linker.cpp revision 993e1d59
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file linker.cpp
26 * GLSL linker implementation
27 *
28 * Given a set of shaders that are to be linked to generate a final program,
29 * there are three distinct stages.
30 *
31 * In the first stage shaders are partitioned into groups based on the shader
32 * type.  All shaders of a particular type (e.g., vertex shaders) are linked
33 * together.
34 *
35 *   - Undefined references in each shader are resolve to definitions in
36 *     another shader.
37 *   - Types and qualifiers of uniforms, outputs, and global variables defined
38 *     in multiple shaders with the same name are verified to be the same.
39 *   - Initializers for uniforms and global variables defined
40 *     in multiple shaders with the same name are verified to be the same.
41 *
42 * The result, in the terminology of the GLSL spec, is a set of shader
43 * executables for each processing unit.
44 *
45 * After the first stage is complete, a series of semantic checks are performed
46 * on each of the shader executables.
47 *
48 *   - Each shader executable must define a \c main function.
49 *   - Each vertex shader executable must write to \c gl_Position.
50 *   - Each fragment shader executable must write to either \c gl_FragData or
51 *     \c gl_FragColor.
52 *
53 * In the final stage individual shader executables are linked to create a
54 * complete exectuable.
55 *
56 *   - Types of uniforms defined in multiple shader stages with the same name
57 *     are verified to be the same.
58 *   - Initializers for uniforms defined in multiple shader stages with the
59 *     same name are verified to be the same.
60 *   - Types and qualifiers of outputs defined in one stage are verified to
61 *     be the same as the types and qualifiers of inputs defined with the same
62 *     name in a later stage.
63 *
64 * \author Ian Romanick <ian.d.romanick@intel.com>
65 */
66
67#include <ctype.h>
68#include "util/strndup.h"
69#include "glsl_symbol_table.h"
70#include "glsl_parser_extras.h"
71#include "ir.h"
72#include "program.h"
73#include "program/prog_instruction.h"
74#include "program/program.h"
75#include "util/mesa-sha1.h"
76#include "util/set.h"
77#include "string_to_uint_map.h"
78#include "linker.h"
79#include "linker_util.h"
80#include "link_varyings.h"
81#include "ir_optimization.h"
82#include "ir_rvalue_visitor.h"
83#include "ir_uniform.h"
84#include "builtin_functions.h"
85#include "shader_cache.h"
86#include "util/u_string.h"
87#include "util/u_math.h"
88
89#include "main/imports.h"
90#include "main/shaderobj.h"
91#include "main/enums.h"
92#include "main/mtypes.h"
93
94
95namespace {
96
97struct find_variable {
98   const char *name;
99   bool found;
100
101   find_variable(const char *name) : name(name), found(false) {}
102};
103
104/**
105 * Visitor that determines whether or not a variable is ever written.
106 *
107 * Use \ref find_assignments for convenience.
108 */
109class find_assignment_visitor : public ir_hierarchical_visitor {
110public:
111   find_assignment_visitor(unsigned num_vars,
112                           find_variable * const *vars)
113      : num_variables(num_vars), num_found(0), variables(vars)
114   {
115   }
116
117   virtual ir_visitor_status visit_enter(ir_assignment *ir)
118   {
119      ir_variable *const var = ir->lhs->variable_referenced();
120
121      return check_variable_name(var->name);
122   }
123
124   virtual ir_visitor_status visit_enter(ir_call *ir)
125   {
126      foreach_two_lists(formal_node, &ir->callee->parameters,
127                        actual_node, &ir->actual_parameters) {
128         ir_rvalue *param_rval = (ir_rvalue *) actual_node;
129         ir_variable *sig_param = (ir_variable *) formal_node;
130
131         if (sig_param->data.mode == ir_var_function_out ||
132             sig_param->data.mode == ir_var_function_inout) {
133            ir_variable *var = param_rval->variable_referenced();
134            if (var && check_variable_name(var->name) == visit_stop)
135               return visit_stop;
136         }
137      }
138
139      if (ir->return_deref != NULL) {
140         ir_variable *const var = ir->return_deref->variable_referenced();
141
142         if (check_variable_name(var->name) == visit_stop)
143            return visit_stop;
144      }
145
146      return visit_continue_with_parent;
147   }
148
149private:
150   ir_visitor_status check_variable_name(const char *name)
151   {
152      for (unsigned i = 0; i < num_variables; ++i) {
153         if (strcmp(variables[i]->name, name) == 0) {
154            if (!variables[i]->found) {
155               variables[i]->found = true;
156
157               assert(num_found < num_variables);
158               if (++num_found == num_variables)
159                  return visit_stop;
160            }
161            break;
162         }
163      }
164
165      return visit_continue_with_parent;
166   }
167
168private:
169   unsigned num_variables;           /**< Number of variables to find */
170   unsigned num_found;               /**< Number of variables already found */
171   find_variable * const *variables; /**< Variables to find */
172};
173
174/**
175 * Determine whether or not any of NULL-terminated list of variables is ever
176 * written to.
177 */
178static void
179find_assignments(exec_list *ir, find_variable * const *vars)
180{
181   unsigned num_variables = 0;
182
183   for (find_variable * const *v = vars; *v; ++v)
184      num_variables++;
185
186   find_assignment_visitor visitor(num_variables, vars);
187   visitor.run(ir);
188}
189
190/**
191 * Determine whether or not the given variable is ever written to.
192 */
193static void
194find_assignments(exec_list *ir, find_variable *var)
195{
196   find_assignment_visitor visitor(1, &var);
197   visitor.run(ir);
198}
199
200/**
201 * Visitor that determines whether or not a variable is ever read.
202 */
203class find_deref_visitor : public ir_hierarchical_visitor {
204public:
205   find_deref_visitor(const char *name)
206      : name(name), found(false)
207   {
208      /* empty */
209   }
210
211   virtual ir_visitor_status visit(ir_dereference_variable *ir)
212   {
213      if (strcmp(this->name, ir->var->name) == 0) {
214         this->found = true;
215         return visit_stop;
216      }
217
218      return visit_continue;
219   }
220
221   bool variable_found() const
222   {
223      return this->found;
224   }
225
226private:
227   const char *name;       /**< Find writes to a variable with this name. */
228   bool found;             /**< Was a write to the variable found? */
229};
230
231
232/**
233 * A visitor helper that provides methods for updating the types of
234 * ir_dereferences.  Classes that update variable types (say, updating
235 * array sizes) will want to use this so that dereference types stay in sync.
236 */
237class deref_type_updater : public ir_hierarchical_visitor {
238public:
239   virtual ir_visitor_status visit(ir_dereference_variable *ir)
240   {
241      ir->type = ir->var->type;
242      return visit_continue;
243   }
244
245   virtual ir_visitor_status visit_leave(ir_dereference_array *ir)
246   {
247      const glsl_type *const vt = ir->array->type;
248      if (vt->is_array())
249         ir->type = vt->fields.array;
250      return visit_continue;
251   }
252
253   virtual ir_visitor_status visit_leave(ir_dereference_record *ir)
254   {
255      ir->type = ir->record->type->fields.structure[ir->field_idx].type;
256      return visit_continue;
257   }
258};
259
260
261class array_resize_visitor : public deref_type_updater {
262public:
263   unsigned num_vertices;
264   gl_shader_program *prog;
265   gl_shader_stage stage;
266
267   array_resize_visitor(unsigned num_vertices,
268                        gl_shader_program *prog,
269                        gl_shader_stage stage)
270   {
271      this->num_vertices = num_vertices;
272      this->prog = prog;
273      this->stage = stage;
274   }
275
276   virtual ~array_resize_visitor()
277   {
278      /* empty */
279   }
280
281   virtual ir_visitor_status visit(ir_variable *var)
282   {
283      if (!var->type->is_array() || var->data.mode != ir_var_shader_in ||
284          var->data.patch)
285         return visit_continue;
286
287      unsigned size = var->type->length;
288
289      if (stage == MESA_SHADER_GEOMETRY) {
290         /* Generate a link error if the shader has declared this array with
291          * an incorrect size.
292          */
293         if (!var->data.implicit_sized_array &&
294             size && size != this->num_vertices) {
295            linker_error(this->prog, "size of array %s declared as %u, "
296                         "but number of input vertices is %u\n",
297                         var->name, size, this->num_vertices);
298            return visit_continue;
299         }
300
301         /* Generate a link error if the shader attempts to access an input
302          * array using an index too large for its actual size assigned at
303          * link time.
304          */
305         if (var->data.max_array_access >= (int)this->num_vertices) {
306            linker_error(this->prog, "%s shader accesses element %i of "
307                         "%s, but only %i input vertices\n",
308                         _mesa_shader_stage_to_string(this->stage),
309                         var->data.max_array_access, var->name, this->num_vertices);
310            return visit_continue;
311         }
312      }
313
314      var->type = glsl_type::get_array_instance(var->type->fields.array,
315                                                this->num_vertices);
316      var->data.max_array_access = this->num_vertices - 1;
317
318      return visit_continue;
319   }
320};
321
322/**
323 * Visitor that determines the highest stream id to which a (geometry) shader
324 * emits vertices. It also checks whether End{Stream}Primitive is ever called.
325 */
326class find_emit_vertex_visitor : public ir_hierarchical_visitor {
327public:
328   find_emit_vertex_visitor(int max_allowed)
329      : max_stream_allowed(max_allowed),
330        invalid_stream_id(0),
331        invalid_stream_id_from_emit_vertex(false),
332        end_primitive_found(false),
333        uses_non_zero_stream(false)
334   {
335      /* empty */
336   }
337
338   virtual ir_visitor_status visit_leave(ir_emit_vertex *ir)
339   {
340      int stream_id = ir->stream_id();
341
342      if (stream_id < 0) {
343         invalid_stream_id = stream_id;
344         invalid_stream_id_from_emit_vertex = true;
345         return visit_stop;
346      }
347
348      if (stream_id > max_stream_allowed) {
349         invalid_stream_id = stream_id;
350         invalid_stream_id_from_emit_vertex = true;
351         return visit_stop;
352      }
353
354      if (stream_id != 0)
355         uses_non_zero_stream = true;
356
357      return visit_continue;
358   }
359
360   virtual ir_visitor_status visit_leave(ir_end_primitive *ir)
361   {
362      end_primitive_found = true;
363
364      int stream_id = ir->stream_id();
365
366      if (stream_id < 0) {
367         invalid_stream_id = stream_id;
368         invalid_stream_id_from_emit_vertex = false;
369         return visit_stop;
370      }
371
372      if (stream_id > max_stream_allowed) {
373         invalid_stream_id = stream_id;
374         invalid_stream_id_from_emit_vertex = false;
375         return visit_stop;
376      }
377
378      if (stream_id != 0)
379         uses_non_zero_stream = true;
380
381      return visit_continue;
382   }
383
384   bool error()
385   {
386      return invalid_stream_id != 0;
387   }
388
389   const char *error_func()
390   {
391      return invalid_stream_id_from_emit_vertex ?
392         "EmitStreamVertex" : "EndStreamPrimitive";
393   }
394
395   int error_stream()
396   {
397      return invalid_stream_id;
398   }
399
400   bool uses_streams()
401   {
402      return uses_non_zero_stream;
403   }
404
405   bool uses_end_primitive()
406   {
407      return end_primitive_found;
408   }
409
410private:
411   int max_stream_allowed;
412   int invalid_stream_id;
413   bool invalid_stream_id_from_emit_vertex;
414   bool end_primitive_found;
415   bool uses_non_zero_stream;
416};
417
418/* Class that finds array derefs and check if indexes are dynamic. */
419class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor
420{
421public:
422   dynamic_sampler_array_indexing_visitor() :
423      dynamic_sampler_array_indexing(false)
424   {
425   }
426
427   ir_visitor_status visit_enter(ir_dereference_array *ir)
428   {
429      if (!ir->variable_referenced())
430         return visit_continue;
431
432      if (!ir->variable_referenced()->type->contains_sampler())
433         return visit_continue;
434
435      if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) {
436         dynamic_sampler_array_indexing = true;
437         return visit_stop;
438      }
439      return visit_continue;
440   }
441
442   bool uses_dynamic_sampler_array_indexing()
443   {
444      return dynamic_sampler_array_indexing;
445   }
446
447private:
448   bool dynamic_sampler_array_indexing;
449};
450
451} /* anonymous namespace */
452
453void
454linker_error(gl_shader_program *prog, const char *fmt, ...)
455{
456   va_list ap;
457
458   ralloc_strcat(&prog->data->InfoLog, "error: ");
459   va_start(ap, fmt);
460   ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
461   va_end(ap);
462
463   prog->data->LinkStatus = LINKING_FAILURE;
464}
465
466
467void
468linker_warning(gl_shader_program *prog, const char *fmt, ...)
469{
470   va_list ap;
471
472   ralloc_strcat(&prog->data->InfoLog, "warning: ");
473   va_start(ap, fmt);
474   ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap);
475   va_end(ap);
476
477}
478
479
480/**
481 * Given a string identifying a program resource, break it into a base name
482 * and an optional array index in square brackets.
483 *
484 * If an array index is present, \c out_base_name_end is set to point to the
485 * "[" that precedes the array index, and the array index itself is returned
486 * as a long.
487 *
488 * If no array index is present (or if the array index is negative or
489 * mal-formed), \c out_base_name_end, is set to point to the null terminator
490 * at the end of the input string, and -1 is returned.
491 *
492 * Only the final array index is parsed; if the string contains other array
493 * indices (or structure field accesses), they are left in the base name.
494 *
495 * No attempt is made to check that the base name is properly formed;
496 * typically the caller will look up the base name in a hash table, so
497 * ill-formed base names simply turn into hash table lookup failures.
498 */
499long
500parse_program_resource_name(const GLchar *name,
501                            const GLchar **out_base_name_end)
502{
503   /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says:
504    *
505    *     "When an integer array element or block instance number is part of
506    *     the name string, it will be specified in decimal form without a "+"
507    *     or "-" sign or any extra leading zeroes. Additionally, the name
508    *     string will not include white space anywhere in the string."
509    */
510
511   const size_t len = strlen(name);
512   *out_base_name_end = name + len;
513
514   if (len == 0 || name[len-1] != ']')
515      return -1;
516
517   /* Walk backwards over the string looking for a non-digit character.  This
518    * had better be the opening bracket for an array index.
519    *
520    * Initially, i specifies the location of the ']'.  Since the string may
521    * contain only the ']' charcater, walk backwards very carefully.
522    */
523   unsigned i;
524   for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i)
525      /* empty */ ;
526
527   if ((i == 0) || name[i-1] != '[')
528      return -1;
529
530   long array_index = strtol(&name[i], NULL, 10);
531   if (array_index < 0)
532      return -1;
533
534   /* Check for leading zero */
535   if (name[i] == '0' && name[i+1] != ']')
536      return -1;
537
538   *out_base_name_end = name + (i - 1);
539   return array_index;
540}
541
542
543void
544link_invalidate_variable_locations(exec_list *ir)
545{
546   foreach_in_list(ir_instruction, node, ir) {
547      ir_variable *const var = node->as_variable();
548
549      if (var == NULL)
550         continue;
551
552      /* Only assign locations for variables that lack an explicit location.
553       * Explicit locations are set for all built-in variables, generic vertex
554       * shader inputs (via layout(location=...)), and generic fragment shader
555       * outputs (also via layout(location=...)).
556       */
557      if (!var->data.explicit_location) {
558         var->data.location = -1;
559         var->data.location_frac = 0;
560      }
561
562      /* ir_variable::is_unmatched_generic_inout is used by the linker while
563       * connecting outputs from one stage to inputs of the next stage.
564       */
565      if (var->data.explicit_location &&
566          var->data.location < VARYING_SLOT_VAR0) {
567         var->data.is_unmatched_generic_inout = 0;
568      } else {
569         var->data.is_unmatched_generic_inout = 1;
570      }
571   }
572}
573
574
575/**
576 * Set clip_distance_array_size based and cull_distance_array_size on the given
577 * shader.
578 *
579 * Also check for errors based on incorrect usage of gl_ClipVertex and
580 * gl_ClipDistance and gl_CullDistance.
581 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance
582 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances.
583 *
584 * Return false if an error was reported.
585 */
586static void
587analyze_clip_cull_usage(struct gl_shader_program *prog,
588                        struct gl_linked_shader *shader,
589                        struct gl_context *ctx,
590                        GLuint *clip_distance_array_size,
591                        GLuint *cull_distance_array_size)
592{
593   *clip_distance_array_size = 0;
594   *cull_distance_array_size = 0;
595
596   if (prog->data->Version >= (prog->IsES ? 300 : 130)) {
597      /* From section 7.1 (Vertex Shader Special Variables) of the
598       * GLSL 1.30 spec:
599       *
600       *   "It is an error for a shader to statically write both
601       *   gl_ClipVertex and gl_ClipDistance."
602       *
603       * This does not apply to GLSL ES shaders, since GLSL ES defines neither
604       * gl_ClipVertex nor gl_ClipDistance. However with
605       * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0.
606       */
607      find_variable gl_ClipDistance("gl_ClipDistance");
608      find_variable gl_CullDistance("gl_CullDistance");
609      find_variable gl_ClipVertex("gl_ClipVertex");
610      find_variable * const variables[] = {
611         &gl_ClipDistance,
612         &gl_CullDistance,
613         !prog->IsES ? &gl_ClipVertex : NULL,
614         NULL
615      };
616      find_assignments(shader->ir, variables);
617
618      /* From the ARB_cull_distance spec:
619       *
620       * It is a compile-time or link-time error for the set of shaders forming
621       * a program to statically read or write both gl_ClipVertex and either
622       * gl_ClipDistance or gl_CullDistance.
623       *
624       * This does not apply to GLSL ES shaders, since GLSL ES doesn't define
625       * gl_ClipVertex.
626       */
627      if (!prog->IsES) {
628         if (gl_ClipVertex.found && gl_ClipDistance.found) {
629            linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
630                         "and `gl_ClipDistance'\n",
631                         _mesa_shader_stage_to_string(shader->Stage));
632            return;
633         }
634         if (gl_ClipVertex.found && gl_CullDistance.found) {
635            linker_error(prog, "%s shader writes to both `gl_ClipVertex' "
636                         "and `gl_CullDistance'\n",
637                         _mesa_shader_stage_to_string(shader->Stage));
638            return;
639         }
640      }
641
642      if (gl_ClipDistance.found) {
643         ir_variable *clip_distance_var =
644                shader->symbols->get_variable("gl_ClipDistance");
645         assert(clip_distance_var);
646         *clip_distance_array_size = clip_distance_var->type->length;
647      }
648      if (gl_CullDistance.found) {
649         ir_variable *cull_distance_var =
650                shader->symbols->get_variable("gl_CullDistance");
651         assert(cull_distance_var);
652         *cull_distance_array_size = cull_distance_var->type->length;
653      }
654      /* From the ARB_cull_distance spec:
655       *
656       * It is a compile-time or link-time error for the set of shaders forming
657       * a program to have the sum of the sizes of the gl_ClipDistance and
658       * gl_CullDistance arrays to be larger than
659       * gl_MaxCombinedClipAndCullDistances.
660       */
661      if ((*clip_distance_array_size + *cull_distance_array_size) >
662          ctx->Const.MaxClipPlanes) {
663          linker_error(prog, "%s shader: the combined size of "
664                       "'gl_ClipDistance' and 'gl_CullDistance' size cannot "
665                       "be larger than "
666                       "gl_MaxCombinedClipAndCullDistances (%u)",
667                       _mesa_shader_stage_to_string(shader->Stage),
668                       ctx->Const.MaxClipPlanes);
669      }
670   }
671}
672
673
674/**
675 * Verify that a vertex shader executable meets all semantic requirements.
676 *
677 * Also sets info.clip_distance_array_size and
678 * info.cull_distance_array_size as a side effect.
679 *
680 * \param shader  Vertex shader executable to be verified
681 */
682static void
683validate_vertex_shader_executable(struct gl_shader_program *prog,
684                                  struct gl_linked_shader *shader,
685                                  struct gl_context *ctx)
686{
687   if (shader == NULL)
688      return;
689
690   /* From the GLSL 1.10 spec, page 48:
691    *
692    *     "The variable gl_Position is available only in the vertex
693    *      language and is intended for writing the homogeneous vertex
694    *      position. All executions of a well-formed vertex shader
695    *      executable must write a value into this variable. [...] The
696    *      variable gl_Position is available only in the vertex
697    *      language and is intended for writing the homogeneous vertex
698    *      position. All executions of a well-formed vertex shader
699    *      executable must write a value into this variable."
700    *
701    * while in GLSL 1.40 this text is changed to:
702    *
703    *     "The variable gl_Position is available only in the vertex
704    *      language and is intended for writing the homogeneous vertex
705    *      position. It can be written at any time during shader
706    *      execution. It may also be read back by a vertex shader
707    *      after being written. This value will be used by primitive
708    *      assembly, clipping, culling, and other fixed functionality
709    *      operations, if present, that operate on primitives after
710    *      vertex processing has occurred. Its value is undefined if
711    *      the vertex shader executable does not write gl_Position."
712    *
713    * All GLSL ES Versions are similar to GLSL 1.40--failing to write to
714    * gl_Position is not an error.
715    */
716   if (prog->data->Version < (prog->IsES ? 300 : 140)) {
717      find_variable gl_Position("gl_Position");
718      find_assignments(shader->ir, &gl_Position);
719      if (!gl_Position.found) {
720        if (prog->IsES) {
721          linker_warning(prog,
722                         "vertex shader does not write to `gl_Position'. "
723                         "Its value is undefined. \n");
724        } else {
725          linker_error(prog,
726                       "vertex shader does not write to `gl_Position'. \n");
727        }
728         return;
729      }
730   }
731
732   analyze_clip_cull_usage(prog, shader, ctx,
733                           &shader->Program->info.clip_distance_array_size,
734                           &shader->Program->info.cull_distance_array_size);
735}
736
737static void
738validate_tess_eval_shader_executable(struct gl_shader_program *prog,
739                                     struct gl_linked_shader *shader,
740                                     struct gl_context *ctx)
741{
742   if (shader == NULL)
743      return;
744
745   analyze_clip_cull_usage(prog, shader, ctx,
746                           &shader->Program->info.clip_distance_array_size,
747                           &shader->Program->info.cull_distance_array_size);
748}
749
750
751/**
752 * Verify that a fragment shader executable meets all semantic requirements
753 *
754 * \param shader  Fragment shader executable to be verified
755 */
756static void
757validate_fragment_shader_executable(struct gl_shader_program *prog,
758                                    struct gl_linked_shader *shader)
759{
760   if (shader == NULL)
761      return;
762
763   find_variable gl_FragColor("gl_FragColor");
764   find_variable gl_FragData("gl_FragData");
765   find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL };
766   find_assignments(shader->ir, variables);
767
768   if (gl_FragColor.found && gl_FragData.found) {
769      linker_error(prog,  "fragment shader writes to both "
770                   "`gl_FragColor' and `gl_FragData'\n");
771   }
772}
773
774/**
775 * Verify that a geometry shader executable meets all semantic requirements
776 *
777 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand
778 * info.cull_distance_array_size as a side effect.
779 *
780 * \param shader Geometry shader executable to be verified
781 */
782static void
783validate_geometry_shader_executable(struct gl_shader_program *prog,
784                                    struct gl_linked_shader *shader,
785                                    struct gl_context *ctx)
786{
787   if (shader == NULL)
788      return;
789
790   unsigned num_vertices =
791      vertices_per_prim(shader->Program->info.gs.input_primitive);
792   prog->Geom.VerticesIn = num_vertices;
793
794   analyze_clip_cull_usage(prog, shader, ctx,
795                           &shader->Program->info.clip_distance_array_size,
796                           &shader->Program->info.cull_distance_array_size);
797}
798
799/**
800 * Check if geometry shaders emit to non-zero streams and do corresponding
801 * validations.
802 */
803static void
804validate_geometry_shader_emissions(struct gl_context *ctx,
805                                   struct gl_shader_program *prog)
806{
807   struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
808
809   if (sh != NULL) {
810      find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1);
811      emit_vertex.run(sh->ir);
812      if (emit_vertex.error()) {
813         linker_error(prog, "Invalid call %s(%d). Accepted values for the "
814                      "stream parameter are in the range [0, %d].\n",
815                      emit_vertex.error_func(),
816                      emit_vertex.error_stream(),
817                      ctx->Const.MaxVertexStreams - 1);
818      }
819      prog->Geom.UsesStreams = emit_vertex.uses_streams();
820      prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive();
821
822      /* From the ARB_gpu_shader5 spec:
823       *
824       *   "Multiple vertex streams are supported only if the output primitive
825       *    type is declared to be "points".  A program will fail to link if it
826       *    contains a geometry shader calling EmitStreamVertex() or
827       *    EndStreamPrimitive() if its output primitive type is not "points".
828       *
829       * However, in the same spec:
830       *
831       *   "The function EmitVertex() is equivalent to calling EmitStreamVertex()
832       *    with <stream> set to zero."
833       *
834       * And:
835       *
836       *   "The function EndPrimitive() is equivalent to calling
837       *    EndStreamPrimitive() with <stream> set to zero."
838       *
839       * Since we can call EmitVertex() and EndPrimitive() when we output
840       * primitives other than points, calling EmitStreamVertex(0) or
841       * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia
842       * does. Currently we only set prog->Geom.UsesStreams to TRUE when
843       * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero
844       * stream.
845       */
846      if (prog->Geom.UsesStreams &&
847          sh->Program->info.gs.output_primitive != GL_POINTS) {
848         linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) "
849                      "with n>0 requires point output\n");
850      }
851   }
852}
853
854bool
855validate_intrastage_arrays(struct gl_shader_program *prog,
856                           ir_variable *const var,
857                           ir_variable *const existing)
858{
859   /* Consider the types to be "the same" if both types are arrays
860    * of the same type and one of the arrays is implicitly sized.
861    * In addition, set the type of the linked variable to the
862    * explicitly sized array.
863    */
864   if (var->type->is_array() && existing->type->is_array()) {
865      if ((var->type->fields.array == existing->type->fields.array) &&
866          ((var->type->length == 0)|| (existing->type->length == 0))) {
867         if (var->type->length != 0) {
868            if ((int)var->type->length <= existing->data.max_array_access) {
869               linker_error(prog, "%s `%s' declared as type "
870                           "`%s' but outermost dimension has an index"
871                           " of `%i'\n",
872                           mode_string(var),
873                           var->name, var->type->name,
874                           existing->data.max_array_access);
875            }
876            existing->type = var->type;
877            return true;
878         } else if (existing->type->length != 0) {
879            if((int)existing->type->length <= var->data.max_array_access &&
880               !existing->data.from_ssbo_unsized_array) {
881               linker_error(prog, "%s `%s' declared as type "
882                           "`%s' but outermost dimension has an index"
883                           " of `%i'\n",
884                           mode_string(var),
885                           var->name, existing->type->name,
886                           var->data.max_array_access);
887            }
888            return true;
889         }
890      }
891   }
892   return false;
893}
894
895
896/**
897 * Perform validation of global variables used across multiple shaders
898 */
899static void
900cross_validate_globals(struct gl_context *ctx, struct gl_shader_program *prog,
901                       struct exec_list *ir, glsl_symbol_table *variables,
902                       bool uniforms_only)
903{
904   foreach_in_list(ir_instruction, node, ir) {
905      ir_variable *const var = node->as_variable();
906
907      if (var == NULL)
908         continue;
909
910      if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage))
911         continue;
912
913      /* don't cross validate subroutine uniforms */
914      if (var->type->contains_subroutine())
915         continue;
916
917      /* Don't cross validate interface instances. These are only relevant
918       * inside a shader. The cross validation is done at the Interface Block
919       * name level.
920       */
921      if (var->is_interface_instance())
922         continue;
923
924      /* Don't cross validate temporaries that are at global scope.  These
925       * will eventually get pulled into the shaders 'main'.
926       */
927      if (var->data.mode == ir_var_temporary)
928         continue;
929
930      /* If a global with this name has already been seen, verify that the
931       * new instance has the same type.  In addition, if the globals have
932       * initializers, the values of the initializers must be the same.
933       */
934      ir_variable *const existing = variables->get_variable(var->name);
935      if (existing != NULL) {
936         /* Check if types match. */
937         if (var->type != existing->type) {
938            if (!validate_intrastage_arrays(prog, var, existing)) {
939               /* If it is an unsized array in a Shader Storage Block,
940                * two different shaders can access to different elements.
941                * Because of that, they might be converted to different
942                * sized arrays, then check that they are compatible but
943                * ignore the array size.
944                */
945               if (!(var->data.mode == ir_var_shader_storage &&
946                     var->data.from_ssbo_unsized_array &&
947                     existing->data.mode == ir_var_shader_storage &&
948                     existing->data.from_ssbo_unsized_array &&
949                     var->type->gl_type == existing->type->gl_type)) {
950                  linker_error(prog, "%s `%s' declared as type "
951                                 "`%s' and type `%s'\n",
952                                 mode_string(var),
953                                 var->name, var->type->name,
954                                 existing->type->name);
955                  return;
956               }
957            }
958         }
959
960         if (var->data.explicit_location) {
961            if (existing->data.explicit_location
962                && (var->data.location != existing->data.location)) {
963               linker_error(prog, "explicit locations for %s "
964                            "`%s' have differing values\n",
965                            mode_string(var), var->name);
966               return;
967            }
968
969            if (var->data.location_frac != existing->data.location_frac) {
970               linker_error(prog, "explicit components for %s `%s' have "
971                            "differing values\n", mode_string(var), var->name);
972               return;
973            }
974
975            existing->data.location = var->data.location;
976            existing->data.explicit_location = true;
977         } else {
978            /* Check if uniform with implicit location was marked explicit
979             * by earlier shader stage. If so, mark it explicit in this stage
980             * too to make sure later processing does not treat it as
981             * implicit one.
982             */
983            if (existing->data.explicit_location) {
984               var->data.location = existing->data.location;
985               var->data.explicit_location = true;
986            }
987         }
988
989         /* From the GLSL 4.20 specification:
990          * "A link error will result if two compilation units in a program
991          *  specify different integer-constant bindings for the same
992          *  opaque-uniform name.  However, it is not an error to specify a
993          *  binding on some but not all declarations for the same name"
994          */
995         if (var->data.explicit_binding) {
996            if (existing->data.explicit_binding &&
997                var->data.binding != existing->data.binding) {
998               linker_error(prog, "explicit bindings for %s "
999                            "`%s' have differing values\n",
1000                            mode_string(var), var->name);
1001               return;
1002            }
1003
1004            existing->data.binding = var->data.binding;
1005            existing->data.explicit_binding = true;
1006         }
1007
1008         if (var->type->contains_atomic() &&
1009             var->data.offset != existing->data.offset) {
1010            linker_error(prog, "offset specifications for %s "
1011                         "`%s' have differing values\n",
1012                         mode_string(var), var->name);
1013            return;
1014         }
1015
1016         /* Validate layout qualifiers for gl_FragDepth.
1017          *
1018          * From the AMD/ARB_conservative_depth specs:
1019          *
1020          *    "If gl_FragDepth is redeclared in any fragment shader in a
1021          *    program, it must be redeclared in all fragment shaders in
1022          *    that program that have static assignments to
1023          *    gl_FragDepth. All redeclarations of gl_FragDepth in all
1024          *    fragment shaders in a single program must have the same set
1025          *    of qualifiers."
1026          */
1027         if (strcmp(var->name, "gl_FragDepth") == 0) {
1028            bool layout_declared = var->data.depth_layout != ir_depth_layout_none;
1029            bool layout_differs =
1030               var->data.depth_layout != existing->data.depth_layout;
1031
1032            if (layout_declared && layout_differs) {
1033               linker_error(prog,
1034                            "All redeclarations of gl_FragDepth in all "
1035                            "fragment shaders in a single program must have "
1036                            "the same set of qualifiers.\n");
1037            }
1038
1039            if (var->data.used && layout_differs) {
1040               linker_error(prog,
1041                            "If gl_FragDepth is redeclared with a layout "
1042                            "qualifier in any fragment shader, it must be "
1043                            "redeclared with the same layout qualifier in "
1044                            "all fragment shaders that have assignments to "
1045                            "gl_FragDepth\n");
1046            }
1047         }
1048
1049         /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says:
1050          *
1051          *     "If a shared global has multiple initializers, the
1052          *     initializers must all be constant expressions, and they
1053          *     must all have the same value. Otherwise, a link error will
1054          *     result. (A shared global having only one initializer does
1055          *     not require that initializer to be a constant expression.)"
1056          *
1057          * Previous to 4.20 the GLSL spec simply said that initializers
1058          * must have the same value.  In this case of non-constant
1059          * initializers, this was impossible to determine.  As a result,
1060          * no vendor actually implemented that behavior.  The 4.20
1061          * behavior matches the implemented behavior of at least one other
1062          * vendor, so we'll implement that for all GLSL versions.
1063          */
1064         if (var->constant_initializer != NULL) {
1065            if (existing->constant_initializer != NULL) {
1066               if (!var->constant_initializer->has_value(existing->constant_initializer)) {
1067                  linker_error(prog, "initializers for %s "
1068                               "`%s' have differing values\n",
1069                               mode_string(var), var->name);
1070                  return;
1071               }
1072            } else {
1073               /* If the first-seen instance of a particular uniform did
1074                * not have an initializer but a later instance does,
1075                * replace the former with the later.
1076                */
1077               variables->replace_variable(existing->name, var);
1078            }
1079         }
1080
1081         if (var->data.has_initializer) {
1082            if (existing->data.has_initializer
1083                && (var->constant_initializer == NULL
1084                    || existing->constant_initializer == NULL)) {
1085               linker_error(prog,
1086                            "shared global variable `%s' has multiple "
1087                            "non-constant initializers.\n",
1088                            var->name);
1089               return;
1090            }
1091         }
1092
1093         if (existing->data.explicit_invariant != var->data.explicit_invariant) {
1094            linker_error(prog, "declarations for %s `%s' have "
1095                         "mismatching invariant qualifiers\n",
1096                         mode_string(var), var->name);
1097            return;
1098         }
1099         if (existing->data.centroid != var->data.centroid) {
1100            linker_error(prog, "declarations for %s `%s' have "
1101                         "mismatching centroid qualifiers\n",
1102                         mode_string(var), var->name);
1103            return;
1104         }
1105         if (existing->data.sample != var->data.sample) {
1106            linker_error(prog, "declarations for %s `%s` have "
1107                         "mismatching sample qualifiers\n",
1108                         mode_string(var), var->name);
1109            return;
1110         }
1111         if (existing->data.image_format != var->data.image_format) {
1112            linker_error(prog, "declarations for %s `%s` have "
1113                         "mismatching image format qualifiers\n",
1114                         mode_string(var), var->name);
1115            return;
1116         }
1117
1118         /* Check the precision qualifier matches for uniform variables on
1119          * GLSL ES.
1120          */
1121         if (!ctx->Const.AllowGLSLRelaxedES &&
1122             prog->IsES && !var->get_interface_type() &&
1123             existing->data.precision != var->data.precision) {
1124            if ((existing->data.used && var->data.used) || prog->data->Version >= 300) {
1125               linker_error(prog, "declarations for %s `%s` have "
1126                            "mismatching precision qualifiers\n",
1127                            mode_string(var), var->name);
1128               return;
1129            } else {
1130               linker_warning(prog, "declarations for %s `%s` have "
1131                              "mismatching precision qualifiers\n",
1132                              mode_string(var), var->name);
1133            }
1134         }
1135
1136         /* In OpenGL GLSL 3.20 spec, section 4.3.9:
1137          *
1138          *   "It is a link-time error if any particular shader interface
1139          *    contains:
1140          *
1141          *    - two different blocks, each having no instance name, and each
1142          *      having a member of the same name, or
1143          *
1144          *    - a variable outside a block, and a block with no instance name,
1145          *      where the variable has the same name as a member in the block."
1146          */
1147         const glsl_type *var_itype = var->get_interface_type();
1148         const glsl_type *existing_itype = existing->get_interface_type();
1149         if (var_itype != existing_itype) {
1150            if (!var_itype || !existing_itype) {
1151               linker_error(prog, "declarations for %s `%s` are inside block "
1152                            "`%s` and outside a block",
1153                            mode_string(var), var->name,
1154                            var_itype ? var_itype->name : existing_itype->name);
1155               return;
1156            } else if (strcmp(var_itype->name, existing_itype->name) != 0) {
1157               linker_error(prog, "declarations for %s `%s` are inside blocks "
1158                            "`%s` and `%s`",
1159                            mode_string(var), var->name,
1160                            existing_itype->name,
1161                            var_itype->name);
1162               return;
1163            }
1164         }
1165      } else
1166         variables->add_variable(var);
1167   }
1168}
1169
1170
1171/**
1172 * Perform validation of uniforms used across multiple shader stages
1173 */
1174static void
1175cross_validate_uniforms(struct gl_context *ctx,
1176                        struct gl_shader_program *prog)
1177{
1178   glsl_symbol_table variables;
1179   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1180      if (prog->_LinkedShaders[i] == NULL)
1181         continue;
1182
1183      cross_validate_globals(ctx, prog, prog->_LinkedShaders[i]->ir,
1184                             &variables, true);
1185   }
1186}
1187
1188/**
1189 * Accumulates the array of buffer blocks and checks that all definitions of
1190 * blocks agree on their contents.
1191 */
1192static bool
1193interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog,
1194                                         bool validate_ssbo)
1195{
1196   int *InterfaceBlockStageIndex[MESA_SHADER_STAGES];
1197   struct gl_uniform_block *blks = NULL;
1198   unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks :
1199      &prog->data->NumUniformBlocks;
1200
1201   unsigned max_num_buffer_blocks = 0;
1202   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1203      if (prog->_LinkedShaders[i]) {
1204         if (validate_ssbo) {
1205            max_num_buffer_blocks +=
1206               prog->_LinkedShaders[i]->Program->info.num_ssbos;
1207         } else {
1208            max_num_buffer_blocks +=
1209               prog->_LinkedShaders[i]->Program->info.num_ubos;
1210         }
1211      }
1212   }
1213
1214   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1215      struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1216
1217      InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks];
1218      for (unsigned int j = 0; j < max_num_buffer_blocks; j++)
1219         InterfaceBlockStageIndex[i][j] = -1;
1220
1221      if (sh == NULL)
1222         continue;
1223
1224      unsigned sh_num_blocks;
1225      struct gl_uniform_block **sh_blks;
1226      if (validate_ssbo) {
1227         sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos;
1228         sh_blks = sh->Program->sh.ShaderStorageBlocks;
1229      } else {
1230         sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos;
1231         sh_blks = sh->Program->sh.UniformBlocks;
1232      }
1233
1234      for (unsigned int j = 0; j < sh_num_blocks; j++) {
1235         int index = link_cross_validate_uniform_block(prog->data, &blks,
1236                                                       num_blks, sh_blks[j]);
1237
1238         if (index == -1) {
1239            linker_error(prog, "buffer block `%s' has mismatching "
1240                         "definitions\n", sh_blks[j]->Name);
1241
1242            for (unsigned k = 0; k <= i; k++) {
1243               delete[] InterfaceBlockStageIndex[k];
1244            }
1245
1246            /* Reset the block count. This will help avoid various segfaults
1247             * from api calls that assume the array exists due to the count
1248             * being non-zero.
1249             */
1250            *num_blks = 0;
1251            return false;
1252         }
1253
1254         InterfaceBlockStageIndex[i][index] = j;
1255      }
1256   }
1257
1258   /* Update per stage block pointers to point to the program list.
1259    * FIXME: We should be able to free the per stage blocks here.
1260    */
1261   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1262      for (unsigned j = 0; j < *num_blks; j++) {
1263         int stage_index = InterfaceBlockStageIndex[i][j];
1264
1265         if (stage_index != -1) {
1266            struct gl_linked_shader *sh = prog->_LinkedShaders[i];
1267
1268            struct gl_uniform_block **sh_blks = validate_ssbo ?
1269               sh->Program->sh.ShaderStorageBlocks :
1270               sh->Program->sh.UniformBlocks;
1271
1272            blks[j].stageref |= sh_blks[stage_index]->stageref;
1273            sh_blks[stage_index] = &blks[j];
1274         }
1275      }
1276   }
1277
1278   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
1279      delete[] InterfaceBlockStageIndex[i];
1280   }
1281
1282   if (validate_ssbo)
1283      prog->data->ShaderStorageBlocks = blks;
1284   else
1285      prog->data->UniformBlocks = blks;
1286
1287   return true;
1288}
1289
1290/**
1291 * Verifies the invariance of built-in special variables.
1292 */
1293static bool
1294validate_invariant_builtins(struct gl_shader_program *prog,
1295                            const gl_linked_shader *vert,
1296                            const gl_linked_shader *frag)
1297{
1298   const ir_variable *var_vert;
1299   const ir_variable *var_frag;
1300
1301   if (!vert || !frag)
1302      return true;
1303
1304   /*
1305    * From OpenGL ES Shading Language 1.0 specification
1306    * (4.6.4 Invariance and Linkage):
1307    *     "The invariance of varyings that are declared in both the vertex and
1308    *     fragment shaders must match. For the built-in special variables,
1309    *     gl_FragCoord can only be declared invariant if and only if
1310    *     gl_Position is declared invariant. Similarly gl_PointCoord can only
1311    *     be declared invariant if and only if gl_PointSize is declared
1312    *     invariant. It is an error to declare gl_FrontFacing as invariant.
1313    *     The invariance of gl_FrontFacing is the same as the invariance of
1314    *     gl_Position."
1315    */
1316   var_frag = frag->symbols->get_variable("gl_FragCoord");
1317   if (var_frag && var_frag->data.invariant) {
1318      var_vert = vert->symbols->get_variable("gl_Position");
1319      if (var_vert && !var_vert->data.invariant) {
1320         linker_error(prog,
1321               "fragment shader built-in `%s' has invariant qualifier, "
1322               "but vertex shader built-in `%s' lacks invariant qualifier\n",
1323               var_frag->name, var_vert->name);
1324         return false;
1325      }
1326   }
1327
1328   var_frag = frag->symbols->get_variable("gl_PointCoord");
1329   if (var_frag && var_frag->data.invariant) {
1330      var_vert = vert->symbols->get_variable("gl_PointSize");
1331      if (var_vert && !var_vert->data.invariant) {
1332         linker_error(prog,
1333               "fragment shader built-in `%s' has invariant qualifier, "
1334               "but vertex shader built-in `%s' lacks invariant qualifier\n",
1335               var_frag->name, var_vert->name);
1336         return false;
1337      }
1338   }
1339
1340   var_frag = frag->symbols->get_variable("gl_FrontFacing");
1341   if (var_frag && var_frag->data.invariant) {
1342      linker_error(prog,
1343            "fragment shader built-in `%s' can not be declared as invariant\n",
1344            var_frag->name);
1345      return false;
1346   }
1347
1348   return true;
1349}
1350
1351/**
1352 * Populates a shaders symbol table with all global declarations
1353 */
1354static void
1355populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols)
1356{
1357   sh->symbols = new(sh) glsl_symbol_table;
1358
1359   _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols);
1360}
1361
1362
1363/**
1364 * Remap variables referenced in an instruction tree
1365 *
1366 * This is used when instruction trees are cloned from one shader and placed in
1367 * another.  These trees will contain references to \c ir_variable nodes that
1368 * do not exist in the target shader.  This function finds these \c ir_variable
1369 * references and replaces the references with matching variables in the target
1370 * shader.
1371 *
1372 * If there is no matching variable in the target shader, a clone of the
1373 * \c ir_variable is made and added to the target shader.  The new variable is
1374 * added to \b both the instruction stream and the symbol table.
1375 *
1376 * \param inst         IR tree that is to be processed.
1377 * \param symbols      Symbol table containing global scope symbols in the
1378 *                     linked shader.
1379 * \param instructions Instruction stream where new variable declarations
1380 *                     should be added.
1381 */
1382static void
1383remap_variables(ir_instruction *inst, struct gl_linked_shader *target,
1384                hash_table *temps)
1385{
1386   class remap_visitor : public ir_hierarchical_visitor {
1387   public:
1388         remap_visitor(struct gl_linked_shader *target, hash_table *temps)
1389      {
1390         this->target = target;
1391         this->symbols = target->symbols;
1392         this->instructions = target->ir;
1393         this->temps = temps;
1394      }
1395
1396      virtual ir_visitor_status visit(ir_dereference_variable *ir)
1397      {
1398         if (ir->var->data.mode == ir_var_temporary) {
1399            hash_entry *entry = _mesa_hash_table_search(temps, ir->var);
1400            ir_variable *var = entry ? (ir_variable *) entry->data : NULL;
1401
1402            assert(var != NULL);
1403            ir->var = var;
1404            return visit_continue;
1405         }
1406
1407         ir_variable *const existing =
1408            this->symbols->get_variable(ir->var->name);
1409         if (existing != NULL)
1410            ir->var = existing;
1411         else {
1412            ir_variable *copy = ir->var->clone(this->target, NULL);
1413
1414            this->symbols->add_variable(copy);
1415            this->instructions->push_head(copy);
1416            ir->var = copy;
1417         }
1418
1419         return visit_continue;
1420      }
1421
1422   private:
1423      struct gl_linked_shader *target;
1424      glsl_symbol_table *symbols;
1425      exec_list *instructions;
1426      hash_table *temps;
1427   };
1428
1429   remap_visitor v(target, temps);
1430
1431   inst->accept(&v);
1432}
1433
1434
1435/**
1436 * Move non-declarations from one instruction stream to another
1437 *
1438 * The intended usage pattern of this function is to pass the pointer to the
1439 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node
1440 * pointer) for \c last and \c false for \c make_copies on the first
1441 * call.  Successive calls pass the return value of the previous call for
1442 * \c last and \c true for \c make_copies.
1443 *
1444 * \param instructions Source instruction stream
1445 * \param last         Instruction after which new instructions should be
1446 *                     inserted in the target instruction stream
1447 * \param make_copies  Flag selecting whether instructions in \c instructions
1448 *                     should be copied (via \c ir_instruction::clone) into the
1449 *                     target list or moved.
1450 *
1451 * \return
1452 * The new "last" instruction in the target instruction stream.  This pointer
1453 * is suitable for use as the \c last parameter of a later call to this
1454 * function.
1455 */
1456static exec_node *
1457move_non_declarations(exec_list *instructions, exec_node *last,
1458                      bool make_copies, gl_linked_shader *target)
1459{
1460   hash_table *temps = NULL;
1461
1462   if (make_copies)
1463      temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
1464                                      _mesa_key_pointer_equal);
1465
1466   foreach_in_list_safe(ir_instruction, inst, instructions) {
1467      if (inst->as_function())
1468         continue;
1469
1470      ir_variable *var = inst->as_variable();
1471      if ((var != NULL) && (var->data.mode != ir_var_temporary))
1472         continue;
1473
1474      assert(inst->as_assignment()
1475             || inst->as_call()
1476             || inst->as_if() /* for initializers with the ?: operator */
1477             || ((var != NULL) && (var->data.mode == ir_var_temporary)));
1478
1479      if (make_copies) {
1480         inst = inst->clone(target, NULL);
1481
1482         if (var != NULL)
1483            _mesa_hash_table_insert(temps, var, inst);
1484         else
1485            remap_variables(inst, target, temps);
1486      } else {
1487         inst->remove();
1488      }
1489
1490      last->insert_after(inst);
1491      last = inst;
1492   }
1493
1494   if (make_copies)
1495      _mesa_hash_table_destroy(temps, NULL);
1496
1497   return last;
1498}
1499
1500
1501/**
1502 * This class is only used in link_intrastage_shaders() below but declaring
1503 * it inside that function leads to compiler warnings with some versions of
1504 * gcc.
1505 */
1506class array_sizing_visitor : public deref_type_updater {
1507public:
1508   array_sizing_visitor()
1509      : mem_ctx(ralloc_context(NULL)),
1510        unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer,
1511                                                   _mesa_key_pointer_equal))
1512   {
1513   }
1514
1515   ~array_sizing_visitor()
1516   {
1517      _mesa_hash_table_destroy(this->unnamed_interfaces, NULL);
1518      ralloc_free(this->mem_ctx);
1519   }
1520
1521   virtual ir_visitor_status visit(ir_variable *var)
1522   {
1523      const glsl_type *type_without_array;
1524      bool implicit_sized_array = var->data.implicit_sized_array;
1525      fixup_type(&var->type, var->data.max_array_access,
1526                 var->data.from_ssbo_unsized_array,
1527                 &implicit_sized_array);
1528      var->data.implicit_sized_array = implicit_sized_array;
1529      type_without_array = var->type->without_array();
1530      if (var->type->is_interface()) {
1531         if (interface_contains_unsized_arrays(var->type)) {
1532            const glsl_type *new_type =
1533               resize_interface_members(var->type,
1534                                        var->get_max_ifc_array_access(),
1535                                        var->is_in_shader_storage_block());
1536            var->type = new_type;
1537            var->change_interface_type(new_type);
1538         }
1539      } else if (type_without_array->is_interface()) {
1540         if (interface_contains_unsized_arrays(type_without_array)) {
1541            const glsl_type *new_type =
1542               resize_interface_members(type_without_array,
1543                                        var->get_max_ifc_array_access(),
1544                                        var->is_in_shader_storage_block());
1545            var->change_interface_type(new_type);
1546            var->type = update_interface_members_array(var->type, new_type);
1547         }
1548      } else if (const glsl_type *ifc_type = var->get_interface_type()) {
1549         /* Store a pointer to the variable in the unnamed_interfaces
1550          * hashtable.
1551          */
1552         hash_entry *entry =
1553               _mesa_hash_table_search(this->unnamed_interfaces,
1554                                       ifc_type);
1555
1556         ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL;
1557
1558         if (interface_vars == NULL) {
1559            interface_vars = rzalloc_array(mem_ctx, ir_variable *,
1560                                           ifc_type->length);
1561            _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type,
1562                                    interface_vars);
1563         }
1564         unsigned index = ifc_type->field_index(var->name);
1565         assert(index < ifc_type->length);
1566         assert(interface_vars[index] == NULL);
1567         interface_vars[index] = var;
1568      }
1569      return visit_continue;
1570   }
1571
1572   /**
1573    * For each unnamed interface block that was discovered while running the
1574    * visitor, adjust the interface type to reflect the newly assigned array
1575    * sizes, and fix up the ir_variable nodes to point to the new interface
1576    * type.
1577    */
1578   void fixup_unnamed_interface_types()
1579   {
1580      hash_table_call_foreach(this->unnamed_interfaces,
1581                              fixup_unnamed_interface_type, NULL);
1582   }
1583
1584private:
1585   /**
1586    * If the type pointed to by \c type represents an unsized array, replace
1587    * it with a sized array whose size is determined by max_array_access.
1588    */
1589   static void fixup_type(const glsl_type **type, unsigned max_array_access,
1590                          bool from_ssbo_unsized_array, bool *implicit_sized)
1591   {
1592      if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) {
1593         *type = glsl_type::get_array_instance((*type)->fields.array,
1594                                               max_array_access + 1);
1595         *implicit_sized = true;
1596         assert(*type != NULL);
1597      }
1598   }
1599
1600   static const glsl_type *
1601   update_interface_members_array(const glsl_type *type,
1602                                  const glsl_type *new_interface_type)
1603   {
1604      const glsl_type *element_type = type->fields.array;
1605      if (element_type->is_array()) {
1606         const glsl_type *new_array_type =
1607            update_interface_members_array(element_type, new_interface_type);
1608         return glsl_type::get_array_instance(new_array_type, type->length);
1609      } else {
1610         return glsl_type::get_array_instance(new_interface_type,
1611                                              type->length);
1612      }
1613   }
1614
1615   /**
1616    * Determine whether the given interface type contains unsized arrays (if
1617    * it doesn't, array_sizing_visitor doesn't need to process it).
1618    */
1619   static bool interface_contains_unsized_arrays(const glsl_type *type)
1620   {
1621      for (unsigned i = 0; i < type->length; i++) {
1622         const glsl_type *elem_type = type->fields.structure[i].type;
1623         if (elem_type->is_unsized_array())
1624            return true;
1625      }
1626      return false;
1627   }
1628
1629   /**
1630    * Create a new interface type based on the given type, with unsized arrays
1631    * replaced by sized arrays whose size is determined by
1632    * max_ifc_array_access.
1633    */
1634   static const glsl_type *
1635   resize_interface_members(const glsl_type *type,
1636                            const int *max_ifc_array_access,
1637                            bool is_ssbo)
1638   {
1639      unsigned num_fields = type->length;
1640      glsl_struct_field *fields = new glsl_struct_field[num_fields];
1641      memcpy(fields, type->fields.structure,
1642             num_fields * sizeof(*fields));
1643      for (unsigned i = 0; i < num_fields; i++) {
1644         bool implicit_sized_array = fields[i].implicit_sized_array;
1645         /* If SSBO last member is unsized array, we don't replace it by a sized
1646          * array.
1647          */
1648         if (is_ssbo && i == (num_fields - 1))
1649            fixup_type(&fields[i].type, max_ifc_array_access[i],
1650                       true, &implicit_sized_array);
1651         else
1652            fixup_type(&fields[i].type, max_ifc_array_access[i],
1653                       false, &implicit_sized_array);
1654         fields[i].implicit_sized_array = implicit_sized_array;
1655      }
1656      glsl_interface_packing packing =
1657         (glsl_interface_packing) type->interface_packing;
1658      bool row_major = (bool) type->interface_row_major;
1659      const glsl_type *new_ifc_type =
1660         glsl_type::get_interface_instance(fields, num_fields,
1661                                           packing, row_major, type->name);
1662      delete [] fields;
1663      return new_ifc_type;
1664   }
1665
1666   static void fixup_unnamed_interface_type(const void *key, void *data,
1667                                            void *)
1668   {
1669      const glsl_type *ifc_type = (const glsl_type *) key;
1670      ir_variable **interface_vars = (ir_variable **) data;
1671      unsigned num_fields = ifc_type->length;
1672      glsl_struct_field *fields = new glsl_struct_field[num_fields];
1673      memcpy(fields, ifc_type->fields.structure,
1674             num_fields * sizeof(*fields));
1675      bool interface_type_changed = false;
1676      for (unsigned i = 0; i < num_fields; i++) {
1677         if (interface_vars[i] != NULL &&
1678             fields[i].type != interface_vars[i]->type) {
1679            fields[i].type = interface_vars[i]->type;
1680            interface_type_changed = true;
1681         }
1682      }
1683      if (!interface_type_changed) {
1684         delete [] fields;
1685         return;
1686      }
1687      glsl_interface_packing packing =
1688         (glsl_interface_packing) ifc_type->interface_packing;
1689      bool row_major = (bool) ifc_type->interface_row_major;
1690      const glsl_type *new_ifc_type =
1691         glsl_type::get_interface_instance(fields, num_fields, packing,
1692                                           row_major, ifc_type->name);
1693      delete [] fields;
1694      for (unsigned i = 0; i < num_fields; i++) {
1695         if (interface_vars[i] != NULL)
1696            interface_vars[i]->change_interface_type(new_ifc_type);
1697      }
1698   }
1699
1700   /**
1701    * Memory context used to allocate the data in \c unnamed_interfaces.
1702    */
1703   void *mem_ctx;
1704
1705   /**
1706    * Hash table from const glsl_type * to an array of ir_variable *'s
1707    * pointing to the ir_variables constituting each unnamed interface block.
1708    */
1709   hash_table *unnamed_interfaces;
1710};
1711
1712static bool
1713validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx,
1714                           struct gl_shader_program *prog)
1715{
1716   /* We will validate doubles at a later stage */
1717   if (prog->TransformFeedback.BufferStride[idx] % 4) {
1718      linker_error(prog, "invalid qualifier xfb_stride=%d must be a "
1719                   "multiple of 4 or if its applied to a type that is "
1720                   "or contains a double a multiple of 8.",
1721                   prog->TransformFeedback.BufferStride[idx]);
1722      return false;
1723   }
1724
1725   if (prog->TransformFeedback.BufferStride[idx] / 4 >
1726       ctx->Const.MaxTransformFeedbackInterleavedComponents) {
1727      linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS "
1728                   "limit has been exceeded.");
1729      return false;
1730   }
1731
1732   return true;
1733}
1734
1735/**
1736 * Check for conflicting xfb_stride default qualifiers and store buffer stride
1737 * for later use.
1738 */
1739static void
1740link_xfb_stride_layout_qualifiers(struct gl_context *ctx,
1741                                  struct gl_shader_program *prog,
1742                                  struct gl_shader **shader_list,
1743                                  unsigned num_shaders)
1744{
1745   for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) {
1746      prog->TransformFeedback.BufferStride[i] = 0;
1747   }
1748
1749   for (unsigned i = 0; i < num_shaders; i++) {
1750      struct gl_shader *shader = shader_list[i];
1751
1752      for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) {
1753         if (shader->TransformFeedbackBufferStride[j]) {
1754            if (prog->TransformFeedback.BufferStride[j] == 0) {
1755               prog->TransformFeedback.BufferStride[j] =
1756                  shader->TransformFeedbackBufferStride[j];
1757               if (!validate_xfb_buffer_stride(ctx, j, prog))
1758                  return;
1759            } else if (prog->TransformFeedback.BufferStride[j] !=
1760                       shader->TransformFeedbackBufferStride[j]){
1761               linker_error(prog,
1762                            "intrastage shaders defined with conflicting "
1763                            "xfb_stride for buffer %d (%d and %d)\n", j,
1764                            prog->TransformFeedback.BufferStride[j],
1765                            shader->TransformFeedbackBufferStride[j]);
1766               return;
1767            }
1768         }
1769      }
1770   }
1771}
1772
1773/**
1774 * Check for conflicting bindless/bound sampler/image layout qualifiers at
1775 * global scope.
1776 */
1777static void
1778link_bindless_layout_qualifiers(struct gl_shader_program *prog,
1779                                struct gl_shader **shader_list,
1780                                unsigned num_shaders)
1781{
1782   bool bindless_sampler, bindless_image;
1783   bool bound_sampler, bound_image;
1784
1785   bindless_sampler = bindless_image = false;
1786   bound_sampler = bound_image = false;
1787
1788   for (unsigned i = 0; i < num_shaders; i++) {
1789      struct gl_shader *shader = shader_list[i];
1790
1791      if (shader->bindless_sampler)
1792         bindless_sampler = true;
1793      if (shader->bindless_image)
1794         bindless_image = true;
1795      if (shader->bound_sampler)
1796         bound_sampler = true;
1797      if (shader->bound_image)
1798         bound_image = true;
1799
1800      if ((bindless_sampler && bound_sampler) ||
1801          (bindless_image && bound_image)) {
1802         /* From section 4.4.6 of the ARB_bindless_texture spec:
1803          *
1804          *     "If both bindless_sampler and bound_sampler, or bindless_image
1805          *      and bound_image, are declared at global scope in any
1806          *      compilation unit, a link- time error will be generated."
1807          */
1808         linker_error(prog, "both bindless_sampler and bound_sampler, or "
1809                      "bindless_image and bound_image, can't be declared at "
1810                      "global scope");
1811      }
1812   }
1813}
1814
1815/**
1816 * Performs the cross-validation of tessellation control shader vertices and
1817 * layout qualifiers for the attached tessellation control shaders,
1818 * and propagates them to the linked TCS and linked shader program.
1819 */
1820static void
1821link_tcs_out_layout_qualifiers(struct gl_shader_program *prog,
1822                               struct gl_program *gl_prog,
1823                               struct gl_shader **shader_list,
1824                               unsigned num_shaders)
1825{
1826   if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL)
1827      return;
1828
1829   gl_prog->info.tess.tcs_vertices_out = 0;
1830
1831   /* From the GLSL 4.0 spec (chapter 4.3.8.2):
1832    *
1833    *     "All tessellation control shader layout declarations in a program
1834    *      must specify the same output patch vertex count.  There must be at
1835    *      least one layout qualifier specifying an output patch vertex count
1836    *      in any program containing tessellation control shaders; however,
1837    *      such a declaration is not required in all tessellation control
1838    *      shaders."
1839    */
1840
1841   for (unsigned i = 0; i < num_shaders; i++) {
1842      struct gl_shader *shader = shader_list[i];
1843
1844      if (shader->info.TessCtrl.VerticesOut != 0) {
1845         if (gl_prog->info.tess.tcs_vertices_out != 0 &&
1846             gl_prog->info.tess.tcs_vertices_out !=
1847             (unsigned) shader->info.TessCtrl.VerticesOut) {
1848            linker_error(prog, "tessellation control shader defined with "
1849                         "conflicting output vertex count (%d and %d)\n",
1850                         gl_prog->info.tess.tcs_vertices_out,
1851                         shader->info.TessCtrl.VerticesOut);
1852            return;
1853         }
1854         gl_prog->info.tess.tcs_vertices_out =
1855            shader->info.TessCtrl.VerticesOut;
1856      }
1857   }
1858
1859   /* Just do the intrastage -> interstage propagation right now,
1860    * since we already know we're in the right type of shader program
1861    * for doing it.
1862    */
1863   if (gl_prog->info.tess.tcs_vertices_out == 0) {
1864      linker_error(prog, "tessellation control shader didn't declare "
1865                   "vertices out layout qualifier\n");
1866      return;
1867   }
1868}
1869
1870
1871/**
1872 * Performs the cross-validation of tessellation evaluation shader
1873 * primitive type, vertex spacing, ordering and point_mode layout qualifiers
1874 * for the attached tessellation evaluation shaders, and propagates them
1875 * to the linked TES and linked shader program.
1876 */
1877static void
1878link_tes_in_layout_qualifiers(struct gl_shader_program *prog,
1879                              struct gl_program *gl_prog,
1880                              struct gl_shader **shader_list,
1881                              unsigned num_shaders)
1882{
1883   if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL)
1884      return;
1885
1886   int point_mode = -1;
1887   unsigned vertex_order = 0;
1888
1889   gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN;
1890   gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED;
1891
1892   /* From the GLSL 4.0 spec (chapter 4.3.8.1):
1893    *
1894    *     "At least one tessellation evaluation shader (compilation unit) in
1895    *      a program must declare a primitive mode in its input layout.
1896    *      Declaration vertex spacing, ordering, and point mode identifiers is
1897    *      optional.  It is not required that all tessellation evaluation
1898    *      shaders in a program declare a primitive mode.  If spacing or
1899    *      vertex ordering declarations are omitted, the tessellation
1900    *      primitive generator will use equal spacing or counter-clockwise
1901    *      vertex ordering, respectively.  If a point mode declaration is
1902    *      omitted, the tessellation primitive generator will produce lines or
1903    *      triangles according to the primitive mode."
1904    */
1905
1906   for (unsigned i = 0; i < num_shaders; i++) {
1907      struct gl_shader *shader = shader_list[i];
1908
1909      if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) {
1910         if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN &&
1911             gl_prog->info.tess.primitive_mode !=
1912             shader->info.TessEval.PrimitiveMode) {
1913            linker_error(prog, "tessellation evaluation shader defined with "
1914                         "conflicting input primitive modes.\n");
1915            return;
1916         }
1917         gl_prog->info.tess.primitive_mode =
1918            shader->info.TessEval.PrimitiveMode;
1919      }
1920
1921      if (shader->info.TessEval.Spacing != 0) {
1922         if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing !=
1923             shader->info.TessEval.Spacing) {
1924            linker_error(prog, "tessellation evaluation shader defined with "
1925                         "conflicting vertex spacing.\n");
1926            return;
1927         }
1928         gl_prog->info.tess.spacing = shader->info.TessEval.Spacing;
1929      }
1930
1931      if (shader->info.TessEval.VertexOrder != 0) {
1932         if (vertex_order != 0 &&
1933             vertex_order != shader->info.TessEval.VertexOrder) {
1934            linker_error(prog, "tessellation evaluation shader defined with "
1935                         "conflicting ordering.\n");
1936            return;
1937         }
1938         vertex_order = shader->info.TessEval.VertexOrder;
1939      }
1940
1941      if (shader->info.TessEval.PointMode != -1) {
1942         if (point_mode != -1 &&
1943             point_mode != shader->info.TessEval.PointMode) {
1944            linker_error(prog, "tessellation evaluation shader defined with "
1945                         "conflicting point modes.\n");
1946            return;
1947         }
1948         point_mode = shader->info.TessEval.PointMode;
1949      }
1950
1951   }
1952
1953   /* Just do the intrastage -> interstage propagation right now,
1954    * since we already know we're in the right type of shader program
1955    * for doing it.
1956    */
1957   if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) {
1958      linker_error(prog,
1959                   "tessellation evaluation shader didn't declare input "
1960                   "primitive modes.\n");
1961      return;
1962   }
1963
1964   if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED)
1965      gl_prog->info.tess.spacing = TESS_SPACING_EQUAL;
1966
1967   if (vertex_order == 0 || vertex_order == GL_CCW)
1968      gl_prog->info.tess.ccw = true;
1969   else
1970      gl_prog->info.tess.ccw = false;
1971
1972
1973   if (point_mode == -1 || point_mode == GL_FALSE)
1974      gl_prog->info.tess.point_mode = false;
1975   else
1976      gl_prog->info.tess.point_mode = true;
1977}
1978
1979
1980/**
1981 * Performs the cross-validation of layout qualifiers specified in
1982 * redeclaration of gl_FragCoord for the attached fragment shaders,
1983 * and propagates them to the linked FS and linked shader program.
1984 */
1985static void
1986link_fs_inout_layout_qualifiers(struct gl_shader_program *prog,
1987                                struct gl_linked_shader *linked_shader,
1988                                struct gl_shader **shader_list,
1989                                unsigned num_shaders)
1990{
1991   bool redeclares_gl_fragcoord = false;
1992   bool uses_gl_fragcoord = false;
1993   bool origin_upper_left = false;
1994   bool pixel_center_integer = false;
1995
1996   if (linked_shader->Stage != MESA_SHADER_FRAGMENT ||
1997       (prog->data->Version < 150 &&
1998        !prog->ARB_fragment_coord_conventions_enable))
1999      return;
2000
2001   for (unsigned i = 0; i < num_shaders; i++) {
2002      struct gl_shader *shader = shader_list[i];
2003      /* From the GLSL 1.50 spec, page 39:
2004       *
2005       *   "If gl_FragCoord is redeclared in any fragment shader in a program,
2006       *    it must be redeclared in all the fragment shaders in that program
2007       *    that have a static use gl_FragCoord."
2008       */
2009      if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord &&
2010           shader->uses_gl_fragcoord)
2011          || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord &&
2012              uses_gl_fragcoord)) {
2013             linker_error(prog, "fragment shader defined with conflicting "
2014                         "layout qualifiers for gl_FragCoord\n");
2015      }
2016
2017      /* From the GLSL 1.50 spec, page 39:
2018       *
2019       *   "All redeclarations of gl_FragCoord in all fragment shaders in a
2020       *    single program must have the same set of qualifiers."
2021       */
2022      if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord &&
2023          (shader->origin_upper_left != origin_upper_left ||
2024           shader->pixel_center_integer != pixel_center_integer)) {
2025         linker_error(prog, "fragment shader defined with conflicting "
2026                      "layout qualifiers for gl_FragCoord\n");
2027      }
2028
2029      /* Update the linked shader state.  Note that uses_gl_fragcoord should
2030       * accumulate the results.  The other values should replace.  If there
2031       * are multiple redeclarations, all the fields except uses_gl_fragcoord
2032       * are already known to be the same.
2033       */
2034      if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) {
2035         redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord;
2036         uses_gl_fragcoord |= shader->uses_gl_fragcoord;
2037         origin_upper_left = shader->origin_upper_left;
2038         pixel_center_integer = shader->pixel_center_integer;
2039      }
2040
2041      linked_shader->Program->info.fs.early_fragment_tests |=
2042         shader->EarlyFragmentTests || shader->PostDepthCoverage;
2043      linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage;
2044      linked_shader->Program->info.fs.post_depth_coverage |=
2045         shader->PostDepthCoverage;
2046      linked_shader->Program->info.fs.pixel_interlock_ordered |=
2047         shader->PixelInterlockOrdered;
2048      linked_shader->Program->info.fs.pixel_interlock_unordered |=
2049         shader->PixelInterlockUnordered;
2050      linked_shader->Program->info.fs.sample_interlock_ordered |=
2051         shader->SampleInterlockOrdered;
2052      linked_shader->Program->info.fs.sample_interlock_unordered |=
2053         shader->SampleInterlockUnordered;
2054
2055      linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport;
2056   }
2057}
2058
2059/**
2060 * Performs the cross-validation of geometry shader max_vertices and
2061 * primitive type layout qualifiers for the attached geometry shaders,
2062 * and propagates them to the linked GS and linked shader program.
2063 */
2064static void
2065link_gs_inout_layout_qualifiers(struct gl_shader_program *prog,
2066                                struct gl_program *gl_prog,
2067                                struct gl_shader **shader_list,
2068                                unsigned num_shaders)
2069{
2070   /* No in/out qualifiers defined for anything but GLSL 1.50+
2071    * geometry shaders so far.
2072    */
2073   if (gl_prog->info.stage != MESA_SHADER_GEOMETRY ||
2074       prog->data->Version < 150)
2075      return;
2076
2077   int vertices_out = -1;
2078
2079   gl_prog->info.gs.invocations = 0;
2080   gl_prog->info.gs.input_primitive = PRIM_UNKNOWN;
2081   gl_prog->info.gs.output_primitive = PRIM_UNKNOWN;
2082
2083   /* From the GLSL 1.50 spec, page 46:
2084    *
2085    *     "All geometry shader output layout declarations in a program
2086    *      must declare the same layout and same value for
2087    *      max_vertices. There must be at least one geometry output
2088    *      layout declaration somewhere in a program, but not all
2089    *      geometry shaders (compilation units) are required to
2090    *      declare it."
2091    */
2092
2093   for (unsigned i = 0; i < num_shaders; i++) {
2094      struct gl_shader *shader = shader_list[i];
2095
2096      if (shader->info.Geom.InputType != PRIM_UNKNOWN) {
2097         if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN &&
2098             gl_prog->info.gs.input_primitive !=
2099             shader->info.Geom.InputType) {
2100            linker_error(prog, "geometry shader defined with conflicting "
2101                         "input types\n");
2102            return;
2103         }
2104         gl_prog->info.gs.input_primitive = shader->info.Geom.InputType;
2105      }
2106
2107      if (shader->info.Geom.OutputType != PRIM_UNKNOWN) {
2108         if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN &&
2109             gl_prog->info.gs.output_primitive !=
2110             shader->info.Geom.OutputType) {
2111            linker_error(prog, "geometry shader defined with conflicting "
2112                         "output types\n");
2113            return;
2114         }
2115         gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType;
2116      }
2117
2118      if (shader->info.Geom.VerticesOut != -1) {
2119         if (vertices_out != -1 &&
2120             vertices_out != shader->info.Geom.VerticesOut) {
2121            linker_error(prog, "geometry shader defined with conflicting "
2122                         "output vertex count (%d and %d)\n",
2123                         vertices_out, shader->info.Geom.VerticesOut);
2124            return;
2125         }
2126         vertices_out = shader->info.Geom.VerticesOut;
2127      }
2128
2129      if (shader->info.Geom.Invocations != 0) {
2130         if (gl_prog->info.gs.invocations != 0 &&
2131             gl_prog->info.gs.invocations !=
2132             (unsigned) shader->info.Geom.Invocations) {
2133            linker_error(prog, "geometry shader defined with conflicting "
2134                         "invocation count (%d and %d)\n",
2135                         gl_prog->info.gs.invocations,
2136                         shader->info.Geom.Invocations);
2137            return;
2138         }
2139         gl_prog->info.gs.invocations = shader->info.Geom.Invocations;
2140      }
2141   }
2142
2143   /* Just do the intrastage -> interstage propagation right now,
2144    * since we already know we're in the right type of shader program
2145    * for doing it.
2146    */
2147   if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) {
2148      linker_error(prog,
2149                   "geometry shader didn't declare primitive input type\n");
2150      return;
2151   }
2152
2153   if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) {
2154      linker_error(prog,
2155                   "geometry shader didn't declare primitive output type\n");
2156      return;
2157   }
2158
2159   if (vertices_out == -1) {
2160      linker_error(prog,
2161                   "geometry shader didn't declare max_vertices\n");
2162      return;
2163   } else {
2164      gl_prog->info.gs.vertices_out = vertices_out;
2165   }
2166
2167   if (gl_prog->info.gs.invocations == 0)
2168      gl_prog->info.gs.invocations = 1;
2169}
2170
2171
2172/**
2173 * Perform cross-validation of compute shader local_size_{x,y,z} layout
2174 * qualifiers for the attached compute shaders, and propagate them to the
2175 * linked CS and linked shader program.
2176 */
2177static void
2178link_cs_input_layout_qualifiers(struct gl_shader_program *prog,
2179                                struct gl_program *gl_prog,
2180                                struct gl_shader **shader_list,
2181                                unsigned num_shaders)
2182{
2183   /* This function is called for all shader stages, but it only has an effect
2184    * for compute shaders.
2185    */
2186   if (gl_prog->info.stage != MESA_SHADER_COMPUTE)
2187      return;
2188
2189   for (int i = 0; i < 3; i++)
2190      gl_prog->info.cs.local_size[i] = 0;
2191
2192   gl_prog->info.cs.local_size_variable = false;
2193
2194   /* From the ARB_compute_shader spec, in the section describing local size
2195    * declarations:
2196    *
2197    *     If multiple compute shaders attached to a single program object
2198    *     declare local work-group size, the declarations must be identical;
2199    *     otherwise a link-time error results. Furthermore, if a program
2200    *     object contains any compute shaders, at least one must contain an
2201    *     input layout qualifier specifying the local work sizes of the
2202    *     program, or a link-time error will occur.
2203    */
2204   for (unsigned sh = 0; sh < num_shaders; sh++) {
2205      struct gl_shader *shader = shader_list[sh];
2206
2207      if (shader->info.Comp.LocalSize[0] != 0) {
2208         if (gl_prog->info.cs.local_size[0] != 0) {
2209            for (int i = 0; i < 3; i++) {
2210               if (gl_prog->info.cs.local_size[i] !=
2211                   shader->info.Comp.LocalSize[i]) {
2212                  linker_error(prog, "compute shader defined with conflicting "
2213                               "local sizes\n");
2214                  return;
2215               }
2216            }
2217         }
2218         for (int i = 0; i < 3; i++) {
2219            gl_prog->info.cs.local_size[i] =
2220               shader->info.Comp.LocalSize[i];
2221         }
2222      } else if (shader->info.Comp.LocalSizeVariable) {
2223         if (gl_prog->info.cs.local_size[0] != 0) {
2224            /* The ARB_compute_variable_group_size spec says:
2225             *
2226             *     If one compute shader attached to a program declares a
2227             *     variable local group size and a second compute shader
2228             *     attached to the same program declares a fixed local group
2229             *     size, a link-time error results.
2230             */
2231            linker_error(prog, "compute shader defined with both fixed and "
2232                         "variable local group size\n");
2233            return;
2234         }
2235         gl_prog->info.cs.local_size_variable = true;
2236      }
2237   }
2238
2239   /* Just do the intrastage -> interstage propagation right now,
2240    * since we already know we're in the right type of shader program
2241    * for doing it.
2242    */
2243   if (gl_prog->info.cs.local_size[0] == 0 &&
2244       !gl_prog->info.cs.local_size_variable) {
2245      linker_error(prog, "compute shader must contain a fixed or a variable "
2246                         "local group size\n");
2247      return;
2248   }
2249}
2250
2251/**
2252 * Link all out variables on a single stage which are not
2253 * directly used in a shader with the main function.
2254 */
2255static void
2256link_output_variables(struct gl_linked_shader *linked_shader,
2257                      struct gl_shader **shader_list,
2258                      unsigned num_shaders)
2259{
2260   struct glsl_symbol_table *symbols = linked_shader->symbols;
2261
2262   for (unsigned i = 0; i < num_shaders; i++) {
2263
2264      /* Skip shader object with main function */
2265      if (shader_list[i]->symbols->get_function("main"))
2266         continue;
2267
2268      foreach_in_list(ir_instruction, ir, shader_list[i]->ir) {
2269         if (ir->ir_type != ir_type_variable)
2270            continue;
2271
2272         ir_variable *var = (ir_variable *) ir;
2273
2274         if (var->data.mode == ir_var_shader_out &&
2275               !symbols->get_variable(var->name)) {
2276            var = var->clone(linked_shader, NULL);
2277            symbols->add_variable(var);
2278            linked_shader->ir->push_head(var);
2279         }
2280      }
2281   }
2282
2283   return;
2284}
2285
2286
2287/**
2288 * Combine a group of shaders for a single stage to generate a linked shader
2289 *
2290 * \note
2291 * If this function is supplied a single shader, it is cloned, and the new
2292 * shader is returned.
2293 */
2294struct gl_linked_shader *
2295link_intrastage_shaders(void *mem_ctx,
2296                        struct gl_context *ctx,
2297                        struct gl_shader_program *prog,
2298                        struct gl_shader **shader_list,
2299                        unsigned num_shaders,
2300                        bool allow_missing_main)
2301{
2302   struct gl_uniform_block *ubo_blocks = NULL;
2303   struct gl_uniform_block *ssbo_blocks = NULL;
2304   unsigned num_ubo_blocks = 0;
2305   unsigned num_ssbo_blocks = 0;
2306
2307   /* Check that global variables defined in multiple shaders are consistent.
2308    */
2309   glsl_symbol_table variables;
2310   for (unsigned i = 0; i < num_shaders; i++) {
2311      if (shader_list[i] == NULL)
2312         continue;
2313      cross_validate_globals(ctx, prog, shader_list[i]->ir, &variables,
2314                             false);
2315   }
2316
2317   if (!prog->data->LinkStatus)
2318      return NULL;
2319
2320   /* Check that interface blocks defined in multiple shaders are consistent.
2321    */
2322   validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list,
2323                                        num_shaders);
2324   if (!prog->data->LinkStatus)
2325      return NULL;
2326
2327   /* Check that there is only a single definition of each function signature
2328    * across all shaders.
2329    */
2330   for (unsigned i = 0; i < (num_shaders - 1); i++) {
2331      foreach_in_list(ir_instruction, node, shader_list[i]->ir) {
2332         ir_function *const f = node->as_function();
2333
2334         if (f == NULL)
2335            continue;
2336
2337         for (unsigned j = i + 1; j < num_shaders; j++) {
2338            ir_function *const other =
2339               shader_list[j]->symbols->get_function(f->name);
2340
2341            /* If the other shader has no function (and therefore no function
2342             * signatures) with the same name, skip to the next shader.
2343             */
2344            if (other == NULL)
2345               continue;
2346
2347            foreach_in_list(ir_function_signature, sig, &f->signatures) {
2348               if (!sig->is_defined)
2349                  continue;
2350
2351               ir_function_signature *other_sig =
2352                  other->exact_matching_signature(NULL, &sig->parameters);
2353
2354               if (other_sig != NULL && other_sig->is_defined) {
2355                  linker_error(prog, "function `%s' is multiply defined\n",
2356                               f->name);
2357                  return NULL;
2358               }
2359            }
2360         }
2361      }
2362   }
2363
2364   /* Find the shader that defines main, and make a clone of it.
2365    *
2366    * Starting with the clone, search for undefined references.  If one is
2367    * found, find the shader that defines it.  Clone the reference and add
2368    * it to the shader.  Repeat until there are no undefined references or
2369    * until a reference cannot be resolved.
2370    */
2371   gl_shader *main = NULL;
2372   for (unsigned i = 0; i < num_shaders; i++) {
2373      if (_mesa_get_main_function_signature(shader_list[i]->symbols)) {
2374         main = shader_list[i];
2375         break;
2376      }
2377   }
2378
2379   if (main == NULL && allow_missing_main)
2380      main = shader_list[0];
2381
2382   if (main == NULL) {
2383      linker_error(prog, "%s shader lacks `main'\n",
2384                   _mesa_shader_stage_to_string(shader_list[0]->Stage));
2385      return NULL;
2386   }
2387
2388   gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader);
2389   linked->Stage = shader_list[0]->Stage;
2390
2391   /* Create program and attach it to the linked shader */
2392   struct gl_program *gl_prog =
2393      ctx->Driver.NewProgram(ctx,
2394                             _mesa_shader_stage_to_program(shader_list[0]->Stage),
2395                             prog->Name, false);
2396   if (!gl_prog) {
2397      prog->data->LinkStatus = LINKING_FAILURE;
2398      _mesa_delete_linked_shader(ctx, linked);
2399      return NULL;
2400   }
2401
2402   _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data);
2403
2404   /* Don't use _mesa_reference_program() just take ownership */
2405   linked->Program = gl_prog;
2406
2407   linked->ir = new(linked) exec_list;
2408   clone_ir_list(mem_ctx, linked->ir, main->ir);
2409
2410   link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders);
2411   link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2412   link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2413   link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2414   link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders);
2415
2416   if (linked->Stage != MESA_SHADER_FRAGMENT)
2417      link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders);
2418
2419   link_bindless_layout_qualifiers(prog, shader_list, num_shaders);
2420
2421   populate_symbol_table(linked, shader_list[0]->symbols);
2422
2423   /* The pointer to the main function in the final linked shader (i.e., the
2424    * copy of the original shader that contained the main function).
2425    */
2426   ir_function_signature *const main_sig =
2427      _mesa_get_main_function_signature(linked->symbols);
2428
2429   /* Move any instructions other than variable declarations or function
2430    * declarations into main.
2431    */
2432   if (main_sig != NULL) {
2433      exec_node *insertion_point =
2434         move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false,
2435                               linked);
2436
2437      for (unsigned i = 0; i < num_shaders; i++) {
2438         if (shader_list[i] == main)
2439            continue;
2440
2441         insertion_point = move_non_declarations(shader_list[i]->ir,
2442                                                 insertion_point, true, linked);
2443      }
2444   }
2445
2446   if (!link_function_calls(prog, linked, shader_list, num_shaders)) {
2447      _mesa_delete_linked_shader(ctx, linked);
2448      return NULL;
2449   }
2450
2451   if (linked->Stage != MESA_SHADER_FRAGMENT)
2452      link_output_variables(linked, shader_list, num_shaders);
2453
2454   /* Make a pass over all variable declarations to ensure that arrays with
2455    * unspecified sizes have a size specified.  The size is inferred from the
2456    * max_array_access field.
2457    */
2458   array_sizing_visitor v;
2459   v.run(linked->ir);
2460   v.fixup_unnamed_interface_types();
2461
2462   /* Link up uniform blocks defined within this stage. */
2463   link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks,
2464                       &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks);
2465
2466   if (!prog->data->LinkStatus) {
2467      _mesa_delete_linked_shader(ctx, linked);
2468      return NULL;
2469   }
2470
2471   /* Copy ubo blocks to linked shader list */
2472   linked->Program->sh.UniformBlocks =
2473      ralloc_array(linked, gl_uniform_block *, num_ubo_blocks);
2474   ralloc_steal(linked, ubo_blocks);
2475   for (unsigned i = 0; i < num_ubo_blocks; i++) {
2476      linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i];
2477   }
2478   linked->Program->info.num_ubos = num_ubo_blocks;
2479
2480   /* Copy ssbo blocks to linked shader list */
2481   linked->Program->sh.ShaderStorageBlocks =
2482      ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks);
2483   ralloc_steal(linked, ssbo_blocks);
2484   for (unsigned i = 0; i < num_ssbo_blocks; i++) {
2485      linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i];
2486   }
2487   linked->Program->info.num_ssbos = num_ssbo_blocks;
2488
2489   /* At this point linked should contain all of the linked IR, so
2490    * validate it to make sure nothing went wrong.
2491    */
2492   validate_ir_tree(linked->ir);
2493
2494   /* Set the size of geometry shader input arrays */
2495   if (linked->Stage == MESA_SHADER_GEOMETRY) {
2496      unsigned num_vertices =
2497         vertices_per_prim(gl_prog->info.gs.input_primitive);
2498      array_resize_visitor input_resize_visitor(num_vertices, prog,
2499                                                MESA_SHADER_GEOMETRY);
2500      foreach_in_list(ir_instruction, ir, linked->ir) {
2501         ir->accept(&input_resize_visitor);
2502      }
2503   }
2504
2505   if (ctx->Const.VertexID_is_zero_based)
2506      lower_vertex_id(linked);
2507
2508   if (ctx->Const.LowerCsDerivedVariables)
2509      lower_cs_derived(linked);
2510
2511#ifdef DEBUG
2512   /* Compute the source checksum. */
2513   linked->SourceChecksum = 0;
2514   for (unsigned i = 0; i < num_shaders; i++) {
2515      if (shader_list[i] == NULL)
2516         continue;
2517      linked->SourceChecksum ^= shader_list[i]->SourceChecksum;
2518   }
2519#endif
2520
2521   return linked;
2522}
2523
2524/**
2525 * Update the sizes of linked shader uniform arrays to the maximum
2526 * array index used.
2527 *
2528 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec:
2529 *
2530 *     If one or more elements of an array are active,
2531 *     GetActiveUniform will return the name of the array in name,
2532 *     subject to the restrictions listed above. The type of the array
2533 *     is returned in type. The size parameter contains the highest
2534 *     array element index used, plus one. The compiler or linker
2535 *     determines the highest index used.  There will be only one
2536 *     active uniform reported by the GL per uniform array.
2537
2538 */
2539static void
2540update_array_sizes(struct gl_shader_program *prog)
2541{
2542   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2543         if (prog->_LinkedShaders[i] == NULL)
2544            continue;
2545
2546      bool types_were_updated = false;
2547
2548      foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
2549         ir_variable *const var = node->as_variable();
2550
2551         if ((var == NULL) || (var->data.mode != ir_var_uniform) ||
2552             !var->type->is_array())
2553            continue;
2554
2555         /* GL_ARB_uniform_buffer_object says that std140 uniforms
2556          * will not be eliminated.  Since we always do std140, just
2557          * don't resize arrays in UBOs.
2558          *
2559          * Atomic counters are supposed to get deterministic
2560          * locations assigned based on the declaration ordering and
2561          * sizes, array compaction would mess that up.
2562          *
2563          * Subroutine uniforms are not removed.
2564          */
2565         if (var->is_in_buffer_block() || var->type->contains_atomic() ||
2566             var->type->contains_subroutine() || var->constant_initializer)
2567            continue;
2568
2569         int size = var->data.max_array_access;
2570         for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) {
2571               if (prog->_LinkedShaders[j] == NULL)
2572                  continue;
2573
2574            foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) {
2575               ir_variable *other_var = node2->as_variable();
2576               if (!other_var)
2577                  continue;
2578
2579               if (strcmp(var->name, other_var->name) == 0 &&
2580                   other_var->data.max_array_access > size) {
2581                  size = other_var->data.max_array_access;
2582               }
2583            }
2584         }
2585
2586         if (size + 1 != (int)var->type->length) {
2587            /* If this is a built-in uniform (i.e., it's backed by some
2588             * fixed-function state), adjust the number of state slots to
2589             * match the new array size.  The number of slots per array entry
2590             * is not known.  It seems safe to assume that the total number of
2591             * slots is an integer multiple of the number of array elements.
2592             * Determine the number of slots per array element by dividing by
2593             * the old (total) size.
2594             */
2595            const unsigned num_slots = var->get_num_state_slots();
2596            if (num_slots > 0) {
2597               var->set_num_state_slots((size + 1)
2598                                        * (num_slots / var->type->length));
2599            }
2600
2601            var->type = glsl_type::get_array_instance(var->type->fields.array,
2602                                                      size + 1);
2603            types_were_updated = true;
2604         }
2605      }
2606
2607      /* Update the types of dereferences in case we changed any. */
2608      if (types_were_updated) {
2609         deref_type_updater v;
2610         v.run(prog->_LinkedShaders[i]->ir);
2611      }
2612   }
2613}
2614
2615/**
2616 * Resize tessellation evaluation per-vertex inputs to the size of
2617 * tessellation control per-vertex outputs.
2618 */
2619static void
2620resize_tes_inputs(struct gl_context *ctx,
2621                  struct gl_shader_program *prog)
2622{
2623   if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL)
2624      return;
2625
2626   gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL];
2627   gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL];
2628
2629   /* If no control shader is present, then the TES inputs are statically
2630    * sized to MaxPatchVertices; the actual size of the arrays won't be
2631    * known until draw time.
2632    */
2633   const int num_vertices = tcs
2634      ? tcs->Program->info.tess.tcs_vertices_out
2635      : ctx->Const.MaxPatchVertices;
2636
2637   array_resize_visitor input_resize_visitor(num_vertices, prog,
2638                                             MESA_SHADER_TESS_EVAL);
2639   foreach_in_list(ir_instruction, ir, tes->ir) {
2640      ir->accept(&input_resize_visitor);
2641   }
2642
2643   if (tcs) {
2644      /* Convert the gl_PatchVerticesIn system value into a constant, since
2645       * the value is known at this point.
2646       */
2647      foreach_in_list(ir_instruction, ir, tes->ir) {
2648         ir_variable *var = ir->as_variable();
2649         if (var && var->data.mode == ir_var_system_value &&
2650             var->data.location == SYSTEM_VALUE_VERTICES_IN) {
2651            void *mem_ctx = ralloc_parent(var);
2652            var->data.location = 0;
2653            var->data.explicit_location = false;
2654            var->data.mode = ir_var_auto;
2655            var->constant_value = new(mem_ctx) ir_constant(num_vertices);
2656         }
2657      }
2658   }
2659}
2660
2661/**
2662 * Find a contiguous set of available bits in a bitmask.
2663 *
2664 * \param used_mask     Bits representing used (1) and unused (0) locations
2665 * \param needed_count  Number of contiguous bits needed.
2666 *
2667 * \return
2668 * Base location of the available bits on success or -1 on failure.
2669 */
2670static int
2671find_available_slots(unsigned used_mask, unsigned needed_count)
2672{
2673   unsigned needed_mask = (1 << needed_count) - 1;
2674   const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count;
2675
2676   /* The comparison to 32 is redundant, but without it GCC emits "warning:
2677    * cannot optimize possibly infinite loops" for the loop below.
2678    */
2679   if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32))
2680      return -1;
2681
2682   for (int i = 0; i <= max_bit_to_test; i++) {
2683      if ((needed_mask & ~used_mask) == needed_mask)
2684         return i;
2685
2686      needed_mask <<= 1;
2687   }
2688
2689   return -1;
2690}
2691
2692
2693#define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1))
2694
2695/**
2696 * Assign locations for either VS inputs or FS outputs
2697 *
2698 * \param mem_ctx       Temporary ralloc context used for linking
2699 * \param prog          Shader program whose variables need locations assigned
2700 * \param constants     Driver specific constant values for the program.
2701 * \param target_index  Selector for the program target to receive location
2702 *                      assignmnets.  Must be either \c MESA_SHADER_VERTEX or
2703 *                      \c MESA_SHADER_FRAGMENT.
2704 *
2705 * \return
2706 * If locations are successfully assigned, true is returned.  Otherwise an
2707 * error is emitted to the shader link log and false is returned.
2708 */
2709static bool
2710assign_attribute_or_color_locations(void *mem_ctx,
2711                                    gl_shader_program *prog,
2712                                    struct gl_constants *constants,
2713                                    unsigned target_index,
2714                                    bool do_assignment)
2715{
2716   /* Maximum number of generic locations.  This corresponds to either the
2717    * maximum number of draw buffers or the maximum number of generic
2718    * attributes.
2719    */
2720   unsigned max_index = (target_index == MESA_SHADER_VERTEX) ?
2721      constants->Program[target_index].MaxAttribs :
2722      MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers);
2723
2724   /* Mark invalid locations as being used.
2725    */
2726   unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index);
2727   unsigned double_storage_locations = 0;
2728
2729   assert((target_index == MESA_SHADER_VERTEX)
2730          || (target_index == MESA_SHADER_FRAGMENT));
2731
2732   gl_linked_shader *const sh = prog->_LinkedShaders[target_index];
2733   if (sh == NULL)
2734      return true;
2735
2736   /* Operate in a total of four passes.
2737    *
2738    * 1. Invalidate the location assignments for all vertex shader inputs.
2739    *
2740    * 2. Assign locations for inputs that have user-defined (via
2741    *    glBindVertexAttribLocation) locations and outputs that have
2742    *    user-defined locations (via glBindFragDataLocation).
2743    *
2744    * 3. Sort the attributes without assigned locations by number of slots
2745    *    required in decreasing order.  Fragmentation caused by attribute
2746    *    locations assigned by the application may prevent large attributes
2747    *    from having enough contiguous space.
2748    *
2749    * 4. Assign locations to any inputs without assigned locations.
2750    */
2751
2752   const int generic_base = (target_index == MESA_SHADER_VERTEX)
2753      ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0;
2754
2755   const enum ir_variable_mode direction =
2756      (target_index == MESA_SHADER_VERTEX)
2757      ? ir_var_shader_in : ir_var_shader_out;
2758
2759
2760   /* Temporary storage for the set of attributes that need locations assigned.
2761    */
2762   struct temp_attr {
2763      unsigned slots;
2764      ir_variable *var;
2765
2766      /* Used below in the call to qsort. */
2767      static int compare(const void *a, const void *b)
2768      {
2769         const temp_attr *const l = (const temp_attr *) a;
2770         const temp_attr *const r = (const temp_attr *) b;
2771
2772         /* Reversed because we want a descending order sort below. */
2773         return r->slots - l->slots;
2774      }
2775   } to_assign[32];
2776   assert(max_index <= 32);
2777
2778   /* Temporary array for the set of attributes that have locations assigned,
2779    * for the purpose of checking overlapping slots/components of (non-ES)
2780    * fragment shader outputs.
2781    */
2782   ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */
2783   unsigned assigned_attr = 0;
2784
2785   unsigned num_attr = 0;
2786
2787   foreach_in_list(ir_instruction, node, sh->ir) {
2788      ir_variable *const var = node->as_variable();
2789
2790      if ((var == NULL) || (var->data.mode != (unsigned) direction))
2791         continue;
2792
2793      if (var->data.explicit_location) {
2794         var->data.is_unmatched_generic_inout = 0;
2795         if ((var->data.location >= (int)(max_index + generic_base))
2796             || (var->data.location < 0)) {
2797            linker_error(prog,
2798                         "invalid explicit location %d specified for `%s'\n",
2799                         (var->data.location < 0)
2800                         ? var->data.location
2801                         : var->data.location - generic_base,
2802                         var->name);
2803            return false;
2804         }
2805      } else if (target_index == MESA_SHADER_VERTEX) {
2806         unsigned binding;
2807
2808         if (prog->AttributeBindings->get(binding, var->name)) {
2809            assert(binding >= VERT_ATTRIB_GENERIC0);
2810            var->data.location = binding;
2811            var->data.is_unmatched_generic_inout = 0;
2812         }
2813      } else if (target_index == MESA_SHADER_FRAGMENT) {
2814         unsigned binding;
2815         unsigned index;
2816         const char *name = var->name;
2817         const glsl_type *type = var->type;
2818
2819         while (type) {
2820            /* Check if there's a binding for the variable name */
2821            if (prog->FragDataBindings->get(binding, name)) {
2822               assert(binding >= FRAG_RESULT_DATA0);
2823               var->data.location = binding;
2824               var->data.is_unmatched_generic_inout = 0;
2825
2826               if (prog->FragDataIndexBindings->get(index, name)) {
2827                  var->data.index = index;
2828               }
2829               break;
2830            }
2831
2832            /* If not, but it's an array type, look for name[0] */
2833            if (type->is_array()) {
2834               name = ralloc_asprintf(mem_ctx, "%s[0]", name);
2835               type = type->fields.array;
2836               continue;
2837            }
2838
2839            break;
2840         }
2841      }
2842
2843      if (strcmp(var->name, "gl_LastFragData") == 0)
2844         continue;
2845
2846      /* From GL4.5 core spec, section 15.2 (Shader Execution):
2847       *
2848       *     "Output binding assignments will cause LinkProgram to fail:
2849       *     ...
2850       *     If the program has an active output assigned to a location greater
2851       *     than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has
2852       *     an active output assigned an index greater than or equal to one;"
2853       */
2854      if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 &&
2855          var->data.location - generic_base >=
2856          (int) constants->MaxDualSourceDrawBuffers) {
2857         linker_error(prog,
2858                      "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS "
2859                      "with index %u for %s\n",
2860                      var->data.location - generic_base, var->data.index,
2861                      var->name);
2862         return false;
2863      }
2864
2865      const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX);
2866
2867      /* If the variable is not a built-in and has a location statically
2868       * assigned in the shader (presumably via a layout qualifier), make sure
2869       * that it doesn't collide with other assigned locations.  Otherwise,
2870       * add it to the list of variables that need linker-assigned locations.
2871       */
2872      if (var->data.location != -1) {
2873         if (var->data.location >= generic_base && var->data.index < 1) {
2874            /* From page 61 of the OpenGL 4.0 spec:
2875             *
2876             *     "LinkProgram will fail if the attribute bindings assigned
2877             *     by BindAttribLocation do not leave not enough space to
2878             *     assign a location for an active matrix attribute or an
2879             *     active attribute array, both of which require multiple
2880             *     contiguous generic attributes."
2881             *
2882             * I think above text prohibits the aliasing of explicit and
2883             * automatic assignments. But, aliasing is allowed in manual
2884             * assignments of attribute locations. See below comments for
2885             * the details.
2886             *
2887             * From OpenGL 4.0 spec, page 61:
2888             *
2889             *     "It is possible for an application to bind more than one
2890             *     attribute name to the same location. This is referred to as
2891             *     aliasing. This will only work if only one of the aliased
2892             *     attributes is active in the executable program, or if no
2893             *     path through the shader consumes more than one attribute of
2894             *     a set of attributes aliased to the same location. A link
2895             *     error can occur if the linker determines that every path
2896             *     through the shader consumes multiple aliased attributes,
2897             *     but implementations are not required to generate an error
2898             *     in this case."
2899             *
2900             * From GLSL 4.30 spec, page 54:
2901             *
2902             *    "A program will fail to link if any two non-vertex shader
2903             *     input variables are assigned to the same location. For
2904             *     vertex shaders, multiple input variables may be assigned
2905             *     to the same location using either layout qualifiers or via
2906             *     the OpenGL API. However, such aliasing is intended only to
2907             *     support vertex shaders where each execution path accesses
2908             *     at most one input per each location. Implementations are
2909             *     permitted, but not required, to generate link-time errors
2910             *     if they detect that every path through the vertex shader
2911             *     executable accesses multiple inputs assigned to any single
2912             *     location. For all shader types, a program will fail to link
2913             *     if explicit location assignments leave the linker unable
2914             *     to find space for other variables without explicit
2915             *     assignments."
2916             *
2917             * From OpenGL ES 3.0 spec, page 56:
2918             *
2919             *    "Binding more than one attribute name to the same location
2920             *     is referred to as aliasing, and is not permitted in OpenGL
2921             *     ES Shading Language 3.00 vertex shaders. LinkProgram will
2922             *     fail when this condition exists. However, aliasing is
2923             *     possible in OpenGL ES Shading Language 1.00 vertex shaders.
2924             *     This will only work if only one of the aliased attributes
2925             *     is active in the executable program, or if no path through
2926             *     the shader consumes more than one attribute of a set of
2927             *     attributes aliased to the same location. A link error can
2928             *     occur if the linker determines that every path through the
2929             *     shader consumes multiple aliased attributes, but implemen-
2930             *     tations are not required to generate an error in this case."
2931             *
2932             * After looking at above references from OpenGL, OpenGL ES and
2933             * GLSL specifications, we allow aliasing of vertex input variables
2934             * in: OpenGL 2.0 (and above) and OpenGL ES 2.0.
2935             *
2936             * NOTE: This is not required by the spec but its worth mentioning
2937             * here that we're not doing anything to make sure that no path
2938             * through the vertex shader executable accesses multiple inputs
2939             * assigned to any single location.
2940             */
2941
2942            /* Mask representing the contiguous slots that will be used by
2943             * this attribute.
2944             */
2945            const unsigned attr = var->data.location - generic_base;
2946            const unsigned use_mask = (1 << slots) - 1;
2947            const char *const string = (target_index == MESA_SHADER_VERTEX)
2948               ? "vertex shader input" : "fragment shader output";
2949
2950            /* Generate a link error if the requested locations for this
2951             * attribute exceed the maximum allowed attribute location.
2952             */
2953            if (attr + slots > max_index) {
2954               linker_error(prog,
2955                           "insufficient contiguous locations "
2956                           "available for %s `%s' %d %d %d\n", string,
2957                           var->name, used_locations, use_mask, attr);
2958               return false;
2959            }
2960
2961            /* Generate a link error if the set of bits requested for this
2962             * attribute overlaps any previously allocated bits.
2963             */
2964            if ((~(use_mask << attr) & used_locations) != used_locations) {
2965               if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
2966                  /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL
2967                   * 4.40 spec:
2968                   *
2969                   *    "Additionally, for fragment shader outputs, if two
2970                   *    variables are placed within the same location, they
2971                   *    must have the same underlying type (floating-point or
2972                   *    integer). No component aliasing of output variables or
2973                   *    members is allowed.
2974                   */
2975                  for (unsigned i = 0; i < assigned_attr; i++) {
2976                     unsigned assigned_slots =
2977                        assigned[i]->type->count_attribute_slots(false);
2978                     unsigned assig_attr =
2979                        assigned[i]->data.location - generic_base;
2980                     unsigned assigned_use_mask = (1 << assigned_slots) - 1;
2981
2982                     if ((assigned_use_mask << assig_attr) &
2983                         (use_mask << attr)) {
2984
2985                        const glsl_type *assigned_type =
2986                           assigned[i]->type->without_array();
2987                        const glsl_type *type = var->type->without_array();
2988                        if (assigned_type->base_type != type->base_type) {
2989                           linker_error(prog, "types do not match for aliased"
2990                                        " %ss %s and %s\n", string,
2991                                        assigned[i]->name, var->name);
2992                           return false;
2993                        }
2994
2995                        unsigned assigned_component_mask =
2996                           ((1 << assigned_type->vector_elements) - 1) <<
2997                           assigned[i]->data.location_frac;
2998                        unsigned component_mask =
2999                           ((1 << type->vector_elements) - 1) <<
3000                           var->data.location_frac;
3001                        if (assigned_component_mask & component_mask) {
3002                           linker_error(prog, "overlapping component is "
3003                                        "assigned to %ss %s and %s "
3004                                        "(component=%d)\n",
3005                                        string, assigned[i]->name, var->name,
3006                                        var->data.location_frac);
3007                           return false;
3008                        }
3009                     }
3010                  }
3011               } else if (target_index == MESA_SHADER_FRAGMENT ||
3012                          (prog->IsES && prog->data->Version >= 300)) {
3013                  linker_error(prog, "overlapping location is assigned "
3014                               "to %s `%s' %d %d %d\n", string, var->name,
3015                               used_locations, use_mask, attr);
3016                  return false;
3017               } else {
3018                  linker_warning(prog, "overlapping location is assigned "
3019                                 "to %s `%s' %d %d %d\n", string, var->name,
3020                                 used_locations, use_mask, attr);
3021               }
3022            }
3023
3024            if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) {
3025               /* Only track assigned variables for non-ES fragment shaders
3026                * to avoid overflowing the array.
3027                *
3028                * At most one variable per fragment output component should
3029                * reach this.
3030                */
3031               assert(assigned_attr < ARRAY_SIZE(assigned));
3032               assigned[assigned_attr] = var;
3033               assigned_attr++;
3034            }
3035
3036            used_locations |= (use_mask << attr);
3037
3038            /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes):
3039             *
3040             * "A program with more than the value of MAX_VERTEX_ATTRIBS
3041             *  active attribute variables may fail to link, unless
3042             *  device-dependent optimizations are able to make the program
3043             *  fit within available hardware resources. For the purposes
3044             *  of this test, attribute variables of the type dvec3, dvec4,
3045             *  dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may
3046             *  count as consuming twice as many attributes as equivalent
3047             *  single-precision types. While these types use the same number
3048             *  of generic attributes as their single-precision equivalents,
3049             *  implementations are permitted to consume two single-precision
3050             *  vectors of internal storage for each three- or four-component
3051             *  double-precision vector."
3052             *
3053             * Mark this attribute slot as taking up twice as much space
3054             * so we can count it properly against limits.  According to
3055             * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this
3056             * is optional behavior, but it seems preferable.
3057             */
3058            if (var->type->without_array()->is_dual_slot())
3059               double_storage_locations |= (use_mask << attr);
3060         }
3061
3062         continue;
3063      }
3064
3065      if (num_attr >= max_index) {
3066         linker_error(prog, "too many %s (max %u)",
3067                      target_index == MESA_SHADER_VERTEX ?
3068                      "vertex shader inputs" : "fragment shader outputs",
3069                      max_index);
3070         return false;
3071      }
3072      to_assign[num_attr].slots = slots;
3073      to_assign[num_attr].var = var;
3074      num_attr++;
3075   }
3076
3077   if (!do_assignment)
3078      return true;
3079
3080   if (target_index == MESA_SHADER_VERTEX) {
3081      unsigned total_attribs_size =
3082         util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3083         util_bitcount(double_storage_locations);
3084      if (total_attribs_size > max_index) {
3085         linker_error(prog,
3086                      "attempt to use %d vertex attribute slots only %d available ",
3087                      total_attribs_size, max_index);
3088         return false;
3089      }
3090   }
3091
3092   /* If all of the attributes were assigned locations by the application (or
3093    * are built-in attributes with fixed locations), return early.  This should
3094    * be the common case.
3095    */
3096   if (num_attr == 0)
3097      return true;
3098
3099   qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare);
3100
3101   if (target_index == MESA_SHADER_VERTEX) {
3102      /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS.  It can
3103       * only be explicitly assigned by via glBindAttribLocation.  Mark it as
3104       * reserved to prevent it from being automatically allocated below.
3105       */
3106      find_deref_visitor find("gl_Vertex");
3107      find.run(sh->ir);
3108      if (find.variable_found())
3109         used_locations |= (1 << 0);
3110   }
3111
3112   for (unsigned i = 0; i < num_attr; i++) {
3113      /* Mask representing the contiguous slots that will be used by this
3114       * attribute.
3115       */
3116      const unsigned use_mask = (1 << to_assign[i].slots) - 1;
3117
3118      int location = find_available_slots(used_locations, to_assign[i].slots);
3119
3120      if (location < 0) {
3121         const char *const string = (target_index == MESA_SHADER_VERTEX)
3122            ? "vertex shader input" : "fragment shader output";
3123
3124         linker_error(prog,
3125                      "insufficient contiguous locations "
3126                      "available for %s `%s'\n",
3127                      string, to_assign[i].var->name);
3128         return false;
3129      }
3130
3131      to_assign[i].var->data.location = generic_base + location;
3132      to_assign[i].var->data.is_unmatched_generic_inout = 0;
3133      used_locations |= (use_mask << location);
3134
3135      if (to_assign[i].var->type->without_array()->is_dual_slot())
3136         double_storage_locations |= (use_mask << location);
3137   }
3138
3139   /* Now that we have all the locations, from the GL 4.5 core spec, section
3140    * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3,
3141    * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes
3142    * as equivalent single-precision types.
3143    */
3144   if (target_index == MESA_SHADER_VERTEX) {
3145      unsigned total_attribs_size =
3146         util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) +
3147         util_bitcount(double_storage_locations);
3148      if (total_attribs_size > max_index) {
3149         linker_error(prog,
3150                      "attempt to use %d vertex attribute slots only %d available ",
3151                      total_attribs_size, max_index);
3152         return false;
3153      }
3154   }
3155
3156   return true;
3157}
3158
3159/**
3160 * Match explicit locations of outputs to inputs and deactivate the
3161 * unmatch flag if found so we don't optimise them away.
3162 */
3163static void
3164match_explicit_outputs_to_inputs(gl_linked_shader *producer,
3165                                 gl_linked_shader *consumer)
3166{
3167   glsl_symbol_table parameters;
3168   ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] =
3169      { {NULL, NULL} };
3170
3171   /* Find all shader outputs in the "producer" stage.
3172    */
3173   foreach_in_list(ir_instruction, node, producer->ir) {
3174      ir_variable *const var = node->as_variable();
3175
3176      if ((var == NULL) || (var->data.mode != ir_var_shader_out))
3177         continue;
3178
3179      if (var->data.explicit_location &&
3180          var->data.location >= VARYING_SLOT_VAR0) {
3181         const unsigned idx = var->data.location - VARYING_SLOT_VAR0;
3182         if (explicit_locations[idx][var->data.location_frac] == NULL)
3183            explicit_locations[idx][var->data.location_frac] = var;
3184
3185         /* Always match TCS outputs. They are shared by all invocations
3186          * within a patch and can be used as shared memory.
3187          */
3188         if (producer->Stage == MESA_SHADER_TESS_CTRL)
3189            var->data.is_unmatched_generic_inout = 0;
3190      }
3191   }
3192
3193   /* Match inputs to outputs */
3194   foreach_in_list(ir_instruction, node, consumer->ir) {
3195      ir_variable *const input = node->as_variable();
3196
3197      if ((input == NULL) || (input->data.mode != ir_var_shader_in))
3198         continue;
3199
3200      ir_variable *output = NULL;
3201      if (input->data.explicit_location
3202          && input->data.location >= VARYING_SLOT_VAR0) {
3203         output = explicit_locations[input->data.location - VARYING_SLOT_VAR0]
3204            [input->data.location_frac];
3205
3206         if (output != NULL){
3207            input->data.is_unmatched_generic_inout = 0;
3208            output->data.is_unmatched_generic_inout = 0;
3209         }
3210      }
3211   }
3212}
3213
3214/**
3215 * Store the gl_FragDepth layout in the gl_shader_program struct.
3216 */
3217static void
3218store_fragdepth_layout(struct gl_shader_program *prog)
3219{
3220   if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
3221      return;
3222   }
3223
3224   struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir;
3225
3226   /* We don't look up the gl_FragDepth symbol directly because if
3227    * gl_FragDepth is not used in the shader, it's removed from the IR.
3228    * However, the symbol won't be removed from the symbol table.
3229    *
3230    * We're only interested in the cases where the variable is NOT removed
3231    * from the IR.
3232    */
3233   foreach_in_list(ir_instruction, node, ir) {
3234      ir_variable *const var = node->as_variable();
3235
3236      if (var == NULL || var->data.mode != ir_var_shader_out) {
3237         continue;
3238      }
3239
3240      if (strcmp(var->name, "gl_FragDepth") == 0) {
3241         switch (var->data.depth_layout) {
3242         case ir_depth_layout_none:
3243            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
3244            return;
3245         case ir_depth_layout_any:
3246            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
3247            return;
3248         case ir_depth_layout_greater:
3249            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
3250            return;
3251         case ir_depth_layout_less:
3252            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
3253            return;
3254         case ir_depth_layout_unchanged:
3255            prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
3256            return;
3257         default:
3258            assert(0);
3259            return;
3260         }
3261      }
3262   }
3263}
3264
3265/**
3266 * Validate the resources used by a program versus the implementation limits
3267 */
3268static void
3269check_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3270{
3271   unsigned total_uniform_blocks = 0;
3272   unsigned total_shader_storage_blocks = 0;
3273
3274   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3275      struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3276
3277      if (sh == NULL)
3278         continue;
3279
3280      if (sh->Program->info.num_textures >
3281          ctx->Const.Program[i].MaxTextureImageUnits) {
3282         linker_error(prog, "Too many %s shader texture samplers\n",
3283                      _mesa_shader_stage_to_string(i));
3284      }
3285
3286      if (sh->num_uniform_components >
3287          ctx->Const.Program[i].MaxUniformComponents) {
3288         if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3289            linker_warning(prog, "Too many %s shader default uniform block "
3290                           "components, but the driver will try to optimize "
3291                           "them out; this is non-portable out-of-spec "
3292                           "behavior\n",
3293                           _mesa_shader_stage_to_string(i));
3294         } else {
3295            linker_error(prog, "Too many %s shader default uniform block "
3296                         "components\n",
3297                         _mesa_shader_stage_to_string(i));
3298         }
3299      }
3300
3301      if (sh->num_combined_uniform_components >
3302          ctx->Const.Program[i].MaxCombinedUniformComponents) {
3303         if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) {
3304            linker_warning(prog, "Too many %s shader uniform components, "
3305                           "but the driver will try to optimize them out; "
3306                           "this is non-portable out-of-spec behavior\n",
3307                           _mesa_shader_stage_to_string(i));
3308         } else {
3309            linker_error(prog, "Too many %s shader uniform components\n",
3310                         _mesa_shader_stage_to_string(i));
3311         }
3312      }
3313
3314      total_shader_storage_blocks += sh->Program->info.num_ssbos;
3315      total_uniform_blocks += sh->Program->info.num_ubos;
3316
3317      const unsigned max_uniform_blocks =
3318         ctx->Const.Program[i].MaxUniformBlocks;
3319      if (max_uniform_blocks < sh->Program->info.num_ubos) {
3320         linker_error(prog, "Too many %s uniform blocks (%d/%d)\n",
3321                      _mesa_shader_stage_to_string(i),
3322                      sh->Program->info.num_ubos, max_uniform_blocks);
3323      }
3324
3325      const unsigned max_shader_storage_blocks =
3326         ctx->Const.Program[i].MaxShaderStorageBlocks;
3327      if (max_shader_storage_blocks < sh->Program->info.num_ssbos) {
3328         linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n",
3329                      _mesa_shader_stage_to_string(i),
3330                      sh->Program->info.num_ssbos, max_shader_storage_blocks);
3331      }
3332   }
3333
3334   if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) {
3335      linker_error(prog, "Too many combined uniform blocks (%d/%d)\n",
3336                   total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks);
3337   }
3338
3339   if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) {
3340      linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n",
3341                   total_shader_storage_blocks,
3342                   ctx->Const.MaxCombinedShaderStorageBlocks);
3343   }
3344
3345   for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) {
3346      if (prog->data->UniformBlocks[i].UniformBufferSize >
3347          ctx->Const.MaxUniformBlockSize) {
3348         linker_error(prog, "Uniform block %s too big (%d/%d)\n",
3349                      prog->data->UniformBlocks[i].Name,
3350                      prog->data->UniformBlocks[i].UniformBufferSize,
3351                      ctx->Const.MaxUniformBlockSize);
3352      }
3353   }
3354
3355   for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) {
3356      if (prog->data->ShaderStorageBlocks[i].UniformBufferSize >
3357          ctx->Const.MaxShaderStorageBlockSize) {
3358         linker_error(prog, "Shader storage block %s too big (%d/%d)\n",
3359                      prog->data->ShaderStorageBlocks[i].Name,
3360                      prog->data->ShaderStorageBlocks[i].UniformBufferSize,
3361                      ctx->Const.MaxShaderStorageBlockSize);
3362      }
3363   }
3364}
3365
3366static void
3367link_calculate_subroutine_compat(struct gl_shader_program *prog)
3368{
3369   unsigned mask = prog->data->linked_stages;
3370   while (mask) {
3371      const int i = u_bit_scan(&mask);
3372      struct gl_program *p = prog->_LinkedShaders[i]->Program;
3373
3374      for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) {
3375         if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION)
3376            continue;
3377
3378         struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j];
3379
3380         if (!uni)
3381            continue;
3382
3383         int count = 0;
3384         if (p->sh.NumSubroutineFunctions == 0) {
3385            linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name);
3386            continue;
3387         }
3388         for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) {
3389            struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f];
3390            for (int k = 0; k < fn->num_compat_types; k++) {
3391               if (fn->types[k] == uni->type) {
3392                  count++;
3393                  break;
3394               }
3395            }
3396         }
3397         uni->num_compatible_subroutines = count;
3398      }
3399   }
3400}
3401
3402static void
3403check_subroutine_resources(struct gl_shader_program *prog)
3404{
3405   unsigned mask = prog->data->linked_stages;
3406   while (mask) {
3407      const int i = u_bit_scan(&mask);
3408      struct gl_program *p = prog->_LinkedShaders[i]->Program;
3409
3410      if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) {
3411         linker_error(prog, "Too many %s shader subroutine uniforms\n",
3412                      _mesa_shader_stage_to_string(i));
3413      }
3414   }
3415}
3416/**
3417 * Validate shader image resources.
3418 */
3419static void
3420check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog)
3421{
3422   unsigned total_image_units = 0;
3423   unsigned fragment_outputs = 0;
3424   unsigned total_shader_storage_blocks = 0;
3425
3426   if (!ctx->Extensions.ARB_shader_image_load_store)
3427      return;
3428
3429   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3430      struct gl_linked_shader *sh = prog->_LinkedShaders[i];
3431
3432      if (sh) {
3433         if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms)
3434            linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n",
3435                         _mesa_shader_stage_to_string(i),
3436                         sh->Program->info.num_images,
3437                         ctx->Const.Program[i].MaxImageUniforms);
3438
3439         total_image_units += sh->Program->info.num_images;
3440         total_shader_storage_blocks += sh->Program->info.num_ssbos;
3441
3442         if (i == MESA_SHADER_FRAGMENT) {
3443            foreach_in_list(ir_instruction, node, sh->ir) {
3444               ir_variable *var = node->as_variable();
3445               if (var && var->data.mode == ir_var_shader_out)
3446                  /* since there are no double fs outputs - pass false */
3447                  fragment_outputs += var->type->count_attribute_slots(false);
3448            }
3449         }
3450      }
3451   }
3452
3453   if (total_image_units > ctx->Const.MaxCombinedImageUniforms)
3454      linker_error(prog, "Too many combined image uniforms\n");
3455
3456   if (total_image_units + fragment_outputs + total_shader_storage_blocks >
3457       ctx->Const.MaxCombinedShaderOutputResources)
3458      linker_error(prog, "Too many combined image uniforms, shader storage "
3459                         " buffers and fragment outputs\n");
3460}
3461
3462
3463/**
3464 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION
3465 * for a variable, checks for overlaps between other uniforms using explicit
3466 * locations.
3467 */
3468static int
3469reserve_explicit_locations(struct gl_shader_program *prog,
3470                           string_to_uint_map *map, ir_variable *var)
3471{
3472   unsigned slots = var->type->uniform_locations();
3473   unsigned max_loc = var->data.location + slots - 1;
3474   unsigned return_value = slots;
3475
3476   /* Resize remap table if locations do not fit in the current one. */
3477   if (max_loc + 1 > prog->NumUniformRemapTable) {
3478      prog->UniformRemapTable =
3479         reralloc(prog, prog->UniformRemapTable,
3480                  gl_uniform_storage *,
3481                  max_loc + 1);
3482
3483      if (!prog->UniformRemapTable) {
3484         linker_error(prog, "Out of memory during linking.\n");
3485         return -1;
3486      }
3487
3488      /* Initialize allocated space. */
3489      for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++)
3490         prog->UniformRemapTable[i] = NULL;
3491
3492      prog->NumUniformRemapTable = max_loc + 1;
3493   }
3494
3495   for (unsigned i = 0; i < slots; i++) {
3496      unsigned loc = var->data.location + i;
3497
3498      /* Check if location is already used. */
3499      if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3500
3501         /* Possibly same uniform from a different stage, this is ok. */
3502         unsigned hash_loc;
3503         if (map->get(hash_loc, var->name) && hash_loc == loc - i) {
3504            return_value = 0;
3505            continue;
3506         }
3507
3508         /* ARB_explicit_uniform_location specification states:
3509          *
3510          *     "No two default-block uniform variables in the program can have
3511          *     the same location, even if they are unused, otherwise a compiler
3512          *     or linker error will be generated."
3513          */
3514         linker_error(prog,
3515                      "location qualifier for uniform %s overlaps "
3516                      "previously used location\n",
3517                      var->name);
3518         return -1;
3519      }
3520
3521      /* Initialize location as inactive before optimization
3522       * rounds and location assignment.
3523       */
3524      prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3525   }
3526
3527   /* Note, base location used for arrays. */
3528   map->put(var->data.location, var->name);
3529
3530   return return_value;
3531}
3532
3533static bool
3534reserve_subroutine_explicit_locations(struct gl_shader_program *prog,
3535                                      struct gl_program *p,
3536                                      ir_variable *var)
3537{
3538   unsigned slots = var->type->uniform_locations();
3539   unsigned max_loc = var->data.location + slots - 1;
3540
3541   /* Resize remap table if locations do not fit in the current one. */
3542   if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) {
3543      p->sh.SubroutineUniformRemapTable =
3544         reralloc(p, p->sh.SubroutineUniformRemapTable,
3545                  gl_uniform_storage *,
3546                  max_loc + 1);
3547
3548      if (!p->sh.SubroutineUniformRemapTable) {
3549         linker_error(prog, "Out of memory during linking.\n");
3550         return false;
3551      }
3552
3553      /* Initialize allocated space. */
3554      for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++)
3555         p->sh.SubroutineUniformRemapTable[i] = NULL;
3556
3557      p->sh.NumSubroutineUniformRemapTable = max_loc + 1;
3558   }
3559
3560   for (unsigned i = 0; i < slots; i++) {
3561      unsigned loc = var->data.location + i;
3562
3563      /* Check if location is already used. */
3564      if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) {
3565
3566         /* ARB_explicit_uniform_location specification states:
3567          *     "No two subroutine uniform variables can have the same location
3568          *     in the same shader stage, otherwise a compiler or linker error
3569          *     will be generated."
3570          */
3571         linker_error(prog,
3572                      "location qualifier for uniform %s overlaps "
3573                      "previously used location\n",
3574                      var->name);
3575         return false;
3576      }
3577
3578      /* Initialize location as inactive before optimization
3579       * rounds and location assignment.
3580       */
3581      p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION;
3582   }
3583
3584   return true;
3585}
3586/**
3587 * Check and reserve all explicit uniform locations, called before
3588 * any optimizations happen to handle also inactive uniforms and
3589 * inactive array elements that may get trimmed away.
3590 */
3591static void
3592check_explicit_uniform_locations(struct gl_context *ctx,
3593                                 struct gl_shader_program *prog)
3594{
3595   prog->NumExplicitUniformLocations = 0;
3596
3597   if (!ctx->Extensions.ARB_explicit_uniform_location)
3598      return;
3599
3600   /* This map is used to detect if overlapping explicit locations
3601    * occur with the same uniform (from different stage) or a different one.
3602    */
3603   string_to_uint_map *uniform_map = new string_to_uint_map;
3604
3605   if (!uniform_map) {
3606      linker_error(prog, "Out of memory during linking.\n");
3607      return;
3608   }
3609
3610   unsigned entries_total = 0;
3611   unsigned mask = prog->data->linked_stages;
3612   while (mask) {
3613      const int i = u_bit_scan(&mask);
3614      struct gl_program *p = prog->_LinkedShaders[i]->Program;
3615
3616      foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
3617         ir_variable *var = node->as_variable();
3618         if (!var || var->data.mode != ir_var_uniform)
3619            continue;
3620
3621         if (var->data.explicit_location) {
3622            bool ret = false;
3623            if (var->type->without_array()->is_subroutine())
3624               ret = reserve_subroutine_explicit_locations(prog, p, var);
3625            else {
3626               int slots = reserve_explicit_locations(prog, uniform_map,
3627                                                      var);
3628               if (slots != -1) {
3629                  ret = true;
3630                  entries_total += slots;
3631               }
3632            }
3633            if (!ret) {
3634               delete uniform_map;
3635               return;
3636            }
3637         }
3638      }
3639   }
3640
3641   link_util_update_empty_uniform_locations(prog);
3642
3643   delete uniform_map;
3644   prog->NumExplicitUniformLocations = entries_total;
3645}
3646
3647static bool
3648should_add_buffer_variable(struct gl_shader_program *shProg,
3649                           GLenum type, const char *name)
3650{
3651   bool found_interface = false;
3652   unsigned block_name_len = 0;
3653   const char *block_name_dot = strchr(name, '.');
3654
3655   /* These rules only apply to buffer variables. So we return
3656    * true for the rest of types.
3657    */
3658   if (type != GL_BUFFER_VARIABLE)
3659      return true;
3660
3661   for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
3662      const char *block_name = shProg->data->ShaderStorageBlocks[i].Name;
3663      block_name_len = strlen(block_name);
3664
3665      const char *block_square_bracket = strchr(block_name, '[');
3666      if (block_square_bracket) {
3667         /* The block is part of an array of named interfaces,
3668          * for the name comparison we ignore the "[x]" part.
3669          */
3670         block_name_len -= strlen(block_square_bracket);
3671      }
3672
3673      if (block_name_dot) {
3674         /* Check if the variable name starts with the interface
3675          * name. The interface name (if present) should have the
3676          * length than the interface block name we are comparing to.
3677          */
3678         unsigned len = strlen(name) - strlen(block_name_dot);
3679         if (len != block_name_len)
3680            continue;
3681      }
3682
3683      if (strncmp(block_name, name, block_name_len) == 0) {
3684         found_interface = true;
3685         break;
3686      }
3687   }
3688
3689   /* We remove the interface name from the buffer variable name,
3690    * including the dot that follows it.
3691    */
3692   if (found_interface)
3693      name = name + block_name_len + 1;
3694
3695   /* The ARB_program_interface_query spec says:
3696    *
3697    *     "For an active shader storage block member declared as an array, an
3698    *     entry will be generated only for the first array element, regardless
3699    *     of its type.  For arrays of aggregate types, the enumeration rules
3700    *     are applied recursively for the single enumerated array element."
3701    */
3702   const char *struct_first_dot = strchr(name, '.');
3703   const char *first_square_bracket = strchr(name, '[');
3704
3705   /* The buffer variable is on top level and it is not an array */
3706   if (!first_square_bracket) {
3707      return true;
3708   /* The shader storage block member is a struct, then generate the entry */
3709   } else if (struct_first_dot && struct_first_dot < first_square_bracket) {
3710      return true;
3711   } else {
3712      /* Shader storage block member is an array, only generate an entry for the
3713       * first array element.
3714       */
3715      if (strncmp(first_square_bracket, "[0]", 3) == 0)
3716         return true;
3717   }
3718
3719   return false;
3720}
3721
3722/* Function checks if a variable var is a packed varying and
3723 * if given name is part of packed varying's list.
3724 *
3725 * If a variable is a packed varying, it has a name like
3726 * 'packed:a,b,c' where a, b and c are separate variables.
3727 */
3728static bool
3729included_in_packed_varying(ir_variable *var, const char *name)
3730{
3731   if (strncmp(var->name, "packed:", 7) != 0)
3732      return false;
3733
3734   char *list = strdup(var->name + 7);
3735   assert(list);
3736
3737   bool found = false;
3738   char *saveptr;
3739   char *token = strtok_r(list, ",", &saveptr);
3740   while (token) {
3741      if (strcmp(token, name) == 0) {
3742         found = true;
3743         break;
3744      }
3745      token = strtok_r(NULL, ",", &saveptr);
3746   }
3747   free(list);
3748   return found;
3749}
3750
3751/**
3752 * Function builds a stage reference bitmask from variable name.
3753 */
3754static uint8_t
3755build_stageref(struct gl_shader_program *shProg, const char *name,
3756               unsigned mode)
3757{
3758   uint8_t stages = 0;
3759
3760   /* Note, that we assume MAX 8 stages, if there will be more stages, type
3761    * used for reference mask in gl_program_resource will need to be changed.
3762    */
3763   assert(MESA_SHADER_STAGES < 8);
3764
3765   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3766      struct gl_linked_shader *sh = shProg->_LinkedShaders[i];
3767      if (!sh)
3768         continue;
3769
3770      /* Shader symbol table may contain variables that have
3771       * been optimized away. Search IR for the variable instead.
3772       */
3773      foreach_in_list(ir_instruction, node, sh->ir) {
3774         ir_variable *var = node->as_variable();
3775         if (var) {
3776            unsigned baselen = strlen(var->name);
3777
3778            if (included_in_packed_varying(var, name)) {
3779                  stages |= (1 << i);
3780                  break;
3781            }
3782
3783            /* Type needs to match if specified, otherwise we might
3784             * pick a variable with same name but different interface.
3785             */
3786            if (var->data.mode != mode)
3787               continue;
3788
3789            if (strncmp(var->name, name, baselen) == 0) {
3790               /* Check for exact name matches but also check for arrays and
3791                * structs.
3792                */
3793               if (name[baselen] == '\0' ||
3794                   name[baselen] == '[' ||
3795                   name[baselen] == '.') {
3796                  stages |= (1 << i);
3797                  break;
3798               }
3799            }
3800         }
3801      }
3802   }
3803   return stages;
3804}
3805
3806/**
3807 * Create gl_shader_variable from ir_variable class.
3808 */
3809static gl_shader_variable *
3810create_shader_variable(struct gl_shader_program *shProg,
3811                       const ir_variable *in,
3812                       const char *name, const glsl_type *type,
3813                       const glsl_type *interface_type,
3814                       bool use_implicit_location, int location,
3815                       const glsl_type *outermost_struct_type)
3816{
3817   /* Allocate zero-initialized memory to ensure that bitfield padding
3818    * is zero.
3819    */
3820   gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable);
3821   if (!out)
3822      return NULL;
3823
3824   /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications
3825    * expect to see gl_VertexID in the program resource list.  Pretend.
3826    */
3827   if (in->data.mode == ir_var_system_value &&
3828       in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) {
3829      out->name = ralloc_strdup(shProg, "gl_VertexID");
3830   } else if ((in->data.mode == ir_var_shader_out &&
3831               in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) ||
3832              (in->data.mode == ir_var_system_value &&
3833               in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) {
3834      out->name = ralloc_strdup(shProg, "gl_TessLevelOuter");
3835      type = glsl_type::get_array_instance(glsl_type::float_type, 4);
3836   } else if ((in->data.mode == ir_var_shader_out &&
3837               in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) ||
3838              (in->data.mode == ir_var_system_value &&
3839               in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) {
3840      out->name = ralloc_strdup(shProg, "gl_TessLevelInner");
3841      type = glsl_type::get_array_instance(glsl_type::float_type, 2);
3842   } else {
3843      out->name = ralloc_strdup(shProg, name);
3844   }
3845
3846   if (!out->name)
3847      return NULL;
3848
3849   /* The ARB_program_interface_query spec says:
3850    *
3851    *     "Not all active variables are assigned valid locations; the
3852    *     following variables will have an effective location of -1:
3853    *
3854    *      * uniforms declared as atomic counters;
3855    *
3856    *      * members of a uniform block;
3857    *
3858    *      * built-in inputs, outputs, and uniforms (starting with "gl_"); and
3859    *
3860    *      * inputs or outputs not declared with a "location" layout
3861    *        qualifier, except for vertex shader inputs and fragment shader
3862    *        outputs."
3863    */
3864   if (in->type->is_atomic_uint() || is_gl_identifier(in->name) ||
3865       !(in->data.explicit_location || use_implicit_location)) {
3866      out->location = -1;
3867   } else {
3868      out->location = location;
3869   }
3870
3871   out->type = type;
3872   out->outermost_struct_type = outermost_struct_type;
3873   out->interface_type = interface_type;
3874   out->component = in->data.location_frac;
3875   out->index = in->data.index;
3876   out->patch = in->data.patch;
3877   out->mode = in->data.mode;
3878   out->interpolation = in->data.interpolation;
3879   out->explicit_location = in->data.explicit_location;
3880   out->precision = in->data.precision;
3881
3882   return out;
3883}
3884
3885static bool
3886add_shader_variable(const struct gl_context *ctx,
3887                    struct gl_shader_program *shProg,
3888                    struct set *resource_set,
3889                    unsigned stage_mask,
3890                    GLenum programInterface, ir_variable *var,
3891                    const char *name, const glsl_type *type,
3892                    bool use_implicit_location, int location,
3893                    bool inouts_share_location,
3894                    const glsl_type *outermost_struct_type = NULL)
3895{
3896   const glsl_type *interface_type = var->get_interface_type();
3897
3898   if (outermost_struct_type == NULL) {
3899      if (var->data.from_named_ifc_block) {
3900         const char *interface_name = interface_type->name;
3901
3902         if (interface_type->is_array()) {
3903            /* Issue #16 of the ARB_program_interface_query spec says:
3904             *
3905             * "* If a variable is a member of an interface block without an
3906             *    instance name, it is enumerated using just the variable name.
3907             *
3908             *  * If a variable is a member of an interface block with an
3909             *    instance name, it is enumerated as "BlockName.Member", where
3910             *    "BlockName" is the name of the interface block (not the
3911             *    instance name) and "Member" is the name of the variable."
3912             *
3913             * In particular, it indicates that it should be "BlockName",
3914             * not "BlockName[array length]".  The conformance suite and
3915             * dEQP both require this behavior.
3916             *
3917             * Here, we unwrap the extra array level added by named interface
3918             * block array lowering so we have the correct variable type.  We
3919             * also unwrap the interface type when constructing the name.
3920             *
3921             * We leave interface_type the same so that ES 3.x SSO pipeline
3922             * validation can enforce the rules requiring array length to
3923             * match on interface blocks.
3924             */
3925            type = type->fields.array;
3926
3927            interface_name = interface_type->fields.array->name;
3928         }
3929
3930         name = ralloc_asprintf(shProg, "%s.%s", interface_name, name);
3931      }
3932   }
3933
3934   switch (type->base_type) {
3935   case GLSL_TYPE_STRUCT: {
3936      /* The ARB_program_interface_query spec says:
3937       *
3938       *     "For an active variable declared as a structure, a separate entry
3939       *     will be generated for each active structure member.  The name of
3940       *     each entry is formed by concatenating the name of the structure,
3941       *     the "."  character, and the name of the structure member.  If a
3942       *     structure member to enumerate is itself a structure or array,
3943       *     these enumeration rules are applied recursively."
3944       */
3945      if (outermost_struct_type == NULL)
3946         outermost_struct_type = type;
3947
3948      unsigned field_location = location;
3949      for (unsigned i = 0; i < type->length; i++) {
3950         const struct glsl_struct_field *field = &type->fields.structure[i];
3951         char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name);
3952         if (!add_shader_variable(ctx, shProg, resource_set,
3953                                  stage_mask, programInterface,
3954                                  var, field_name, field->type,
3955                                  use_implicit_location, field_location,
3956                                  false, outermost_struct_type))
3957            return false;
3958
3959         field_location += field->type->count_attribute_slots(false);
3960      }
3961      return true;
3962   }
3963
3964   case GLSL_TYPE_ARRAY: {
3965      /* The ARB_program_interface_query spec says:
3966       *
3967       *     "For an active variable declared as an array of basic types, a
3968       *      single entry will be generated, with its name string formed by
3969       *      concatenating the name of the array and the string "[0]"."
3970       *
3971       *     "For an active variable declared as an array of an aggregate data
3972       *      type (structures or arrays), a separate entry will be generated
3973       *      for each active array element, unless noted immediately below.
3974       *      The name of each entry is formed by concatenating the name of
3975       *      the array, the "[" character, an integer identifying the element
3976       *      number, and the "]" character.  These enumeration rules are
3977       *      applied recursively, treating each enumerated array element as a
3978       *      separate active variable."
3979       */
3980      const struct glsl_type *array_type = type->fields.array;
3981      if (array_type->base_type == GLSL_TYPE_STRUCT ||
3982          array_type->base_type == GLSL_TYPE_ARRAY) {
3983         unsigned elem_location = location;
3984         unsigned stride = inouts_share_location ? 0 :
3985                           array_type->count_attribute_slots(false);
3986         for (unsigned i = 0; i < type->length; i++) {
3987            char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i);
3988            if (!add_shader_variable(ctx, shProg, resource_set,
3989                                     stage_mask, programInterface,
3990                                     var, elem, array_type,
3991                                     use_implicit_location, elem_location,
3992                                     false, outermost_struct_type))
3993               return false;
3994            elem_location += stride;
3995         }
3996         return true;
3997      }
3998      /* fallthrough */
3999   }
4000
4001   default: {
4002      /* The ARB_program_interface_query spec says:
4003       *
4004       *     "For an active variable declared as a single instance of a basic
4005       *     type, a single entry will be generated, using the variable name
4006       *     from the shader source."
4007       */
4008      gl_shader_variable *sha_v =
4009         create_shader_variable(shProg, var, name, type, interface_type,
4010                                use_implicit_location, location,
4011                                outermost_struct_type);
4012      if (!sha_v)
4013         return false;
4014
4015      return link_util_add_program_resource(shProg, resource_set,
4016                                            programInterface, sha_v, stage_mask);
4017   }
4018   }
4019}
4020
4021static bool
4022inout_has_same_location(const ir_variable *var, unsigned stage)
4023{
4024   if (!var->data.patch &&
4025       ((var->data.mode == ir_var_shader_out &&
4026         stage == MESA_SHADER_TESS_CTRL) ||
4027        (var->data.mode == ir_var_shader_in &&
4028         (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL ||
4029          stage == MESA_SHADER_GEOMETRY))))
4030      return true;
4031   else
4032      return false;
4033}
4034
4035static bool
4036add_interface_variables(const struct gl_context *ctx,
4037                        struct gl_shader_program *shProg,
4038                        struct set *resource_set,
4039                        unsigned stage, GLenum programInterface)
4040{
4041   exec_list *ir = shProg->_LinkedShaders[stage]->ir;
4042
4043   foreach_in_list(ir_instruction, node, ir) {
4044      ir_variable *var = node->as_variable();
4045
4046      if (!var || var->data.how_declared == ir_var_hidden)
4047         continue;
4048
4049      int loc_bias;
4050
4051      switch (var->data.mode) {
4052      case ir_var_system_value:
4053      case ir_var_shader_in:
4054         if (programInterface != GL_PROGRAM_INPUT)
4055            continue;
4056         loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0)
4057                                                  : int(VARYING_SLOT_VAR0);
4058         break;
4059      case ir_var_shader_out:
4060         if (programInterface != GL_PROGRAM_OUTPUT)
4061            continue;
4062         loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0)
4063                                                    : int(VARYING_SLOT_VAR0);
4064         break;
4065      default:
4066         continue;
4067      };
4068
4069      if (var->data.patch)
4070         loc_bias = int(VARYING_SLOT_PATCH0);
4071
4072      /* Skip packed varyings, packed varyings are handled separately
4073       * by add_packed_varyings.
4074       */
4075      if (strncmp(var->name, "packed:", 7) == 0)
4076         continue;
4077
4078      /* Skip fragdata arrays, these are handled separately
4079       * by add_fragdata_arrays.
4080       */
4081      if (strncmp(var->name, "gl_out_FragData", 15) == 0)
4082         continue;
4083
4084      const bool vs_input_or_fs_output =
4085         (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
4086         (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out);
4087
4088      if (!add_shader_variable(ctx, shProg, resource_set,
4089                               1 << stage, programInterface,
4090                               var, var->name, var->type, vs_input_or_fs_output,
4091                               var->data.location - loc_bias,
4092                               inout_has_same_location(var, stage)))
4093         return false;
4094   }
4095   return true;
4096}
4097
4098static bool
4099add_packed_varyings(const struct gl_context *ctx,
4100                    struct gl_shader_program *shProg,
4101                    struct set *resource_set,
4102                    int stage, GLenum type)
4103{
4104   struct gl_linked_shader *sh = shProg->_LinkedShaders[stage];
4105   GLenum iface;
4106
4107   if (!sh || !sh->packed_varyings)
4108      return true;
4109
4110   foreach_in_list(ir_instruction, node, sh->packed_varyings) {
4111      ir_variable *var = node->as_variable();
4112      if (var) {
4113         switch (var->data.mode) {
4114         case ir_var_shader_in:
4115            iface = GL_PROGRAM_INPUT;
4116            break;
4117         case ir_var_shader_out:
4118            iface = GL_PROGRAM_OUTPUT;
4119            break;
4120         default:
4121            unreachable("unexpected type");
4122         }
4123
4124         if (type == iface) {
4125            const int stage_mask =
4126               build_stageref(shProg, var->name, var->data.mode);
4127            if (!add_shader_variable(ctx, shProg, resource_set,
4128                                     stage_mask,
4129                                     iface, var, var->name, var->type, false,
4130                                     var->data.location - VARYING_SLOT_VAR0,
4131                                     inout_has_same_location(var, stage)))
4132               return false;
4133         }
4134      }
4135   }
4136   return true;
4137}
4138
4139static bool
4140add_fragdata_arrays(const struct gl_context *ctx,
4141                    struct gl_shader_program *shProg,
4142                    struct set *resource_set)
4143{
4144   struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT];
4145
4146   if (!sh || !sh->fragdata_arrays)
4147      return true;
4148
4149   foreach_in_list(ir_instruction, node, sh->fragdata_arrays) {
4150      ir_variable *var = node->as_variable();
4151      if (var) {
4152         assert(var->data.mode == ir_var_shader_out);
4153
4154         if (!add_shader_variable(ctx, shProg, resource_set,
4155                                  1 << MESA_SHADER_FRAGMENT,
4156                                  GL_PROGRAM_OUTPUT, var, var->name, var->type,
4157                                  true, var->data.location - FRAG_RESULT_DATA0,
4158                                  false))
4159            return false;
4160      }
4161   }
4162   return true;
4163}
4164
4165static char*
4166get_top_level_name(const char *name)
4167{
4168   const char *first_dot = strchr(name, '.');
4169   const char *first_square_bracket = strchr(name, '[');
4170   int name_size = 0;
4171
4172   /* The ARB_program_interface_query spec says:
4173    *
4174    *     "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4175    *     the number of active array elements of the top-level shader storage
4176    *     block member containing to the active variable is written to
4177    *     <params>.  If the top-level block member is not declared as an
4178    *     array, the value one is written to <params>.  If the top-level block
4179    *     member is an array with no declared size, the value zero is written
4180    *     to <params>."
4181    */
4182
4183   /* The buffer variable is on top level.*/
4184   if (!first_square_bracket && !first_dot)
4185      name_size = strlen(name);
4186   else if ((!first_square_bracket ||
4187            (first_dot && first_dot < first_square_bracket)))
4188      name_size = first_dot - name;
4189   else
4190      name_size = first_square_bracket - name;
4191
4192   return strndup(name, name_size);
4193}
4194
4195static char*
4196get_var_name(const char *name)
4197{
4198   const char *first_dot = strchr(name, '.');
4199
4200   if (!first_dot)
4201      return strdup(name);
4202
4203   return strndup(first_dot+1, strlen(first_dot) - 1);
4204}
4205
4206static bool
4207is_top_level_shader_storage_block_member(const char* name,
4208                                         const char* interface_name,
4209                                         const char* field_name)
4210{
4211   bool result = false;
4212
4213   /* If the given variable is already a top-level shader storage
4214    * block member, then return array_size = 1.
4215    * We could have two possibilities: if we have an instanced
4216    * shader storage block or not instanced.
4217    *
4218    * For the first, we check create a name as it was in top level and
4219    * compare it with the real name. If they are the same, then
4220    * the variable is already at top-level.
4221    *
4222    * Full instanced name is: interface name + '.' + var name +
4223    *    NULL character
4224    */
4225   int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1;
4226   char *full_instanced_name = (char *) calloc(name_length, sizeof(char));
4227   if (!full_instanced_name) {
4228      fprintf(stderr, "%s: Cannot allocate space for name\n", __func__);
4229      return false;
4230   }
4231
4232   util_snprintf(full_instanced_name, name_length, "%s.%s",
4233                 interface_name, field_name);
4234
4235   /* Check if its top-level shader storage block member of an
4236    * instanced interface block, or of a unnamed interface block.
4237    */
4238   if (strcmp(name, full_instanced_name) == 0 ||
4239       strcmp(name, field_name) == 0)
4240      result = true;
4241
4242   free(full_instanced_name);
4243   return result;
4244}
4245
4246static int
4247get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field,
4248               char *interface_name, char *var_name)
4249{
4250   /* The ARB_program_interface_query spec says:
4251    *
4252    *     "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying
4253    *     the number of active array elements of the top-level shader storage
4254    *     block member containing to the active variable is written to
4255    *     <params>.  If the top-level block member is not declared as an
4256    *     array, the value one is written to <params>.  If the top-level block
4257    *     member is an array with no declared size, the value zero is written
4258    *     to <params>."
4259    */
4260   if (is_top_level_shader_storage_block_member(uni->name,
4261                                                interface_name,
4262                                                var_name))
4263      return  1;
4264   else if (field->type->is_unsized_array())
4265      return 0;
4266   else if (field->type->is_array())
4267      return field->type->length;
4268
4269   return 1;
4270}
4271
4272static int
4273get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni,
4274                 const glsl_type *iface, const glsl_struct_field *field,
4275                 char *interface_name, char *var_name)
4276{
4277   /* The ARB_program_interface_query spec says:
4278    *
4279    *     "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer
4280    *     identifying the stride between array elements of the top-level
4281    *     shader storage block member containing the active variable is
4282    *     written to <params>.  For top-level block members declared as
4283    *     arrays, the value written is the difference, in basic machine units,
4284    *     between the offsets of the active variable for consecutive elements
4285    *     in the top-level array.  For top-level block members not declared as
4286    *     an array, zero is written to <params>."
4287    */
4288   if (field->type->is_array()) {
4289      const enum glsl_matrix_layout matrix_layout =
4290         glsl_matrix_layout(field->matrix_layout);
4291      bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR;
4292      const glsl_type *array_type = field->type->fields.array;
4293
4294      if (is_top_level_shader_storage_block_member(uni->name,
4295                                                   interface_name,
4296                                                   var_name))
4297         return 0;
4298
4299      if (GLSL_INTERFACE_PACKING_STD140 ==
4300          iface->
4301             get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) {
4302         if (array_type->is_record() || array_type->is_array())
4303            return glsl_align(array_type->std140_size(row_major), 16);
4304         else
4305            return MAX2(array_type->std140_base_alignment(row_major), 16);
4306      } else {
4307         return array_type->std430_array_stride(row_major);
4308      }
4309   }
4310   return 0;
4311}
4312
4313static void
4314calculate_array_size_and_stride(struct gl_context *ctx,
4315                                struct gl_shader_program *shProg,
4316                                struct gl_uniform_storage *uni)
4317{
4318   int block_index = uni->block_index;
4319   int array_size = -1;
4320   int array_stride = -1;
4321   char *var_name = get_top_level_name(uni->name);
4322   char *interface_name =
4323      get_top_level_name(uni->is_shader_storage ?
4324                         shProg->data->ShaderStorageBlocks[block_index].Name :
4325                         shProg->data->UniformBlocks[block_index].Name);
4326
4327   if (strcmp(var_name, interface_name) == 0) {
4328      /* Deal with instanced array of SSBOs */
4329      char *temp_name = get_var_name(uni->name);
4330      if (!temp_name) {
4331         linker_error(shProg, "Out of memory during linking.\n");
4332         goto write_top_level_array_size_and_stride;
4333      }
4334      free(var_name);
4335      var_name = get_top_level_name(temp_name);
4336      free(temp_name);
4337      if (!var_name) {
4338         linker_error(shProg, "Out of memory during linking.\n");
4339         goto write_top_level_array_size_and_stride;
4340      }
4341   }
4342
4343   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4344      const gl_linked_shader *sh = shProg->_LinkedShaders[i];
4345      if (sh == NULL)
4346         continue;
4347
4348      foreach_in_list(ir_instruction, node, sh->ir) {
4349         ir_variable *var = node->as_variable();
4350         if (!var || !var->get_interface_type() ||
4351             var->data.mode != ir_var_shader_storage)
4352            continue;
4353
4354         const glsl_type *iface = var->get_interface_type();
4355
4356         if (strcmp(interface_name, iface->name) != 0)
4357            continue;
4358
4359         for (unsigned i = 0; i < iface->length; i++) {
4360            const glsl_struct_field *field = &iface->fields.structure[i];
4361            if (strcmp(field->name, var_name) != 0)
4362               continue;
4363
4364            array_stride = get_array_stride(ctx, uni, iface, field,
4365                                            interface_name, var_name);
4366            array_size = get_array_size(uni, field, interface_name, var_name);
4367            goto write_top_level_array_size_and_stride;
4368         }
4369      }
4370   }
4371write_top_level_array_size_and_stride:
4372   free(interface_name);
4373   free(var_name);
4374   uni->top_level_array_stride = array_stride;
4375   uni->top_level_array_size = array_size;
4376}
4377
4378/**
4379 * Builds up a list of program resources that point to existing
4380 * resource data.
4381 */
4382void
4383build_program_resource_list(struct gl_context *ctx,
4384                            struct gl_shader_program *shProg)
4385{
4386   /* Rebuild resource list. */
4387   if (shProg->data->ProgramResourceList) {
4388      ralloc_free(shProg->data->ProgramResourceList);
4389      shProg->data->ProgramResourceList = NULL;
4390      shProg->data->NumProgramResourceList = 0;
4391   }
4392
4393   int input_stage = MESA_SHADER_STAGES, output_stage = 0;
4394
4395   /* Determine first input and final output stage. These are used to
4396    * detect which variables should be enumerated in the resource list
4397    * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT.
4398    */
4399   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4400      if (!shProg->_LinkedShaders[i])
4401         continue;
4402      if (input_stage == MESA_SHADER_STAGES)
4403         input_stage = i;
4404      output_stage = i;
4405   }
4406
4407   /* Empty shader, no resources. */
4408   if (input_stage == MESA_SHADER_STAGES && output_stage == 0)
4409      return;
4410
4411   struct set *resource_set = _mesa_set_create(NULL,
4412                                               _mesa_hash_pointer,
4413                                               _mesa_key_pointer_equal);
4414
4415   /* Program interface needs to expose varyings in case of SSO. */
4416   if (shProg->SeparateShader) {
4417      if (!add_packed_varyings(ctx, shProg, resource_set,
4418                               input_stage, GL_PROGRAM_INPUT))
4419         return;
4420
4421      if (!add_packed_varyings(ctx, shProg, resource_set,
4422                               output_stage, GL_PROGRAM_OUTPUT))
4423         return;
4424   }
4425
4426   if (!add_fragdata_arrays(ctx, shProg, resource_set))
4427      return;
4428
4429   /* Add inputs and outputs to the resource list. */
4430   if (!add_interface_variables(ctx, shProg, resource_set,
4431                                input_stage, GL_PROGRAM_INPUT))
4432      return;
4433
4434   if (!add_interface_variables(ctx, shProg, resource_set,
4435                                output_stage, GL_PROGRAM_OUTPUT))
4436      return;
4437
4438   if (shProg->last_vert_prog) {
4439      struct gl_transform_feedback_info *linked_xfb =
4440         shProg->last_vert_prog->sh.LinkedTransformFeedback;
4441
4442      /* Add transform feedback varyings. */
4443      if (linked_xfb->NumVarying > 0) {
4444         for (int i = 0; i < linked_xfb->NumVarying; i++) {
4445            if (!link_util_add_program_resource(shProg, resource_set,
4446                                                GL_TRANSFORM_FEEDBACK_VARYING,
4447                                                &linked_xfb->Varyings[i], 0))
4448            return;
4449         }
4450      }
4451
4452      /* Add transform feedback buffers. */
4453      for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) {
4454         if ((linked_xfb->ActiveBuffers >> i) & 1) {
4455            linked_xfb->Buffers[i].Binding = i;
4456            if (!link_util_add_program_resource(shProg, resource_set,
4457                                                GL_TRANSFORM_FEEDBACK_BUFFER,
4458                                                &linked_xfb->Buffers[i], 0))
4459            return;
4460         }
4461      }
4462   }
4463
4464   /* Add uniforms from uniform storage. */
4465   for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4466      /* Do not add uniforms internally used by Mesa. */
4467      if (shProg->data->UniformStorage[i].hidden)
4468         continue;
4469
4470      uint8_t stageref =
4471         build_stageref(shProg, shProg->data->UniformStorage[i].name,
4472                        ir_var_uniform);
4473
4474      /* Add stagereferences for uniforms in a uniform block. */
4475      bool is_shader_storage =
4476        shProg->data->UniformStorage[i].is_shader_storage;
4477      int block_index = shProg->data->UniformStorage[i].block_index;
4478      if (block_index != -1) {
4479         stageref |= is_shader_storage ?
4480            shProg->data->ShaderStorageBlocks[block_index].stageref :
4481            shProg->data->UniformBlocks[block_index].stageref;
4482      }
4483
4484      GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM;
4485      if (!should_add_buffer_variable(shProg, type,
4486                                      shProg->data->UniformStorage[i].name))
4487         continue;
4488
4489      if (is_shader_storage) {
4490         calculate_array_size_and_stride(ctx, shProg,
4491                                         &shProg->data->UniformStorage[i]);
4492      }
4493
4494      if (!link_util_add_program_resource(shProg, resource_set, type,
4495                                          &shProg->data->UniformStorage[i], stageref))
4496         return;
4497   }
4498
4499   /* Add program uniform blocks. */
4500   for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) {
4501      if (!link_util_add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK,
4502                                          &shProg->data->UniformBlocks[i], 0))
4503         return;
4504   }
4505
4506   /* Add program shader storage blocks. */
4507   for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) {
4508      if (!link_util_add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK,
4509                                          &shProg->data->ShaderStorageBlocks[i], 0))
4510         return;
4511   }
4512
4513   /* Add atomic counter buffers. */
4514   for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) {
4515      if (!link_util_add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER,
4516                                          &shProg->data->AtomicBuffers[i], 0))
4517         return;
4518   }
4519
4520   for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) {
4521      GLenum type;
4522      if (!shProg->data->UniformStorage[i].hidden)
4523         continue;
4524
4525      for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) {
4526         if (!shProg->data->UniformStorage[i].opaque[j].active ||
4527             !shProg->data->UniformStorage[i].type->is_subroutine())
4528            continue;
4529
4530         type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j);
4531         /* add shader subroutines */
4532         if (!link_util_add_program_resource(shProg, resource_set,
4533                                             type, &shProg->data->UniformStorage[i], 0))
4534            return;
4535      }
4536   }
4537
4538   unsigned mask = shProg->data->linked_stages;
4539   while (mask) {
4540      const int i = u_bit_scan(&mask);
4541      struct gl_program *p = shProg->_LinkedShaders[i]->Program;
4542
4543      GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i);
4544      for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4545         if (!link_util_add_program_resource(shProg, resource_set,
4546                                             type, &p->sh.SubroutineFunctions[j], 0))
4547            return;
4548      }
4549   }
4550
4551   _mesa_set_destroy(resource_set, NULL);
4552}
4553
4554/**
4555 * This check is done to make sure we allow only constant expression
4556 * indexing and "constant-index-expression" (indexing with an expression
4557 * that includes loop induction variable).
4558 */
4559static bool
4560validate_sampler_array_indexing(struct gl_context *ctx,
4561                                struct gl_shader_program *prog)
4562{
4563   dynamic_sampler_array_indexing_visitor v;
4564   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4565      if (prog->_LinkedShaders[i] == NULL)
4566         continue;
4567
4568      bool no_dynamic_indexing =
4569         ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler;
4570
4571      /* Search for array derefs in shader. */
4572      v.run(prog->_LinkedShaders[i]->ir);
4573      if (v.uses_dynamic_sampler_array_indexing()) {
4574         const char *msg = "sampler arrays indexed with non-constant "
4575                           "expressions is forbidden in GLSL %s %u";
4576         /* Backend has indicated that it has no dynamic indexing support. */
4577         if (no_dynamic_indexing) {
4578            linker_error(prog, msg, prog->IsES ? "ES" : "",
4579                         prog->data->Version);
4580            return false;
4581         } else {
4582            linker_warning(prog, msg, prog->IsES ? "ES" : "",
4583                           prog->data->Version);
4584         }
4585      }
4586   }
4587   return true;
4588}
4589
4590static void
4591link_assign_subroutine_types(struct gl_shader_program *prog)
4592{
4593   unsigned mask = prog->data->linked_stages;
4594   while (mask) {
4595      const int i = u_bit_scan(&mask);
4596      gl_program *p = prog->_LinkedShaders[i]->Program;
4597
4598      p->sh.MaxSubroutineFunctionIndex = 0;
4599      foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) {
4600         ir_function *fn = node->as_function();
4601         if (!fn)
4602            continue;
4603
4604         if (fn->is_subroutine)
4605            p->sh.NumSubroutineUniformTypes++;
4606
4607         if (!fn->num_subroutine_types)
4608            continue;
4609
4610         /* these should have been calculated earlier. */
4611         assert(fn->subroutine_index != -1);
4612         if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) {
4613            linker_error(prog, "Too many subroutine functions declared.\n");
4614            return;
4615         }
4616         p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions,
4617                                            struct gl_subroutine_function,
4618                                            p->sh.NumSubroutineFunctions + 1);
4619         p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name);
4620         p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types;
4621         p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types =
4622            ralloc_array(p, const struct glsl_type *,
4623                         fn->num_subroutine_types);
4624
4625         /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the
4626          * GLSL 4.5 spec:
4627          *
4628          *    "Each subroutine with an index qualifier in the shader must be
4629          *    given a unique index, otherwise a compile or link error will be
4630          *    generated."
4631          */
4632         for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4633            if (p->sh.SubroutineFunctions[j].index != -1 &&
4634                p->sh.SubroutineFunctions[j].index == fn->subroutine_index) {
4635               linker_error(prog, "each subroutine index qualifier in the "
4636                            "shader must be unique\n");
4637               return;
4638            }
4639         }
4640         p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index =
4641            fn->subroutine_index;
4642
4643         if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex)
4644            p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index;
4645
4646         for (int j = 0; j < fn->num_subroutine_types; j++)
4647            p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j];
4648         p->sh.NumSubroutineFunctions++;
4649      }
4650   }
4651}
4652
4653static void
4654verify_subroutine_associated_funcs(struct gl_shader_program *prog)
4655{
4656   unsigned mask = prog->data->linked_stages;
4657   while (mask) {
4658      const int i = u_bit_scan(&mask);
4659      gl_program *p = prog->_LinkedShaders[i]->Program;
4660      glsl_symbol_table *symbols = prog->_LinkedShaders[i]->symbols;
4661
4662      /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
4663       *
4664       *   "A program will fail to compile or link if any shader
4665       *    or stage contains two or more functions with the same
4666       *    name if the name is associated with a subroutine type."
4667       */
4668      for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) {
4669         unsigned definitions = 0;
4670         char *name = p->sh.SubroutineFunctions[j].name;
4671         ir_function *fn = symbols->get_function(name);
4672
4673         /* Calculate number of function definitions with the same name */
4674         foreach_in_list(ir_function_signature, sig, &fn->signatures) {
4675            if (sig->is_defined) {
4676               if (++definitions > 1) {
4677                  linker_error(prog, "%s shader contains two or more function "
4678                               "definitions with name `%s', which is "
4679                               "associated with a subroutine type.\n",
4680                               _mesa_shader_stage_to_string(i),
4681                               fn->name);
4682                  return;
4683               }
4684            }
4685         }
4686      }
4687   }
4688}
4689
4690
4691static void
4692set_always_active_io(exec_list *ir, ir_variable_mode io_mode)
4693{
4694   assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out);
4695
4696   foreach_in_list(ir_instruction, node, ir) {
4697      ir_variable *const var = node->as_variable();
4698
4699      if (var == NULL || var->data.mode != io_mode)
4700         continue;
4701
4702      /* Don't set always active on builtins that haven't been redeclared */
4703      if (var->data.how_declared == ir_var_declared_implicitly)
4704         continue;
4705
4706      var->data.always_active_io = true;
4707   }
4708}
4709
4710/**
4711 * When separate shader programs are enabled, only input/outputs between
4712 * the stages of a multi-stage separate program can be safely removed
4713 * from the shader interface. Other inputs/outputs must remain active.
4714 */
4715static void
4716disable_varying_optimizations_for_sso(struct gl_shader_program *prog)
4717{
4718   unsigned first, last;
4719   assert(prog->SeparateShader);
4720
4721   first = MESA_SHADER_STAGES;
4722   last = 0;
4723
4724   /* Determine first and last stage. Excluding the compute stage */
4725   for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) {
4726      if (!prog->_LinkedShaders[i])
4727         continue;
4728      if (first == MESA_SHADER_STAGES)
4729         first = i;
4730      last = i;
4731   }
4732
4733   if (first == MESA_SHADER_STAGES)
4734      return;
4735
4736   for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) {
4737      gl_linked_shader *sh = prog->_LinkedShaders[stage];
4738      if (!sh)
4739         continue;
4740
4741      /* Prevent the removal of inputs to the first and outputs from the last
4742       * stage, unless they are the initial pipeline inputs or final pipeline
4743       * outputs, respectively.
4744       *
4745       * The removal of IO between shaders in the same program is always
4746       * allowed.
4747       */
4748      if (stage == first && stage != MESA_SHADER_VERTEX)
4749         set_always_active_io(sh->ir, ir_var_shader_in);
4750      if (stage == last && stage != MESA_SHADER_FRAGMENT)
4751         set_always_active_io(sh->ir, ir_var_shader_out);
4752   }
4753}
4754
4755static void
4756link_and_validate_uniforms(struct gl_context *ctx,
4757                           struct gl_shader_program *prog)
4758{
4759   update_array_sizes(prog);
4760   link_assign_uniform_locations(prog, ctx);
4761
4762   link_assign_atomic_counter_resources(ctx, prog);
4763   link_calculate_subroutine_compat(prog);
4764   check_resources(ctx, prog);
4765   check_subroutine_resources(prog);
4766   check_image_resources(ctx, prog);
4767   link_check_atomic_counter_resources(ctx, prog);
4768}
4769
4770static bool
4771link_varyings_and_uniforms(unsigned first, unsigned last,
4772                           struct gl_context *ctx,
4773                           struct gl_shader_program *prog, void *mem_ctx)
4774{
4775   /* Mark all generic shader inputs and outputs as unpaired. */
4776   for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) {
4777      if (prog->_LinkedShaders[i] != NULL) {
4778         link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir);
4779      }
4780   }
4781
4782   unsigned prev = first;
4783   for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
4784      if (prog->_LinkedShaders[i] == NULL)
4785         continue;
4786
4787      match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev],
4788                                       prog->_LinkedShaders[i]);
4789      prev = i;
4790   }
4791
4792   if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4793                                            MESA_SHADER_VERTEX, true)) {
4794      return false;
4795   }
4796
4797   if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
4798                                            MESA_SHADER_FRAGMENT, true)) {
4799      return false;
4800   }
4801
4802   prog->last_vert_prog = NULL;
4803   for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) {
4804      if (prog->_LinkedShaders[i] == NULL)
4805         continue;
4806
4807      prog->last_vert_prog = prog->_LinkedShaders[i]->Program;
4808      break;
4809   }
4810
4811   if (!link_varyings(prog, first, last, ctx, mem_ctx))
4812      return false;
4813
4814   link_and_validate_uniforms(ctx, prog);
4815
4816   if (!prog->data->LinkStatus)
4817      return false;
4818
4819   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
4820      if (prog->_LinkedShaders[i] == NULL)
4821         continue;
4822
4823      const struct gl_shader_compiler_options *options =
4824         &ctx->Const.ShaderCompilerOptions[i];
4825
4826      if (options->LowerBufferInterfaceBlocks)
4827         lower_ubo_reference(prog->_LinkedShaders[i],
4828                             options->ClampBlockIndicesToArrayBounds,
4829                             ctx->Const.UseSTD430AsDefaultPacking);
4830
4831      if (i == MESA_SHADER_COMPUTE)
4832         lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]);
4833
4834      lower_vector_derefs(prog->_LinkedShaders[i]);
4835      do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir);
4836   }
4837
4838   return true;
4839}
4840
4841static void
4842linker_optimisation_loop(struct gl_context *ctx, exec_list *ir,
4843                         unsigned stage)
4844{
4845      if (ctx->Const.GLSLOptimizeConservatively) {
4846         /* Run it just once. */
4847         do_common_optimization(ir, true, false,
4848                                &ctx->Const.ShaderCompilerOptions[stage],
4849                                ctx->Const.NativeIntegers);
4850      } else {
4851         /* Repeat it until it stops making changes. */
4852         while (do_common_optimization(ir, true, false,
4853                                       &ctx->Const.ShaderCompilerOptions[stage],
4854                                       ctx->Const.NativeIntegers))
4855            ;
4856      }
4857}
4858
4859void
4860link_shaders(struct gl_context *ctx, struct gl_shader_program *prog)
4861{
4862   prog->data->LinkStatus = LINKING_SUCCESS; /* All error paths will set this to false */
4863   prog->data->Validated = false;
4864
4865   /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says:
4866    *
4867    *     "Linking can fail for a variety of reasons as specified in the
4868    *     OpenGL Shading Language Specification, as well as any of the
4869    *     following reasons:
4870    *
4871    *     - No shader objects are attached to program."
4872    *
4873    * The Compatibility Profile specification does not list the error.  In
4874    * Compatibility Profile missing shader stages are replaced by
4875    * fixed-function.  This applies to the case where all stages are
4876    * missing.
4877    */
4878   if (prog->NumShaders == 0) {
4879      if (ctx->API != API_OPENGL_COMPAT)
4880         linker_error(prog, "no shaders attached to the program\n");
4881      return;
4882   }
4883
4884#ifdef ENABLE_SHADER_CACHE
4885   if (shader_cache_read_program_metadata(ctx, prog))
4886      return;
4887#endif
4888
4889   void *mem_ctx = ralloc_context(NULL); // temporary linker context
4890
4891   prog->ARB_fragment_coord_conventions_enable = false;
4892
4893   /* Separate the shaders into groups based on their type.
4894    */
4895   struct gl_shader **shader_list[MESA_SHADER_STAGES];
4896   unsigned num_shaders[MESA_SHADER_STAGES];
4897
4898   for (int i = 0; i < MESA_SHADER_STAGES; i++) {
4899      shader_list[i] = (struct gl_shader **)
4900         calloc(prog->NumShaders, sizeof(struct gl_shader *));
4901      num_shaders[i] = 0;
4902   }
4903
4904   unsigned min_version = UINT_MAX;
4905   unsigned max_version = 0;
4906   for (unsigned i = 0; i < prog->NumShaders; i++) {
4907      min_version = MIN2(min_version, prog->Shaders[i]->Version);
4908      max_version = MAX2(max_version, prog->Shaders[i]->Version);
4909
4910      if (!ctx->Const.AllowGLSLRelaxedES &&
4911          prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) {
4912         linker_error(prog, "all shaders must use same shading "
4913                      "language version\n");
4914         goto done;
4915      }
4916
4917      if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) {
4918         prog->ARB_fragment_coord_conventions_enable = true;
4919      }
4920
4921      gl_shader_stage shader_type = prog->Shaders[i]->Stage;
4922      shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i];
4923      num_shaders[shader_type]++;
4924   }
4925
4926   /* In desktop GLSL, different shader versions may be linked together.  In
4927    * GLSL ES, all shader versions must be the same.
4928    */
4929   if (!ctx->Const.AllowGLSLRelaxedES && prog->Shaders[0]->IsES &&
4930       min_version != max_version) {
4931      linker_error(prog, "all shaders must use same shading "
4932                   "language version\n");
4933      goto done;
4934   }
4935
4936   prog->data->Version = max_version;
4937   prog->IsES = prog->Shaders[0]->IsES;
4938
4939   /* Some shaders have to be linked with some other shaders present.
4940    */
4941   if (!prog->SeparateShader) {
4942      if (num_shaders[MESA_SHADER_GEOMETRY] > 0 &&
4943          num_shaders[MESA_SHADER_VERTEX] == 0) {
4944         linker_error(prog, "Geometry shader must be linked with "
4945                      "vertex shader\n");
4946         goto done;
4947      }
4948      if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4949          num_shaders[MESA_SHADER_VERTEX] == 0) {
4950         linker_error(prog, "Tessellation evaluation shader must be linked "
4951                      "with vertex shader\n");
4952         goto done;
4953      }
4954      if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4955          num_shaders[MESA_SHADER_VERTEX] == 0) {
4956         linker_error(prog, "Tessellation control shader must be linked with "
4957                      "vertex shader\n");
4958         goto done;
4959      }
4960
4961      /* Section 7.3 of the OpenGL ES 3.2 specification says:
4962       *
4963       *    "Linking can fail for [...] any of the following reasons:
4964       *
4965       *     * program contains an object to form a tessellation control
4966       *       shader [...] and [...] the program is not separable and
4967       *       contains no object to form a tessellation evaluation shader"
4968       *
4969       * The OpenGL spec is contradictory. It allows linking without a tess
4970       * eval shader, but that can only be used with transform feedback and
4971       * rasterization disabled. However, transform feedback isn't allowed
4972       * with GL_PATCHES, so it can't be used.
4973       *
4974       * More investigation showed that the idea of transform feedback after
4975       * a tess control shader was dropped, because some hw vendors couldn't
4976       * support tessellation without a tess eval shader, but the linker
4977       * section wasn't updated to reflect that.
4978       *
4979       * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this
4980       * spec bug.
4981       *
4982       * Do what's reasonable and always require a tess eval shader if a tess
4983       * control shader is present.
4984       */
4985      if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 &&
4986          num_shaders[MESA_SHADER_TESS_EVAL] == 0) {
4987         linker_error(prog, "Tessellation control shader must be linked with "
4988                      "tessellation evaluation shader\n");
4989         goto done;
4990      }
4991
4992      if (prog->IsES) {
4993         if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 &&
4994             num_shaders[MESA_SHADER_TESS_CTRL] == 0) {
4995            linker_error(prog, "GLSL ES requires non-separable programs "
4996                         "containing a tessellation evaluation shader to also "
4997                         "be linked with a tessellation control shader\n");
4998            goto done;
4999         }
5000      }
5001   }
5002
5003   /* Compute shaders have additional restrictions. */
5004   if (num_shaders[MESA_SHADER_COMPUTE] > 0 &&
5005       num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) {
5006      linker_error(prog, "Compute shaders may not be linked with any other "
5007                   "type of shader\n");
5008   }
5009
5010   /* Link all shaders for a particular stage and validate the result.
5011    */
5012   for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5013      if (num_shaders[stage] > 0) {
5014         gl_linked_shader *const sh =
5015            link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage],
5016                                    num_shaders[stage], false);
5017
5018         if (!prog->data->LinkStatus) {
5019            if (sh)
5020               _mesa_delete_linked_shader(ctx, sh);
5021            goto done;
5022         }
5023
5024         switch (stage) {
5025         case MESA_SHADER_VERTEX:
5026            validate_vertex_shader_executable(prog, sh, ctx);
5027            break;
5028         case MESA_SHADER_TESS_CTRL:
5029            /* nothing to be done */
5030            break;
5031         case MESA_SHADER_TESS_EVAL:
5032            validate_tess_eval_shader_executable(prog, sh, ctx);
5033            break;
5034         case MESA_SHADER_GEOMETRY:
5035            validate_geometry_shader_executable(prog, sh, ctx);
5036            break;
5037         case MESA_SHADER_FRAGMENT:
5038            validate_fragment_shader_executable(prog, sh);
5039            break;
5040         }
5041         if (!prog->data->LinkStatus) {
5042            if (sh)
5043               _mesa_delete_linked_shader(ctx, sh);
5044            goto done;
5045         }
5046
5047         prog->_LinkedShaders[stage] = sh;
5048         prog->data->linked_stages |= 1 << stage;
5049      }
5050   }
5051
5052   /* Here begins the inter-stage linking phase.  Some initial validation is
5053    * performed, then locations are assigned for uniforms, attributes, and
5054    * varyings.
5055    */
5056   cross_validate_uniforms(ctx, prog);
5057   if (!prog->data->LinkStatus)
5058      goto done;
5059
5060   unsigned first, last, prev;
5061
5062   first = MESA_SHADER_STAGES;
5063   last = 0;
5064
5065   /* Determine first and last stage. */
5066   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5067      if (!prog->_LinkedShaders[i])
5068         continue;
5069      if (first == MESA_SHADER_STAGES)
5070         first = i;
5071      last = i;
5072   }
5073
5074   check_explicit_uniform_locations(ctx, prog);
5075   link_assign_subroutine_types(prog);
5076   verify_subroutine_associated_funcs(prog);
5077
5078   if (!prog->data->LinkStatus)
5079      goto done;
5080
5081   resize_tes_inputs(ctx, prog);
5082
5083   /* Validate the inputs of each stage with the output of the preceding
5084    * stage.
5085    */
5086   prev = first;
5087   for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) {
5088      if (prog->_LinkedShaders[i] == NULL)
5089         continue;
5090
5091      validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev],
5092                                       prog->_LinkedShaders[i]);
5093      if (!prog->data->LinkStatus)
5094         goto done;
5095
5096      cross_validate_outputs_to_inputs(ctx, prog,
5097                                       prog->_LinkedShaders[prev],
5098                                       prog->_LinkedShaders[i]);
5099      if (!prog->data->LinkStatus)
5100         goto done;
5101
5102      prev = i;
5103   }
5104
5105   /* The cross validation of outputs/inputs above validates explicit locations
5106    * but for SSO programs we need to do this also for the inputs in the
5107    * first stage and outputs of the last stage included in the program, since
5108    * there is no cross validation for these.
5109    */
5110   if (prog->SeparateShader)
5111      validate_sso_explicit_locations(ctx, prog,
5112                                      (gl_shader_stage) first,
5113                                      (gl_shader_stage) last);
5114
5115   /* Cross-validate uniform blocks between shader stages */
5116   validate_interstage_uniform_blocks(prog, prog->_LinkedShaders);
5117   if (!prog->data->LinkStatus)
5118      goto done;
5119
5120   for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) {
5121      if (prog->_LinkedShaders[i] != NULL)
5122         lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]);
5123   }
5124
5125   if (prog->IsES && prog->data->Version == 100)
5126      if (!validate_invariant_builtins(prog,
5127            prog->_LinkedShaders[MESA_SHADER_VERTEX],
5128            prog->_LinkedShaders[MESA_SHADER_FRAGMENT]))
5129         goto done;
5130
5131   /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do
5132    * it before optimization because we want most of the checks to get
5133    * dropped thanks to constant propagation.
5134    *
5135    * This rule also applies to GLSL ES 3.00.
5136    */
5137   if (max_version >= (prog->IsES ? 300 : 130)) {
5138      struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
5139      if (sh) {
5140         lower_discard_flow(sh->ir);
5141      }
5142   }
5143
5144   if (prog->SeparateShader)
5145      disable_varying_optimizations_for_sso(prog);
5146
5147   /* Process UBOs */
5148   if (!interstage_cross_validate_uniform_blocks(prog, false))
5149      goto done;
5150
5151   /* Process SSBOs */
5152   if (!interstage_cross_validate_uniform_blocks(prog, true))
5153      goto done;
5154
5155   /* Do common optimization before assigning storage for attributes,
5156    * uniforms, and varyings.  Later optimization could possibly make
5157    * some of that unused.
5158    */
5159   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5160      if (prog->_LinkedShaders[i] == NULL)
5161         continue;
5162
5163      detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir);
5164      if (!prog->data->LinkStatus)
5165         goto done;
5166
5167      if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) {
5168         lower_clip_cull_distance(prog, prog->_LinkedShaders[i]);
5169      }
5170
5171      if (ctx->Const.LowerTessLevel) {
5172         lower_tess_level(prog->_LinkedShaders[i]);
5173      }
5174
5175      /* Section 13.46 (Vertex Attribute Aliasing) of the OpenGL ES 3.2
5176       * specification says:
5177       *
5178       *    "In general, the behavior of GLSL ES should not depend on compiler
5179       *    optimizations which might be implementation-dependent. Name matching
5180       *    rules in most languages, including C++ from which GLSL ES is derived,
5181       *    are based on declarations rather than use.
5182       *
5183       *    RESOLUTION: The existence of aliasing is determined by declarations
5184       *    present after preprocessing."
5185       *
5186       * Because of this rule, we do a 'dry-run' of attribute assignment for
5187       * vertex shader inputs here.
5188       */
5189      if (prog->IsES && i == MESA_SHADER_VERTEX) {
5190         if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const,
5191                                                  MESA_SHADER_VERTEX, false)) {
5192            goto done;
5193         }
5194      }
5195
5196      /* Call opts before lowering const arrays to uniforms so we can const
5197       * propagate any elements accessed directly.
5198       */
5199      linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5200
5201      /* Call opts after lowering const arrays to copy propagate things. */
5202      if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i))
5203         linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i);
5204
5205      propagate_invariance(prog->_LinkedShaders[i]->ir);
5206   }
5207
5208   /* Validation for special cases where we allow sampler array indexing
5209    * with loop induction variable. This check emits a warning or error
5210    * depending if backend can handle dynamic indexing.
5211    */
5212   if ((!prog->IsES && prog->data->Version < 130) ||
5213       (prog->IsES && prog->data->Version < 300)) {
5214      if (!validate_sampler_array_indexing(ctx, prog))
5215         goto done;
5216   }
5217
5218   /* Check and validate stream emissions in geometry shaders */
5219   validate_geometry_shader_emissions(ctx, prog);
5220
5221   store_fragdepth_layout(prog);
5222
5223   if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx))
5224      goto done;
5225
5226   /* Linking varyings can cause some extra, useless swizzles to be generated
5227    * due to packing and unpacking.
5228    */
5229   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5230      if (prog->_LinkedShaders[i] == NULL)
5231         continue;
5232
5233      optimize_swizzles(prog->_LinkedShaders[i]->ir);
5234   }
5235
5236   /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both
5237    * be present in a linked program. GL_ARB_ES2_compatibility doesn't say
5238    * anything about shader linking when one of the shaders (vertex or
5239    * fragment shader) is absent. So, the extension shouldn't change the
5240    * behavior specified in GLSL specification.
5241    *
5242    * From OpenGL ES 3.1 specification (7.3 Program Objects):
5243    *     "Linking can fail for a variety of reasons as specified in the
5244    *     OpenGL ES Shading Language Specification, as well as any of the
5245    *     following reasons:
5246    *
5247    *     ...
5248    *
5249    *     * program contains objects to form either a vertex shader or
5250    *       fragment shader, and program is not separable, and does not
5251    *       contain objects to form both a vertex shader and fragment
5252    *       shader."
5253    *
5254    * However, the only scenario in 3.1+ where we don't require them both is
5255    * when we have a compute shader. For example:
5256    *
5257    * - No shaders is a link error.
5258    * - Geom or Tess without a Vertex shader is a link error which means we
5259    *   always require a Vertex shader and hence a Fragment shader.
5260    * - Finally a Compute shader linked with any other stage is a link error.
5261    */
5262   if (!prog->SeparateShader && ctx->API == API_OPENGLES2 &&
5263       num_shaders[MESA_SHADER_COMPUTE] == 0) {
5264      if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) {
5265         linker_error(prog, "program lacks a vertex shader\n");
5266      } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) {
5267         linker_error(prog, "program lacks a fragment shader\n");
5268      }
5269   }
5270
5271done:
5272   for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5273      free(shader_list[i]);
5274      if (prog->_LinkedShaders[i] == NULL)
5275         continue;
5276
5277      /* Do a final validation step to make sure that the IR wasn't
5278       * invalidated by any modifications performed after intrastage linking.
5279       */
5280      validate_ir_tree(prog->_LinkedShaders[i]->ir);
5281
5282      /* Retain any live IR, but trash the rest. */
5283      reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir);
5284
5285      /* The symbol table in the linked shaders may contain references to
5286       * variables that were removed (e.g., unused uniforms).  Since it may
5287       * contain junk, there is no possible valid use.  Delete it and set the
5288       * pointer to NULL.
5289       */
5290      delete prog->_LinkedShaders[i]->symbols;
5291      prog->_LinkedShaders[i]->symbols = NULL;
5292   }
5293
5294   ralloc_free(mem_ctx);
5295}
5296