496
3497   if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3498       ctx->Const.MaxCombinedShaderOutputResources)
3499      linker_error(prog, "Too many combined image uniforms, shader storage "
3500                         " buffers and fragment outputs\n");
3501}
3502
3503
3504/**
3505 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3506 * for a variable, checks for overlaps between other uniforms using explicit
3507 * locations.
3508 */
3509static int
3510reserve_explicit_locations(struct gl_shader_program *prog,
3511                           string_to_uint_map *map, ir_variable *var)
3512{
3513   unsigned slots = var->type->uniform_locations();
3514   unsigned max_loc = var->data.location + slots - 1;
3515   unsigned return_value = slots;
3516
3517   /* Resize remap table if locations do not fit in the current one. */
3518   if (max_loc + 1 > prog->NumUniformRemapTable) {
3519      prog->UniformRemapTable =
3520         reralloc(prog, prog->UniformRemapTable,
3521                  gl_uniform_storage *,
3522                  max_loc + 1);
3523
3524      if (!prog->UniformRemapTable) {
3525         linker_error(prog, "Out of memory during linking.\n");
3526         return -1;
3527      }
3528
3529      /* Initialize allocated space. */
3530      for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3531         prog->UniformRemapTable[i] = NULL;
3532
3533      prog->NumUniformRemapTable = max_loc + 1;
3534   }
3535
3536   for (unsigned i = 0; i < slots; i++) {
3537      unsigned loc = var->data.location + i;
3538
3539      /* Check if location is already used. */
3540      if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3541
3542         /* Possibly same uniform from a different stage, this is ok. */
3543         unsigned hash_loc;
3544         if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3545            return_value = 0;
3546            continue;
3547         }
3548
3549         /* ARB_explicit_uniform_location specification states:
3550          *
3551          *     "No two default-block uniform variables in the program can have
3552          *     the same location, even if they are unused, otherwise a compiler
3553          *     or linker error will be generated."
3554          */
3555         linker_error(prog,
3556                      "location qualifier for uniform %s overlaps "
3557                      "previously used location\n",
3558                      var->name);
3559         return -1;
3560      }
3561
3562      /* Initialize location as inactive before optimization
3563       * rounds and location assignment.
3564       */
3565      prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3566   }
3567
3568   /* Note, base location used for arrays. */
3569   map->put(var->data.location, var->name);
3570
3571   return return_value;
3572}
3573
3574static bool
3575reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3576                                      struct gl_program *p,
3577                                      ir_variable *var)
3578{
3579   unsigned slots = var->type->uniform_locations();
3580   unsigned max_loc = var->data.location + slots - 1;
3581
3582   /* Resize remap table if locations do not fit in the current one. */
3583   if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3584      p->sh.SubroutineUniformRemapTable =
3585         reralloc(p, p->sh.SubroutineUniformRemapTable,
3586                  gl_uniform_storage *,
3587                  max_loc + 1);
3588
3589      if (!p->sh.SubroutineUniformRemapTable) {
3590         linker_error(prog, "Out of memory during linking.\n");
3591         return false;
3592      }
3593
3594      /* Initialize allocated space. */
3595      for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3596         p->sh.SubroutineUniformRemapTable[i] = NULL;
3597
3598      p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3599   }
3600
3601   for (unsigned i = 0; i < slots; i++) {
3602      unsigned loc = var->data.location + i;
3603
3604      /* Check if location is already used. */
3605      if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3606
3607         /* ARB_explicit_uniform_location specification states:
3608          *     "No two subroutine uniform variables can have the same location
3609          *     in the same shader stage, otherwise a compiler or linker error
3610          *     will be generated."
3611          */
3612         linker_error(prog,
3613                      "location qualifier for uniform %s overlaps "
3614                      "previously used location\n",
3615                      var->name);
3616         return false;
3617      }
3618
3619      /* Initialize location as inactive before optimization
3620       * rounds and location assignment.
3621       */
3622      p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3623   }
3624
3625   return true;
3626}
3627/**
3628 * Check and reserve all explicit uniform locations, called before
3629 * any optimizations happen to handle also inactive uniforms and
3630 * inactive array elements that may get trimmed away.
3631 */
3632static void
3633check_explicit_uniform_locations(struct gl_context *ctx,
3634                                 struct gl_shader_program *prog)
3635{
3636   prog->NumExplicitUniformLocations = 0;
3637
3638   if (!ctx->Extensions.ARB_explicit_uniform_location)
3639      return;
3640
3641   /* This map is used to detect if overlapping explicit locations
3642    * occur with the same uniform (from different stage) or a different one.
3643    */
3644   string_to_uint_map *uniform_map = new string_to_uint_map;
3645
3646   if (!uniform_map) {
3647      linker_error(prog, "Out of memory during linking.\n");
3648      return;
3649   }
3650
3651   unsigned entries_total = 0;
3652   unsigned mask = prog->data->linked_stages;
3653   while (mask) {
3654      const int i = u_bit_scan(&mask);
3655      struct gl_program *p = prog->_LinkedShaders[i]->Program;
3656
3657      foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3658         ir_variable *var = node->as_variable();
3659         if (!var || var->data.mode != ir_var_uniform)
3660            continue;
3661
3662         if (var->data.explicit_location) {
3663            bool ret = false;
3664            if (var->type->without_array()->is_subroutine())
3665               ret = reserve_subroutine_explicit_locations(prog, p, var);
3666            else {
3667               int slots = reserve_explicit_locations(prog, uniform_map,
3668                                                      var);
3669               if (slots != -1) {
3670                  ret = true;
3671                  entries_total += slots;
3672               }
3673            }
3674            if (!ret) {
3675               delete uniform_map;
3676               return;
3677            }
3678         }
3679      }
3680   }
3681
3682   link_util_update_empty_uniform_locations(prog);
3683
3684   delete uniform_map;
3685   prog->NumExplicitUniformLocations = entries_total;
3686}
3687
3688static bool
3689should_add_buffer_variable(struct gl_shader_program *shProg,
3690                           GLenum type, const char *name)
3691{
3692   bool found_interface = false;
3693   unsigned block_name_len = 0;
3694   const char *block_name_dot = strchr(name, '.');
3695
3696   /* These rules only apply to buffer variables. So we return
3697    * true for the rest of types.
3698    */
3699   if (type != GL_BUFFER_VARIABLE)
3700      return true;
3701
3702   for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3703      const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3704      block_name_len = strlen(block_name);
3705
3706      const char *block_square_bracket = strchr(block_name, '[');
3707      if (block_square_bracket) {
3708         /* The block is part of an array of named interfaces,
3709          * for the name comparison we ignore the "[x]" part.
3710          */
3711         block_name_len -= strlen(block_square_bracket);
3712      }
3713
3714      if (block_name_dot) {
3715         /* Check if the variable name starts with the interface
3716          * name. The interface name (if present) should have the
3717          * length than the interface block name we are comparing to.
3718          */
3719         unsigned len = strlen(name) - strlen(block_name_dot);
3720         if (len != block_name_len)
3721            continue;
3722      }
3723
3724      if (strncmp(block_name, name, block_name_len) == 0) {
3725         found_interface = true;
3726         break;
3727      }
3728   }
3729
3730   /* We remove the interface name from the buffer variable name,
3731    * including the dot that follows it.
3732    */
3733   if (found_interface)
3734      name = name + block_name_len + 1;
3735
3736   /* The ARB_program_interface_query spec says:
3737    *
3738    *     "For an active shader storage block member declared as an array, an
3739    *     entry will be generated only for the first array element, regardless
3740    *     of its type.  For arrays of aggregate types, the enumeration rules
3741    *     are applied recursively for the single enumerated array element."
3742    */
3743   const char *struct_first_dot = strchr(name, '.');
3744   const char *first_square_bracket = strchr(name, '[');
3745
3746   /* The buffer variable is on top level and it is not an array */
3747   if (!first_square_bracket) {
3748      return true;
3749   /* The shader storage block member is a struct, then generate the entry */
3750   } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3751      return true;
3752   } else {
3753      /* Shader storage block member is an array, only generate an entry for the
3754       * first array element.
3755       */
3756      if (strncmp(first_square_bracket, "[0]", 3) == 0)
3757         return true;
3758   }
3759
3760   return false;
3761}
3762
3763/* Function checks if a variable var is a packed varying and
3764 * if given name is part of packed varying's list.
3765 *
3766 * If a variable is a packed varying, it has a name like
3767 * 'packed:a,b,c' where a, b and c are separate variables.
3768 */
3769static bool
3770included_in_packed_varying(ir_variable *var, const char *name)
3771{
3772   if (strncmp(var->name, "packed:", 7) != 0)
3773      return false;
3774
3775   char *list = strdup(var->name + 7);
3776   assert(list);
3777
3778   bool found = false;
3779   char *saveptr;
3780   char *token = strtok_r(list, ",", &saveptr);
3781   while (token) {
3782      if (strcmp(token, name) == 0) {
3783         found = true;
3784         break;
3785      }
3786      token = strtok_r(NULL, ",", &saveptr);
3787   }
3788   free(list);
3789   return found;
3790}
3791
3792/**
3793 * Function builds a stage reference bitmask from variable name.
3794 */
3795static uint8_t
3796build_stageref(struct gl_shader_program *shProg, const char *name,
3797               unsigned mode)
3798{
3799   uint8_t stages = 0;
3800
3801   /* Note, that we assume MAX 8 stages, if there will be more stages, type
3802    * used for reference mask in gl_program_resource will need to be changed.
3803    */
3804   assert(MESA_SHADER_STAGES < 8);
3805
3806   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3807      struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3808      if (!sh)
3809         continue;
3810
3811      /* Shader symbol table may contain variables that have
3812       * been optimized away. Search IR for the variable instead.
3813       */
3814      foreach_in_list(ir_instruction, node, sh->ir) {
3815         ir_variable *var = node->as_variable();
3816         if (var) {
3817            unsigned baselen = strlen(var->name);
3818
3819            if (included_in_packed_varying(var, name)) {
3820                  stages |= (1 << i);
3821                  break;
3822            }
3823
3824            /* Type needs to match if specified, otherwise we might
3825             * pick a variable with same name but different interface.
3826             */
3827            if (var->data.mode != mode)
3828               continue;
3829
3830            if (strncmp(var->name, name, baselen) == 0) {
3831               /* Check for exact name matches but also check for arrays and
3832                * structs.
3833                */
3834               if (name[baselen] == '\0' ||
3835                   name[baselen] == '[' ||
3836                   name[baselen] == '.') {
3837                  stages |= (1 << i);
3838                  break;
3839               }
3840            }
3841         }
3842      }
3843   }
3844   return stages;
3845}
3846
3847/**
3848 * Create gl_shader_variable from ir_variable class.
3849 */
3850static gl_shader_variable *
3851create_shader_variable(struct gl_shader_program *shProg,
3852                       const ir_variable *in,
3853                       const char *name, const glsl_type *type,
3854                       const glsl_type *interface_type,
3855                       bool use_implicit_location, int location,
3856                       const glsl_type *outermost_struct_type)
3857{
3858   /* Allocate zero-initialized memory to ensure that bitfield padding
3859    * is zero.
3860    */
3861   gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3862   if (!out)
3863      return NULL;
3864
3865   /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3866    * expect to see gl_VertexID in the program resource list.  Pretend.
3867    */
3868   if (in->data.mode == ir_var_system_value &&
3869       in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3870      out->name = ralloc_strdup(shProg, "gl_VertexID");
3871   } else if ((in->data.mode == ir_var_shader_out &&
3872               in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3873              (in->data.mode == ir_var_system_value &&
3874               in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3875      out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3876      type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3877   } else if ((in->data.mode == ir_var_shader_out &&
3878               in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3879              (in->data.mode == ir_var_system_value &&
3880               in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3881      out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3882      type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3883   } else {
3884      out->name = ralloc_strdup(shProg, name);
3885   }
3886
3887   if (!out->name)
3888      return NULL;
3889
3890   /* The ARB_program_interface_query spec says:
3891    *
3892    *     "Not all active variables are assigned valid locations; the
3893    *     following variables will have an effective location of -1:
3894    *
3895    *      * uniforms declared as atomic counters;
3896    *
3897    *      * members of a uniform block;
3898    *
3899    *      * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3900    *
3901    *      * inputs or outputs not declared with a "location" layout
3902    *        qualifier, except for vertex shader inputs and fragment shader
3903    *        outputs."
3904    */
3905   if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3906       !(in->data.explicit_location || use_implicit_location)) {
3907      out->location = -1;
3908   } else {
3909      out->location = location;
3910   }
3911
3912   out->type = type;
3913   out->outermost_struct_type = outermost_struct_type;
3914   out->interface_type = interface_type;
3915   out->component = in->data.location_frac;
3916   out->index = in->data.index;
3917   out->patch = in->data.patch;
3918   out->mode = in->data.mode;
3919   out->interpolation = in->data.interpolation;
3920   out->explicit_location = in->data.explicit_location;
3921   out->precision = in->data.precision;
3922
3923   return out;
3924}
3925
3926static bool
3927add_shader_variable(const struct gl_context *ctx,
3928                    struct gl_shader_program *shProg,
3929                    struct set *resource_set,
3930                    unsigned stage_mask,
3931                    GLenum programInterface, ir_variable *var,
3932                    const char *name, const glsl_type *type,
3933                    bool use_implicit_location, int location,
3934                    bool inouts_share_location,
3935                    const glsl_type *outermost_struct_type = NULL)
3936{
3937   const glsl_type *interface_type = var->get_interface_type();
3938
3939   if (outermost_struct_type == NULL) {
3940      if (var->data.from_named_ifc_block) {
3941         const char *interface_name = interface_type->name;
3942
3943         if (interface_type->is_array()) {
3944            /* Issue #16 of the ARB_program_interface_query spec says:
3945             *
3946             * "* If a variable is a member of an interface block without an
3947             *    instance name, it is enumerated using just the variable name.
3948             *
3949             *  * If a variable is a member of an interface block with an
3950             *    instance name, it is enumerated as "BlockName.Member", where
3951             *    "BlockName" is the name of the interface block (not the
3952             *    instance name) and "Member" is the name of the variable."
3953             *
3954             * In particular, it indicates that it should be "BlockName",
3955             * not "BlockName[array length]".  The conformance suite and
3956             * dEQP both require this behavior.
3957             *
3958             * Here, we unwrap the extra array level added by named interface
3959             * block array lowering so we have the correct variable type.  We
3960             * also unwrap the interface type when constructing the name.
3961             *
3962             * We leave interface_type the same so that ES 3.x SSO pipeline
3963             * validation can enforce the rules requiring array length to
3964             * match on interface blocks.
3965             */
3966            type = type->fields.array;
3967
3968            interface_name = interface_type->fields.array->name;
3969         }
3970
3971         name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3972      }
3973   }
3974
3975   switch (type->base_type) {
3976   case GLSL_TYPE_STRUCT: {
3977      /* The ARB_program_interface_query spec says:
3978       *
3979       *     "For an active variable declared as a structure, a separate entry
3980       *     will be generated for each active structure member.  The name of
3981       *     each entry is formed by concatenating the name of the structure,
3982       *     the "."  character, and the name of the structure member.  If a
3983       *     structure member to enumerate is itself a structure or array,
3984       *     these enumeration rules are applied recursively."
3985       */
3986      if (outermost_struct_type == NULL)
3987         outermost_struct_type = type;
3988
3989      unsigned field_location = location;
3990      for (unsigned i = 0; i < type->length; i++) {
3991         const struct glsl_struct_field *field = &type->fields.structure[i];
3992         char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3993         if (!add_shader_variable(ctx, shProg, resource_set,
3994                                  stage_mask, programInterface,
3995                                  var, field_name, field->type,
3996                                  use_implicit_location, field_location,
3997                                  false, outermost_struct_type))
3998            return false;
3999
4000         field_location += field->type->count_attribute_slots(false);
4001      }
4002      return true;
4003   }
4004
4005   case GLSL_TYPE_ARRAY: {
4006      /* The ARB_program_interface_query spec says:
4007       *
4008       *     "For an active variable declared as an array of basic types, a
4009       *      single entry will be generated, with its name string formed by
4010       *      concatenating the name of the array and the string "[0]"."
4011       *
4012       *     "For an active variable declared as an array of an aggregate data
4013       *      type (structures or arrays), a separate entry will be generated
4014       *      for each active array element, unless noted immediately below.
4015       *      The name of each entry is formed by concatenating the name of
4016       *      the array, the "[" character, an integer identifying the element
4017       *      number, and the "]" character.  These enumeration rules are
4018       *      applied recursively, treating each enumerated array element as a
4019       *      separate active variable."
4020       */
4021      const struct glsl_type *array_type = type->fields.array;
4022      if (array_type->base_type == GLSL_TYPE_STRUCT ||
4023          array_type->base_type == GLSL_TYPE_ARRAY) {
4024         unsigned elem_location = location;
4025         unsigned stride = inouts_share_location ? 0 :
4026                           array_type->count_attribute_slots(false);
4027         for (unsigned i = 0; i < type->length; i++) {
4028            char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i);
4029            if (!add_shader_variable(ctx, shProg, resource_set,
4030                                     stage_mask, programInterface,
4031                                     var, elem, array_type,
4032                                     use_implicit_location, elem_location,
4033                                     false, outermost_struct_type))
4034               return false;
4035            elem_location += stride;
4036         }
4037         return true;
4038      }
4039      /* fallthrough */
4040   }
4041
4042   default: {
4043      /* The ARB_program_interface_query spec says:
4044       *
4045       *     "For an active variable declared as a single instance of a basic
4046       *     type, a single entry will be generated, using the variable name
4047       *     from the shader source."
4048       */
4049      gl_shader_variable *sha_v =
4050         create_shader_variable(shProg, var, name, type, interface_type,
4051                                use_implicit_location, location,
4052                                outermost_struct_type);
4053      if (!sha_v)
4054         return false;
4055
4056      return link_util_add_program_resource(shProg, resource_set,
4057                                            programInterface, sha_v, stage_mask);
4058   }
4059   }
4060}
4061
4062static bool
4063inout_has_same_location(const ir_variable *var, unsigned stage)
4064{
4065   if (!var->data.patch &&
4066       ((var->data.mode == ir_var_shader_out &&
4067         stage == MESA_SHADER_TESS_CTRL) ||
4068        (var->data.mode == ir_var_shader_in &&
4069         (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
4070          stage == MESA_SHADER_GEOMETRY))))
4071      return true;
4072   else
4073      return false;
4074}
4075
4076static bool
4077add_interface_variables(const struct gl_context *ctx,
4078                        struct gl_shader_program *shProg,
4079                        struct set *resource_set,
4080                        unsigned stage, GLenum programInterface)
4081{
4082   exec_list *ir = shProg->_LinkedShaders[stage]->ir;
4083
4084   foreach_in_list(ir_instruction, node, ir) {
4085      ir_variable *var = node->as_variable();
4086
4087      if (!var || var->data.how_declared == ir_var_hidden)
4088         continue;
4089
4090      int loc_bias;
4091
4092      switch (var->data.mode) {
4093      case ir_var_system_value:
4094      case ir_var_shader_in:
4095         if (programInterface != GL_PROGRAM_INPUT)
4096            continue;
4097         loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
4098                                                  : int(VARYING_SLOT_VAR0);
4099         break;
4100      case ir_var_shader_out:
4101         if (programInterface != GL_PROGRAM_OUTPUT)
4102            continue;
4103         loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
4104                                                    : int(VARYING_SLOT_VAR0);
4105         break;
4106      default:
4107         continue;
4108      };
4109
4110      if (var->data.patch)
4111         loc_bias = int(VARYING_SLOT_PATCH0);
4112
4113      /* Skip packed varyings, packed varyings are handled separately
4114       * by add_packed_varyings.
4115       */
4116      if (strncmp(var->name, "packed:", 7) == 0)
4117         continue;
4118
4119      /* Skip fragdata arrays, these are handled separately
4120       * by add_fragdata_arrays.
4121       */
4122      if (strncmp(var->name, "gl_out_FragData", 15) == 0)
4123         continue;
4124
4125      const bool vs_input_or_fs_output =
4126         (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
4127         (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
4128
4129      if (!add_shader_variable(ctx, shProg, resource_set,
4130                               1 << stage, programInterface,
4131                               var, var->name, var->type, vs_input_or_fs_output,
4132                               var->data.location - loc_bias,
4133                               inout_has_same_location(var, stage)))
4134         return false;
4135   }
4136   return true;
4137}
4138
4139static bool
4140add_packed_varyings(const struct gl_context *ctx,
4141                    struct gl_shader_program *shProg,
4142                    struct set *resource_set,
4143                    int stage, GLenum type)
4144{
4145   struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
4146   GLenum iface;
4147
4148   if (!sh || !sh->packed_varyings)
4149      return true;
4150
4151   foreach_in_list(ir_instruction, node, sh->packed_varyings) {
4152      ir_variable *var = node->as_variable();
4153      if (var) {
4154         switch (var->data.mode) {
4155         case ir_var_shader_in:
4156            iface = GL_PROGRAM_INPUT;
4157            break;
4158         case ir_var_shader_out:
4159            iface = GL_PROGRAM_OUTPUT;
4160            break;
4161         default:
4162            unreachable("unexpected type");
4163         }
4164
4165         if (type == iface) {
4166            const int stage_mask =
4167               build_stageref(shProg, var->name, var->data.mode);
4168            if (!add_shader_variable(ctx, shProg, resource_set,
4169                                     stage_mask,
4170                                     iface, var, var->name, var->type, false,
4171                                     var->data.location - VARYING_SLOT_VAR0,
4172                                     inout_has_same_location(var, stage)))
4173               return false;
4174         }
4175      }
4176   }
4177   return true;
4178}
4179
4180static bool
4181add_fragdata_arrays(const struct gl_context *ctx,
4182                    struct gl_shader_program *shProg,
4183                    struct set *resource_set)
4184{
4185   struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4186
4187   if (!sh || !sh->fragdata_arrays)
4188      return true;
4189
4190   foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4191      ir_variable *var = node->as_variable();
4192      if (var) {
4193         assert(var->data.mode == ir_var_shader_out);
4194
4195         if (!add_shader_variable(ctx, shProg, resource_set,
4196                                  1 << MESA_SHADER_FRAGMENT,
4197                                  GL_PROGRAM_OUTPUT, var, var->name, var->type,
4198                                  true, var->data.location - FRAG_RESULT_DATA0,
4199                                  false))
4200            return false;
4201      }
4202   }
4203   return true;
4204}
4205
4206static char*
4207get_top_level_name(const char *name)
4208{
4209   const char *first_dot = strchr(name, '.');
4210   const char *first_square_bracket = strchr(name, '[');
4211   int name_size = 0;
4212
4213   /* The ARB_program_interface_query spec says:
4214    *
4215    *     "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4216    *     the number of active array elements of the top-level shader storage
4217    *     block member containing to the active variable is written to
4218    *     <params>.  If the top-level block member is not declared as an
4219    *     array, the value one is written to <params>.  If the top-level block
4220    *     member is an array with no declared size, the value zero is written
4221    *     to <params>."
4222    */
4223
4224   /* The buffer variable is on top level.*/
4225   if (!first_square_bracket && !first_dot)
4226      name_size = strlen(name);
4227   else if ((!first_square_bracket ||
4228            (first_dot && first_dot < first_square_bracket)))
4229      name_size = first_dot - name;
4230   else
4231      name_size = first_square_bracket - name;
4232
4233   return strndup(name, name_size);
4234}
4235
4236static char*
4237get_var_name(const char *name)
4238{
4239   const char *first_dot = strchr(name, '.');
4240
4241   if (!first_dot)
4242      return strdup(name);
4243
4244   return strndup(first_dot+1, strlen(first_dot) - 1);
4245}
4246
4247static bool
4248is_top_level_shader_storage_block_member(const char* name,
4249                                         const char* interface_name,
4250                                         const char* field_name)
4251{
4252   bool result = false;
4253
4254   /* If the given variable is already a top-level shader storage
4255    * block member, then return array_size = 1.
4256    * We could have two possibilities: if we have an instanced
4257    * shader storage block or not instanced.
4258    *
4259    * For the first, we check create a name as it was in top level and
4260    * compare it with the real name. If they are the same, then
4261    * the variable is already at top-level.
4262    *
4263    * Full instanced name is: interface name + '.' + var name +
4264    *    NULL character
4265    */
4266   int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4267   char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4268   if (!full_instanced_name) {
4269      fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4270      return false;
4271   }
4272
4273   util_snprintf(full_instanced_name, name_length, "%s.%s",
4274                 interface_name, field_name);
4275
4276   /* Check if its top-level shader storage block member of an
4277    * instanced interface block, or of a unnamed interface block.
4278    */
4279   if (strcmp(name, full_instanced_name) == 0 ||
4280       strcmp(name, field_name) == 0)
4281      result = true;
4282
4283   free(full_instanced_name);
4284   return result;
4285}
4286
4287static int
4288get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4289               char *interface_name, char *var_name)
4290{
4291   /* The ARB_program_interface_query spec says:
4292    *
4293    *     "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4294    *     the number of active array elements of the top-level shader storage
4295    *     block member containing to the active variable is written to
4296    *     <params>.  If the top-level block member is not declared as an
4297    *     array, the value one is written to <params>.  If the top-level block
4298    *     member is an array with no declared size, the value zero is written
4299    *     to <params>."
4300    */
4301   if (is_top_level_shader_storage_block_member(uni->name,
4302                                                interface_name,
4303                                                var_name))
4304      return  1;
4305   else if (field->type->is_unsized_array())
4306      return 0;
4307   else if (field->type->is_array())
4308      return field->type->length;
4309
4310   return 1;
4311}
4312
4313static int
4314get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
4315                 const glsl_type *iface, const glsl_struct_field *field,
4316                 char *interface_name, char *var_name)
4317{
4318   /* The ARB_program_interface_query spec says:
4319    *
4320    *     "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4321    *     identifying the stride between array elements of the top-level
4322    *     shader storage block member containing the active variable is
4323    *     written to <params>.  For top-level block members declared as
4324    *     arrays, the value written is the difference, in basic machine units,
4325    *     between the offsets of the active variable for consecutive elements
4326    *     in the top-level array.  For top-level block members not declared as
4327    *     an array, zero is written to <params>."
4328    */
4329   if (field->type->is_array()) {
4330      const enum glsl_matrix_layout matrix_layout =
4331         glsl_matrix_layout(field->matrix_layout);
4332      bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4333      const glsl_type *array_type = field->type->fields.array;
4334
4335      if (is_top_level_shader_storage_block_member(uni->name,
4336                                                   interface_name,
4337                                                   var_name))
4338         return 0;
4339
4340      if (GLSL_INTERFACE_PACKING_STD140 ==
4341          iface->
4342             get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
4343         if (array_type->is_struct() || array_type->is_array())
4344            return glsl_align(array_type->std140_size(row_major), 16);
4345         else
4346            return MAX2(array_type->std140_base_alignment(row_major), 16);
4347      } else {
4348         return array_type->std430_array_stride(row_major);
4349      }
4350   }
4351   return 0;
4352}
4353
4354static void
4355calculate_array_size_and_stride(struct gl_context *ctx,
4356                                struct gl_shader_program *shProg,
4357                                struct gl_uniform_storage *uni)
4358{
4359   int block_index = uni->block_index;
4360   int array_size = -1;
4361   int array_stride = -1;
4362   char *var_name = get_top_level_name(uni->name);
4363   char *interface_name =
4364      get_top_level_name(uni->is_shader_storage ?
4365                         shProg->data->ShaderStorageBlocks[block_index].Name :
4366                         shProg->data->UniformBlocks[block_index].Name);
4367
4368   if (strcmp(var_name, interface_name) == 0) {
4369      /* Deal with instanced array of SSBOs */
4370      char *temp_name = get_var_name(uni->name);
4371      if (!temp_name) {
4372         linker_error(shProg, "Out of memory during linking.\n");
4373         goto write_top_level_array_size_and_stride;
4374      }
4375      free(var_name);
4376      var_name = get_top_level_name(temp_name);
4377      free(temp_name);
4378      if (!var_name) {
4379         linker_error(shProg, "Out of memory during linking.\n");
4380         goto write_top_level_array_size_and_stride;
4381      }
4382   }
4383
4384   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4385      const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4386      if (sh == NULL)
4387         continue;
4388
4389      foreach_in_list(ir_instruction, node, sh->ir) {
4390         ir_variable *var = node->as_variable();
4391         if (!var || !var->get_interface_type() ||
4392             var->data.mode != ir_var_shader_storage)
4393            continue;
4394
4395         const glsl_type *iface = var->get_interface_type();
4396
4397         if (strcmp(interface_name, iface->name) != 0)
4398            continue;
4399
4400         for (unsigned i = 0; i < iface->length; i++) {
4401            const glsl_struct_field *field = &iface->fields.structure[i];
4402            if (strcmp(field->name, var_name) != 0)
4403               continue;
4404
4405            array_stride = get_array_stride(ctx, uni, iface, field,
4406                                            interface_name, var_name);
4407            array_size = get_array_size(uni, field, interface_name, var_name);
4408            goto write_top_level_array_size_and_stride;
4409         }
4410      }
4411   }
4412write_top_level_array_size_and_stride:
4413   free(interface_name);
4414   free(var_name);
4415   uni->top_level_array_stride = array_stride;
4416   uni->top_level_array_size = array_size;
4417}
4418
4419/**
4420 * Builds up a list of program resources that point to existing
4421 * resource data.
4422 */
4423void
4424build_program_resource_list(struct gl_context *ctx,
4425                            struct gl_shader_program *shProg)
4426{
4427   /* Rebuild resource list. */
4428   if (shProg->data->ProgramResourceList) {
4429      ralloc_free(shProg->data->ProgramResourceList);
4430      shProg->data->ProgramResourceList = NULL;
4431      shProg->data->NumProgramResourceList = 0;
4432   }
4433
4434   int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4435
4436   /* Determine first input and final output stage. These are used to
4437    * detect which variables should be enumerated in the resource list
4438    * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4439    */
4440   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4441      if (!shProg->_LinkedShaders[i])
4442         continue;
4443      if (input_stage == MESA_SHADER_STAGES)
4444         input_stage = i;
4445      output_stage = i;
4446   }
4447
4448   /* Empty shader, no resources. */
4449   if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4450      return;
4451
4452   struct set *resource_set = _mesa_pointer_set_create(NULL);
4453
4454   /* Program interface needs to expose varyings in case of SSO. */
4455   if (shProg->SeparateShader) {
4456      if (!add_packed_varyings(ctx, shProg, resource_set,
4457                               input_stage, GL_PROGRAM_INPUT))
4458         return;
4459
4460      if (!add_packed_varyings(ctx, shProg, resource_set,
4461                               output_stage, GL_PROGRAM_OUTPUT))
4462         return;
4463   }
4464
4465   if (!add_fragdata_arrays(ctx, shProg, resource_set))
4466      return;
4467
4468   /* Add inputs and outputs to the resource list. */
4469   if (!add_interface_variables(ctx, shProg, resource_set,
4470                                input_stage, GL_PROGRAM_INPUT))
4471      return;
4472
4473   if (!add_interface_variables(ctx, shProg, resource_set,
4474                                output_stage, GL_PROGRAM_OUTPUT))
4475      return;
4476
4477   if (shProg->last_vert_prog) {
4478      struct gl_transform_feedback_info *linked_xfb =
4479         shProg->last_vert_prog->sh.LinkedTransformFeedback;
4480
4481      /* Add transform feedback varyings. */
4482      if (linked_xfb->NumVarying > 0) {
4483         for (int i = 0; i < linked_xfb->NumVarying; i++) {
4484            if (!link_util_add_program_resource(shProg, resource_set,
4485                                                GL_TRANSFORM_FEEDBACK_VARYING,
4486                                                &linked_xfb->Varyings[i], 0))
4487            return;
4488         }
4489      }
4490
4491      /* Add transform feedback buffers. */
4492      for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4493         if ((linked_xfb->ActiveBuffers >> i) & 1) {
4494            linked_xfb->Buffers[i].Binding = i;
4495            if (!link_util_add_program_resource(shProg, resource_set,
4496                                                GL_TRANSFORM_FEEDBACK_BUFFER,
4497                                                &linked_xfb->Buffers[i], 0))
4498            return;
4499         }
4500      }
4501   }
4502
4503   /* Add uniforms from uniform storage. */
4504   for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4505      /* Do not add uniforms internally used by Mesa. */
4506      if (shProg->data->UniformStorage[i].hidden)
4507         continue;
4508
4509      uint8_t stageref =
4510         build_stageref(shProg, shProg->data->UniformStorage[i].name,
4511                        ir_var_uniform);
4512
4513      /* Add stagereferences for uniforms in a uniform block. */
4514      bool is_shader_storage =
4515        shProg->data->UniformStorage[i].is_shader_storage;
4516      int block_index = shProg->data->UniformStorage[i].block_index;
4517      if (block_index != -1) {
4518         stageref |= is_shader_storage ?
4519            shProg->data->ShaderStorageBlocks[block_index].stageref :
4520            shProg->data->UniformBlocks[block_index].stageref;
4521      }
4522
4523      GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4524      if (!should_add_buffer_variable(shProg, type,
4525                                      shProg->data->UniformStorage[i].name))
4526         continue;
4527
4528      if (is_shader_storage) {
4529         calculate_array_size_and_stride(ctx, shProg,
4530                                         &shProg->data->UniformStorage[i]);
4531      }
4532
4533      if (!link_util_add_program_resource(shProg, resource_set, type,
4534                                          &shProg->data->UniformStorage[i], stageref))
4535         return;
4536   }
4537
4538   /* Add program uniform blocks. */
4539   for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4540      if (!link_util_add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4541                                          &shProg->data->UniformBlocks[i], 0))
4542         return;
4543   }
4544
4545   /* Add program shader storage blocks. */
4546   for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4547      if (!link_util_add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4548                                          &shProg->data->ShaderStorageBlocks[i], 0))
4549         return;
4550   }
4551
4552   /* Add atomic counter buffers. */
4553   for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4554      if (!link_util_add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4555                                          &shProg->data->AtomicBuffers[i], 0))
4556         return;
4557   }
4558
4559   for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4560      GLenum type;
4561      if (!shProg->data->UniformStorage[i].hidden)
4562         continue;
4563
4564      for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4565         if (!shProg->data->UniformStorage[i].opaque[j].active ||
4566             !shProg->data->UniformStorage[i].type->is_subroutine())
4567            continue;
4568
4569         type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4570         /* add shader subroutines */
4571         if (!link_util_add_program_resource(shProg, resource_set,
4572                                             type, &shProg->data->UniformStorage[i], 0))
4573            return;
4574      }
4575   }
4576
4577   unsigned mask = shProg->data->linked_stages;
4578   while (mask) {
4579      const int i = u_bit_scan(&mask);
4580      struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4581
4582      GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4583      for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4584         if (!link_util_add_program_resource(shProg, resource_set,
4585                                             type, &p->sh.SubroutineFunctions[j], 0))
4586            return;
4587      }
4588   }
4589
4590   _mesa_set_destroy(resource_set, NULL);
4591}
4592
4593/**
4594 * This check is done to make sure we allow only constant expression
4595 * indexing and "constant-index-expression" (indexing with an expression
4596 * that includes loop induction variable).
4597 */
4598static bool
4599validate_sampler_array_indexing(struct gl_context *ctx,
4600                                struct gl_shader_program *prog)
4601{
4602   dynamic_sampler_array_indexing_visitor v;
4603   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4604      if (prog->_LinkedShaders[i] == NULL)
4605         continue;
4606
4607      bool no_dynamic_indexing =
4608         ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4609
4610      /* Search for array derefs in shader. */
4611      v.run(prog->_LinkedShaders[i]->ir);
4612      if (v.uses_dynamic_sampler_array_indexing()) {
4613         const char *msg = "sampler arrays indexed with non-constant "
4614                           "expressions is forbidden in GLSL %s %u";
4615         /* Backend has indicated that it has no dynamic indexing support. */
4616         if (no_dynamic_indexing) {
4617            linker_error(prog, msg, prog->IsES ? "ES" : "",
4618                         prog->data->Version);
4619            return false;
4620         } else {
4621            linker_warning(prog, msg, prog->IsES ? "ES" : "",
4622                           prog->data->Version);
4623         }
4624      }
4625   }
4626   return true;
4627}
4628
4629static void
4630link_assign_subroutine_types(struct gl_shader_program *prog)
4631{
4632   unsigned mask = prog->data->linked_stages;
4633   while (mask) {
4634      const int i = u_bit_scan(&mask);
4635      gl_program *p = prog->_LinkedShaders[i]->Program;
4636
4637      p->sh.MaxSubroutineFunctionIndex = 0;
4638      foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4639         ir_function *fn = node->as_function();
4640         if (!fn)
4641            continue;
4642
4643         if (fn->is_subroutine)
4644            p->sh.NumSubroutineUniformTypes++;
4645
4646         if (!fn->num_subroutine_types)
4647            continue;
4648
4649         /* these should have been calculated earlier. */
4650         assert(fn->subroutine_index != -1);
4651         if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4652            linker_error(prog, "Too many subroutine functions declared.\n");
4653            return;
4654         }
4655         p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4656                                            struct gl_subroutine_function,
4657                                            p->sh.NumSubroutineFunctions + 1);
4658         p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4659         p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4660         p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4661            ralloc_array(p, const struct glsl_type *,
4662                         fn->num_subroutine_types);
4663
4664         /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4665          * GLSL 4.5 spec:
4666          *
4667          *    "Each subroutine with an index qualifier in the shader must be
4668          *    given a unique index, otherwise a compile or link error will be
4669          *    generated."
4670          */
4671         for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4672            if (p->sh.SubroutineFunctions[j].index != -1 &&
4673                p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4674               linker_error(prog, "each subroutine index qualifier in the "
4675                            "shader must be unique\n");
4676               return;
4677            }
4678         }
4679         p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4680            fn->subroutine_index;
4681
4682         if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4683            p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4684
4685         for (int j = 0; j < fn->num_subroutine_types; j++)
4686            p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4687         p->sh.NumSubroutineFunctions++;
4688      }
4689   }
4690}
4691
4692static void
4693verify_subroutine_associated_funcs(struct gl_shader_program *prog)
4694{
4695   unsigned mask = prog->data->linked_stages;
4696   while (mask) {
4697      const int i = u_bit_scan(&mask);
4698      gl_program *p = prog->_LinkedShaders[i]->Program;
4699      glsl_symbol_table *symbols = prog->_LinkedShaders[i]->symbols;
4700
4701      /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
4702       *
4703       *   "A program will fail to compile or link if any shader
4704       *    or stage contains two or more functions with the same
4705       *    name if the name is associated with a subroutine type."
4706       */
4707      for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4708         unsigned definitions = 0;
4709         char *name = p->sh.SubroutineFunctions[j].name;
4710         ir_function *fn = symbols->get_function(name);
4711
4712         /* Calculate number of function definitions with the same name */
4713         foreach_in_list(ir_function_signature, sig, &fn->signatures) {
4714            if (sig->is_defined) {
4715               if (++definitions > 1) {
4716                  linker_error(prog, "%s shader contains two or more function "
4717                               "definitions with name `%s', which is "
4718                               "associated with a subroutine type.\n",
4719                               _mesa_shader_stage_to_string(i),
4720                               fn->name);
4721                  return;
4722               }
4723            }
4724         }
4725      }
4726   }
4727}
4728
4729
4730static void
4731set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4732{
4733   assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4734
4735   foreach_in_list(ir_instruction, node, ir) {
4736      ir_variable *const var = node->as_variable();
4737
4738      if (var == NULL || var->data.mode != io_mode)
4739         continue;
4740
4741      /* Don't set always active on builtins that haven't been redeclared */
4742      if (var->data.how_declared == ir_var_declared_implicitly)
4743         continue;
4744
4745      var->data.always_active_io = true;
4746   }
4747}
4748
4749/**
4750 * When separate shader programs are enabled, only input/outputs between
4751 * the stages of a multi-stage separate program can be safely removed
4752 * from the shader interface. Other inputs/outputs must remain active.
4753 */
4754static void
4755disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4756{
4757   unsigned first, last;
4758   assert(prog->SeparateShader);
4759
4760   first = MESA_SHADER_STAGES;
4761   last = 0;
4762
4763   /* Determine first and last stage. Excluding the compute stage */
4764   for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4765      if (!prog->_LinkedShaders[i])
4766         continue;
4767      if (first == MESA_SHADER_STAGES)
4768         first = i;
4769      last = i;
4770   }
4771
4772   if (first == MESA_SHADER_STAGES)
4773      return;
4774
4775   for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4776      gl_linked_shader *sh = prog->_LinkedShaders[stage];
4777      if (!sh)
4778         continue;
4779
4780      /* Prevent the removal of inputs to the first and outputs from the last
4781       * stage, unless they are the initial pipeline inputs or final pipeline
4782       * outputs, respectively.
4783       *
4784       * The removal of IO between shaders in the same program is always
4785       * allowed.
4786       */
4787      if (stage == first && stage != MESA_SHADER_VERTEX)
4788         set_always_active_io(sh->ir, ir_var_shader_in);
4789      if (stage == last && stage != MESA_SHADER_FRAGMENT)
4790         set_always_active_io(sh->ir, ir_var_shader_out);
4791   }
4792}
4793
4794static void
4795link_and_validate_uniforms(struct gl_context *ctx,
4796                           struct gl_shader_program *prog)
4797{
4798   update_array_sizes(prog);
4799   link_assign_uniform_locations(prog, ctx);
4800
4801   link_assign_atomic_counter_resources(ctx, prog);
4802   link_calculate_subroutine_compat(prog);
4803   check_resources(ctx, prog);
4804   check_subroutine_resources(prog);
4805   check_image_resources(ctx, prog);
4806   link_check_atomic_counter_resources(ctx, prog);
4807}
4808
4809static bool
4810link_varyings_and_uniforms(unsigned first, unsigned last,
4811                           struct gl_context *ctx,
4812                           struct gl_shader_program *prog, void *mem_ctx)
4813{
4814   /* Mark all generic shader inputs and outputs as unpaired. */
4815   for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4816      if (prog->_LinkedShaders[i] != NULL) {
4817         link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4818      }
4819   }
4820
4821   unsigned prev = first;
4822   for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4823      if (prog->_LinkedShaders[i] == NULL)
4824         continue;
4825
4826      match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4827                                       prog->_LinkedShaders[i]);
4828      prev = i;
4829   }
4830
4831   if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4832                                            MESA_SHADER_VERTEX, true)) {
4833      return false;
4834   }
4835
4836   if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4837                                            MESA_SHADER_FRAGMENT, true)) {
4838      return false;
4839   }
4840
4841   prog->last_vert_prog = NULL;
4842   for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4843      if (prog->_LinkedShaders[i] == NULL)
4844         continue;
4845
4846      prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4847      break;
4848   }
4849
4850   if (!link_varyings(prog, first, last, ctx, mem_ctx))
4851      return false;
4852
4853   link_and_validate_uniforms(ctx, prog);
4854
4855   if (!prog->data->LinkStatus)
4856      return false;
4857
4858   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4859      if (prog->_LinkedShaders[i] == NULL)
4860         continue;
4861
4862      const struct gl_shader_compiler_options *options =
4863         &ctx->Const.ShaderCompilerOptions[i];
4864
4865      if (options->LowerBufferInterfaceBlocks)
4866         lower_ubo_reference(prog->_LinkedShaders[i],
4867                             options->ClampBlockIndicesToArrayBounds,
4868                             ctx->Const.UseSTD430AsDefaultPacking);
4869
4870      if (i == MESA_SHADER_COMPUTE)
4871         lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
4872
4873      lower_vector_derefs(prog->_LinkedShaders[i]);
4874      do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4875   }
4876
4877   return true;
4878}
4879
4880static void
4881linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4882                         unsigned stage)
4883{
4884      if (ctx->Const.GLSLOptimizeConservatively) {
4885         /* Run it just once. */
4886         do_common_optimization(ir, true, false,
4887                                &ctx->Const.ShaderCompilerOptions[stage],
4888                                ctx->Const.NativeIntegers);
4889      } else {
4890         /* Repeat it until it stops making changes. */
4891         while (do_common_optimization(ir, true, false,
4892                                       &ctx->Const.ShaderCompilerOptions[stage],
4893                                       ctx->Const.NativeIntegers))
4894            ;
4895      }
4896}
4897
4898void
4899link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4900{
4901   prog->data->LinkStatus = LINKING_SUCCESS; /* All error paths will set this to false */
4902   prog->data->Validated = false;
4903
4904   /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4905    *
4906    *     "Linking can fail for a variety of reasons as specified in the
4907    *     OpenGL Shading Language Specification, as well as any of the
4908    *     following reasons:
4909    *
4910    *     - No shader objects are attached to program."
4911    *
4912    * The Compatibility Profile specification does not list the error.  In
4913    * Compatibility Profile missing shader stages are replaced by
4914    * fixed-function.  This applies to the case where all stages are
4915    * missing.
4916    */
4917   if (prog->NumShaders == 0) {
4918      if (ctx->API != API_OPENGL_COMPAT)
4919         linker_error(prog, "no shaders attached to the program\n");
4920      return;
4921   }
4922
4923#ifdef ENABLE_SHADER_CACHE
4924   if (shader_cache_read_program_metadata(ctx, prog))
4925      return;
4926#endif
4927
4928   void *mem_ctx = ralloc_context(NULL); // temporary linker context
4929
4930   prog->ARB_fragment_coord_conventions_enable = false;
4931
4932   /* Separate the shaders into groups based on their type.
4933    */
4934   struct gl_shader **shader_list[MESA_SHADER_STAGES];
4935   unsigned num_shaders[MESA_SHADER_STAGES];
4936
4937   for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4938      shader_list[i] = (struct gl_shader **)
4939         calloc(prog->NumShaders, sizeof(struct gl_shader *));
4940      num_shaders[i] = 0;
4941   }
4942
4943   unsigned min_version = UINT_MAX;
4944   unsigned max_version = 0;
4945   for (unsigned i = 0; i < prog->NumShaders; i++) {
4946      min_version = MIN2(min_version, prog->Shaders[i]->Version);
4947      max_version = MAX2(max_version, prog->Shaders[i]->Version);
4948
4949      if (!ctx->Const.AllowGLSLRelaxedES &&
4950          prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4951         linker_error(prog, "all shaders must use same shading "
4952                      "language version\n");
4953         goto done;
4954      }
4955
4956      if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4957         prog->ARB_fragment_coord_conventions_enable = true;
4958      }
4959
4960      gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4961      shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4962      num_shaders[shader_type]++;
4963   }
4964
4965   /* In desktop GLSL, different shader versions may be linked together.  In
4966    * GLSL ES, all shader versions must be the same.
4967    */
4968   if (!ctx->Const.AllowGLSLRelaxedES && prog->Shaders[0]->IsES &&
4969       min_version != max_version) {
4970      linker_error(prog, "all shaders must use same shading "
4971                   "language version\n");
4972      goto done;
4973   }
4974
4975   prog->data->Version = max_version;
4976   prog->IsES = prog->Shaders[0]->IsES;
4977
4978   /* Some shaders have to be linked with some other shaders present.
4979    */
4980   if (!prog->SeparateShader) {
4981      if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4982          num_shaders[MESA_SHADER_VERTEX] == 0) {
4983         linker_error(prog, "Geometry shader must be linked with "
4984                      "vertex shader\n");
4985         goto done;
4986      }
4987      if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4988          num_shaders[MESA_SHADER_VERTEX] == 0) {
4989         linker_error(prog, "Tessellation evaluation shader must be linked "
4990                      "with vertex shader\n");
4991         goto done;
4992      }
4993      if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4994          num_shaders[MESA_SHADER_VERTEX] == 0) {
4995         linker_error(prog, "Tessellation control shader must be linked with "
4996                      "vertex shader\n");
4997         goto done;
4998      }
4999
5000      /* Section 7.3 of the OpenGL ES 3.2 specification says:
5001       *
5002       *    "Linking can fail for [...] any of the following reasons:
5003       *
5004       *     * program contains an object to form a tessellation control
5005       *       shader [...] and [...] the program is not separable and
5006       *       contains no object to form a tessellation evaluation shader"
5007       *
5008       * The OpenGL spec is contradictory. It allows linking without a tess
5009       * eval shader, but that can only be used with transform feedback and
5010       * rasterization disabled. However, transform feedback isn't allowed
5011       * with GL_PATCHES, so it can't be used.
5012       *
5013       * More investigation showed that the idea of transform feedback after
5014       * a tess control shader was dropped, because some hw vendors couldn't
5015       * support tessellation without a tess eval shader, but the linker
5016       * section wasn't updated to reflect that.
5017       *
5018       * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
5019       * spec bug.
5020       *
5021       * Do what's reasonable and always require a tess eval shader if a tess
5022       * control shader is present.
5023       */
5024      if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
5025          num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
5026         linker_error(prog, "Tessellation control shader must be linked with "
5027                      "tessellation evaluation shader\n");
5028         goto done;
5029      }
5030
5031      if (prog->IsES) {
5032         if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
5033             num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
5034            linker_error(prog, "GLSL ES requires non-separable programs "
5035                         "containing a tessellation evaluation shader to also "
5036                         "be linked with a tessellation control shader\n");
5037            goto done;
5038         }
5039      }
5040   }
5041
5042   /* Compute shaders have additional restrictions. */
5043   if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
5044       num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
5045      linker_error(prog, "Compute shaders may not be linked with any other "
5046                   "type of shader\n");
5047   }
5048
5049   /* Link all shaders for a particular stage and validate the result.
5050    */
5051   for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5052      if (num_shaders[stage] > 0) {
5053         gl_linked_shader *const sh =
5054            link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
5055                                    num_shaders[stage], false);
5056
5057         if (!prog->data->LinkStatus) {
5058            if (sh)
5059               _mesa_delete_linked_shader(ctx, sh);
5060            goto done;
5061         }
5062
5063         switch (stage) {
5064         case MESA_SHADER_VERTEX:
5065            validate_vertex_shader_executable(prog, sh, ctx);
5066            break;
5067         case MESA_SHADER_TESS_CTRL:
5068            /* nothing to be done */
5069            break;
5070         case MESA_SHADER_TESS_EVAL:
5071            validate_tess_eval_shader_executable(prog, sh, ctx);
5072            break;
5073         case MESA_SHADER_GEOMETRY:
5074            validate_geometry_shader_executable(prog, sh, ctx);
5075            break;
5076         case MESA_SHADER_FRAGMENT:
5077            validate_fragment_shader_executable(prog, sh);
5078            break;
5079         }
5080         if (!prog->data->LinkStatus) {
5081            if (sh)
5082               _mesa_delete_linked_shader(ctx, sh);
5083            goto done;
5084         }
5085
5086         prog->_LinkedShaders[stage] = sh;
5087         prog->data->linked_stages |= 1 << stage;
5088      }
5089   }
5090
5091   /* Here begins the inter-stage linking phase.  Some initial validation is
5092    * performed, then locations are assigned for uniforms, attributes, and
5093    * varyings.
5094    */
5095   cross_validate_uniforms(ctx, prog);
5096   if (!prog->data->LinkStatus)
5097      goto done;
5098
5099   unsigned first, last, prev;
5100
5101   first = MESA_SHADER_STAGES;
5102   last = 0;
5103
5104   /* Determine first and last stage. */
5105   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5106      if (!prog->_LinkedShaders[i])
5107         continue;
5108      if (first == MESA_SHADER_STAGES)
5109         first = i;
5110      last = i;
5111   }
5112
5113   check_explicit_uniform_locations(ctx, prog);
5114   link_assign_subroutine_types(prog);
5115   verify_subroutine_associated_funcs(prog);
5116
5117   if (!prog->data->LinkStatus)
5118      goto done;
5119
5120   resize_tes_inputs(ctx, prog);
5121
5122   /* Validate the inputs of each stage with the output of the preceding
5123    * stage.
5124    */
5125   prev = first;
5126   for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
5127      if (prog->_LinkedShaders[i] == NULL)
5128         continue;
5129
5130      validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
5131                                       prog->_LinkedShaders[i]);
5132      if (!prog->data->LinkStatus)
5133         goto done;
5134
5135      cross_validate_outputs_to_inputs(ctx, prog,
5136                                       prog->_LinkedShaders[prev],
5137                                       prog->_LinkedShaders[i]);
5138      if (!prog->data->LinkStatus)
5139         goto done;
5140
5141      prev = i;
5142   }
5143
5144   /* The cross validation of outputs/inputs above validates interstage
5145    * explicit locations. We need to do this also for the inputs in the first
5146    * stage and outputs of the last stage included in the program, since there
5147    * is no cross validation for these.
5148    */
5149   validate_first_and_last_interface_explicit_locations(ctx, prog,
5150                                                        (gl_shader_stage) first,
5151                                                        (gl_shader_stage) last);
5152
5153   /* Cross-validate uniform blocks between shader stages */
5154   validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
5155   if (!prog->data->LinkStatus)
5156      goto done;
5157
5158   for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
5159      if (prog->_LinkedShaders[i] != NULL)
5160         lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
5161   }
5162
5163   if (prog->IsES && prog->data->Version == 100)
5164      if (!validate_invariant_builtins(prog,
5165            prog->_LinkedShaders[MESA_SHADER_VERTEX],
5166            prog->_LinkedShaders[MESA_SHADER_FRAGMENT]))
5167         goto done;
5168
5169   /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
5170    * it before optimization because we want most of the checks to get
5171    * dropped thanks to constant propagation.
5172    *
5173    * This rule also applies to GLSL ES 3.00.
5174    */
5175   if (max_version >= (prog->IsES ? 300 : 130)) {
5176      struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
5177      if (sh) {
5178         lower_discard_flow(sh->ir);
5179      }
5180   }
5181
5182   if (prog->SeparateShader)
5183      disable_varying_optimizations_for_sso(prog);
5184
5185   /* Process UBOs */
5186   if (!interstage_cross_validate_uniform_blocks(prog, false))
5187      goto done;
5188
5189   /* Process SSBOs */
5190   if (!interstage_cross_validate_uniform_blocks(prog, true))
5191      goto done;
5192
5193   /* Do common optimization before assigning storage for attributes,
5194    * uniforms, and varyings.  Later optimization could possibly make
5195    * some of that unused.
5196    */
5197   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5198      if (prog->_LinkedShaders[i] == NULL)
5199         continue;
5200
5201      detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
5202      if (!prog->data->LinkStatus)
5203         goto done;
5204
5205      if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
5206         lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
5207      }
5208
5209      if (ctx->Const.LowerTessLevel) {
5210         lower_tess_level(prog->_LinkedShaders[i]);
5211      }
5212
5213      /* Section 13.46 (Vertex Attribute Aliasing) of the OpenGL ES 3.2
5214       * specification says:
5215       *
5216       *    "In general, the behavior of GLSL ES should not depend on compiler
5217       *    optimizations which might be implementation-dependent. Name matching
5218       *    rules in most languages, including C++ from which GLSL ES is derived,
5219       *    are based on declarations rather than use.
5220       *
5221       *    RESOLUTION: The existence of aliasing is determined by declarations
5222       *    present after preprocessing."
5223       *
5224       * Because of this rule, we do a 'dry-run' of attribute assignment for
5225       * vertex shader inputs here.
5226       */
5227      if (prog->IsES && i == MESA_SHADER_VERTEX) {
5228         if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
5229                                                  MESA_SHADER_VERTEX, false)) {
5230            goto done;
5231         }
5232      }
5233
5234      /* Call opts before lowering const arrays to uniforms so we can const
5235       * propagate any elements accessed directly.
5236       */
5237      linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5238
5239      /* Call opts after lowering const arrays to copy propagate things. */
5240      if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
5241         linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5242
5243      propagate_invariance(prog->_LinkedShaders[i]->ir);
5244   }
5245
5246   /* Validation for special cases where we allow sampler array indexing
5247    * with loop induction variable. This check emits a warning or error
5248    * depending if backend can handle dynamic indexing.
5249    */
5250   if ((!prog->IsES && prog->data->Version < 130) ||
5251       (prog->IsES && prog->data->Version < 300)) {
5252      if (!validate_sampler_array_indexing(ctx, prog))
5253         goto done;
5254   }
5255
5256   /* Check and validate stream emissions in geometry shaders */
5257   validate_geometry_shader_emissions(ctx, prog);
5258
5259   store_fragdepth_layout(prog);
5260
5261   if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
5262      goto done;
5263
5264   /* Linking varyings can cause some extra, useless swizzles to be generated
5265    * due to packing and unpacking.
5266    */
5267   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5268      if (prog->_LinkedShaders[i] == NULL)
5269         continue;
5270
5271      optimize_swizzles(prog->_LinkedShaders[i]->ir);
5272   }
5273
5274   /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5275    * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5276    * anything about shader linking when one of the shaders (vertex or
5277    * fragment shader) is absent. So, the extension shouldn't change the
5278    * behavior specified in GLSL specification.
5279    *
5280    * From OpenGL ES 3.1 specification (7.3 Program Objects):
5281    *     "Linking can fail for a variety of reasons as specified in the
5282    *     OpenGL ES Shading Language Specification, as well as any of the
5283    *     following reasons:
5284    *
5285    *     ...
5286    *
5287    *     * program contains objects to form either a vertex shader or
5288    *       fragment shader, and program is not separable, and does not
5289    *       contain objects to form both a vertex shader and fragment
5290    *       shader."
5291    *
5292    * However, the only scenario in 3.1+ where we don't require them both is
5293    * when we have a compute shader. For example:
5294    *
5295    * - No shaders is a link error.
5296    * - Geom or Tess without a Vertex shader is a link error which means we
5297    *   always require a Vertex shader and hence a Fragment shader.
5298    * - Finally a Compute shader linked with any other stage is a link error.
5299    */
5300   if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5301       num_shaders[MESA_SHADER_COMPUTE] == 0) {
5302      if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5303         linker_error(prog, "program lacks a vertex shader\n");
5304      } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5305         linker_error(prog, "program lacks a fragment shader\n");
5306      }
5307   }
5308
5309done:
5310   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5311      free(shader_list[i]);
5312      if (prog->_LinkedShaders[i] == NULL)
5313         continue;
5314
5315      /* Do a final validation step to make sure that the IR wasn't
5316       * invalidated by any modifications performed after intrastage linking.
5317       */
5318      validate_ir_tree(prog->_LinkedShaders[i]->ir);
5319
5320      /* Retain any live IR, but trash the rest. */
5321      reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5322
5323      /* The symbol table in the linked shaders may contain references to
5324       * variables that were removed (e.g., unused uniforms).  Since it may
5325       * contain junk, there is no possible valid use.  Delete it and set the
5326       * pointer to NULL.
5327       */
5328      delete prog->_LinkedShaders[i]->symbols;
5329      prog->_LinkedShaders[i]->symbols = NULL;
5330   }
5331
5332   ralloc_free(mem_ctx);
5333}
5334