linker.cpp revision 993e1d59
1/* 2 * Copyright © 2010 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24/** 25 * \file linker.cpp 26 * GLSL linker implementation 27 * 28 * Given a set of shaders that are to be linked to generate a final program, 29 * there are three distinct stages. 30 * 31 * In the first stage shaders are partitioned into groups based on the shader 32 * type. All shaders of a particular type (e.g., vertex shaders) are linked 33 * together. 34 * 35 * - Undefined references in each shader are resolve to definitions in 36 * another shader. 37 * - Types and qualifiers of uniforms, outputs, and global variables defined 38 * in multiple shaders with the same name are verified to be the same. 39 * - Initializers for uniforms and global variables defined 40 * in multiple shaders with the same name are verified to be the same. 41 * 42 * The result, in the terminology of the GLSL spec, is a set of shader 43 * executables for each processing unit. 44 * 45 * After the first stage is complete, a series of semantic checks are performed 46 * on each of the shader executables. 47 * 48 * - Each shader executable must define a \c main function. 49 * - Each vertex shader executable must write to \c gl_Position. 50 * - Each fragment shader executable must write to either \c gl_FragData or 51 * \c gl_FragColor. 52 * 53 * In the final stage individual shader executables are linked to create a 54 * complete exectuable. 55 * 56 * - Types of uniforms defined in multiple shader stages with the same name 57 * are verified to be the same. 58 * - Initializers for uniforms defined in multiple shader stages with the 59 * same name are verified to be the same. 60 * - Types and qualifiers of outputs defined in one stage are verified to 61 * be the same as the types and qualifiers of inputs defined with the same 62 * name in a later stage. 63 * 64 * \author Ian Romanick <ian.d.romanick@intel.com> 65 */ 66 67#include <ctype.h> 68#include "util/strndup.h" 69#include "glsl_symbol_table.h" 70#include "glsl_parser_extras.h" 71#include "ir.h" 72#include "program.h" 73#include "program/prog_instruction.h" 74#include "program/program.h" 75#include "util/mesa-sha1.h" 76#include "util/set.h" 77#include "string_to_uint_map.h" 78#include "linker.h" 79#include "linker_util.h" 80#include "link_varyings.h" 81#include "ir_optimization.h" 82#include "ir_rvalue_visitor.h" 83#include "ir_uniform.h" 84#include "builtin_functions.h" 85#include "shader_cache.h" 86#include "util/u_string.h" 87#include "util/u_math.h" 88 89#include "main/imports.h" 90#include "main/shaderobj.h" 91#include "main/enums.h" 92#include "main/mtypes.h" 93 94 95namespace { 96 97struct find_variable { 98 const char *name; 99 bool found; 100 101 find_variable(const char *name) : name(name), found(false) {} 102}; 103 104/** 105 * Visitor that determines whether or not a variable is ever written. 106 * 107 * Use \ref find_assignments for convenience. 108 */ 109class find_assignment_visitor : public ir_hierarchical_visitor { 110public: 111 find_assignment_visitor(unsigned num_vars, 112 find_variable * const *vars) 113 : num_variables(num_vars), num_found(0), variables(vars) 114 { 115 } 116 117 virtual ir_visitor_status visit_enter(ir_assignment *ir) 118 { 119 ir_variable *const var = ir->lhs->variable_referenced(); 120 121 return check_variable_name(var->name); 122 } 123 124 virtual ir_visitor_status visit_enter(ir_call *ir) 125 { 126 foreach_two_lists(formal_node, &ir->callee->parameters, 127 actual_node, &ir->actual_parameters) { 128 ir_rvalue *param_rval = (ir_rvalue *) actual_node; 129 ir_variable *sig_param = (ir_variable *) formal_node; 130 131 if (sig_param->data.mode == ir_var_function_out || 132 sig_param->data.mode == ir_var_function_inout) { 133 ir_variable *var = param_rval->variable_referenced(); 134 if (var && check_variable_name(var->name) == visit_stop) 135 return visit_stop; 136 } 137 } 138 139 if (ir->return_deref != NULL) { 140 ir_variable *const var = ir->return_deref->variable_referenced(); 141 142 if (check_variable_name(var->name) == visit_stop) 143 return visit_stop; 144 } 145 146 return visit_continue_with_parent; 147 } 148 149private: 150 ir_visitor_status check_variable_name(const char *name) 151 { 152 for (unsigned i = 0; i < num_variables; ++i) { 153 if (strcmp(variables[i]->name, name) == 0) { 154 if (!variables[i]->found) { 155 variables[i]->found = true; 156 157 assert(num_found < num_variables); 158 if (++num_found == num_variables) 159 return visit_stop; 160 } 161 break; 162 } 163 } 164 165 return visit_continue_with_parent; 166 } 167 168private: 169 unsigned num_variables; /**< Number of variables to find */ 170 unsigned num_found; /**< Number of variables already found */ 171 find_variable * const *variables; /**< Variables to find */ 172}; 173 174/** 175 * Determine whether or not any of NULL-terminated list of variables is ever 176 * written to. 177 */ 178static void 179find_assignments(exec_list *ir, find_variable * const *vars) 180{ 181 unsigned num_variables = 0; 182 183 for (find_variable * const *v = vars; *v; ++v) 184 num_variables++; 185 186 find_assignment_visitor visitor(num_variables, vars); 187 visitor.run(ir); 188} 189 190/** 191 * Determine whether or not the given variable is ever written to. 192 */ 193static void 194find_assignments(exec_list *ir, find_variable *var) 195{ 196 find_assignment_visitor visitor(1, &var); 197 visitor.run(ir); 198} 199 200/** 201 * Visitor that determines whether or not a variable is ever read. 202 */ 203class find_deref_visitor : public ir_hierarchical_visitor { 204public: 205 find_deref_visitor(const char *name) 206 : name(name), found(false) 207 { 208 /* empty */ 209 } 210 211 virtual ir_visitor_status visit(ir_dereference_variable *ir) 212 { 213 if (strcmp(this->name, ir->var->name) == 0) { 214 this->found = true; 215 return visit_stop; 216 } 217 218 return visit_continue; 219 } 220 221 bool variable_found() const 222 { 223 return this->found; 224 } 225 226private: 227 const char *name; /**< Find writes to a variable with this name. */ 228 bool found; /**< Was a write to the variable found? */ 229}; 230 231 232/** 233 * A visitor helper that provides methods for updating the types of 234 * ir_dereferences. Classes that update variable types (say, updating 235 * array sizes) will want to use this so that dereference types stay in sync. 236 */ 237class deref_type_updater : public ir_hierarchical_visitor { 238public: 239 virtual ir_visitor_status visit(ir_dereference_variable *ir) 240 { 241 ir->type = ir->var->type; 242 return visit_continue; 243 } 244 245 virtual ir_visitor_status visit_leave(ir_dereference_array *ir) 246 { 247 const glsl_type *const vt = ir->array->type; 248 if (vt->is_array()) 249 ir->type = vt->fields.array; 250 return visit_continue; 251 } 252 253 virtual ir_visitor_status visit_leave(ir_dereference_record *ir) 254 { 255 ir->type = ir->record->type->fields.structure[ir->field_idx].type; 256 return visit_continue; 257 } 258}; 259 260 261class array_resize_visitor : public deref_type_updater { 262public: 263 unsigned num_vertices; 264 gl_shader_program *prog; 265 gl_shader_stage stage; 266 267 array_resize_visitor(unsigned num_vertices, 268 gl_shader_program *prog, 269 gl_shader_stage stage) 270 { 271 this->num_vertices = num_vertices; 272 this->prog = prog; 273 this->stage = stage; 274 } 275 276 virtual ~array_resize_visitor() 277 { 278 /* empty */ 279 } 280 281 virtual ir_visitor_status visit(ir_variable *var) 282 { 283 if (!var->type->is_array() || var->data.mode != ir_var_shader_in || 284 var->data.patch) 285 return visit_continue; 286 287 unsigned size = var->type->length; 288 289 if (stage == MESA_SHADER_GEOMETRY) { 290 /* Generate a link error if the shader has declared this array with 291 * an incorrect size. 292 */ 293 if (!var->data.implicit_sized_array && 294 size && size != this->num_vertices) { 295 linker_error(this->prog, "size of array %s declared as %u, " 296 "but number of input vertices is %u\n", 297 var->name, size, this->num_vertices); 298 return visit_continue; 299 } 300 301 /* Generate a link error if the shader attempts to access an input 302 * array using an index too large for its actual size assigned at 303 * link time. 304 */ 305 if (var->data.max_array_access >= (int)this->num_vertices) { 306 linker_error(this->prog, "%s shader accesses element %i of " 307 "%s, but only %i input vertices\n", 308 _mesa_shader_stage_to_string(this->stage), 309 var->data.max_array_access, var->name, this->num_vertices); 310 return visit_continue; 311 } 312 } 313 314 var->type = glsl_type::get_array_instance(var->type->fields.array, 315 this->num_vertices); 316 var->data.max_array_access = this->num_vertices - 1; 317 318 return visit_continue; 319 } 320}; 321 322/** 323 * Visitor that determines the highest stream id to which a (geometry) shader 324 * emits vertices. It also checks whether End{Stream}Primitive is ever called. 325 */ 326class find_emit_vertex_visitor : public ir_hierarchical_visitor { 327public: 328 find_emit_vertex_visitor(int max_allowed) 329 : max_stream_allowed(max_allowed), 330 invalid_stream_id(0), 331 invalid_stream_id_from_emit_vertex(false), 332 end_primitive_found(false), 333 uses_non_zero_stream(false) 334 { 335 /* empty */ 336 } 337 338 virtual ir_visitor_status visit_leave(ir_emit_vertex *ir) 339 { 340 int stream_id = ir->stream_id(); 341 342 if (stream_id < 0) { 343 invalid_stream_id = stream_id; 344 invalid_stream_id_from_emit_vertex = true; 345 return visit_stop; 346 } 347 348 if (stream_id > max_stream_allowed) { 349 invalid_stream_id = stream_id; 350 invalid_stream_id_from_emit_vertex = true; 351 return visit_stop; 352 } 353 354 if (stream_id != 0) 355 uses_non_zero_stream = true; 356 357 return visit_continue; 358 } 359 360 virtual ir_visitor_status visit_leave(ir_end_primitive *ir) 361 { 362 end_primitive_found = true; 363 364 int stream_id = ir->stream_id(); 365 366 if (stream_id < 0) { 367 invalid_stream_id = stream_id; 368 invalid_stream_id_from_emit_vertex = false; 369 return visit_stop; 370 } 371 372 if (stream_id > max_stream_allowed) { 373 invalid_stream_id = stream_id; 374 invalid_stream_id_from_emit_vertex = false; 375 return visit_stop; 376 } 377 378 if (stream_id != 0) 379 uses_non_zero_stream = true; 380 381 return visit_continue; 382 } 383 384 bool error() 385 { 386 return invalid_stream_id != 0; 387 } 388 389 const char *error_func() 390 { 391 return invalid_stream_id_from_emit_vertex ? 392 "EmitStreamVertex" : "EndStreamPrimitive"; 393 } 394 395 int error_stream() 396 { 397 return invalid_stream_id; 398 } 399 400 bool uses_streams() 401 { 402 return uses_non_zero_stream; 403 } 404 405 bool uses_end_primitive() 406 { 407 return end_primitive_found; 408 } 409 410private: 411 int max_stream_allowed; 412 int invalid_stream_id; 413 bool invalid_stream_id_from_emit_vertex; 414 bool end_primitive_found; 415 bool uses_non_zero_stream; 416}; 417 418/* Class that finds array derefs and check if indexes are dynamic. */ 419class dynamic_sampler_array_indexing_visitor : public ir_hierarchical_visitor 420{ 421public: 422 dynamic_sampler_array_indexing_visitor() : 423 dynamic_sampler_array_indexing(false) 424 { 425 } 426 427 ir_visitor_status visit_enter(ir_dereference_array *ir) 428 { 429 if (!ir->variable_referenced()) 430 return visit_continue; 431 432 if (!ir->variable_referenced()->type->contains_sampler()) 433 return visit_continue; 434 435 if (!ir->array_index->constant_expression_value(ralloc_parent(ir))) { 436 dynamic_sampler_array_indexing = true; 437 return visit_stop; 438 } 439 return visit_continue; 440 } 441 442 bool uses_dynamic_sampler_array_indexing() 443 { 444 return dynamic_sampler_array_indexing; 445 } 446 447private: 448 bool dynamic_sampler_array_indexing; 449}; 450 451} /* anonymous namespace */ 452 453void 454linker_error(gl_shader_program *prog, const char *fmt, ...) 455{ 456 va_list ap; 457 458 ralloc_strcat(&prog->data->InfoLog, "error: "); 459 va_start(ap, fmt); 460 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap); 461 va_end(ap); 462 463 prog->data->LinkStatus = LINKING_FAILURE; 464} 465 466 467void 468linker_warning(gl_shader_program *prog, const char *fmt, ...) 469{ 470 va_list ap; 471 472 ralloc_strcat(&prog->data->InfoLog, "warning: "); 473 va_start(ap, fmt); 474 ralloc_vasprintf_append(&prog->data->InfoLog, fmt, ap); 475 va_end(ap); 476 477} 478 479 480/** 481 * Given a string identifying a program resource, break it into a base name 482 * and an optional array index in square brackets. 483 * 484 * If an array index is present, \c out_base_name_end is set to point to the 485 * "[" that precedes the array index, and the array index itself is returned 486 * as a long. 487 * 488 * If no array index is present (or if the array index is negative or 489 * mal-formed), \c out_base_name_end, is set to point to the null terminator 490 * at the end of the input string, and -1 is returned. 491 * 492 * Only the final array index is parsed; if the string contains other array 493 * indices (or structure field accesses), they are left in the base name. 494 * 495 * No attempt is made to check that the base name is properly formed; 496 * typically the caller will look up the base name in a hash table, so 497 * ill-formed base names simply turn into hash table lookup failures. 498 */ 499long 500parse_program_resource_name(const GLchar *name, 501 const GLchar **out_base_name_end) 502{ 503 /* Section 7.3.1 ("Program Interfaces") of the OpenGL 4.3 spec says: 504 * 505 * "When an integer array element or block instance number is part of 506 * the name string, it will be specified in decimal form without a "+" 507 * or "-" sign or any extra leading zeroes. Additionally, the name 508 * string will not include white space anywhere in the string." 509 */ 510 511 const size_t len = strlen(name); 512 *out_base_name_end = name + len; 513 514 if (len == 0 || name[len-1] != ']') 515 return -1; 516 517 /* Walk backwards over the string looking for a non-digit character. This 518 * had better be the opening bracket for an array index. 519 * 520 * Initially, i specifies the location of the ']'. Since the string may 521 * contain only the ']' charcater, walk backwards very carefully. 522 */ 523 unsigned i; 524 for (i = len - 1; (i > 0) && isdigit(name[i-1]); --i) 525 /* empty */ ; 526 527 if ((i == 0) || name[i-1] != '[') 528 return -1; 529 530 long array_index = strtol(&name[i], NULL, 10); 531 if (array_index < 0) 532 return -1; 533 534 /* Check for leading zero */ 535 if (name[i] == '0' && name[i+1] != ']') 536 return -1; 537 538 *out_base_name_end = name + (i - 1); 539 return array_index; 540} 541 542 543void 544link_invalidate_variable_locations(exec_list *ir) 545{ 546 foreach_in_list(ir_instruction, node, ir) { 547 ir_variable *const var = node->as_variable(); 548 549 if (var == NULL) 550 continue; 551 552 /* Only assign locations for variables that lack an explicit location. 553 * Explicit locations are set for all built-in variables, generic vertex 554 * shader inputs (via layout(location=...)), and generic fragment shader 555 * outputs (also via layout(location=...)). 556 */ 557 if (!var->data.explicit_location) { 558 var->data.location = -1; 559 var->data.location_frac = 0; 560 } 561 562 /* ir_variable::is_unmatched_generic_inout is used by the linker while 563 * connecting outputs from one stage to inputs of the next stage. 564 */ 565 if (var->data.explicit_location && 566 var->data.location < VARYING_SLOT_VAR0) { 567 var->data.is_unmatched_generic_inout = 0; 568 } else { 569 var->data.is_unmatched_generic_inout = 1; 570 } 571 } 572} 573 574 575/** 576 * Set clip_distance_array_size based and cull_distance_array_size on the given 577 * shader. 578 * 579 * Also check for errors based on incorrect usage of gl_ClipVertex and 580 * gl_ClipDistance and gl_CullDistance. 581 * Additionally test whether the arrays gl_ClipDistance and gl_CullDistance 582 * exceed the maximum size defined by gl_MaxCombinedClipAndCullDistances. 583 * 584 * Return false if an error was reported. 585 */ 586static void 587analyze_clip_cull_usage(struct gl_shader_program *prog, 588 struct gl_linked_shader *shader, 589 struct gl_context *ctx, 590 GLuint *clip_distance_array_size, 591 GLuint *cull_distance_array_size) 592{ 593 *clip_distance_array_size = 0; 594 *cull_distance_array_size = 0; 595 596 if (prog->data->Version >= (prog->IsES ? 300 : 130)) { 597 /* From section 7.1 (Vertex Shader Special Variables) of the 598 * GLSL 1.30 spec: 599 * 600 * "It is an error for a shader to statically write both 601 * gl_ClipVertex and gl_ClipDistance." 602 * 603 * This does not apply to GLSL ES shaders, since GLSL ES defines neither 604 * gl_ClipVertex nor gl_ClipDistance. However with 605 * GL_EXT_clip_cull_distance, this functionality is exposed in ES 3.0. 606 */ 607 find_variable gl_ClipDistance("gl_ClipDistance"); 608 find_variable gl_CullDistance("gl_CullDistance"); 609 find_variable gl_ClipVertex("gl_ClipVertex"); 610 find_variable * const variables[] = { 611 &gl_ClipDistance, 612 &gl_CullDistance, 613 !prog->IsES ? &gl_ClipVertex : NULL, 614 NULL 615 }; 616 find_assignments(shader->ir, variables); 617 618 /* From the ARB_cull_distance spec: 619 * 620 * It is a compile-time or link-time error for the set of shaders forming 621 * a program to statically read or write both gl_ClipVertex and either 622 * gl_ClipDistance or gl_CullDistance. 623 * 624 * This does not apply to GLSL ES shaders, since GLSL ES doesn't define 625 * gl_ClipVertex. 626 */ 627 if (!prog->IsES) { 628 if (gl_ClipVertex.found && gl_ClipDistance.found) { 629 linker_error(prog, "%s shader writes to both `gl_ClipVertex' " 630 "and `gl_ClipDistance'\n", 631 _mesa_shader_stage_to_string(shader->Stage)); 632 return; 633 } 634 if (gl_ClipVertex.found && gl_CullDistance.found) { 635 linker_error(prog, "%s shader writes to both `gl_ClipVertex' " 636 "and `gl_CullDistance'\n", 637 _mesa_shader_stage_to_string(shader->Stage)); 638 return; 639 } 640 } 641 642 if (gl_ClipDistance.found) { 643 ir_variable *clip_distance_var = 644 shader->symbols->get_variable("gl_ClipDistance"); 645 assert(clip_distance_var); 646 *clip_distance_array_size = clip_distance_var->type->length; 647 } 648 if (gl_CullDistance.found) { 649 ir_variable *cull_distance_var = 650 shader->symbols->get_variable("gl_CullDistance"); 651 assert(cull_distance_var); 652 *cull_distance_array_size = cull_distance_var->type->length; 653 } 654 /* From the ARB_cull_distance spec: 655 * 656 * It is a compile-time or link-time error for the set of shaders forming 657 * a program to have the sum of the sizes of the gl_ClipDistance and 658 * gl_CullDistance arrays to be larger than 659 * gl_MaxCombinedClipAndCullDistances. 660 */ 661 if ((*clip_distance_array_size + *cull_distance_array_size) > 662 ctx->Const.MaxClipPlanes) { 663 linker_error(prog, "%s shader: the combined size of " 664 "'gl_ClipDistance' and 'gl_CullDistance' size cannot " 665 "be larger than " 666 "gl_MaxCombinedClipAndCullDistances (%u)", 667 _mesa_shader_stage_to_string(shader->Stage), 668 ctx->Const.MaxClipPlanes); 669 } 670 } 671} 672 673 674/** 675 * Verify that a vertex shader executable meets all semantic requirements. 676 * 677 * Also sets info.clip_distance_array_size and 678 * info.cull_distance_array_size as a side effect. 679 * 680 * \param shader Vertex shader executable to be verified 681 */ 682static void 683validate_vertex_shader_executable(struct gl_shader_program *prog, 684 struct gl_linked_shader *shader, 685 struct gl_context *ctx) 686{ 687 if (shader == NULL) 688 return; 689 690 /* From the GLSL 1.10 spec, page 48: 691 * 692 * "The variable gl_Position is available only in the vertex 693 * language and is intended for writing the homogeneous vertex 694 * position. All executions of a well-formed vertex shader 695 * executable must write a value into this variable. [...] The 696 * variable gl_Position is available only in the vertex 697 * language and is intended for writing the homogeneous vertex 698 * position. All executions of a well-formed vertex shader 699 * executable must write a value into this variable." 700 * 701 * while in GLSL 1.40 this text is changed to: 702 * 703 * "The variable gl_Position is available only in the vertex 704 * language and is intended for writing the homogeneous vertex 705 * position. It can be written at any time during shader 706 * execution. It may also be read back by a vertex shader 707 * after being written. This value will be used by primitive 708 * assembly, clipping, culling, and other fixed functionality 709 * operations, if present, that operate on primitives after 710 * vertex processing has occurred. Its value is undefined if 711 * the vertex shader executable does not write gl_Position." 712 * 713 * All GLSL ES Versions are similar to GLSL 1.40--failing to write to 714 * gl_Position is not an error. 715 */ 716 if (prog->data->Version < (prog->IsES ? 300 : 140)) { 717 find_variable gl_Position("gl_Position"); 718 find_assignments(shader->ir, &gl_Position); 719 if (!gl_Position.found) { 720 if (prog->IsES) { 721 linker_warning(prog, 722 "vertex shader does not write to `gl_Position'. " 723 "Its value is undefined. \n"); 724 } else { 725 linker_error(prog, 726 "vertex shader does not write to `gl_Position'. \n"); 727 } 728 return; 729 } 730 } 731 732 analyze_clip_cull_usage(prog, shader, ctx, 733 &shader->Program->info.clip_distance_array_size, 734 &shader->Program->info.cull_distance_array_size); 735} 736 737static void 738validate_tess_eval_shader_executable(struct gl_shader_program *prog, 739 struct gl_linked_shader *shader, 740 struct gl_context *ctx) 741{ 742 if (shader == NULL) 743 return; 744 745 analyze_clip_cull_usage(prog, shader, ctx, 746 &shader->Program->info.clip_distance_array_size, 747 &shader->Program->info.cull_distance_array_size); 748} 749 750 751/** 752 * Verify that a fragment shader executable meets all semantic requirements 753 * 754 * \param shader Fragment shader executable to be verified 755 */ 756static void 757validate_fragment_shader_executable(struct gl_shader_program *prog, 758 struct gl_linked_shader *shader) 759{ 760 if (shader == NULL) 761 return; 762 763 find_variable gl_FragColor("gl_FragColor"); 764 find_variable gl_FragData("gl_FragData"); 765 find_variable * const variables[] = { &gl_FragColor, &gl_FragData, NULL }; 766 find_assignments(shader->ir, variables); 767 768 if (gl_FragColor.found && gl_FragData.found) { 769 linker_error(prog, "fragment shader writes to both " 770 "`gl_FragColor' and `gl_FragData'\n"); 771 } 772} 773 774/** 775 * Verify that a geometry shader executable meets all semantic requirements 776 * 777 * Also sets prog->Geom.VerticesIn, and info.clip_distance_array_sizeand 778 * info.cull_distance_array_size as a side effect. 779 * 780 * \param shader Geometry shader executable to be verified 781 */ 782static void 783validate_geometry_shader_executable(struct gl_shader_program *prog, 784 struct gl_linked_shader *shader, 785 struct gl_context *ctx) 786{ 787 if (shader == NULL) 788 return; 789 790 unsigned num_vertices = 791 vertices_per_prim(shader->Program->info.gs.input_primitive); 792 prog->Geom.VerticesIn = num_vertices; 793 794 analyze_clip_cull_usage(prog, shader, ctx, 795 &shader->Program->info.clip_distance_array_size, 796 &shader->Program->info.cull_distance_array_size); 797} 798 799/** 800 * Check if geometry shaders emit to non-zero streams and do corresponding 801 * validations. 802 */ 803static void 804validate_geometry_shader_emissions(struct gl_context *ctx, 805 struct gl_shader_program *prog) 806{ 807 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_GEOMETRY]; 808 809 if (sh != NULL) { 810 find_emit_vertex_visitor emit_vertex(ctx->Const.MaxVertexStreams - 1); 811 emit_vertex.run(sh->ir); 812 if (emit_vertex.error()) { 813 linker_error(prog, "Invalid call %s(%d). Accepted values for the " 814 "stream parameter are in the range [0, %d].\n", 815 emit_vertex.error_func(), 816 emit_vertex.error_stream(), 817 ctx->Const.MaxVertexStreams - 1); 818 } 819 prog->Geom.UsesStreams = emit_vertex.uses_streams(); 820 prog->Geom.UsesEndPrimitive = emit_vertex.uses_end_primitive(); 821 822 /* From the ARB_gpu_shader5 spec: 823 * 824 * "Multiple vertex streams are supported only if the output primitive 825 * type is declared to be "points". A program will fail to link if it 826 * contains a geometry shader calling EmitStreamVertex() or 827 * EndStreamPrimitive() if its output primitive type is not "points". 828 * 829 * However, in the same spec: 830 * 831 * "The function EmitVertex() is equivalent to calling EmitStreamVertex() 832 * with <stream> set to zero." 833 * 834 * And: 835 * 836 * "The function EndPrimitive() is equivalent to calling 837 * EndStreamPrimitive() with <stream> set to zero." 838 * 839 * Since we can call EmitVertex() and EndPrimitive() when we output 840 * primitives other than points, calling EmitStreamVertex(0) or 841 * EmitEndPrimitive(0) should not produce errors. This it also what Nvidia 842 * does. Currently we only set prog->Geom.UsesStreams to TRUE when 843 * EmitStreamVertex() or EmitEndPrimitive() are called with a non-zero 844 * stream. 845 */ 846 if (prog->Geom.UsesStreams && 847 sh->Program->info.gs.output_primitive != GL_POINTS) { 848 linker_error(prog, "EmitStreamVertex(n) and EndStreamPrimitive(n) " 849 "with n>0 requires point output\n"); 850 } 851 } 852} 853 854bool 855validate_intrastage_arrays(struct gl_shader_program *prog, 856 ir_variable *const var, 857 ir_variable *const existing) 858{ 859 /* Consider the types to be "the same" if both types are arrays 860 * of the same type and one of the arrays is implicitly sized. 861 * In addition, set the type of the linked variable to the 862 * explicitly sized array. 863 */ 864 if (var->type->is_array() && existing->type->is_array()) { 865 if ((var->type->fields.array == existing->type->fields.array) && 866 ((var->type->length == 0)|| (existing->type->length == 0))) { 867 if (var->type->length != 0) { 868 if ((int)var->type->length <= existing->data.max_array_access) { 869 linker_error(prog, "%s `%s' declared as type " 870 "`%s' but outermost dimension has an index" 871 " of `%i'\n", 872 mode_string(var), 873 var->name, var->type->name, 874 existing->data.max_array_access); 875 } 876 existing->type = var->type; 877 return true; 878 } else if (existing->type->length != 0) { 879 if((int)existing->type->length <= var->data.max_array_access && 880 !existing->data.from_ssbo_unsized_array) { 881 linker_error(prog, "%s `%s' declared as type " 882 "`%s' but outermost dimension has an index" 883 " of `%i'\n", 884 mode_string(var), 885 var->name, existing->type->name, 886 var->data.max_array_access); 887 } 888 return true; 889 } 890 } 891 } 892 return false; 893} 894 895 896/** 897 * Perform validation of global variables used across multiple shaders 898 */ 899static void 900cross_validate_globals(struct gl_context *ctx, struct gl_shader_program *prog, 901 struct exec_list *ir, glsl_symbol_table *variables, 902 bool uniforms_only) 903{ 904 foreach_in_list(ir_instruction, node, ir) { 905 ir_variable *const var = node->as_variable(); 906 907 if (var == NULL) 908 continue; 909 910 if (uniforms_only && (var->data.mode != ir_var_uniform && var->data.mode != ir_var_shader_storage)) 911 continue; 912 913 /* don't cross validate subroutine uniforms */ 914 if (var->type->contains_subroutine()) 915 continue; 916 917 /* Don't cross validate interface instances. These are only relevant 918 * inside a shader. The cross validation is done at the Interface Block 919 * name level. 920 */ 921 if (var->is_interface_instance()) 922 continue; 923 924 /* Don't cross validate temporaries that are at global scope. These 925 * will eventually get pulled into the shaders 'main'. 926 */ 927 if (var->data.mode == ir_var_temporary) 928 continue; 929 930 /* If a global with this name has already been seen, verify that the 931 * new instance has the same type. In addition, if the globals have 932 * initializers, the values of the initializers must be the same. 933 */ 934 ir_variable *const existing = variables->get_variable(var->name); 935 if (existing != NULL) { 936 /* Check if types match. */ 937 if (var->type != existing->type) { 938 if (!validate_intrastage_arrays(prog, var, existing)) { 939 /* If it is an unsized array in a Shader Storage Block, 940 * two different shaders can access to different elements. 941 * Because of that, they might be converted to different 942 * sized arrays, then check that they are compatible but 943 * ignore the array size. 944 */ 945 if (!(var->data.mode == ir_var_shader_storage && 946 var->data.from_ssbo_unsized_array && 947 existing->data.mode == ir_var_shader_storage && 948 existing->data.from_ssbo_unsized_array && 949 var->type->gl_type == existing->type->gl_type)) { 950 linker_error(prog, "%s `%s' declared as type " 951 "`%s' and type `%s'\n", 952 mode_string(var), 953 var->name, var->type->name, 954 existing->type->name); 955 return; 956 } 957 } 958 } 959 960 if (var->data.explicit_location) { 961 if (existing->data.explicit_location 962 && (var->data.location != existing->data.location)) { 963 linker_error(prog, "explicit locations for %s " 964 "`%s' have differing values\n", 965 mode_string(var), var->name); 966 return; 967 } 968 969 if (var->data.location_frac != existing->data.location_frac) { 970 linker_error(prog, "explicit components for %s `%s' have " 971 "differing values\n", mode_string(var), var->name); 972 return; 973 } 974 975 existing->data.location = var->data.location; 976 existing->data.explicit_location = true; 977 } else { 978 /* Check if uniform with implicit location was marked explicit 979 * by earlier shader stage. If so, mark it explicit in this stage 980 * too to make sure later processing does not treat it as 981 * implicit one. 982 */ 983 if (existing->data.explicit_location) { 984 var->data.location = existing->data.location; 985 var->data.explicit_location = true; 986 } 987 } 988 989 /* From the GLSL 4.20 specification: 990 * "A link error will result if two compilation units in a program 991 * specify different integer-constant bindings for the same 992 * opaque-uniform name. However, it is not an error to specify a 993 * binding on some but not all declarations for the same name" 994 */ 995 if (var->data.explicit_binding) { 996 if (existing->data.explicit_binding && 997 var->data.binding != existing->data.binding) { 998 linker_error(prog, "explicit bindings for %s " 999 "`%s' have differing values\n", 1000 mode_string(var), var->name); 1001 return; 1002 } 1003 1004 existing->data.binding = var->data.binding; 1005 existing->data.explicit_binding = true; 1006 } 1007 1008 if (var->type->contains_atomic() && 1009 var->data.offset != existing->data.offset) { 1010 linker_error(prog, "offset specifications for %s " 1011 "`%s' have differing values\n", 1012 mode_string(var), var->name); 1013 return; 1014 } 1015 1016 /* Validate layout qualifiers for gl_FragDepth. 1017 * 1018 * From the AMD/ARB_conservative_depth specs: 1019 * 1020 * "If gl_FragDepth is redeclared in any fragment shader in a 1021 * program, it must be redeclared in all fragment shaders in 1022 * that program that have static assignments to 1023 * gl_FragDepth. All redeclarations of gl_FragDepth in all 1024 * fragment shaders in a single program must have the same set 1025 * of qualifiers." 1026 */ 1027 if (strcmp(var->name, "gl_FragDepth") == 0) { 1028 bool layout_declared = var->data.depth_layout != ir_depth_layout_none; 1029 bool layout_differs = 1030 var->data.depth_layout != existing->data.depth_layout; 1031 1032 if (layout_declared && layout_differs) { 1033 linker_error(prog, 1034 "All redeclarations of gl_FragDepth in all " 1035 "fragment shaders in a single program must have " 1036 "the same set of qualifiers.\n"); 1037 } 1038 1039 if (var->data.used && layout_differs) { 1040 linker_error(prog, 1041 "If gl_FragDepth is redeclared with a layout " 1042 "qualifier in any fragment shader, it must be " 1043 "redeclared with the same layout qualifier in " 1044 "all fragment shaders that have assignments to " 1045 "gl_FragDepth\n"); 1046 } 1047 } 1048 1049 /* Page 35 (page 41 of the PDF) of the GLSL 4.20 spec says: 1050 * 1051 * "If a shared global has multiple initializers, the 1052 * initializers must all be constant expressions, and they 1053 * must all have the same value. Otherwise, a link error will 1054 * result. (A shared global having only one initializer does 1055 * not require that initializer to be a constant expression.)" 1056 * 1057 * Previous to 4.20 the GLSL spec simply said that initializers 1058 * must have the same value. In this case of non-constant 1059 * initializers, this was impossible to determine. As a result, 1060 * no vendor actually implemented that behavior. The 4.20 1061 * behavior matches the implemented behavior of at least one other 1062 * vendor, so we'll implement that for all GLSL versions. 1063 */ 1064 if (var->constant_initializer != NULL) { 1065 if (existing->constant_initializer != NULL) { 1066 if (!var->constant_initializer->has_value(existing->constant_initializer)) { 1067 linker_error(prog, "initializers for %s " 1068 "`%s' have differing values\n", 1069 mode_string(var), var->name); 1070 return; 1071 } 1072 } else { 1073 /* If the first-seen instance of a particular uniform did 1074 * not have an initializer but a later instance does, 1075 * replace the former with the later. 1076 */ 1077 variables->replace_variable(existing->name, var); 1078 } 1079 } 1080 1081 if (var->data.has_initializer) { 1082 if (existing->data.has_initializer 1083 && (var->constant_initializer == NULL 1084 || existing->constant_initializer == NULL)) { 1085 linker_error(prog, 1086 "shared global variable `%s' has multiple " 1087 "non-constant initializers.\n", 1088 var->name); 1089 return; 1090 } 1091 } 1092 1093 if (existing->data.explicit_invariant != var->data.explicit_invariant) { 1094 linker_error(prog, "declarations for %s `%s' have " 1095 "mismatching invariant qualifiers\n", 1096 mode_string(var), var->name); 1097 return; 1098 } 1099 if (existing->data.centroid != var->data.centroid) { 1100 linker_error(prog, "declarations for %s `%s' have " 1101 "mismatching centroid qualifiers\n", 1102 mode_string(var), var->name); 1103 return; 1104 } 1105 if (existing->data.sample != var->data.sample) { 1106 linker_error(prog, "declarations for %s `%s` have " 1107 "mismatching sample qualifiers\n", 1108 mode_string(var), var->name); 1109 return; 1110 } 1111 if (existing->data.image_format != var->data.image_format) { 1112 linker_error(prog, "declarations for %s `%s` have " 1113 "mismatching image format qualifiers\n", 1114 mode_string(var), var->name); 1115 return; 1116 } 1117 1118 /* Check the precision qualifier matches for uniform variables on 1119 * GLSL ES. 1120 */ 1121 if (!ctx->Const.AllowGLSLRelaxedES && 1122 prog->IsES && !var->get_interface_type() && 1123 existing->data.precision != var->data.precision) { 1124 if ((existing->data.used && var->data.used) || prog->data->Version >= 300) { 1125 linker_error(prog, "declarations for %s `%s` have " 1126 "mismatching precision qualifiers\n", 1127 mode_string(var), var->name); 1128 return; 1129 } else { 1130 linker_warning(prog, "declarations for %s `%s` have " 1131 "mismatching precision qualifiers\n", 1132 mode_string(var), var->name); 1133 } 1134 } 1135 1136 /* In OpenGL GLSL 3.20 spec, section 4.3.9: 1137 * 1138 * "It is a link-time error if any particular shader interface 1139 * contains: 1140 * 1141 * - two different blocks, each having no instance name, and each 1142 * having a member of the same name, or 1143 * 1144 * - a variable outside a block, and a block with no instance name, 1145 * where the variable has the same name as a member in the block." 1146 */ 1147 const glsl_type *var_itype = var->get_interface_type(); 1148 const glsl_type *existing_itype = existing->get_interface_type(); 1149 if (var_itype != existing_itype) { 1150 if (!var_itype || !existing_itype) { 1151 linker_error(prog, "declarations for %s `%s` are inside block " 1152 "`%s` and outside a block", 1153 mode_string(var), var->name, 1154 var_itype ? var_itype->name : existing_itype->name); 1155 return; 1156 } else if (strcmp(var_itype->name, existing_itype->name) != 0) { 1157 linker_error(prog, "declarations for %s `%s` are inside blocks " 1158 "`%s` and `%s`", 1159 mode_string(var), var->name, 1160 existing_itype->name, 1161 var_itype->name); 1162 return; 1163 } 1164 } 1165 } else 1166 variables->add_variable(var); 1167 } 1168} 1169 1170 1171/** 1172 * Perform validation of uniforms used across multiple shader stages 1173 */ 1174static void 1175cross_validate_uniforms(struct gl_context *ctx, 1176 struct gl_shader_program *prog) 1177{ 1178 glsl_symbol_table variables; 1179 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1180 if (prog->_LinkedShaders[i] == NULL) 1181 continue; 1182 1183 cross_validate_globals(ctx, prog, prog->_LinkedShaders[i]->ir, 1184 &variables, true); 1185 } 1186} 1187 1188/** 1189 * Accumulates the array of buffer blocks and checks that all definitions of 1190 * blocks agree on their contents. 1191 */ 1192static bool 1193interstage_cross_validate_uniform_blocks(struct gl_shader_program *prog, 1194 bool validate_ssbo) 1195{ 1196 int *InterfaceBlockStageIndex[MESA_SHADER_STAGES]; 1197 struct gl_uniform_block *blks = NULL; 1198 unsigned *num_blks = validate_ssbo ? &prog->data->NumShaderStorageBlocks : 1199 &prog->data->NumUniformBlocks; 1200 1201 unsigned max_num_buffer_blocks = 0; 1202 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1203 if (prog->_LinkedShaders[i]) { 1204 if (validate_ssbo) { 1205 max_num_buffer_blocks += 1206 prog->_LinkedShaders[i]->Program->info.num_ssbos; 1207 } else { 1208 max_num_buffer_blocks += 1209 prog->_LinkedShaders[i]->Program->info.num_ubos; 1210 } 1211 } 1212 } 1213 1214 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1215 struct gl_linked_shader *sh = prog->_LinkedShaders[i]; 1216 1217 InterfaceBlockStageIndex[i] = new int[max_num_buffer_blocks]; 1218 for (unsigned int j = 0; j < max_num_buffer_blocks; j++) 1219 InterfaceBlockStageIndex[i][j] = -1; 1220 1221 if (sh == NULL) 1222 continue; 1223 1224 unsigned sh_num_blocks; 1225 struct gl_uniform_block **sh_blks; 1226 if (validate_ssbo) { 1227 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ssbos; 1228 sh_blks = sh->Program->sh.ShaderStorageBlocks; 1229 } else { 1230 sh_num_blocks = prog->_LinkedShaders[i]->Program->info.num_ubos; 1231 sh_blks = sh->Program->sh.UniformBlocks; 1232 } 1233 1234 for (unsigned int j = 0; j < sh_num_blocks; j++) { 1235 int index = link_cross_validate_uniform_block(prog->data, &blks, 1236 num_blks, sh_blks[j]); 1237 1238 if (index == -1) { 1239 linker_error(prog, "buffer block `%s' has mismatching " 1240 "definitions\n", sh_blks[j]->Name); 1241 1242 for (unsigned k = 0; k <= i; k++) { 1243 delete[] InterfaceBlockStageIndex[k]; 1244 } 1245 1246 /* Reset the block count. This will help avoid various segfaults 1247 * from api calls that assume the array exists due to the count 1248 * being non-zero. 1249 */ 1250 *num_blks = 0; 1251 return false; 1252 } 1253 1254 InterfaceBlockStageIndex[i][index] = j; 1255 } 1256 } 1257 1258 /* Update per stage block pointers to point to the program list. 1259 * FIXME: We should be able to free the per stage blocks here. 1260 */ 1261 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1262 for (unsigned j = 0; j < *num_blks; j++) { 1263 int stage_index = InterfaceBlockStageIndex[i][j]; 1264 1265 if (stage_index != -1) { 1266 struct gl_linked_shader *sh = prog->_LinkedShaders[i]; 1267 1268 struct gl_uniform_block **sh_blks = validate_ssbo ? 1269 sh->Program->sh.ShaderStorageBlocks : 1270 sh->Program->sh.UniformBlocks; 1271 1272 blks[j].stageref |= sh_blks[stage_index]->stageref; 1273 sh_blks[stage_index] = &blks[j]; 1274 } 1275 } 1276 } 1277 1278 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 1279 delete[] InterfaceBlockStageIndex[i]; 1280 } 1281 1282 if (validate_ssbo) 1283 prog->data->ShaderStorageBlocks = blks; 1284 else 1285 prog->data->UniformBlocks = blks; 1286 1287 return true; 1288} 1289 1290/** 1291 * Verifies the invariance of built-in special variables. 1292 */ 1293static bool 1294validate_invariant_builtins(struct gl_shader_program *prog, 1295 const gl_linked_shader *vert, 1296 const gl_linked_shader *frag) 1297{ 1298 const ir_variable *var_vert; 1299 const ir_variable *var_frag; 1300 1301 if (!vert || !frag) 1302 return true; 1303 1304 /* 1305 * From OpenGL ES Shading Language 1.0 specification 1306 * (4.6.4 Invariance and Linkage): 1307 * "The invariance of varyings that are declared in both the vertex and 1308 * fragment shaders must match. For the built-in special variables, 1309 * gl_FragCoord can only be declared invariant if and only if 1310 * gl_Position is declared invariant. Similarly gl_PointCoord can only 1311 * be declared invariant if and only if gl_PointSize is declared 1312 * invariant. It is an error to declare gl_FrontFacing as invariant. 1313 * The invariance of gl_FrontFacing is the same as the invariance of 1314 * gl_Position." 1315 */ 1316 var_frag = frag->symbols->get_variable("gl_FragCoord"); 1317 if (var_frag && var_frag->data.invariant) { 1318 var_vert = vert->symbols->get_variable("gl_Position"); 1319 if (var_vert && !var_vert->data.invariant) { 1320 linker_error(prog, 1321 "fragment shader built-in `%s' has invariant qualifier, " 1322 "but vertex shader built-in `%s' lacks invariant qualifier\n", 1323 var_frag->name, var_vert->name); 1324 return false; 1325 } 1326 } 1327 1328 var_frag = frag->symbols->get_variable("gl_PointCoord"); 1329 if (var_frag && var_frag->data.invariant) { 1330 var_vert = vert->symbols->get_variable("gl_PointSize"); 1331 if (var_vert && !var_vert->data.invariant) { 1332 linker_error(prog, 1333 "fragment shader built-in `%s' has invariant qualifier, " 1334 "but vertex shader built-in `%s' lacks invariant qualifier\n", 1335 var_frag->name, var_vert->name); 1336 return false; 1337 } 1338 } 1339 1340 var_frag = frag->symbols->get_variable("gl_FrontFacing"); 1341 if (var_frag && var_frag->data.invariant) { 1342 linker_error(prog, 1343 "fragment shader built-in `%s' can not be declared as invariant\n", 1344 var_frag->name); 1345 return false; 1346 } 1347 1348 return true; 1349} 1350 1351/** 1352 * Populates a shaders symbol table with all global declarations 1353 */ 1354static void 1355populate_symbol_table(gl_linked_shader *sh, glsl_symbol_table *symbols) 1356{ 1357 sh->symbols = new(sh) glsl_symbol_table; 1358 1359 _mesa_glsl_copy_symbols_from_table(sh->ir, symbols, sh->symbols); 1360} 1361 1362 1363/** 1364 * Remap variables referenced in an instruction tree 1365 * 1366 * This is used when instruction trees are cloned from one shader and placed in 1367 * another. These trees will contain references to \c ir_variable nodes that 1368 * do not exist in the target shader. This function finds these \c ir_variable 1369 * references and replaces the references with matching variables in the target 1370 * shader. 1371 * 1372 * If there is no matching variable in the target shader, a clone of the 1373 * \c ir_variable is made and added to the target shader. The new variable is 1374 * added to \b both the instruction stream and the symbol table. 1375 * 1376 * \param inst IR tree that is to be processed. 1377 * \param symbols Symbol table containing global scope symbols in the 1378 * linked shader. 1379 * \param instructions Instruction stream where new variable declarations 1380 * should be added. 1381 */ 1382static void 1383remap_variables(ir_instruction *inst, struct gl_linked_shader *target, 1384 hash_table *temps) 1385{ 1386 class remap_visitor : public ir_hierarchical_visitor { 1387 public: 1388 remap_visitor(struct gl_linked_shader *target, hash_table *temps) 1389 { 1390 this->target = target; 1391 this->symbols = target->symbols; 1392 this->instructions = target->ir; 1393 this->temps = temps; 1394 } 1395 1396 virtual ir_visitor_status visit(ir_dereference_variable *ir) 1397 { 1398 if (ir->var->data.mode == ir_var_temporary) { 1399 hash_entry *entry = _mesa_hash_table_search(temps, ir->var); 1400 ir_variable *var = entry ? (ir_variable *) entry->data : NULL; 1401 1402 assert(var != NULL); 1403 ir->var = var; 1404 return visit_continue; 1405 } 1406 1407 ir_variable *const existing = 1408 this->symbols->get_variable(ir->var->name); 1409 if (existing != NULL) 1410 ir->var = existing; 1411 else { 1412 ir_variable *copy = ir->var->clone(this->target, NULL); 1413 1414 this->symbols->add_variable(copy); 1415 this->instructions->push_head(copy); 1416 ir->var = copy; 1417 } 1418 1419 return visit_continue; 1420 } 1421 1422 private: 1423 struct gl_linked_shader *target; 1424 glsl_symbol_table *symbols; 1425 exec_list *instructions; 1426 hash_table *temps; 1427 }; 1428 1429 remap_visitor v(target, temps); 1430 1431 inst->accept(&v); 1432} 1433 1434 1435/** 1436 * Move non-declarations from one instruction stream to another 1437 * 1438 * The intended usage pattern of this function is to pass the pointer to the 1439 * head sentinel of a list (i.e., a pointer to the list cast to an \c exec_node 1440 * pointer) for \c last and \c false for \c make_copies on the first 1441 * call. Successive calls pass the return value of the previous call for 1442 * \c last and \c true for \c make_copies. 1443 * 1444 * \param instructions Source instruction stream 1445 * \param last Instruction after which new instructions should be 1446 * inserted in the target instruction stream 1447 * \param make_copies Flag selecting whether instructions in \c instructions 1448 * should be copied (via \c ir_instruction::clone) into the 1449 * target list or moved. 1450 * 1451 * \return 1452 * The new "last" instruction in the target instruction stream. This pointer 1453 * is suitable for use as the \c last parameter of a later call to this 1454 * function. 1455 */ 1456static exec_node * 1457move_non_declarations(exec_list *instructions, exec_node *last, 1458 bool make_copies, gl_linked_shader *target) 1459{ 1460 hash_table *temps = NULL; 1461 1462 if (make_copies) 1463 temps = _mesa_hash_table_create(NULL, _mesa_hash_pointer, 1464 _mesa_key_pointer_equal); 1465 1466 foreach_in_list_safe(ir_instruction, inst, instructions) { 1467 if (inst->as_function()) 1468 continue; 1469 1470 ir_variable *var = inst->as_variable(); 1471 if ((var != NULL) && (var->data.mode != ir_var_temporary)) 1472 continue; 1473 1474 assert(inst->as_assignment() 1475 || inst->as_call() 1476 || inst->as_if() /* for initializers with the ?: operator */ 1477 || ((var != NULL) && (var->data.mode == ir_var_temporary))); 1478 1479 if (make_copies) { 1480 inst = inst->clone(target, NULL); 1481 1482 if (var != NULL) 1483 _mesa_hash_table_insert(temps, var, inst); 1484 else 1485 remap_variables(inst, target, temps); 1486 } else { 1487 inst->remove(); 1488 } 1489 1490 last->insert_after(inst); 1491 last = inst; 1492 } 1493 1494 if (make_copies) 1495 _mesa_hash_table_destroy(temps, NULL); 1496 1497 return last; 1498} 1499 1500 1501/** 1502 * This class is only used in link_intrastage_shaders() below but declaring 1503 * it inside that function leads to compiler warnings with some versions of 1504 * gcc. 1505 */ 1506class array_sizing_visitor : public deref_type_updater { 1507public: 1508 array_sizing_visitor() 1509 : mem_ctx(ralloc_context(NULL)), 1510 unnamed_interfaces(_mesa_hash_table_create(NULL, _mesa_hash_pointer, 1511 _mesa_key_pointer_equal)) 1512 { 1513 } 1514 1515 ~array_sizing_visitor() 1516 { 1517 _mesa_hash_table_destroy(this->unnamed_interfaces, NULL); 1518 ralloc_free(this->mem_ctx); 1519 } 1520 1521 virtual ir_visitor_status visit(ir_variable *var) 1522 { 1523 const glsl_type *type_without_array; 1524 bool implicit_sized_array = var->data.implicit_sized_array; 1525 fixup_type(&var->type, var->data.max_array_access, 1526 var->data.from_ssbo_unsized_array, 1527 &implicit_sized_array); 1528 var->data.implicit_sized_array = implicit_sized_array; 1529 type_without_array = var->type->without_array(); 1530 if (var->type->is_interface()) { 1531 if (interface_contains_unsized_arrays(var->type)) { 1532 const glsl_type *new_type = 1533 resize_interface_members(var->type, 1534 var->get_max_ifc_array_access(), 1535 var->is_in_shader_storage_block()); 1536 var->type = new_type; 1537 var->change_interface_type(new_type); 1538 } 1539 } else if (type_without_array->is_interface()) { 1540 if (interface_contains_unsized_arrays(type_without_array)) { 1541 const glsl_type *new_type = 1542 resize_interface_members(type_without_array, 1543 var->get_max_ifc_array_access(), 1544 var->is_in_shader_storage_block()); 1545 var->change_interface_type(new_type); 1546 var->type = update_interface_members_array(var->type, new_type); 1547 } 1548 } else if (const glsl_type *ifc_type = var->get_interface_type()) { 1549 /* Store a pointer to the variable in the unnamed_interfaces 1550 * hashtable. 1551 */ 1552 hash_entry *entry = 1553 _mesa_hash_table_search(this->unnamed_interfaces, 1554 ifc_type); 1555 1556 ir_variable **interface_vars = entry ? (ir_variable **) entry->data : NULL; 1557 1558 if (interface_vars == NULL) { 1559 interface_vars = rzalloc_array(mem_ctx, ir_variable *, 1560 ifc_type->length); 1561 _mesa_hash_table_insert(this->unnamed_interfaces, ifc_type, 1562 interface_vars); 1563 } 1564 unsigned index = ifc_type->field_index(var->name); 1565 assert(index < ifc_type->length); 1566 assert(interface_vars[index] == NULL); 1567 interface_vars[index] = var; 1568 } 1569 return visit_continue; 1570 } 1571 1572 /** 1573 * For each unnamed interface block that was discovered while running the 1574 * visitor, adjust the interface type to reflect the newly assigned array 1575 * sizes, and fix up the ir_variable nodes to point to the new interface 1576 * type. 1577 */ 1578 void fixup_unnamed_interface_types() 1579 { 1580 hash_table_call_foreach(this->unnamed_interfaces, 1581 fixup_unnamed_interface_type, NULL); 1582 } 1583 1584private: 1585 /** 1586 * If the type pointed to by \c type represents an unsized array, replace 1587 * it with a sized array whose size is determined by max_array_access. 1588 */ 1589 static void fixup_type(const glsl_type **type, unsigned max_array_access, 1590 bool from_ssbo_unsized_array, bool *implicit_sized) 1591 { 1592 if (!from_ssbo_unsized_array && (*type)->is_unsized_array()) { 1593 *type = glsl_type::get_array_instance((*type)->fields.array, 1594 max_array_access + 1); 1595 *implicit_sized = true; 1596 assert(*type != NULL); 1597 } 1598 } 1599 1600 static const glsl_type * 1601 update_interface_members_array(const glsl_type *type, 1602 const glsl_type *new_interface_type) 1603 { 1604 const glsl_type *element_type = type->fields.array; 1605 if (element_type->is_array()) { 1606 const glsl_type *new_array_type = 1607 update_interface_members_array(element_type, new_interface_type); 1608 return glsl_type::get_array_instance(new_array_type, type->length); 1609 } else { 1610 return glsl_type::get_array_instance(new_interface_type, 1611 type->length); 1612 } 1613 } 1614 1615 /** 1616 * Determine whether the given interface type contains unsized arrays (if 1617 * it doesn't, array_sizing_visitor doesn't need to process it). 1618 */ 1619 static bool interface_contains_unsized_arrays(const glsl_type *type) 1620 { 1621 for (unsigned i = 0; i < type->length; i++) { 1622 const glsl_type *elem_type = type->fields.structure[i].type; 1623 if (elem_type->is_unsized_array()) 1624 return true; 1625 } 1626 return false; 1627 } 1628 1629 /** 1630 * Create a new interface type based on the given type, with unsized arrays 1631 * replaced by sized arrays whose size is determined by 1632 * max_ifc_array_access. 1633 */ 1634 static const glsl_type * 1635 resize_interface_members(const glsl_type *type, 1636 const int *max_ifc_array_access, 1637 bool is_ssbo) 1638 { 1639 unsigned num_fields = type->length; 1640 glsl_struct_field *fields = new glsl_struct_field[num_fields]; 1641 memcpy(fields, type->fields.structure, 1642 num_fields * sizeof(*fields)); 1643 for (unsigned i = 0; i < num_fields; i++) { 1644 bool implicit_sized_array = fields[i].implicit_sized_array; 1645 /* If SSBO last member is unsized array, we don't replace it by a sized 1646 * array. 1647 */ 1648 if (is_ssbo && i == (num_fields - 1)) 1649 fixup_type(&fields[i].type, max_ifc_array_access[i], 1650 true, &implicit_sized_array); 1651 else 1652 fixup_type(&fields[i].type, max_ifc_array_access[i], 1653 false, &implicit_sized_array); 1654 fields[i].implicit_sized_array = implicit_sized_array; 1655 } 1656 glsl_interface_packing packing = 1657 (glsl_interface_packing) type->interface_packing; 1658 bool row_major = (bool) type->interface_row_major; 1659 const glsl_type *new_ifc_type = 1660 glsl_type::get_interface_instance(fields, num_fields, 1661 packing, row_major, type->name); 1662 delete [] fields; 1663 return new_ifc_type; 1664 } 1665 1666 static void fixup_unnamed_interface_type(const void *key, void *data, 1667 void *) 1668 { 1669 const glsl_type *ifc_type = (const glsl_type *) key; 1670 ir_variable **interface_vars = (ir_variable **) data; 1671 unsigned num_fields = ifc_type->length; 1672 glsl_struct_field *fields = new glsl_struct_field[num_fields]; 1673 memcpy(fields, ifc_type->fields.structure, 1674 num_fields * sizeof(*fields)); 1675 bool interface_type_changed = false; 1676 for (unsigned i = 0; i < num_fields; i++) { 1677 if (interface_vars[i] != NULL && 1678 fields[i].type != interface_vars[i]->type) { 1679 fields[i].type = interface_vars[i]->type; 1680 interface_type_changed = true; 1681 } 1682 } 1683 if (!interface_type_changed) { 1684 delete [] fields; 1685 return; 1686 } 1687 glsl_interface_packing packing = 1688 (glsl_interface_packing) ifc_type->interface_packing; 1689 bool row_major = (bool) ifc_type->interface_row_major; 1690 const glsl_type *new_ifc_type = 1691 glsl_type::get_interface_instance(fields, num_fields, packing, 1692 row_major, ifc_type->name); 1693 delete [] fields; 1694 for (unsigned i = 0; i < num_fields; i++) { 1695 if (interface_vars[i] != NULL) 1696 interface_vars[i]->change_interface_type(new_ifc_type); 1697 } 1698 } 1699 1700 /** 1701 * Memory context used to allocate the data in \c unnamed_interfaces. 1702 */ 1703 void *mem_ctx; 1704 1705 /** 1706 * Hash table from const glsl_type * to an array of ir_variable *'s 1707 * pointing to the ir_variables constituting each unnamed interface block. 1708 */ 1709 hash_table *unnamed_interfaces; 1710}; 1711 1712static bool 1713validate_xfb_buffer_stride(struct gl_context *ctx, unsigned idx, 1714 struct gl_shader_program *prog) 1715{ 1716 /* We will validate doubles at a later stage */ 1717 if (prog->TransformFeedback.BufferStride[idx] % 4) { 1718 linker_error(prog, "invalid qualifier xfb_stride=%d must be a " 1719 "multiple of 4 or if its applied to a type that is " 1720 "or contains a double a multiple of 8.", 1721 prog->TransformFeedback.BufferStride[idx]); 1722 return false; 1723 } 1724 1725 if (prog->TransformFeedback.BufferStride[idx] / 4 > 1726 ctx->Const.MaxTransformFeedbackInterleavedComponents) { 1727 linker_error(prog, "The MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS " 1728 "limit has been exceeded."); 1729 return false; 1730 } 1731 1732 return true; 1733} 1734 1735/** 1736 * Check for conflicting xfb_stride default qualifiers and store buffer stride 1737 * for later use. 1738 */ 1739static void 1740link_xfb_stride_layout_qualifiers(struct gl_context *ctx, 1741 struct gl_shader_program *prog, 1742 struct gl_shader **shader_list, 1743 unsigned num_shaders) 1744{ 1745 for (unsigned i = 0; i < MAX_FEEDBACK_BUFFERS; i++) { 1746 prog->TransformFeedback.BufferStride[i] = 0; 1747 } 1748 1749 for (unsigned i = 0; i < num_shaders; i++) { 1750 struct gl_shader *shader = shader_list[i]; 1751 1752 for (unsigned j = 0; j < MAX_FEEDBACK_BUFFERS; j++) { 1753 if (shader->TransformFeedbackBufferStride[j]) { 1754 if (prog->TransformFeedback.BufferStride[j] == 0) { 1755 prog->TransformFeedback.BufferStride[j] = 1756 shader->TransformFeedbackBufferStride[j]; 1757 if (!validate_xfb_buffer_stride(ctx, j, prog)) 1758 return; 1759 } else if (prog->TransformFeedback.BufferStride[j] != 1760 shader->TransformFeedbackBufferStride[j]){ 1761 linker_error(prog, 1762 "intrastage shaders defined with conflicting " 1763 "xfb_stride for buffer %d (%d and %d)\n", j, 1764 prog->TransformFeedback.BufferStride[j], 1765 shader->TransformFeedbackBufferStride[j]); 1766 return; 1767 } 1768 } 1769 } 1770 } 1771} 1772 1773/** 1774 * Check for conflicting bindless/bound sampler/image layout qualifiers at 1775 * global scope. 1776 */ 1777static void 1778link_bindless_layout_qualifiers(struct gl_shader_program *prog, 1779 struct gl_shader **shader_list, 1780 unsigned num_shaders) 1781{ 1782 bool bindless_sampler, bindless_image; 1783 bool bound_sampler, bound_image; 1784 1785 bindless_sampler = bindless_image = false; 1786 bound_sampler = bound_image = false; 1787 1788 for (unsigned i = 0; i < num_shaders; i++) { 1789 struct gl_shader *shader = shader_list[i]; 1790 1791 if (shader->bindless_sampler) 1792 bindless_sampler = true; 1793 if (shader->bindless_image) 1794 bindless_image = true; 1795 if (shader->bound_sampler) 1796 bound_sampler = true; 1797 if (shader->bound_image) 1798 bound_image = true; 1799 1800 if ((bindless_sampler && bound_sampler) || 1801 (bindless_image && bound_image)) { 1802 /* From section 4.4.6 of the ARB_bindless_texture spec: 1803 * 1804 * "If both bindless_sampler and bound_sampler, or bindless_image 1805 * and bound_image, are declared at global scope in any 1806 * compilation unit, a link- time error will be generated." 1807 */ 1808 linker_error(prog, "both bindless_sampler and bound_sampler, or " 1809 "bindless_image and bound_image, can't be declared at " 1810 "global scope"); 1811 } 1812 } 1813} 1814 1815/** 1816 * Performs the cross-validation of tessellation control shader vertices and 1817 * layout qualifiers for the attached tessellation control shaders, 1818 * and propagates them to the linked TCS and linked shader program. 1819 */ 1820static void 1821link_tcs_out_layout_qualifiers(struct gl_shader_program *prog, 1822 struct gl_program *gl_prog, 1823 struct gl_shader **shader_list, 1824 unsigned num_shaders) 1825{ 1826 if (gl_prog->info.stage != MESA_SHADER_TESS_CTRL) 1827 return; 1828 1829 gl_prog->info.tess.tcs_vertices_out = 0; 1830 1831 /* From the GLSL 4.0 spec (chapter 4.3.8.2): 1832 * 1833 * "All tessellation control shader layout declarations in a program 1834 * must specify the same output patch vertex count. There must be at 1835 * least one layout qualifier specifying an output patch vertex count 1836 * in any program containing tessellation control shaders; however, 1837 * such a declaration is not required in all tessellation control 1838 * shaders." 1839 */ 1840 1841 for (unsigned i = 0; i < num_shaders; i++) { 1842 struct gl_shader *shader = shader_list[i]; 1843 1844 if (shader->info.TessCtrl.VerticesOut != 0) { 1845 if (gl_prog->info.tess.tcs_vertices_out != 0 && 1846 gl_prog->info.tess.tcs_vertices_out != 1847 (unsigned) shader->info.TessCtrl.VerticesOut) { 1848 linker_error(prog, "tessellation control shader defined with " 1849 "conflicting output vertex count (%d and %d)\n", 1850 gl_prog->info.tess.tcs_vertices_out, 1851 shader->info.TessCtrl.VerticesOut); 1852 return; 1853 } 1854 gl_prog->info.tess.tcs_vertices_out = 1855 shader->info.TessCtrl.VerticesOut; 1856 } 1857 } 1858 1859 /* Just do the intrastage -> interstage propagation right now, 1860 * since we already know we're in the right type of shader program 1861 * for doing it. 1862 */ 1863 if (gl_prog->info.tess.tcs_vertices_out == 0) { 1864 linker_error(prog, "tessellation control shader didn't declare " 1865 "vertices out layout qualifier\n"); 1866 return; 1867 } 1868} 1869 1870 1871/** 1872 * Performs the cross-validation of tessellation evaluation shader 1873 * primitive type, vertex spacing, ordering and point_mode layout qualifiers 1874 * for the attached tessellation evaluation shaders, and propagates them 1875 * to the linked TES and linked shader program. 1876 */ 1877static void 1878link_tes_in_layout_qualifiers(struct gl_shader_program *prog, 1879 struct gl_program *gl_prog, 1880 struct gl_shader **shader_list, 1881 unsigned num_shaders) 1882{ 1883 if (gl_prog->info.stage != MESA_SHADER_TESS_EVAL) 1884 return; 1885 1886 int point_mode = -1; 1887 unsigned vertex_order = 0; 1888 1889 gl_prog->info.tess.primitive_mode = PRIM_UNKNOWN; 1890 gl_prog->info.tess.spacing = TESS_SPACING_UNSPECIFIED; 1891 1892 /* From the GLSL 4.0 spec (chapter 4.3.8.1): 1893 * 1894 * "At least one tessellation evaluation shader (compilation unit) in 1895 * a program must declare a primitive mode in its input layout. 1896 * Declaration vertex spacing, ordering, and point mode identifiers is 1897 * optional. It is not required that all tessellation evaluation 1898 * shaders in a program declare a primitive mode. If spacing or 1899 * vertex ordering declarations are omitted, the tessellation 1900 * primitive generator will use equal spacing or counter-clockwise 1901 * vertex ordering, respectively. If a point mode declaration is 1902 * omitted, the tessellation primitive generator will produce lines or 1903 * triangles according to the primitive mode." 1904 */ 1905 1906 for (unsigned i = 0; i < num_shaders; i++) { 1907 struct gl_shader *shader = shader_list[i]; 1908 1909 if (shader->info.TessEval.PrimitiveMode != PRIM_UNKNOWN) { 1910 if (gl_prog->info.tess.primitive_mode != PRIM_UNKNOWN && 1911 gl_prog->info.tess.primitive_mode != 1912 shader->info.TessEval.PrimitiveMode) { 1913 linker_error(prog, "tessellation evaluation shader defined with " 1914 "conflicting input primitive modes.\n"); 1915 return; 1916 } 1917 gl_prog->info.tess.primitive_mode = 1918 shader->info.TessEval.PrimitiveMode; 1919 } 1920 1921 if (shader->info.TessEval.Spacing != 0) { 1922 if (gl_prog->info.tess.spacing != 0 && gl_prog->info.tess.spacing != 1923 shader->info.TessEval.Spacing) { 1924 linker_error(prog, "tessellation evaluation shader defined with " 1925 "conflicting vertex spacing.\n"); 1926 return; 1927 } 1928 gl_prog->info.tess.spacing = shader->info.TessEval.Spacing; 1929 } 1930 1931 if (shader->info.TessEval.VertexOrder != 0) { 1932 if (vertex_order != 0 && 1933 vertex_order != shader->info.TessEval.VertexOrder) { 1934 linker_error(prog, "tessellation evaluation shader defined with " 1935 "conflicting ordering.\n"); 1936 return; 1937 } 1938 vertex_order = shader->info.TessEval.VertexOrder; 1939 } 1940 1941 if (shader->info.TessEval.PointMode != -1) { 1942 if (point_mode != -1 && 1943 point_mode != shader->info.TessEval.PointMode) { 1944 linker_error(prog, "tessellation evaluation shader defined with " 1945 "conflicting point modes.\n"); 1946 return; 1947 } 1948 point_mode = shader->info.TessEval.PointMode; 1949 } 1950 1951 } 1952 1953 /* Just do the intrastage -> interstage propagation right now, 1954 * since we already know we're in the right type of shader program 1955 * for doing it. 1956 */ 1957 if (gl_prog->info.tess.primitive_mode == PRIM_UNKNOWN) { 1958 linker_error(prog, 1959 "tessellation evaluation shader didn't declare input " 1960 "primitive modes.\n"); 1961 return; 1962 } 1963 1964 if (gl_prog->info.tess.spacing == TESS_SPACING_UNSPECIFIED) 1965 gl_prog->info.tess.spacing = TESS_SPACING_EQUAL; 1966 1967 if (vertex_order == 0 || vertex_order == GL_CCW) 1968 gl_prog->info.tess.ccw = true; 1969 else 1970 gl_prog->info.tess.ccw = false; 1971 1972 1973 if (point_mode == -1 || point_mode == GL_FALSE) 1974 gl_prog->info.tess.point_mode = false; 1975 else 1976 gl_prog->info.tess.point_mode = true; 1977} 1978 1979 1980/** 1981 * Performs the cross-validation of layout qualifiers specified in 1982 * redeclaration of gl_FragCoord for the attached fragment shaders, 1983 * and propagates them to the linked FS and linked shader program. 1984 */ 1985static void 1986link_fs_inout_layout_qualifiers(struct gl_shader_program *prog, 1987 struct gl_linked_shader *linked_shader, 1988 struct gl_shader **shader_list, 1989 unsigned num_shaders) 1990{ 1991 bool redeclares_gl_fragcoord = false; 1992 bool uses_gl_fragcoord = false; 1993 bool origin_upper_left = false; 1994 bool pixel_center_integer = false; 1995 1996 if (linked_shader->Stage != MESA_SHADER_FRAGMENT || 1997 (prog->data->Version < 150 && 1998 !prog->ARB_fragment_coord_conventions_enable)) 1999 return; 2000 2001 for (unsigned i = 0; i < num_shaders; i++) { 2002 struct gl_shader *shader = shader_list[i]; 2003 /* From the GLSL 1.50 spec, page 39: 2004 * 2005 * "If gl_FragCoord is redeclared in any fragment shader in a program, 2006 * it must be redeclared in all the fragment shaders in that program 2007 * that have a static use gl_FragCoord." 2008 */ 2009 if ((redeclares_gl_fragcoord && !shader->redeclares_gl_fragcoord && 2010 shader->uses_gl_fragcoord) 2011 || (shader->redeclares_gl_fragcoord && !redeclares_gl_fragcoord && 2012 uses_gl_fragcoord)) { 2013 linker_error(prog, "fragment shader defined with conflicting " 2014 "layout qualifiers for gl_FragCoord\n"); 2015 } 2016 2017 /* From the GLSL 1.50 spec, page 39: 2018 * 2019 * "All redeclarations of gl_FragCoord in all fragment shaders in a 2020 * single program must have the same set of qualifiers." 2021 */ 2022 if (redeclares_gl_fragcoord && shader->redeclares_gl_fragcoord && 2023 (shader->origin_upper_left != origin_upper_left || 2024 shader->pixel_center_integer != pixel_center_integer)) { 2025 linker_error(prog, "fragment shader defined with conflicting " 2026 "layout qualifiers for gl_FragCoord\n"); 2027 } 2028 2029 /* Update the linked shader state. Note that uses_gl_fragcoord should 2030 * accumulate the results. The other values should replace. If there 2031 * are multiple redeclarations, all the fields except uses_gl_fragcoord 2032 * are already known to be the same. 2033 */ 2034 if (shader->redeclares_gl_fragcoord || shader->uses_gl_fragcoord) { 2035 redeclares_gl_fragcoord = shader->redeclares_gl_fragcoord; 2036 uses_gl_fragcoord |= shader->uses_gl_fragcoord; 2037 origin_upper_left = shader->origin_upper_left; 2038 pixel_center_integer = shader->pixel_center_integer; 2039 } 2040 2041 linked_shader->Program->info.fs.early_fragment_tests |= 2042 shader->EarlyFragmentTests || shader->PostDepthCoverage; 2043 linked_shader->Program->info.fs.inner_coverage |= shader->InnerCoverage; 2044 linked_shader->Program->info.fs.post_depth_coverage |= 2045 shader->PostDepthCoverage; 2046 linked_shader->Program->info.fs.pixel_interlock_ordered |= 2047 shader->PixelInterlockOrdered; 2048 linked_shader->Program->info.fs.pixel_interlock_unordered |= 2049 shader->PixelInterlockUnordered; 2050 linked_shader->Program->info.fs.sample_interlock_ordered |= 2051 shader->SampleInterlockOrdered; 2052 linked_shader->Program->info.fs.sample_interlock_unordered |= 2053 shader->SampleInterlockUnordered; 2054 2055 linked_shader->Program->sh.fs.BlendSupport |= shader->BlendSupport; 2056 } 2057} 2058 2059/** 2060 * Performs the cross-validation of geometry shader max_vertices and 2061 * primitive type layout qualifiers for the attached geometry shaders, 2062 * and propagates them to the linked GS and linked shader program. 2063 */ 2064static void 2065link_gs_inout_layout_qualifiers(struct gl_shader_program *prog, 2066 struct gl_program *gl_prog, 2067 struct gl_shader **shader_list, 2068 unsigned num_shaders) 2069{ 2070 /* No in/out qualifiers defined for anything but GLSL 1.50+ 2071 * geometry shaders so far. 2072 */ 2073 if (gl_prog->info.stage != MESA_SHADER_GEOMETRY || 2074 prog->data->Version < 150) 2075 return; 2076 2077 int vertices_out = -1; 2078 2079 gl_prog->info.gs.invocations = 0; 2080 gl_prog->info.gs.input_primitive = PRIM_UNKNOWN; 2081 gl_prog->info.gs.output_primitive = PRIM_UNKNOWN; 2082 2083 /* From the GLSL 1.50 spec, page 46: 2084 * 2085 * "All geometry shader output layout declarations in a program 2086 * must declare the same layout and same value for 2087 * max_vertices. There must be at least one geometry output 2088 * layout declaration somewhere in a program, but not all 2089 * geometry shaders (compilation units) are required to 2090 * declare it." 2091 */ 2092 2093 for (unsigned i = 0; i < num_shaders; i++) { 2094 struct gl_shader *shader = shader_list[i]; 2095 2096 if (shader->info.Geom.InputType != PRIM_UNKNOWN) { 2097 if (gl_prog->info.gs.input_primitive != PRIM_UNKNOWN && 2098 gl_prog->info.gs.input_primitive != 2099 shader->info.Geom.InputType) { 2100 linker_error(prog, "geometry shader defined with conflicting " 2101 "input types\n"); 2102 return; 2103 } 2104 gl_prog->info.gs.input_primitive = shader->info.Geom.InputType; 2105 } 2106 2107 if (shader->info.Geom.OutputType != PRIM_UNKNOWN) { 2108 if (gl_prog->info.gs.output_primitive != PRIM_UNKNOWN && 2109 gl_prog->info.gs.output_primitive != 2110 shader->info.Geom.OutputType) { 2111 linker_error(prog, "geometry shader defined with conflicting " 2112 "output types\n"); 2113 return; 2114 } 2115 gl_prog->info.gs.output_primitive = shader->info.Geom.OutputType; 2116 } 2117 2118 if (shader->info.Geom.VerticesOut != -1) { 2119 if (vertices_out != -1 && 2120 vertices_out != shader->info.Geom.VerticesOut) { 2121 linker_error(prog, "geometry shader defined with conflicting " 2122 "output vertex count (%d and %d)\n", 2123 vertices_out, shader->info.Geom.VerticesOut); 2124 return; 2125 } 2126 vertices_out = shader->info.Geom.VerticesOut; 2127 } 2128 2129 if (shader->info.Geom.Invocations != 0) { 2130 if (gl_prog->info.gs.invocations != 0 && 2131 gl_prog->info.gs.invocations != 2132 (unsigned) shader->info.Geom.Invocations) { 2133 linker_error(prog, "geometry shader defined with conflicting " 2134 "invocation count (%d and %d)\n", 2135 gl_prog->info.gs.invocations, 2136 shader->info.Geom.Invocations); 2137 return; 2138 } 2139 gl_prog->info.gs.invocations = shader->info.Geom.Invocations; 2140 } 2141 } 2142 2143 /* Just do the intrastage -> interstage propagation right now, 2144 * since we already know we're in the right type of shader program 2145 * for doing it. 2146 */ 2147 if (gl_prog->info.gs.input_primitive == PRIM_UNKNOWN) { 2148 linker_error(prog, 2149 "geometry shader didn't declare primitive input type\n"); 2150 return; 2151 } 2152 2153 if (gl_prog->info.gs.output_primitive == PRIM_UNKNOWN) { 2154 linker_error(prog, 2155 "geometry shader didn't declare primitive output type\n"); 2156 return; 2157 } 2158 2159 if (vertices_out == -1) { 2160 linker_error(prog, 2161 "geometry shader didn't declare max_vertices\n"); 2162 return; 2163 } else { 2164 gl_prog->info.gs.vertices_out = vertices_out; 2165 } 2166 2167 if (gl_prog->info.gs.invocations == 0) 2168 gl_prog->info.gs.invocations = 1; 2169} 2170 2171 2172/** 2173 * Perform cross-validation of compute shader local_size_{x,y,z} layout 2174 * qualifiers for the attached compute shaders, and propagate them to the 2175 * linked CS and linked shader program. 2176 */ 2177static void 2178link_cs_input_layout_qualifiers(struct gl_shader_program *prog, 2179 struct gl_program *gl_prog, 2180 struct gl_shader **shader_list, 2181 unsigned num_shaders) 2182{ 2183 /* This function is called for all shader stages, but it only has an effect 2184 * for compute shaders. 2185 */ 2186 if (gl_prog->info.stage != MESA_SHADER_COMPUTE) 2187 return; 2188 2189 for (int i = 0; i < 3; i++) 2190 gl_prog->info.cs.local_size[i] = 0; 2191 2192 gl_prog->info.cs.local_size_variable = false; 2193 2194 /* From the ARB_compute_shader spec, in the section describing local size 2195 * declarations: 2196 * 2197 * If multiple compute shaders attached to a single program object 2198 * declare local work-group size, the declarations must be identical; 2199 * otherwise a link-time error results. Furthermore, if a program 2200 * object contains any compute shaders, at least one must contain an 2201 * input layout qualifier specifying the local work sizes of the 2202 * program, or a link-time error will occur. 2203 */ 2204 for (unsigned sh = 0; sh < num_shaders; sh++) { 2205 struct gl_shader *shader = shader_list[sh]; 2206 2207 if (shader->info.Comp.LocalSize[0] != 0) { 2208 if (gl_prog->info.cs.local_size[0] != 0) { 2209 for (int i = 0; i < 3; i++) { 2210 if (gl_prog->info.cs.local_size[i] != 2211 shader->info.Comp.LocalSize[i]) { 2212 linker_error(prog, "compute shader defined with conflicting " 2213 "local sizes\n"); 2214 return; 2215 } 2216 } 2217 } 2218 for (int i = 0; i < 3; i++) { 2219 gl_prog->info.cs.local_size[i] = 2220 shader->info.Comp.LocalSize[i]; 2221 } 2222 } else if (shader->info.Comp.LocalSizeVariable) { 2223 if (gl_prog->info.cs.local_size[0] != 0) { 2224 /* The ARB_compute_variable_group_size spec says: 2225 * 2226 * If one compute shader attached to a program declares a 2227 * variable local group size and a second compute shader 2228 * attached to the same program declares a fixed local group 2229 * size, a link-time error results. 2230 */ 2231 linker_error(prog, "compute shader defined with both fixed and " 2232 "variable local group size\n"); 2233 return; 2234 } 2235 gl_prog->info.cs.local_size_variable = true; 2236 } 2237 } 2238 2239 /* Just do the intrastage -> interstage propagation right now, 2240 * since we already know we're in the right type of shader program 2241 * for doing it. 2242 */ 2243 if (gl_prog->info.cs.local_size[0] == 0 && 2244 !gl_prog->info.cs.local_size_variable) { 2245 linker_error(prog, "compute shader must contain a fixed or a variable " 2246 "local group size\n"); 2247 return; 2248 } 2249} 2250 2251/** 2252 * Link all out variables on a single stage which are not 2253 * directly used in a shader with the main function. 2254 */ 2255static void 2256link_output_variables(struct gl_linked_shader *linked_shader, 2257 struct gl_shader **shader_list, 2258 unsigned num_shaders) 2259{ 2260 struct glsl_symbol_table *symbols = linked_shader->symbols; 2261 2262 for (unsigned i = 0; i < num_shaders; i++) { 2263 2264 /* Skip shader object with main function */ 2265 if (shader_list[i]->symbols->get_function("main")) 2266 continue; 2267 2268 foreach_in_list(ir_instruction, ir, shader_list[i]->ir) { 2269 if (ir->ir_type != ir_type_variable) 2270 continue; 2271 2272 ir_variable *var = (ir_variable *) ir; 2273 2274 if (var->data.mode == ir_var_shader_out && 2275 !symbols->get_variable(var->name)) { 2276 var = var->clone(linked_shader, NULL); 2277 symbols->add_variable(var); 2278 linked_shader->ir->push_head(var); 2279 } 2280 } 2281 } 2282 2283 return; 2284} 2285 2286 2287/** 2288 * Combine a group of shaders for a single stage to generate a linked shader 2289 * 2290 * \note 2291 * If this function is supplied a single shader, it is cloned, and the new 2292 * shader is returned. 2293 */ 2294struct gl_linked_shader * 2295link_intrastage_shaders(void *mem_ctx, 2296 struct gl_context *ctx, 2297 struct gl_shader_program *prog, 2298 struct gl_shader **shader_list, 2299 unsigned num_shaders, 2300 bool allow_missing_main) 2301{ 2302 struct gl_uniform_block *ubo_blocks = NULL; 2303 struct gl_uniform_block *ssbo_blocks = NULL; 2304 unsigned num_ubo_blocks = 0; 2305 unsigned num_ssbo_blocks = 0; 2306 2307 /* Check that global variables defined in multiple shaders are consistent. 2308 */ 2309 glsl_symbol_table variables; 2310 for (unsigned i = 0; i < num_shaders; i++) { 2311 if (shader_list[i] == NULL) 2312 continue; 2313 cross_validate_globals(ctx, prog, shader_list[i]->ir, &variables, 2314 false); 2315 } 2316 2317 if (!prog->data->LinkStatus) 2318 return NULL; 2319 2320 /* Check that interface blocks defined in multiple shaders are consistent. 2321 */ 2322 validate_intrastage_interface_blocks(prog, (const gl_shader **)shader_list, 2323 num_shaders); 2324 if (!prog->data->LinkStatus) 2325 return NULL; 2326 2327 /* Check that there is only a single definition of each function signature 2328 * across all shaders. 2329 */ 2330 for (unsigned i = 0; i < (num_shaders - 1); i++) { 2331 foreach_in_list(ir_instruction, node, shader_list[i]->ir) { 2332 ir_function *const f = node->as_function(); 2333 2334 if (f == NULL) 2335 continue; 2336 2337 for (unsigned j = i + 1; j < num_shaders; j++) { 2338 ir_function *const other = 2339 shader_list[j]->symbols->get_function(f->name); 2340 2341 /* If the other shader has no function (and therefore no function 2342 * signatures) with the same name, skip to the next shader. 2343 */ 2344 if (other == NULL) 2345 continue; 2346 2347 foreach_in_list(ir_function_signature, sig, &f->signatures) { 2348 if (!sig->is_defined) 2349 continue; 2350 2351 ir_function_signature *other_sig = 2352 other->exact_matching_signature(NULL, &sig->parameters); 2353 2354 if (other_sig != NULL && other_sig->is_defined) { 2355 linker_error(prog, "function `%s' is multiply defined\n", 2356 f->name); 2357 return NULL; 2358 } 2359 } 2360 } 2361 } 2362 } 2363 2364 /* Find the shader that defines main, and make a clone of it. 2365 * 2366 * Starting with the clone, search for undefined references. If one is 2367 * found, find the shader that defines it. Clone the reference and add 2368 * it to the shader. Repeat until there are no undefined references or 2369 * until a reference cannot be resolved. 2370 */ 2371 gl_shader *main = NULL; 2372 for (unsigned i = 0; i < num_shaders; i++) { 2373 if (_mesa_get_main_function_signature(shader_list[i]->symbols)) { 2374 main = shader_list[i]; 2375 break; 2376 } 2377 } 2378 2379 if (main == NULL && allow_missing_main) 2380 main = shader_list[0]; 2381 2382 if (main == NULL) { 2383 linker_error(prog, "%s shader lacks `main'\n", 2384 _mesa_shader_stage_to_string(shader_list[0]->Stage)); 2385 return NULL; 2386 } 2387 2388 gl_linked_shader *linked = rzalloc(NULL, struct gl_linked_shader); 2389 linked->Stage = shader_list[0]->Stage; 2390 2391 /* Create program and attach it to the linked shader */ 2392 struct gl_program *gl_prog = 2393 ctx->Driver.NewProgram(ctx, 2394 _mesa_shader_stage_to_program(shader_list[0]->Stage), 2395 prog->Name, false); 2396 if (!gl_prog) { 2397 prog->data->LinkStatus = LINKING_FAILURE; 2398 _mesa_delete_linked_shader(ctx, linked); 2399 return NULL; 2400 } 2401 2402 _mesa_reference_shader_program_data(ctx, &gl_prog->sh.data, prog->data); 2403 2404 /* Don't use _mesa_reference_program() just take ownership */ 2405 linked->Program = gl_prog; 2406 2407 linked->ir = new(linked) exec_list; 2408 clone_ir_list(mem_ctx, linked->ir, main->ir); 2409 2410 link_fs_inout_layout_qualifiers(prog, linked, shader_list, num_shaders); 2411 link_tcs_out_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); 2412 link_tes_in_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); 2413 link_gs_inout_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); 2414 link_cs_input_layout_qualifiers(prog, gl_prog, shader_list, num_shaders); 2415 2416 if (linked->Stage != MESA_SHADER_FRAGMENT) 2417 link_xfb_stride_layout_qualifiers(ctx, prog, shader_list, num_shaders); 2418 2419 link_bindless_layout_qualifiers(prog, shader_list, num_shaders); 2420 2421 populate_symbol_table(linked, shader_list[0]->symbols); 2422 2423 /* The pointer to the main function in the final linked shader (i.e., the 2424 * copy of the original shader that contained the main function). 2425 */ 2426 ir_function_signature *const main_sig = 2427 _mesa_get_main_function_signature(linked->symbols); 2428 2429 /* Move any instructions other than variable declarations or function 2430 * declarations into main. 2431 */ 2432 if (main_sig != NULL) { 2433 exec_node *insertion_point = 2434 move_non_declarations(linked->ir, (exec_node *) &main_sig->body, false, 2435 linked); 2436 2437 for (unsigned i = 0; i < num_shaders; i++) { 2438 if (shader_list[i] == main) 2439 continue; 2440 2441 insertion_point = move_non_declarations(shader_list[i]->ir, 2442 insertion_point, true, linked); 2443 } 2444 } 2445 2446 if (!link_function_calls(prog, linked, shader_list, num_shaders)) { 2447 _mesa_delete_linked_shader(ctx, linked); 2448 return NULL; 2449 } 2450 2451 if (linked->Stage != MESA_SHADER_FRAGMENT) 2452 link_output_variables(linked, shader_list, num_shaders); 2453 2454 /* Make a pass over all variable declarations to ensure that arrays with 2455 * unspecified sizes have a size specified. The size is inferred from the 2456 * max_array_access field. 2457 */ 2458 array_sizing_visitor v; 2459 v.run(linked->ir); 2460 v.fixup_unnamed_interface_types(); 2461 2462 /* Link up uniform blocks defined within this stage. */ 2463 link_uniform_blocks(mem_ctx, ctx, prog, linked, &ubo_blocks, 2464 &num_ubo_blocks, &ssbo_blocks, &num_ssbo_blocks); 2465 2466 if (!prog->data->LinkStatus) { 2467 _mesa_delete_linked_shader(ctx, linked); 2468 return NULL; 2469 } 2470 2471 /* Copy ubo blocks to linked shader list */ 2472 linked->Program->sh.UniformBlocks = 2473 ralloc_array(linked, gl_uniform_block *, num_ubo_blocks); 2474 ralloc_steal(linked, ubo_blocks); 2475 for (unsigned i = 0; i < num_ubo_blocks; i++) { 2476 linked->Program->sh.UniformBlocks[i] = &ubo_blocks[i]; 2477 } 2478 linked->Program->info.num_ubos = num_ubo_blocks; 2479 2480 /* Copy ssbo blocks to linked shader list */ 2481 linked->Program->sh.ShaderStorageBlocks = 2482 ralloc_array(linked, gl_uniform_block *, num_ssbo_blocks); 2483 ralloc_steal(linked, ssbo_blocks); 2484 for (unsigned i = 0; i < num_ssbo_blocks; i++) { 2485 linked->Program->sh.ShaderStorageBlocks[i] = &ssbo_blocks[i]; 2486 } 2487 linked->Program->info.num_ssbos = num_ssbo_blocks; 2488 2489 /* At this point linked should contain all of the linked IR, so 2490 * validate it to make sure nothing went wrong. 2491 */ 2492 validate_ir_tree(linked->ir); 2493 2494 /* Set the size of geometry shader input arrays */ 2495 if (linked->Stage == MESA_SHADER_GEOMETRY) { 2496 unsigned num_vertices = 2497 vertices_per_prim(gl_prog->info.gs.input_primitive); 2498 array_resize_visitor input_resize_visitor(num_vertices, prog, 2499 MESA_SHADER_GEOMETRY); 2500 foreach_in_list(ir_instruction, ir, linked->ir) { 2501 ir->accept(&input_resize_visitor); 2502 } 2503 } 2504 2505 if (ctx->Const.VertexID_is_zero_based) 2506 lower_vertex_id(linked); 2507 2508 if (ctx->Const.LowerCsDerivedVariables) 2509 lower_cs_derived(linked); 2510 2511#ifdef DEBUG 2512 /* Compute the source checksum. */ 2513 linked->SourceChecksum = 0; 2514 for (unsigned i = 0; i < num_shaders; i++) { 2515 if (shader_list[i] == NULL) 2516 continue; 2517 linked->SourceChecksum ^= shader_list[i]->SourceChecksum; 2518 } 2519#endif 2520 2521 return linked; 2522} 2523 2524/** 2525 * Update the sizes of linked shader uniform arrays to the maximum 2526 * array index used. 2527 * 2528 * From page 81 (page 95 of the PDF) of the OpenGL 2.1 spec: 2529 * 2530 * If one or more elements of an array are active, 2531 * GetActiveUniform will return the name of the array in name, 2532 * subject to the restrictions listed above. The type of the array 2533 * is returned in type. The size parameter contains the highest 2534 * array element index used, plus one. The compiler or linker 2535 * determines the highest index used. There will be only one 2536 * active uniform reported by the GL per uniform array. 2537 2538 */ 2539static void 2540update_array_sizes(struct gl_shader_program *prog) 2541{ 2542 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 2543 if (prog->_LinkedShaders[i] == NULL) 2544 continue; 2545 2546 bool types_were_updated = false; 2547 2548 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { 2549 ir_variable *const var = node->as_variable(); 2550 2551 if ((var == NULL) || (var->data.mode != ir_var_uniform) || 2552 !var->type->is_array()) 2553 continue; 2554 2555 /* GL_ARB_uniform_buffer_object says that std140 uniforms 2556 * will not be eliminated. Since we always do std140, just 2557 * don't resize arrays in UBOs. 2558 * 2559 * Atomic counters are supposed to get deterministic 2560 * locations assigned based on the declaration ordering and 2561 * sizes, array compaction would mess that up. 2562 * 2563 * Subroutine uniforms are not removed. 2564 */ 2565 if (var->is_in_buffer_block() || var->type->contains_atomic() || 2566 var->type->contains_subroutine() || var->constant_initializer) 2567 continue; 2568 2569 int size = var->data.max_array_access; 2570 for (unsigned j = 0; j < MESA_SHADER_STAGES; j++) { 2571 if (prog->_LinkedShaders[j] == NULL) 2572 continue; 2573 2574 foreach_in_list(ir_instruction, node2, prog->_LinkedShaders[j]->ir) { 2575 ir_variable *other_var = node2->as_variable(); 2576 if (!other_var) 2577 continue; 2578 2579 if (strcmp(var->name, other_var->name) == 0 && 2580 other_var->data.max_array_access > size) { 2581 size = other_var->data.max_array_access; 2582 } 2583 } 2584 } 2585 2586 if (size + 1 != (int)var->type->length) { 2587 /* If this is a built-in uniform (i.e., it's backed by some 2588 * fixed-function state), adjust the number of state slots to 2589 * match the new array size. The number of slots per array entry 2590 * is not known. It seems safe to assume that the total number of 2591 * slots is an integer multiple of the number of array elements. 2592 * Determine the number of slots per array element by dividing by 2593 * the old (total) size. 2594 */ 2595 const unsigned num_slots = var->get_num_state_slots(); 2596 if (num_slots > 0) { 2597 var->set_num_state_slots((size + 1) 2598 * (num_slots / var->type->length)); 2599 } 2600 2601 var->type = glsl_type::get_array_instance(var->type->fields.array, 2602 size + 1); 2603 types_were_updated = true; 2604 } 2605 } 2606 2607 /* Update the types of dereferences in case we changed any. */ 2608 if (types_were_updated) { 2609 deref_type_updater v; 2610 v.run(prog->_LinkedShaders[i]->ir); 2611 } 2612 } 2613} 2614 2615/** 2616 * Resize tessellation evaluation per-vertex inputs to the size of 2617 * tessellation control per-vertex outputs. 2618 */ 2619static void 2620resize_tes_inputs(struct gl_context *ctx, 2621 struct gl_shader_program *prog) 2622{ 2623 if (prog->_LinkedShaders[MESA_SHADER_TESS_EVAL] == NULL) 2624 return; 2625 2626 gl_linked_shader *const tcs = prog->_LinkedShaders[MESA_SHADER_TESS_CTRL]; 2627 gl_linked_shader *const tes = prog->_LinkedShaders[MESA_SHADER_TESS_EVAL]; 2628 2629 /* If no control shader is present, then the TES inputs are statically 2630 * sized to MaxPatchVertices; the actual size of the arrays won't be 2631 * known until draw time. 2632 */ 2633 const int num_vertices = tcs 2634 ? tcs->Program->info.tess.tcs_vertices_out 2635 : ctx->Const.MaxPatchVertices; 2636 2637 array_resize_visitor input_resize_visitor(num_vertices, prog, 2638 MESA_SHADER_TESS_EVAL); 2639 foreach_in_list(ir_instruction, ir, tes->ir) { 2640 ir->accept(&input_resize_visitor); 2641 } 2642 2643 if (tcs) { 2644 /* Convert the gl_PatchVerticesIn system value into a constant, since 2645 * the value is known at this point. 2646 */ 2647 foreach_in_list(ir_instruction, ir, tes->ir) { 2648 ir_variable *var = ir->as_variable(); 2649 if (var && var->data.mode == ir_var_system_value && 2650 var->data.location == SYSTEM_VALUE_VERTICES_IN) { 2651 void *mem_ctx = ralloc_parent(var); 2652 var->data.location = 0; 2653 var->data.explicit_location = false; 2654 var->data.mode = ir_var_auto; 2655 var->constant_value = new(mem_ctx) ir_constant(num_vertices); 2656 } 2657 } 2658 } 2659} 2660 2661/** 2662 * Find a contiguous set of available bits in a bitmask. 2663 * 2664 * \param used_mask Bits representing used (1) and unused (0) locations 2665 * \param needed_count Number of contiguous bits needed. 2666 * 2667 * \return 2668 * Base location of the available bits on success or -1 on failure. 2669 */ 2670static int 2671find_available_slots(unsigned used_mask, unsigned needed_count) 2672{ 2673 unsigned needed_mask = (1 << needed_count) - 1; 2674 const int max_bit_to_test = (8 * sizeof(used_mask)) - needed_count; 2675 2676 /* The comparison to 32 is redundant, but without it GCC emits "warning: 2677 * cannot optimize possibly infinite loops" for the loop below. 2678 */ 2679 if ((needed_count == 0) || (max_bit_to_test < 0) || (max_bit_to_test > 32)) 2680 return -1; 2681 2682 for (int i = 0; i <= max_bit_to_test; i++) { 2683 if ((needed_mask & ~used_mask) == needed_mask) 2684 return i; 2685 2686 needed_mask <<= 1; 2687 } 2688 2689 return -1; 2690} 2691 2692 2693#define SAFE_MASK_FROM_INDEX(i) (((i) >= 32) ? ~0 : ((1 << (i)) - 1)) 2694 2695/** 2696 * Assign locations for either VS inputs or FS outputs 2697 * 2698 * \param mem_ctx Temporary ralloc context used for linking 2699 * \param prog Shader program whose variables need locations assigned 2700 * \param constants Driver specific constant values for the program. 2701 * \param target_index Selector for the program target to receive location 2702 * assignmnets. Must be either \c MESA_SHADER_VERTEX or 2703 * \c MESA_SHADER_FRAGMENT. 2704 * 2705 * \return 2706 * If locations are successfully assigned, true is returned. Otherwise an 2707 * error is emitted to the shader link log and false is returned. 2708 */ 2709static bool 2710assign_attribute_or_color_locations(void *mem_ctx, 2711 gl_shader_program *prog, 2712 struct gl_constants *constants, 2713 unsigned target_index, 2714 bool do_assignment) 2715{ 2716 /* Maximum number of generic locations. This corresponds to either the 2717 * maximum number of draw buffers or the maximum number of generic 2718 * attributes. 2719 */ 2720 unsigned max_index = (target_index == MESA_SHADER_VERTEX) ? 2721 constants->Program[target_index].MaxAttribs : 2722 MAX2(constants->MaxDrawBuffers, constants->MaxDualSourceDrawBuffers); 2723 2724 /* Mark invalid locations as being used. 2725 */ 2726 unsigned used_locations = ~SAFE_MASK_FROM_INDEX(max_index); 2727 unsigned double_storage_locations = 0; 2728 2729 assert((target_index == MESA_SHADER_VERTEX) 2730 || (target_index == MESA_SHADER_FRAGMENT)); 2731 2732 gl_linked_shader *const sh = prog->_LinkedShaders[target_index]; 2733 if (sh == NULL) 2734 return true; 2735 2736 /* Operate in a total of four passes. 2737 * 2738 * 1. Invalidate the location assignments for all vertex shader inputs. 2739 * 2740 * 2. Assign locations for inputs that have user-defined (via 2741 * glBindVertexAttribLocation) locations and outputs that have 2742 * user-defined locations (via glBindFragDataLocation). 2743 * 2744 * 3. Sort the attributes without assigned locations by number of slots 2745 * required in decreasing order. Fragmentation caused by attribute 2746 * locations assigned by the application may prevent large attributes 2747 * from having enough contiguous space. 2748 * 2749 * 4. Assign locations to any inputs without assigned locations. 2750 */ 2751 2752 const int generic_base = (target_index == MESA_SHADER_VERTEX) 2753 ? (int) VERT_ATTRIB_GENERIC0 : (int) FRAG_RESULT_DATA0; 2754 2755 const enum ir_variable_mode direction = 2756 (target_index == MESA_SHADER_VERTEX) 2757 ? ir_var_shader_in : ir_var_shader_out; 2758 2759 2760 /* Temporary storage for the set of attributes that need locations assigned. 2761 */ 2762 struct temp_attr { 2763 unsigned slots; 2764 ir_variable *var; 2765 2766 /* Used below in the call to qsort. */ 2767 static int compare(const void *a, const void *b) 2768 { 2769 const temp_attr *const l = (const temp_attr *) a; 2770 const temp_attr *const r = (const temp_attr *) b; 2771 2772 /* Reversed because we want a descending order sort below. */ 2773 return r->slots - l->slots; 2774 } 2775 } to_assign[32]; 2776 assert(max_index <= 32); 2777 2778 /* Temporary array for the set of attributes that have locations assigned, 2779 * for the purpose of checking overlapping slots/components of (non-ES) 2780 * fragment shader outputs. 2781 */ 2782 ir_variable *assigned[12 * 4]; /* (max # of FS outputs) * # components */ 2783 unsigned assigned_attr = 0; 2784 2785 unsigned num_attr = 0; 2786 2787 foreach_in_list(ir_instruction, node, sh->ir) { 2788 ir_variable *const var = node->as_variable(); 2789 2790 if ((var == NULL) || (var->data.mode != (unsigned) direction)) 2791 continue; 2792 2793 if (var->data.explicit_location) { 2794 var->data.is_unmatched_generic_inout = 0; 2795 if ((var->data.location >= (int)(max_index + generic_base)) 2796 || (var->data.location < 0)) { 2797 linker_error(prog, 2798 "invalid explicit location %d specified for `%s'\n", 2799 (var->data.location < 0) 2800 ? var->data.location 2801 : var->data.location - generic_base, 2802 var->name); 2803 return false; 2804 } 2805 } else if (target_index == MESA_SHADER_VERTEX) { 2806 unsigned binding; 2807 2808 if (prog->AttributeBindings->get(binding, var->name)) { 2809 assert(binding >= VERT_ATTRIB_GENERIC0); 2810 var->data.location = binding; 2811 var->data.is_unmatched_generic_inout = 0; 2812 } 2813 } else if (target_index == MESA_SHADER_FRAGMENT) { 2814 unsigned binding; 2815 unsigned index; 2816 const char *name = var->name; 2817 const glsl_type *type = var->type; 2818 2819 while (type) { 2820 /* Check if there's a binding for the variable name */ 2821 if (prog->FragDataBindings->get(binding, name)) { 2822 assert(binding >= FRAG_RESULT_DATA0); 2823 var->data.location = binding; 2824 var->data.is_unmatched_generic_inout = 0; 2825 2826 if (prog->FragDataIndexBindings->get(index, name)) { 2827 var->data.index = index; 2828 } 2829 break; 2830 } 2831 2832 /* If not, but it's an array type, look for name[0] */ 2833 if (type->is_array()) { 2834 name = ralloc_asprintf(mem_ctx, "%s[0]", name); 2835 type = type->fields.array; 2836 continue; 2837 } 2838 2839 break; 2840 } 2841 } 2842 2843 if (strcmp(var->name, "gl_LastFragData") == 0) 2844 continue; 2845 2846 /* From GL4.5 core spec, section 15.2 (Shader Execution): 2847 * 2848 * "Output binding assignments will cause LinkProgram to fail: 2849 * ... 2850 * If the program has an active output assigned to a location greater 2851 * than or equal to the value of MAX_DUAL_SOURCE_DRAW_BUFFERS and has 2852 * an active output assigned an index greater than or equal to one;" 2853 */ 2854 if (target_index == MESA_SHADER_FRAGMENT && var->data.index >= 1 && 2855 var->data.location - generic_base >= 2856 (int) constants->MaxDualSourceDrawBuffers) { 2857 linker_error(prog, 2858 "output location %d >= GL_MAX_DUAL_SOURCE_DRAW_BUFFERS " 2859 "with index %u for %s\n", 2860 var->data.location - generic_base, var->data.index, 2861 var->name); 2862 return false; 2863 } 2864 2865 const unsigned slots = var->type->count_attribute_slots(target_index == MESA_SHADER_VERTEX); 2866 2867 /* If the variable is not a built-in and has a location statically 2868 * assigned in the shader (presumably via a layout qualifier), make sure 2869 * that it doesn't collide with other assigned locations. Otherwise, 2870 * add it to the list of variables that need linker-assigned locations. 2871 */ 2872 if (var->data.location != -1) { 2873 if (var->data.location >= generic_base && var->data.index < 1) { 2874 /* From page 61 of the OpenGL 4.0 spec: 2875 * 2876 * "LinkProgram will fail if the attribute bindings assigned 2877 * by BindAttribLocation do not leave not enough space to 2878 * assign a location for an active matrix attribute or an 2879 * active attribute array, both of which require multiple 2880 * contiguous generic attributes." 2881 * 2882 * I think above text prohibits the aliasing of explicit and 2883 * automatic assignments. But, aliasing is allowed in manual 2884 * assignments of attribute locations. See below comments for 2885 * the details. 2886 * 2887 * From OpenGL 4.0 spec, page 61: 2888 * 2889 * "It is possible for an application to bind more than one 2890 * attribute name to the same location. This is referred to as 2891 * aliasing. This will only work if only one of the aliased 2892 * attributes is active in the executable program, or if no 2893 * path through the shader consumes more than one attribute of 2894 * a set of attributes aliased to the same location. A link 2895 * error can occur if the linker determines that every path 2896 * through the shader consumes multiple aliased attributes, 2897 * but implementations are not required to generate an error 2898 * in this case." 2899 * 2900 * From GLSL 4.30 spec, page 54: 2901 * 2902 * "A program will fail to link if any two non-vertex shader 2903 * input variables are assigned to the same location. For 2904 * vertex shaders, multiple input variables may be assigned 2905 * to the same location using either layout qualifiers or via 2906 * the OpenGL API. However, such aliasing is intended only to 2907 * support vertex shaders where each execution path accesses 2908 * at most one input per each location. Implementations are 2909 * permitted, but not required, to generate link-time errors 2910 * if they detect that every path through the vertex shader 2911 * executable accesses multiple inputs assigned to any single 2912 * location. For all shader types, a program will fail to link 2913 * if explicit location assignments leave the linker unable 2914 * to find space for other variables without explicit 2915 * assignments." 2916 * 2917 * From OpenGL ES 3.0 spec, page 56: 2918 * 2919 * "Binding more than one attribute name to the same location 2920 * is referred to as aliasing, and is not permitted in OpenGL 2921 * ES Shading Language 3.00 vertex shaders. LinkProgram will 2922 * fail when this condition exists. However, aliasing is 2923 * possible in OpenGL ES Shading Language 1.00 vertex shaders. 2924 * This will only work if only one of the aliased attributes 2925 * is active in the executable program, or if no path through 2926 * the shader consumes more than one attribute of a set of 2927 * attributes aliased to the same location. A link error can 2928 * occur if the linker determines that every path through the 2929 * shader consumes multiple aliased attributes, but implemen- 2930 * tations are not required to generate an error in this case." 2931 * 2932 * After looking at above references from OpenGL, OpenGL ES and 2933 * GLSL specifications, we allow aliasing of vertex input variables 2934 * in: OpenGL 2.0 (and above) and OpenGL ES 2.0. 2935 * 2936 * NOTE: This is not required by the spec but its worth mentioning 2937 * here that we're not doing anything to make sure that no path 2938 * through the vertex shader executable accesses multiple inputs 2939 * assigned to any single location. 2940 */ 2941 2942 /* Mask representing the contiguous slots that will be used by 2943 * this attribute. 2944 */ 2945 const unsigned attr = var->data.location - generic_base; 2946 const unsigned use_mask = (1 << slots) - 1; 2947 const char *const string = (target_index == MESA_SHADER_VERTEX) 2948 ? "vertex shader input" : "fragment shader output"; 2949 2950 /* Generate a link error if the requested locations for this 2951 * attribute exceed the maximum allowed attribute location. 2952 */ 2953 if (attr + slots > max_index) { 2954 linker_error(prog, 2955 "insufficient contiguous locations " 2956 "available for %s `%s' %d %d %d\n", string, 2957 var->name, used_locations, use_mask, attr); 2958 return false; 2959 } 2960 2961 /* Generate a link error if the set of bits requested for this 2962 * attribute overlaps any previously allocated bits. 2963 */ 2964 if ((~(use_mask << attr) & used_locations) != used_locations) { 2965 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) { 2966 /* From section 4.4.2 (Output Layout Qualifiers) of the GLSL 2967 * 4.40 spec: 2968 * 2969 * "Additionally, for fragment shader outputs, if two 2970 * variables are placed within the same location, they 2971 * must have the same underlying type (floating-point or 2972 * integer). No component aliasing of output variables or 2973 * members is allowed. 2974 */ 2975 for (unsigned i = 0; i < assigned_attr; i++) { 2976 unsigned assigned_slots = 2977 assigned[i]->type->count_attribute_slots(false); 2978 unsigned assig_attr = 2979 assigned[i]->data.location - generic_base; 2980 unsigned assigned_use_mask = (1 << assigned_slots) - 1; 2981 2982 if ((assigned_use_mask << assig_attr) & 2983 (use_mask << attr)) { 2984 2985 const glsl_type *assigned_type = 2986 assigned[i]->type->without_array(); 2987 const glsl_type *type = var->type->without_array(); 2988 if (assigned_type->base_type != type->base_type) { 2989 linker_error(prog, "types do not match for aliased" 2990 " %ss %s and %s\n", string, 2991 assigned[i]->name, var->name); 2992 return false; 2993 } 2994 2995 unsigned assigned_component_mask = 2996 ((1 << assigned_type->vector_elements) - 1) << 2997 assigned[i]->data.location_frac; 2998 unsigned component_mask = 2999 ((1 << type->vector_elements) - 1) << 3000 var->data.location_frac; 3001 if (assigned_component_mask & component_mask) { 3002 linker_error(prog, "overlapping component is " 3003 "assigned to %ss %s and %s " 3004 "(component=%d)\n", 3005 string, assigned[i]->name, var->name, 3006 var->data.location_frac); 3007 return false; 3008 } 3009 } 3010 } 3011 } else if (target_index == MESA_SHADER_FRAGMENT || 3012 (prog->IsES && prog->data->Version >= 300)) { 3013 linker_error(prog, "overlapping location is assigned " 3014 "to %s `%s' %d %d %d\n", string, var->name, 3015 used_locations, use_mask, attr); 3016 return false; 3017 } else { 3018 linker_warning(prog, "overlapping location is assigned " 3019 "to %s `%s' %d %d %d\n", string, var->name, 3020 used_locations, use_mask, attr); 3021 } 3022 } 3023 3024 if (target_index == MESA_SHADER_FRAGMENT && !prog->IsES) { 3025 /* Only track assigned variables for non-ES fragment shaders 3026 * to avoid overflowing the array. 3027 * 3028 * At most one variable per fragment output component should 3029 * reach this. 3030 */ 3031 assert(assigned_attr < ARRAY_SIZE(assigned)); 3032 assigned[assigned_attr] = var; 3033 assigned_attr++; 3034 } 3035 3036 used_locations |= (use_mask << attr); 3037 3038 /* From the GL 4.5 core spec, section 11.1.1 (Vertex Attributes): 3039 * 3040 * "A program with more than the value of MAX_VERTEX_ATTRIBS 3041 * active attribute variables may fail to link, unless 3042 * device-dependent optimizations are able to make the program 3043 * fit within available hardware resources. For the purposes 3044 * of this test, attribute variables of the type dvec3, dvec4, 3045 * dmat2x3, dmat2x4, dmat3, dmat3x4, dmat4x3, and dmat4 may 3046 * count as consuming twice as many attributes as equivalent 3047 * single-precision types. While these types use the same number 3048 * of generic attributes as their single-precision equivalents, 3049 * implementations are permitted to consume two single-precision 3050 * vectors of internal storage for each three- or four-component 3051 * double-precision vector." 3052 * 3053 * Mark this attribute slot as taking up twice as much space 3054 * so we can count it properly against limits. According to 3055 * issue (3) of the GL_ARB_vertex_attrib_64bit behavior, this 3056 * is optional behavior, but it seems preferable. 3057 */ 3058 if (var->type->without_array()->is_dual_slot()) 3059 double_storage_locations |= (use_mask << attr); 3060 } 3061 3062 continue; 3063 } 3064 3065 if (num_attr >= max_index) { 3066 linker_error(prog, "too many %s (max %u)", 3067 target_index == MESA_SHADER_VERTEX ? 3068 "vertex shader inputs" : "fragment shader outputs", 3069 max_index); 3070 return false; 3071 } 3072 to_assign[num_attr].slots = slots; 3073 to_assign[num_attr].var = var; 3074 num_attr++; 3075 } 3076 3077 if (!do_assignment) 3078 return true; 3079 3080 if (target_index == MESA_SHADER_VERTEX) { 3081 unsigned total_attribs_size = 3082 util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) + 3083 util_bitcount(double_storage_locations); 3084 if (total_attribs_size > max_index) { 3085 linker_error(prog, 3086 "attempt to use %d vertex attribute slots only %d available ", 3087 total_attribs_size, max_index); 3088 return false; 3089 } 3090 } 3091 3092 /* If all of the attributes were assigned locations by the application (or 3093 * are built-in attributes with fixed locations), return early. This should 3094 * be the common case. 3095 */ 3096 if (num_attr == 0) 3097 return true; 3098 3099 qsort(to_assign, num_attr, sizeof(to_assign[0]), temp_attr::compare); 3100 3101 if (target_index == MESA_SHADER_VERTEX) { 3102 /* VERT_ATTRIB_GENERIC0 is a pseudo-alias for VERT_ATTRIB_POS. It can 3103 * only be explicitly assigned by via glBindAttribLocation. Mark it as 3104 * reserved to prevent it from being automatically allocated below. 3105 */ 3106 find_deref_visitor find("gl_Vertex"); 3107 find.run(sh->ir); 3108 if (find.variable_found()) 3109 used_locations |= (1 << 0); 3110 } 3111 3112 for (unsigned i = 0; i < num_attr; i++) { 3113 /* Mask representing the contiguous slots that will be used by this 3114 * attribute. 3115 */ 3116 const unsigned use_mask = (1 << to_assign[i].slots) - 1; 3117 3118 int location = find_available_slots(used_locations, to_assign[i].slots); 3119 3120 if (location < 0) { 3121 const char *const string = (target_index == MESA_SHADER_VERTEX) 3122 ? "vertex shader input" : "fragment shader output"; 3123 3124 linker_error(prog, 3125 "insufficient contiguous locations " 3126 "available for %s `%s'\n", 3127 string, to_assign[i].var->name); 3128 return false; 3129 } 3130 3131 to_assign[i].var->data.location = generic_base + location; 3132 to_assign[i].var->data.is_unmatched_generic_inout = 0; 3133 used_locations |= (use_mask << location); 3134 3135 if (to_assign[i].var->type->without_array()->is_dual_slot()) 3136 double_storage_locations |= (use_mask << location); 3137 } 3138 3139 /* Now that we have all the locations, from the GL 4.5 core spec, section 3140 * 11.1.1 (Vertex Attributes), dvec3, dvec4, dmat2x3, dmat2x4, dmat3, 3141 * dmat3x4, dmat4x3, and dmat4 count as consuming twice as many attributes 3142 * as equivalent single-precision types. 3143 */ 3144 if (target_index == MESA_SHADER_VERTEX) { 3145 unsigned total_attribs_size = 3146 util_bitcount(used_locations & SAFE_MASK_FROM_INDEX(max_index)) + 3147 util_bitcount(double_storage_locations); 3148 if (total_attribs_size > max_index) { 3149 linker_error(prog, 3150 "attempt to use %d vertex attribute slots only %d available ", 3151 total_attribs_size, max_index); 3152 return false; 3153 } 3154 } 3155 3156 return true; 3157} 3158 3159/** 3160 * Match explicit locations of outputs to inputs and deactivate the 3161 * unmatch flag if found so we don't optimise them away. 3162 */ 3163static void 3164match_explicit_outputs_to_inputs(gl_linked_shader *producer, 3165 gl_linked_shader *consumer) 3166{ 3167 glsl_symbol_table parameters; 3168 ir_variable *explicit_locations[MAX_VARYINGS_INCL_PATCH][4] = 3169 { {NULL, NULL} }; 3170 3171 /* Find all shader outputs in the "producer" stage. 3172 */ 3173 foreach_in_list(ir_instruction, node, producer->ir) { 3174 ir_variable *const var = node->as_variable(); 3175 3176 if ((var == NULL) || (var->data.mode != ir_var_shader_out)) 3177 continue; 3178 3179 if (var->data.explicit_location && 3180 var->data.location >= VARYING_SLOT_VAR0) { 3181 const unsigned idx = var->data.location - VARYING_SLOT_VAR0; 3182 if (explicit_locations[idx][var->data.location_frac] == NULL) 3183 explicit_locations[idx][var->data.location_frac] = var; 3184 3185 /* Always match TCS outputs. They are shared by all invocations 3186 * within a patch and can be used as shared memory. 3187 */ 3188 if (producer->Stage == MESA_SHADER_TESS_CTRL) 3189 var->data.is_unmatched_generic_inout = 0; 3190 } 3191 } 3192 3193 /* Match inputs to outputs */ 3194 foreach_in_list(ir_instruction, node, consumer->ir) { 3195 ir_variable *const input = node->as_variable(); 3196 3197 if ((input == NULL) || (input->data.mode != ir_var_shader_in)) 3198 continue; 3199 3200 ir_variable *output = NULL; 3201 if (input->data.explicit_location 3202 && input->data.location >= VARYING_SLOT_VAR0) { 3203 output = explicit_locations[input->data.location - VARYING_SLOT_VAR0] 3204 [input->data.location_frac]; 3205 3206 if (output != NULL){ 3207 input->data.is_unmatched_generic_inout = 0; 3208 output->data.is_unmatched_generic_inout = 0; 3209 } 3210 } 3211 } 3212} 3213 3214/** 3215 * Store the gl_FragDepth layout in the gl_shader_program struct. 3216 */ 3217static void 3218store_fragdepth_layout(struct gl_shader_program *prog) 3219{ 3220 if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) { 3221 return; 3222 } 3223 3224 struct exec_list *ir = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->ir; 3225 3226 /* We don't look up the gl_FragDepth symbol directly because if 3227 * gl_FragDepth is not used in the shader, it's removed from the IR. 3228 * However, the symbol won't be removed from the symbol table. 3229 * 3230 * We're only interested in the cases where the variable is NOT removed 3231 * from the IR. 3232 */ 3233 foreach_in_list(ir_instruction, node, ir) { 3234 ir_variable *const var = node->as_variable(); 3235 3236 if (var == NULL || var->data.mode != ir_var_shader_out) { 3237 continue; 3238 } 3239 3240 if (strcmp(var->name, "gl_FragDepth") == 0) { 3241 switch (var->data.depth_layout) { 3242 case ir_depth_layout_none: 3243 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE; 3244 return; 3245 case ir_depth_layout_any: 3246 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY; 3247 return; 3248 case ir_depth_layout_greater: 3249 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER; 3250 return; 3251 case ir_depth_layout_less: 3252 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS; 3253 return; 3254 case ir_depth_layout_unchanged: 3255 prog->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED; 3256 return; 3257 default: 3258 assert(0); 3259 return; 3260 } 3261 } 3262 } 3263} 3264 3265/** 3266 * Validate the resources used by a program versus the implementation limits 3267 */ 3268static void 3269check_resources(struct gl_context *ctx, struct gl_shader_program *prog) 3270{ 3271 unsigned total_uniform_blocks = 0; 3272 unsigned total_shader_storage_blocks = 0; 3273 3274 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 3275 struct gl_linked_shader *sh = prog->_LinkedShaders[i]; 3276 3277 if (sh == NULL) 3278 continue; 3279 3280 if (sh->Program->info.num_textures > 3281 ctx->Const.Program[i].MaxTextureImageUnits) { 3282 linker_error(prog, "Too many %s shader texture samplers\n", 3283 _mesa_shader_stage_to_string(i)); 3284 } 3285 3286 if (sh->num_uniform_components > 3287 ctx->Const.Program[i].MaxUniformComponents) { 3288 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) { 3289 linker_warning(prog, "Too many %s shader default uniform block " 3290 "components, but the driver will try to optimize " 3291 "them out; this is non-portable out-of-spec " 3292 "behavior\n", 3293 _mesa_shader_stage_to_string(i)); 3294 } else { 3295 linker_error(prog, "Too many %s shader default uniform block " 3296 "components\n", 3297 _mesa_shader_stage_to_string(i)); 3298 } 3299 } 3300 3301 if (sh->num_combined_uniform_components > 3302 ctx->Const.Program[i].MaxCombinedUniformComponents) { 3303 if (ctx->Const.GLSLSkipStrictMaxUniformLimitCheck) { 3304 linker_warning(prog, "Too many %s shader uniform components, " 3305 "but the driver will try to optimize them out; " 3306 "this is non-portable out-of-spec behavior\n", 3307 _mesa_shader_stage_to_string(i)); 3308 } else { 3309 linker_error(prog, "Too many %s shader uniform components\n", 3310 _mesa_shader_stage_to_string(i)); 3311 } 3312 } 3313 3314 total_shader_storage_blocks += sh->Program->info.num_ssbos; 3315 total_uniform_blocks += sh->Program->info.num_ubos; 3316 3317 const unsigned max_uniform_blocks = 3318 ctx->Const.Program[i].MaxUniformBlocks; 3319 if (max_uniform_blocks < sh->Program->info.num_ubos) { 3320 linker_error(prog, "Too many %s uniform blocks (%d/%d)\n", 3321 _mesa_shader_stage_to_string(i), 3322 sh->Program->info.num_ubos, max_uniform_blocks); 3323 } 3324 3325 const unsigned max_shader_storage_blocks = 3326 ctx->Const.Program[i].MaxShaderStorageBlocks; 3327 if (max_shader_storage_blocks < sh->Program->info.num_ssbos) { 3328 linker_error(prog, "Too many %s shader storage blocks (%d/%d)\n", 3329 _mesa_shader_stage_to_string(i), 3330 sh->Program->info.num_ssbos, max_shader_storage_blocks); 3331 } 3332 } 3333 3334 if (total_uniform_blocks > ctx->Const.MaxCombinedUniformBlocks) { 3335 linker_error(prog, "Too many combined uniform blocks (%d/%d)\n", 3336 total_uniform_blocks, ctx->Const.MaxCombinedUniformBlocks); 3337 } 3338 3339 if (total_shader_storage_blocks > ctx->Const.MaxCombinedShaderStorageBlocks) { 3340 linker_error(prog, "Too many combined shader storage blocks (%d/%d)\n", 3341 total_shader_storage_blocks, 3342 ctx->Const.MaxCombinedShaderStorageBlocks); 3343 } 3344 3345 for (unsigned i = 0; i < prog->data->NumUniformBlocks; i++) { 3346 if (prog->data->UniformBlocks[i].UniformBufferSize > 3347 ctx->Const.MaxUniformBlockSize) { 3348 linker_error(prog, "Uniform block %s too big (%d/%d)\n", 3349 prog->data->UniformBlocks[i].Name, 3350 prog->data->UniformBlocks[i].UniformBufferSize, 3351 ctx->Const.MaxUniformBlockSize); 3352 } 3353 } 3354 3355 for (unsigned i = 0; i < prog->data->NumShaderStorageBlocks; i++) { 3356 if (prog->data->ShaderStorageBlocks[i].UniformBufferSize > 3357 ctx->Const.MaxShaderStorageBlockSize) { 3358 linker_error(prog, "Shader storage block %s too big (%d/%d)\n", 3359 prog->data->ShaderStorageBlocks[i].Name, 3360 prog->data->ShaderStorageBlocks[i].UniformBufferSize, 3361 ctx->Const.MaxShaderStorageBlockSize); 3362 } 3363 } 3364} 3365 3366static void 3367link_calculate_subroutine_compat(struct gl_shader_program *prog) 3368{ 3369 unsigned mask = prog->data->linked_stages; 3370 while (mask) { 3371 const int i = u_bit_scan(&mask); 3372 struct gl_program *p = prog->_LinkedShaders[i]->Program; 3373 3374 for (unsigned j = 0; j < p->sh.NumSubroutineUniformRemapTable; j++) { 3375 if (p->sh.SubroutineUniformRemapTable[j] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) 3376 continue; 3377 3378 struct gl_uniform_storage *uni = p->sh.SubroutineUniformRemapTable[j]; 3379 3380 if (!uni) 3381 continue; 3382 3383 int count = 0; 3384 if (p->sh.NumSubroutineFunctions == 0) { 3385 linker_error(prog, "subroutine uniform %s defined but no valid functions found\n", uni->type->name); 3386 continue; 3387 } 3388 for (unsigned f = 0; f < p->sh.NumSubroutineFunctions; f++) { 3389 struct gl_subroutine_function *fn = &p->sh.SubroutineFunctions[f]; 3390 for (int k = 0; k < fn->num_compat_types; k++) { 3391 if (fn->types[k] == uni->type) { 3392 count++; 3393 break; 3394 } 3395 } 3396 } 3397 uni->num_compatible_subroutines = count; 3398 } 3399 } 3400} 3401 3402static void 3403check_subroutine_resources(struct gl_shader_program *prog) 3404{ 3405 unsigned mask = prog->data->linked_stages; 3406 while (mask) { 3407 const int i = u_bit_scan(&mask); 3408 struct gl_program *p = prog->_LinkedShaders[i]->Program; 3409 3410 if (p->sh.NumSubroutineUniformRemapTable > MAX_SUBROUTINE_UNIFORM_LOCATIONS) { 3411 linker_error(prog, "Too many %s shader subroutine uniforms\n", 3412 _mesa_shader_stage_to_string(i)); 3413 } 3414 } 3415} 3416/** 3417 * Validate shader image resources. 3418 */ 3419static void 3420check_image_resources(struct gl_context *ctx, struct gl_shader_program *prog) 3421{ 3422 unsigned total_image_units = 0; 3423 unsigned fragment_outputs = 0; 3424 unsigned total_shader_storage_blocks = 0; 3425 3426 if (!ctx->Extensions.ARB_shader_image_load_store) 3427 return; 3428 3429 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 3430 struct gl_linked_shader *sh = prog->_LinkedShaders[i]; 3431 3432 if (sh) { 3433 if (sh->Program->info.num_images > ctx->Const.Program[i].MaxImageUniforms) 3434 linker_error(prog, "Too many %s shader image uniforms (%u > %u)\n", 3435 _mesa_shader_stage_to_string(i), 3436 sh->Program->info.num_images, 3437 ctx->Const.Program[i].MaxImageUniforms); 3438 3439 total_image_units += sh->Program->info.num_images; 3440 total_shader_storage_blocks += sh->Program->info.num_ssbos; 3441 3442 if (i == MESA_SHADER_FRAGMENT) { 3443 foreach_in_list(ir_instruction, node, sh->ir) { 3444 ir_variable *var = node->as_variable(); 3445 if (var && var->data.mode == ir_var_shader_out) 3446 /* since there are no double fs outputs - pass false */ 3447 fragment_outputs += var->type->count_attribute_slots(false); 3448 } 3449 } 3450 } 3451 } 3452 3453 if (total_image_units > ctx->Const.MaxCombinedImageUniforms) 3454 linker_error(prog, "Too many combined image uniforms\n"); 3455 3456 if (total_image_units + fragment_outputs + total_shader_storage_blocks > 3457 ctx->Const.MaxCombinedShaderOutputResources) 3458 linker_error(prog, "Too many combined image uniforms, shader storage " 3459 " buffers and fragment outputs\n"); 3460} 3461 3462 3463/** 3464 * Initializes explicit location slots to INACTIVE_UNIFORM_EXPLICIT_LOCATION 3465 * for a variable, checks for overlaps between other uniforms using explicit 3466 * locations. 3467 */ 3468static int 3469reserve_explicit_locations(struct gl_shader_program *prog, 3470 string_to_uint_map *map, ir_variable *var) 3471{ 3472 unsigned slots = var->type->uniform_locations(); 3473 unsigned max_loc = var->data.location + slots - 1; 3474 unsigned return_value = slots; 3475 3476 /* Resize remap table if locations do not fit in the current one. */ 3477 if (max_loc + 1 > prog->NumUniformRemapTable) { 3478 prog->UniformRemapTable = 3479 reralloc(prog, prog->UniformRemapTable, 3480 gl_uniform_storage *, 3481 max_loc + 1); 3482 3483 if (!prog->UniformRemapTable) { 3484 linker_error(prog, "Out of memory during linking.\n"); 3485 return -1; 3486 } 3487 3488 /* Initialize allocated space. */ 3489 for (unsigned i = prog->NumUniformRemapTable; i < max_loc + 1; i++) 3490 prog->UniformRemapTable[i] = NULL; 3491 3492 prog->NumUniformRemapTable = max_loc + 1; 3493 } 3494 3495 for (unsigned i = 0; i < slots; i++) { 3496 unsigned loc = var->data.location + i; 3497 3498 /* Check if location is already used. */ 3499 if (prog->UniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) { 3500 3501 /* Possibly same uniform from a different stage, this is ok. */ 3502 unsigned hash_loc; 3503 if (map->get(hash_loc, var->name) && hash_loc == loc - i) { 3504 return_value = 0; 3505 continue; 3506 } 3507 3508 /* ARB_explicit_uniform_location specification states: 3509 * 3510 * "No two default-block uniform variables in the program can have 3511 * the same location, even if they are unused, otherwise a compiler 3512 * or linker error will be generated." 3513 */ 3514 linker_error(prog, 3515 "location qualifier for uniform %s overlaps " 3516 "previously used location\n", 3517 var->name); 3518 return -1; 3519 } 3520 3521 /* Initialize location as inactive before optimization 3522 * rounds and location assignment. 3523 */ 3524 prog->UniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION; 3525 } 3526 3527 /* Note, base location used for arrays. */ 3528 map->put(var->data.location, var->name); 3529 3530 return return_value; 3531} 3532 3533static bool 3534reserve_subroutine_explicit_locations(struct gl_shader_program *prog, 3535 struct gl_program *p, 3536 ir_variable *var) 3537{ 3538 unsigned slots = var->type->uniform_locations(); 3539 unsigned max_loc = var->data.location + slots - 1; 3540 3541 /* Resize remap table if locations do not fit in the current one. */ 3542 if (max_loc + 1 > p->sh.NumSubroutineUniformRemapTable) { 3543 p->sh.SubroutineUniformRemapTable = 3544 reralloc(p, p->sh.SubroutineUniformRemapTable, 3545 gl_uniform_storage *, 3546 max_loc + 1); 3547 3548 if (!p->sh.SubroutineUniformRemapTable) { 3549 linker_error(prog, "Out of memory during linking.\n"); 3550 return false; 3551 } 3552 3553 /* Initialize allocated space. */ 3554 for (unsigned i = p->sh.NumSubroutineUniformRemapTable; i < max_loc + 1; i++) 3555 p->sh.SubroutineUniformRemapTable[i] = NULL; 3556 3557 p->sh.NumSubroutineUniformRemapTable = max_loc + 1; 3558 } 3559 3560 for (unsigned i = 0; i < slots; i++) { 3561 unsigned loc = var->data.location + i; 3562 3563 /* Check if location is already used. */ 3564 if (p->sh.SubroutineUniformRemapTable[loc] == INACTIVE_UNIFORM_EXPLICIT_LOCATION) { 3565 3566 /* ARB_explicit_uniform_location specification states: 3567 * "No two subroutine uniform variables can have the same location 3568 * in the same shader stage, otherwise a compiler or linker error 3569 * will be generated." 3570 */ 3571 linker_error(prog, 3572 "location qualifier for uniform %s overlaps " 3573 "previously used location\n", 3574 var->name); 3575 return false; 3576 } 3577 3578 /* Initialize location as inactive before optimization 3579 * rounds and location assignment. 3580 */ 3581 p->sh.SubroutineUniformRemapTable[loc] = INACTIVE_UNIFORM_EXPLICIT_LOCATION; 3582 } 3583 3584 return true; 3585} 3586/** 3587 * Check and reserve all explicit uniform locations, called before 3588 * any optimizations happen to handle also inactive uniforms and 3589 * inactive array elements that may get trimmed away. 3590 */ 3591static void 3592check_explicit_uniform_locations(struct gl_context *ctx, 3593 struct gl_shader_program *prog) 3594{ 3595 prog->NumExplicitUniformLocations = 0; 3596 3597 if (!ctx->Extensions.ARB_explicit_uniform_location) 3598 return; 3599 3600 /* This map is used to detect if overlapping explicit locations 3601 * occur with the same uniform (from different stage) or a different one. 3602 */ 3603 string_to_uint_map *uniform_map = new string_to_uint_map; 3604 3605 if (!uniform_map) { 3606 linker_error(prog, "Out of memory during linking.\n"); 3607 return; 3608 } 3609 3610 unsigned entries_total = 0; 3611 unsigned mask = prog->data->linked_stages; 3612 while (mask) { 3613 const int i = u_bit_scan(&mask); 3614 struct gl_program *p = prog->_LinkedShaders[i]->Program; 3615 3616 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { 3617 ir_variable *var = node->as_variable(); 3618 if (!var || var->data.mode != ir_var_uniform) 3619 continue; 3620 3621 if (var->data.explicit_location) { 3622 bool ret = false; 3623 if (var->type->without_array()->is_subroutine()) 3624 ret = reserve_subroutine_explicit_locations(prog, p, var); 3625 else { 3626 int slots = reserve_explicit_locations(prog, uniform_map, 3627 var); 3628 if (slots != -1) { 3629 ret = true; 3630 entries_total += slots; 3631 } 3632 } 3633 if (!ret) { 3634 delete uniform_map; 3635 return; 3636 } 3637 } 3638 } 3639 } 3640 3641 link_util_update_empty_uniform_locations(prog); 3642 3643 delete uniform_map; 3644 prog->NumExplicitUniformLocations = entries_total; 3645} 3646 3647static bool 3648should_add_buffer_variable(struct gl_shader_program *shProg, 3649 GLenum type, const char *name) 3650{ 3651 bool found_interface = false; 3652 unsigned block_name_len = 0; 3653 const char *block_name_dot = strchr(name, '.'); 3654 3655 /* These rules only apply to buffer variables. So we return 3656 * true for the rest of types. 3657 */ 3658 if (type != GL_BUFFER_VARIABLE) 3659 return true; 3660 3661 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) { 3662 const char *block_name = shProg->data->ShaderStorageBlocks[i].Name; 3663 block_name_len = strlen(block_name); 3664 3665 const char *block_square_bracket = strchr(block_name, '['); 3666 if (block_square_bracket) { 3667 /* The block is part of an array of named interfaces, 3668 * for the name comparison we ignore the "[x]" part. 3669 */ 3670 block_name_len -= strlen(block_square_bracket); 3671 } 3672 3673 if (block_name_dot) { 3674 /* Check if the variable name starts with the interface 3675 * name. The interface name (if present) should have the 3676 * length than the interface block name we are comparing to. 3677 */ 3678 unsigned len = strlen(name) - strlen(block_name_dot); 3679 if (len != block_name_len) 3680 continue; 3681 } 3682 3683 if (strncmp(block_name, name, block_name_len) == 0) { 3684 found_interface = true; 3685 break; 3686 } 3687 } 3688 3689 /* We remove the interface name from the buffer variable name, 3690 * including the dot that follows it. 3691 */ 3692 if (found_interface) 3693 name = name + block_name_len + 1; 3694 3695 /* The ARB_program_interface_query spec says: 3696 * 3697 * "For an active shader storage block member declared as an array, an 3698 * entry will be generated only for the first array element, regardless 3699 * of its type. For arrays of aggregate types, the enumeration rules 3700 * are applied recursively for the single enumerated array element." 3701 */ 3702 const char *struct_first_dot = strchr(name, '.'); 3703 const char *first_square_bracket = strchr(name, '['); 3704 3705 /* The buffer variable is on top level and it is not an array */ 3706 if (!first_square_bracket) { 3707 return true; 3708 /* The shader storage block member is a struct, then generate the entry */ 3709 } else if (struct_first_dot && struct_first_dot < first_square_bracket) { 3710 return true; 3711 } else { 3712 /* Shader storage block member is an array, only generate an entry for the 3713 * first array element. 3714 */ 3715 if (strncmp(first_square_bracket, "[0]", 3) == 0) 3716 return true; 3717 } 3718 3719 return false; 3720} 3721 3722/* Function checks if a variable var is a packed varying and 3723 * if given name is part of packed varying's list. 3724 * 3725 * If a variable is a packed varying, it has a name like 3726 * 'packed:a,b,c' where a, b and c are separate variables. 3727 */ 3728static bool 3729included_in_packed_varying(ir_variable *var, const char *name) 3730{ 3731 if (strncmp(var->name, "packed:", 7) != 0) 3732 return false; 3733 3734 char *list = strdup(var->name + 7); 3735 assert(list); 3736 3737 bool found = false; 3738 char *saveptr; 3739 char *token = strtok_r(list, ",", &saveptr); 3740 while (token) { 3741 if (strcmp(token, name) == 0) { 3742 found = true; 3743 break; 3744 } 3745 token = strtok_r(NULL, ",", &saveptr); 3746 } 3747 free(list); 3748 return found; 3749} 3750 3751/** 3752 * Function builds a stage reference bitmask from variable name. 3753 */ 3754static uint8_t 3755build_stageref(struct gl_shader_program *shProg, const char *name, 3756 unsigned mode) 3757{ 3758 uint8_t stages = 0; 3759 3760 /* Note, that we assume MAX 8 stages, if there will be more stages, type 3761 * used for reference mask in gl_program_resource will need to be changed. 3762 */ 3763 assert(MESA_SHADER_STAGES < 8); 3764 3765 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 3766 struct gl_linked_shader *sh = shProg->_LinkedShaders[i]; 3767 if (!sh) 3768 continue; 3769 3770 /* Shader symbol table may contain variables that have 3771 * been optimized away. Search IR for the variable instead. 3772 */ 3773 foreach_in_list(ir_instruction, node, sh->ir) { 3774 ir_variable *var = node->as_variable(); 3775 if (var) { 3776 unsigned baselen = strlen(var->name); 3777 3778 if (included_in_packed_varying(var, name)) { 3779 stages |= (1 << i); 3780 break; 3781 } 3782 3783 /* Type needs to match if specified, otherwise we might 3784 * pick a variable with same name but different interface. 3785 */ 3786 if (var->data.mode != mode) 3787 continue; 3788 3789 if (strncmp(var->name, name, baselen) == 0) { 3790 /* Check for exact name matches but also check for arrays and 3791 * structs. 3792 */ 3793 if (name[baselen] == '\0' || 3794 name[baselen] == '[' || 3795 name[baselen] == '.') { 3796 stages |= (1 << i); 3797 break; 3798 } 3799 } 3800 } 3801 } 3802 } 3803 return stages; 3804} 3805 3806/** 3807 * Create gl_shader_variable from ir_variable class. 3808 */ 3809static gl_shader_variable * 3810create_shader_variable(struct gl_shader_program *shProg, 3811 const ir_variable *in, 3812 const char *name, const glsl_type *type, 3813 const glsl_type *interface_type, 3814 bool use_implicit_location, int location, 3815 const glsl_type *outermost_struct_type) 3816{ 3817 /* Allocate zero-initialized memory to ensure that bitfield padding 3818 * is zero. 3819 */ 3820 gl_shader_variable *out = rzalloc(shProg, struct gl_shader_variable); 3821 if (!out) 3822 return NULL; 3823 3824 /* Since gl_VertexID may be lowered to gl_VertexIDMESA, but applications 3825 * expect to see gl_VertexID in the program resource list. Pretend. 3826 */ 3827 if (in->data.mode == ir_var_system_value && 3828 in->data.location == SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) { 3829 out->name = ralloc_strdup(shProg, "gl_VertexID"); 3830 } else if ((in->data.mode == ir_var_shader_out && 3831 in->data.location == VARYING_SLOT_TESS_LEVEL_OUTER) || 3832 (in->data.mode == ir_var_system_value && 3833 in->data.location == SYSTEM_VALUE_TESS_LEVEL_OUTER)) { 3834 out->name = ralloc_strdup(shProg, "gl_TessLevelOuter"); 3835 type = glsl_type::get_array_instance(glsl_type::float_type, 4); 3836 } else if ((in->data.mode == ir_var_shader_out && 3837 in->data.location == VARYING_SLOT_TESS_LEVEL_INNER) || 3838 (in->data.mode == ir_var_system_value && 3839 in->data.location == SYSTEM_VALUE_TESS_LEVEL_INNER)) { 3840 out->name = ralloc_strdup(shProg, "gl_TessLevelInner"); 3841 type = glsl_type::get_array_instance(glsl_type::float_type, 2); 3842 } else { 3843 out->name = ralloc_strdup(shProg, name); 3844 } 3845 3846 if (!out->name) 3847 return NULL; 3848 3849 /* The ARB_program_interface_query spec says: 3850 * 3851 * "Not all active variables are assigned valid locations; the 3852 * following variables will have an effective location of -1: 3853 * 3854 * * uniforms declared as atomic counters; 3855 * 3856 * * members of a uniform block; 3857 * 3858 * * built-in inputs, outputs, and uniforms (starting with "gl_"); and 3859 * 3860 * * inputs or outputs not declared with a "location" layout 3861 * qualifier, except for vertex shader inputs and fragment shader 3862 * outputs." 3863 */ 3864 if (in->type->is_atomic_uint() || is_gl_identifier(in->name) || 3865 !(in->data.explicit_location || use_implicit_location)) { 3866 out->location = -1; 3867 } else { 3868 out->location = location; 3869 } 3870 3871 out->type = type; 3872 out->outermost_struct_type = outermost_struct_type; 3873 out->interface_type = interface_type; 3874 out->component = in->data.location_frac; 3875 out->index = in->data.index; 3876 out->patch = in->data.patch; 3877 out->mode = in->data.mode; 3878 out->interpolation = in->data.interpolation; 3879 out->explicit_location = in->data.explicit_location; 3880 out->precision = in->data.precision; 3881 3882 return out; 3883} 3884 3885static bool 3886add_shader_variable(const struct gl_context *ctx, 3887 struct gl_shader_program *shProg, 3888 struct set *resource_set, 3889 unsigned stage_mask, 3890 GLenum programInterface, ir_variable *var, 3891 const char *name, const glsl_type *type, 3892 bool use_implicit_location, int location, 3893 bool inouts_share_location, 3894 const glsl_type *outermost_struct_type = NULL) 3895{ 3896 const glsl_type *interface_type = var->get_interface_type(); 3897 3898 if (outermost_struct_type == NULL) { 3899 if (var->data.from_named_ifc_block) { 3900 const char *interface_name = interface_type->name; 3901 3902 if (interface_type->is_array()) { 3903 /* Issue #16 of the ARB_program_interface_query spec says: 3904 * 3905 * "* If a variable is a member of an interface block without an 3906 * instance name, it is enumerated using just the variable name. 3907 * 3908 * * If a variable is a member of an interface block with an 3909 * instance name, it is enumerated as "BlockName.Member", where 3910 * "BlockName" is the name of the interface block (not the 3911 * instance name) and "Member" is the name of the variable." 3912 * 3913 * In particular, it indicates that it should be "BlockName", 3914 * not "BlockName[array length]". The conformance suite and 3915 * dEQP both require this behavior. 3916 * 3917 * Here, we unwrap the extra array level added by named interface 3918 * block array lowering so we have the correct variable type. We 3919 * also unwrap the interface type when constructing the name. 3920 * 3921 * We leave interface_type the same so that ES 3.x SSO pipeline 3922 * validation can enforce the rules requiring array length to 3923 * match on interface blocks. 3924 */ 3925 type = type->fields.array; 3926 3927 interface_name = interface_type->fields.array->name; 3928 } 3929 3930 name = ralloc_asprintf(shProg, "%s.%s", interface_name, name); 3931 } 3932 } 3933 3934 switch (type->base_type) { 3935 case GLSL_TYPE_STRUCT: { 3936 /* The ARB_program_interface_query spec says: 3937 * 3938 * "For an active variable declared as a structure, a separate entry 3939 * will be generated for each active structure member. The name of 3940 * each entry is formed by concatenating the name of the structure, 3941 * the "." character, and the name of the structure member. If a 3942 * structure member to enumerate is itself a structure or array, 3943 * these enumeration rules are applied recursively." 3944 */ 3945 if (outermost_struct_type == NULL) 3946 outermost_struct_type = type; 3947 3948 unsigned field_location = location; 3949 for (unsigned i = 0; i < type->length; i++) { 3950 const struct glsl_struct_field *field = &type->fields.structure[i]; 3951 char *field_name = ralloc_asprintf(shProg, "%s.%s", name, field->name); 3952 if (!add_shader_variable(ctx, shProg, resource_set, 3953 stage_mask, programInterface, 3954 var, field_name, field->type, 3955 use_implicit_location, field_location, 3956 false, outermost_struct_type)) 3957 return false; 3958 3959 field_location += field->type->count_attribute_slots(false); 3960 } 3961 return true; 3962 } 3963 3964 case GLSL_TYPE_ARRAY: { 3965 /* The ARB_program_interface_query spec says: 3966 * 3967 * "For an active variable declared as an array of basic types, a 3968 * single entry will be generated, with its name string formed by 3969 * concatenating the name of the array and the string "[0]"." 3970 * 3971 * "For an active variable declared as an array of an aggregate data 3972 * type (structures or arrays), a separate entry will be generated 3973 * for each active array element, unless noted immediately below. 3974 * The name of each entry is formed by concatenating the name of 3975 * the array, the "[" character, an integer identifying the element 3976 * number, and the "]" character. These enumeration rules are 3977 * applied recursively, treating each enumerated array element as a 3978 * separate active variable." 3979 */ 3980 const struct glsl_type *array_type = type->fields.array; 3981 if (array_type->base_type == GLSL_TYPE_STRUCT || 3982 array_type->base_type == GLSL_TYPE_ARRAY) { 3983 unsigned elem_location = location; 3984 unsigned stride = inouts_share_location ? 0 : 3985 array_type->count_attribute_slots(false); 3986 for (unsigned i = 0; i < type->length; i++) { 3987 char *elem = ralloc_asprintf(shProg, "%s[%d]", name, i); 3988 if (!add_shader_variable(ctx, shProg, resource_set, 3989 stage_mask, programInterface, 3990 var, elem, array_type, 3991 use_implicit_location, elem_location, 3992 false, outermost_struct_type)) 3993 return false; 3994 elem_location += stride; 3995 } 3996 return true; 3997 } 3998 /* fallthrough */ 3999 } 4000 4001 default: { 4002 /* The ARB_program_interface_query spec says: 4003 * 4004 * "For an active variable declared as a single instance of a basic 4005 * type, a single entry will be generated, using the variable name 4006 * from the shader source." 4007 */ 4008 gl_shader_variable *sha_v = 4009 create_shader_variable(shProg, var, name, type, interface_type, 4010 use_implicit_location, location, 4011 outermost_struct_type); 4012 if (!sha_v) 4013 return false; 4014 4015 return link_util_add_program_resource(shProg, resource_set, 4016 programInterface, sha_v, stage_mask); 4017 } 4018 } 4019} 4020 4021static bool 4022inout_has_same_location(const ir_variable *var, unsigned stage) 4023{ 4024 if (!var->data.patch && 4025 ((var->data.mode == ir_var_shader_out && 4026 stage == MESA_SHADER_TESS_CTRL) || 4027 (var->data.mode == ir_var_shader_in && 4028 (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_TESS_EVAL || 4029 stage == MESA_SHADER_GEOMETRY)))) 4030 return true; 4031 else 4032 return false; 4033} 4034 4035static bool 4036add_interface_variables(const struct gl_context *ctx, 4037 struct gl_shader_program *shProg, 4038 struct set *resource_set, 4039 unsigned stage, GLenum programInterface) 4040{ 4041 exec_list *ir = shProg->_LinkedShaders[stage]->ir; 4042 4043 foreach_in_list(ir_instruction, node, ir) { 4044 ir_variable *var = node->as_variable(); 4045 4046 if (!var || var->data.how_declared == ir_var_hidden) 4047 continue; 4048 4049 int loc_bias; 4050 4051 switch (var->data.mode) { 4052 case ir_var_system_value: 4053 case ir_var_shader_in: 4054 if (programInterface != GL_PROGRAM_INPUT) 4055 continue; 4056 loc_bias = (stage == MESA_SHADER_VERTEX) ? int(VERT_ATTRIB_GENERIC0) 4057 : int(VARYING_SLOT_VAR0); 4058 break; 4059 case ir_var_shader_out: 4060 if (programInterface != GL_PROGRAM_OUTPUT) 4061 continue; 4062 loc_bias = (stage == MESA_SHADER_FRAGMENT) ? int(FRAG_RESULT_DATA0) 4063 : int(VARYING_SLOT_VAR0); 4064 break; 4065 default: 4066 continue; 4067 }; 4068 4069 if (var->data.patch) 4070 loc_bias = int(VARYING_SLOT_PATCH0); 4071 4072 /* Skip packed varyings, packed varyings are handled separately 4073 * by add_packed_varyings. 4074 */ 4075 if (strncmp(var->name, "packed:", 7) == 0) 4076 continue; 4077 4078 /* Skip fragdata arrays, these are handled separately 4079 * by add_fragdata_arrays. 4080 */ 4081 if (strncmp(var->name, "gl_out_FragData", 15) == 0) 4082 continue; 4083 4084 const bool vs_input_or_fs_output = 4085 (stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) || 4086 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out); 4087 4088 if (!add_shader_variable(ctx, shProg, resource_set, 4089 1 << stage, programInterface, 4090 var, var->name, var->type, vs_input_or_fs_output, 4091 var->data.location - loc_bias, 4092 inout_has_same_location(var, stage))) 4093 return false; 4094 } 4095 return true; 4096} 4097 4098static bool 4099add_packed_varyings(const struct gl_context *ctx, 4100 struct gl_shader_program *shProg, 4101 struct set *resource_set, 4102 int stage, GLenum type) 4103{ 4104 struct gl_linked_shader *sh = shProg->_LinkedShaders[stage]; 4105 GLenum iface; 4106 4107 if (!sh || !sh->packed_varyings) 4108 return true; 4109 4110 foreach_in_list(ir_instruction, node, sh->packed_varyings) { 4111 ir_variable *var = node->as_variable(); 4112 if (var) { 4113 switch (var->data.mode) { 4114 case ir_var_shader_in: 4115 iface = GL_PROGRAM_INPUT; 4116 break; 4117 case ir_var_shader_out: 4118 iface = GL_PROGRAM_OUTPUT; 4119 break; 4120 default: 4121 unreachable("unexpected type"); 4122 } 4123 4124 if (type == iface) { 4125 const int stage_mask = 4126 build_stageref(shProg, var->name, var->data.mode); 4127 if (!add_shader_variable(ctx, shProg, resource_set, 4128 stage_mask, 4129 iface, var, var->name, var->type, false, 4130 var->data.location - VARYING_SLOT_VAR0, 4131 inout_has_same_location(var, stage))) 4132 return false; 4133 } 4134 } 4135 } 4136 return true; 4137} 4138 4139static bool 4140add_fragdata_arrays(const struct gl_context *ctx, 4141 struct gl_shader_program *shProg, 4142 struct set *resource_set) 4143{ 4144 struct gl_linked_shader *sh = shProg->_LinkedShaders[MESA_SHADER_FRAGMENT]; 4145 4146 if (!sh || !sh->fragdata_arrays) 4147 return true; 4148 4149 foreach_in_list(ir_instruction, node, sh->fragdata_arrays) { 4150 ir_variable *var = node->as_variable(); 4151 if (var) { 4152 assert(var->data.mode == ir_var_shader_out); 4153 4154 if (!add_shader_variable(ctx, shProg, resource_set, 4155 1 << MESA_SHADER_FRAGMENT, 4156 GL_PROGRAM_OUTPUT, var, var->name, var->type, 4157 true, var->data.location - FRAG_RESULT_DATA0, 4158 false)) 4159 return false; 4160 } 4161 } 4162 return true; 4163} 4164 4165static char* 4166get_top_level_name(const char *name) 4167{ 4168 const char *first_dot = strchr(name, '.'); 4169 const char *first_square_bracket = strchr(name, '['); 4170 int name_size = 0; 4171 4172 /* The ARB_program_interface_query spec says: 4173 * 4174 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying 4175 * the number of active array elements of the top-level shader storage 4176 * block member containing to the active variable is written to 4177 * <params>. If the top-level block member is not declared as an 4178 * array, the value one is written to <params>. If the top-level block 4179 * member is an array with no declared size, the value zero is written 4180 * to <params>." 4181 */ 4182 4183 /* The buffer variable is on top level.*/ 4184 if (!first_square_bracket && !first_dot) 4185 name_size = strlen(name); 4186 else if ((!first_square_bracket || 4187 (first_dot && first_dot < first_square_bracket))) 4188 name_size = first_dot - name; 4189 else 4190 name_size = first_square_bracket - name; 4191 4192 return strndup(name, name_size); 4193} 4194 4195static char* 4196get_var_name(const char *name) 4197{ 4198 const char *first_dot = strchr(name, '.'); 4199 4200 if (!first_dot) 4201 return strdup(name); 4202 4203 return strndup(first_dot+1, strlen(first_dot) - 1); 4204} 4205 4206static bool 4207is_top_level_shader_storage_block_member(const char* name, 4208 const char* interface_name, 4209 const char* field_name) 4210{ 4211 bool result = false; 4212 4213 /* If the given variable is already a top-level shader storage 4214 * block member, then return array_size = 1. 4215 * We could have two possibilities: if we have an instanced 4216 * shader storage block or not instanced. 4217 * 4218 * For the first, we check create a name as it was in top level and 4219 * compare it with the real name. If they are the same, then 4220 * the variable is already at top-level. 4221 * 4222 * Full instanced name is: interface name + '.' + var name + 4223 * NULL character 4224 */ 4225 int name_length = strlen(interface_name) + 1 + strlen(field_name) + 1; 4226 char *full_instanced_name = (char *) calloc(name_length, sizeof(char)); 4227 if (!full_instanced_name) { 4228 fprintf(stderr, "%s: Cannot allocate space for name\n", __func__); 4229 return false; 4230 } 4231 4232 util_snprintf(full_instanced_name, name_length, "%s.%s", 4233 interface_name, field_name); 4234 4235 /* Check if its top-level shader storage block member of an 4236 * instanced interface block, or of a unnamed interface block. 4237 */ 4238 if (strcmp(name, full_instanced_name) == 0 || 4239 strcmp(name, field_name) == 0) 4240 result = true; 4241 4242 free(full_instanced_name); 4243 return result; 4244} 4245 4246static int 4247get_array_size(struct gl_uniform_storage *uni, const glsl_struct_field *field, 4248 char *interface_name, char *var_name) 4249{ 4250 /* The ARB_program_interface_query spec says: 4251 * 4252 * "For the property TOP_LEVEL_ARRAY_SIZE, a single integer identifying 4253 * the number of active array elements of the top-level shader storage 4254 * block member containing to the active variable is written to 4255 * <params>. If the top-level block member is not declared as an 4256 * array, the value one is written to <params>. If the top-level block 4257 * member is an array with no declared size, the value zero is written 4258 * to <params>." 4259 */ 4260 if (is_top_level_shader_storage_block_member(uni->name, 4261 interface_name, 4262 var_name)) 4263 return 1; 4264 else if (field->type->is_unsized_array()) 4265 return 0; 4266 else if (field->type->is_array()) 4267 return field->type->length; 4268 4269 return 1; 4270} 4271 4272static int 4273get_array_stride(struct gl_context *ctx, struct gl_uniform_storage *uni, 4274 const glsl_type *iface, const glsl_struct_field *field, 4275 char *interface_name, char *var_name) 4276{ 4277 /* The ARB_program_interface_query spec says: 4278 * 4279 * "For the property TOP_LEVEL_ARRAY_STRIDE, a single integer 4280 * identifying the stride between array elements of the top-level 4281 * shader storage block member containing the active variable is 4282 * written to <params>. For top-level block members declared as 4283 * arrays, the value written is the difference, in basic machine units, 4284 * between the offsets of the active variable for consecutive elements 4285 * in the top-level array. For top-level block members not declared as 4286 * an array, zero is written to <params>." 4287 */ 4288 if (field->type->is_array()) { 4289 const enum glsl_matrix_layout matrix_layout = 4290 glsl_matrix_layout(field->matrix_layout); 4291 bool row_major = matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR; 4292 const glsl_type *array_type = field->type->fields.array; 4293 4294 if (is_top_level_shader_storage_block_member(uni->name, 4295 interface_name, 4296 var_name)) 4297 return 0; 4298 4299 if (GLSL_INTERFACE_PACKING_STD140 == 4300 iface-> 4301 get_internal_ifc_packing(ctx->Const.UseSTD430AsDefaultPacking)) { 4302 if (array_type->is_record() || array_type->is_array()) 4303 return glsl_align(array_type->std140_size(row_major), 16); 4304 else 4305 return MAX2(array_type->std140_base_alignment(row_major), 16); 4306 } else { 4307 return array_type->std430_array_stride(row_major); 4308 } 4309 } 4310 return 0; 4311} 4312 4313static void 4314calculate_array_size_and_stride(struct gl_context *ctx, 4315 struct gl_shader_program *shProg, 4316 struct gl_uniform_storage *uni) 4317{ 4318 int block_index = uni->block_index; 4319 int array_size = -1; 4320 int array_stride = -1; 4321 char *var_name = get_top_level_name(uni->name); 4322 char *interface_name = 4323 get_top_level_name(uni->is_shader_storage ? 4324 shProg->data->ShaderStorageBlocks[block_index].Name : 4325 shProg->data->UniformBlocks[block_index].Name); 4326 4327 if (strcmp(var_name, interface_name) == 0) { 4328 /* Deal with instanced array of SSBOs */ 4329 char *temp_name = get_var_name(uni->name); 4330 if (!temp_name) { 4331 linker_error(shProg, "Out of memory during linking.\n"); 4332 goto write_top_level_array_size_and_stride; 4333 } 4334 free(var_name); 4335 var_name = get_top_level_name(temp_name); 4336 free(temp_name); 4337 if (!var_name) { 4338 linker_error(shProg, "Out of memory during linking.\n"); 4339 goto write_top_level_array_size_and_stride; 4340 } 4341 } 4342 4343 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 4344 const gl_linked_shader *sh = shProg->_LinkedShaders[i]; 4345 if (sh == NULL) 4346 continue; 4347 4348 foreach_in_list(ir_instruction, node, sh->ir) { 4349 ir_variable *var = node->as_variable(); 4350 if (!var || !var->get_interface_type() || 4351 var->data.mode != ir_var_shader_storage) 4352 continue; 4353 4354 const glsl_type *iface = var->get_interface_type(); 4355 4356 if (strcmp(interface_name, iface->name) != 0) 4357 continue; 4358 4359 for (unsigned i = 0; i < iface->length; i++) { 4360 const glsl_struct_field *field = &iface->fields.structure[i]; 4361 if (strcmp(field->name, var_name) != 0) 4362 continue; 4363 4364 array_stride = get_array_stride(ctx, uni, iface, field, 4365 interface_name, var_name); 4366 array_size = get_array_size(uni, field, interface_name, var_name); 4367 goto write_top_level_array_size_and_stride; 4368 } 4369 } 4370 } 4371write_top_level_array_size_and_stride: 4372 free(interface_name); 4373 free(var_name); 4374 uni->top_level_array_stride = array_stride; 4375 uni->top_level_array_size = array_size; 4376} 4377 4378/** 4379 * Builds up a list of program resources that point to existing 4380 * resource data. 4381 */ 4382void 4383build_program_resource_list(struct gl_context *ctx, 4384 struct gl_shader_program *shProg) 4385{ 4386 /* Rebuild resource list. */ 4387 if (shProg->data->ProgramResourceList) { 4388 ralloc_free(shProg->data->ProgramResourceList); 4389 shProg->data->ProgramResourceList = NULL; 4390 shProg->data->NumProgramResourceList = 0; 4391 } 4392 4393 int input_stage = MESA_SHADER_STAGES, output_stage = 0; 4394 4395 /* Determine first input and final output stage. These are used to 4396 * detect which variables should be enumerated in the resource list 4397 * for GL_PROGRAM_INPUT and GL_PROGRAM_OUTPUT. 4398 */ 4399 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 4400 if (!shProg->_LinkedShaders[i]) 4401 continue; 4402 if (input_stage == MESA_SHADER_STAGES) 4403 input_stage = i; 4404 output_stage = i; 4405 } 4406 4407 /* Empty shader, no resources. */ 4408 if (input_stage == MESA_SHADER_STAGES && output_stage == 0) 4409 return; 4410 4411 struct set *resource_set = _mesa_set_create(NULL, 4412 _mesa_hash_pointer, 4413 _mesa_key_pointer_equal); 4414 4415 /* Program interface needs to expose varyings in case of SSO. */ 4416 if (shProg->SeparateShader) { 4417 if (!add_packed_varyings(ctx, shProg, resource_set, 4418 input_stage, GL_PROGRAM_INPUT)) 4419 return; 4420 4421 if (!add_packed_varyings(ctx, shProg, resource_set, 4422 output_stage, GL_PROGRAM_OUTPUT)) 4423 return; 4424 } 4425 4426 if (!add_fragdata_arrays(ctx, shProg, resource_set)) 4427 return; 4428 4429 /* Add inputs and outputs to the resource list. */ 4430 if (!add_interface_variables(ctx, shProg, resource_set, 4431 input_stage, GL_PROGRAM_INPUT)) 4432 return; 4433 4434 if (!add_interface_variables(ctx, shProg, resource_set, 4435 output_stage, GL_PROGRAM_OUTPUT)) 4436 return; 4437 4438 if (shProg->last_vert_prog) { 4439 struct gl_transform_feedback_info *linked_xfb = 4440 shProg->last_vert_prog->sh.LinkedTransformFeedback; 4441 4442 /* Add transform feedback varyings. */ 4443 if (linked_xfb->NumVarying > 0) { 4444 for (int i = 0; i < linked_xfb->NumVarying; i++) { 4445 if (!link_util_add_program_resource(shProg, resource_set, 4446 GL_TRANSFORM_FEEDBACK_VARYING, 4447 &linked_xfb->Varyings[i], 0)) 4448 return; 4449 } 4450 } 4451 4452 /* Add transform feedback buffers. */ 4453 for (unsigned i = 0; i < ctx->Const.MaxTransformFeedbackBuffers; i++) { 4454 if ((linked_xfb->ActiveBuffers >> i) & 1) { 4455 linked_xfb->Buffers[i].Binding = i; 4456 if (!link_util_add_program_resource(shProg, resource_set, 4457 GL_TRANSFORM_FEEDBACK_BUFFER, 4458 &linked_xfb->Buffers[i], 0)) 4459 return; 4460 } 4461 } 4462 } 4463 4464 /* Add uniforms from uniform storage. */ 4465 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) { 4466 /* Do not add uniforms internally used by Mesa. */ 4467 if (shProg->data->UniformStorage[i].hidden) 4468 continue; 4469 4470 uint8_t stageref = 4471 build_stageref(shProg, shProg->data->UniformStorage[i].name, 4472 ir_var_uniform); 4473 4474 /* Add stagereferences for uniforms in a uniform block. */ 4475 bool is_shader_storage = 4476 shProg->data->UniformStorage[i].is_shader_storage; 4477 int block_index = shProg->data->UniformStorage[i].block_index; 4478 if (block_index != -1) { 4479 stageref |= is_shader_storage ? 4480 shProg->data->ShaderStorageBlocks[block_index].stageref : 4481 shProg->data->UniformBlocks[block_index].stageref; 4482 } 4483 4484 GLenum type = is_shader_storage ? GL_BUFFER_VARIABLE : GL_UNIFORM; 4485 if (!should_add_buffer_variable(shProg, type, 4486 shProg->data->UniformStorage[i].name)) 4487 continue; 4488 4489 if (is_shader_storage) { 4490 calculate_array_size_and_stride(ctx, shProg, 4491 &shProg->data->UniformStorage[i]); 4492 } 4493 4494 if (!link_util_add_program_resource(shProg, resource_set, type, 4495 &shProg->data->UniformStorage[i], stageref)) 4496 return; 4497 } 4498 4499 /* Add program uniform blocks. */ 4500 for (unsigned i = 0; i < shProg->data->NumUniformBlocks; i++) { 4501 if (!link_util_add_program_resource(shProg, resource_set, GL_UNIFORM_BLOCK, 4502 &shProg->data->UniformBlocks[i], 0)) 4503 return; 4504 } 4505 4506 /* Add program shader storage blocks. */ 4507 for (unsigned i = 0; i < shProg->data->NumShaderStorageBlocks; i++) { 4508 if (!link_util_add_program_resource(shProg, resource_set, GL_SHADER_STORAGE_BLOCK, 4509 &shProg->data->ShaderStorageBlocks[i], 0)) 4510 return; 4511 } 4512 4513 /* Add atomic counter buffers. */ 4514 for (unsigned i = 0; i < shProg->data->NumAtomicBuffers; i++) { 4515 if (!link_util_add_program_resource(shProg, resource_set, GL_ATOMIC_COUNTER_BUFFER, 4516 &shProg->data->AtomicBuffers[i], 0)) 4517 return; 4518 } 4519 4520 for (unsigned i = 0; i < shProg->data->NumUniformStorage; i++) { 4521 GLenum type; 4522 if (!shProg->data->UniformStorage[i].hidden) 4523 continue; 4524 4525 for (int j = MESA_SHADER_VERTEX; j < MESA_SHADER_STAGES; j++) { 4526 if (!shProg->data->UniformStorage[i].opaque[j].active || 4527 !shProg->data->UniformStorage[i].type->is_subroutine()) 4528 continue; 4529 4530 type = _mesa_shader_stage_to_subroutine_uniform((gl_shader_stage)j); 4531 /* add shader subroutines */ 4532 if (!link_util_add_program_resource(shProg, resource_set, 4533 type, &shProg->data->UniformStorage[i], 0)) 4534 return; 4535 } 4536 } 4537 4538 unsigned mask = shProg->data->linked_stages; 4539 while (mask) { 4540 const int i = u_bit_scan(&mask); 4541 struct gl_program *p = shProg->_LinkedShaders[i]->Program; 4542 4543 GLuint type = _mesa_shader_stage_to_subroutine((gl_shader_stage)i); 4544 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) { 4545 if (!link_util_add_program_resource(shProg, resource_set, 4546 type, &p->sh.SubroutineFunctions[j], 0)) 4547 return; 4548 } 4549 } 4550 4551 _mesa_set_destroy(resource_set, NULL); 4552} 4553 4554/** 4555 * This check is done to make sure we allow only constant expression 4556 * indexing and "constant-index-expression" (indexing with an expression 4557 * that includes loop induction variable). 4558 */ 4559static bool 4560validate_sampler_array_indexing(struct gl_context *ctx, 4561 struct gl_shader_program *prog) 4562{ 4563 dynamic_sampler_array_indexing_visitor v; 4564 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 4565 if (prog->_LinkedShaders[i] == NULL) 4566 continue; 4567 4568 bool no_dynamic_indexing = 4569 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectSampler; 4570 4571 /* Search for array derefs in shader. */ 4572 v.run(prog->_LinkedShaders[i]->ir); 4573 if (v.uses_dynamic_sampler_array_indexing()) { 4574 const char *msg = "sampler arrays indexed with non-constant " 4575 "expressions is forbidden in GLSL %s %u"; 4576 /* Backend has indicated that it has no dynamic indexing support. */ 4577 if (no_dynamic_indexing) { 4578 linker_error(prog, msg, prog->IsES ? "ES" : "", 4579 prog->data->Version); 4580 return false; 4581 } else { 4582 linker_warning(prog, msg, prog->IsES ? "ES" : "", 4583 prog->data->Version); 4584 } 4585 } 4586 } 4587 return true; 4588} 4589 4590static void 4591link_assign_subroutine_types(struct gl_shader_program *prog) 4592{ 4593 unsigned mask = prog->data->linked_stages; 4594 while (mask) { 4595 const int i = u_bit_scan(&mask); 4596 gl_program *p = prog->_LinkedShaders[i]->Program; 4597 4598 p->sh.MaxSubroutineFunctionIndex = 0; 4599 foreach_in_list(ir_instruction, node, prog->_LinkedShaders[i]->ir) { 4600 ir_function *fn = node->as_function(); 4601 if (!fn) 4602 continue; 4603 4604 if (fn->is_subroutine) 4605 p->sh.NumSubroutineUniformTypes++; 4606 4607 if (!fn->num_subroutine_types) 4608 continue; 4609 4610 /* these should have been calculated earlier. */ 4611 assert(fn->subroutine_index != -1); 4612 if (p->sh.NumSubroutineFunctions + 1 > MAX_SUBROUTINES) { 4613 linker_error(prog, "Too many subroutine functions declared.\n"); 4614 return; 4615 } 4616 p->sh.SubroutineFunctions = reralloc(p, p->sh.SubroutineFunctions, 4617 struct gl_subroutine_function, 4618 p->sh.NumSubroutineFunctions + 1); 4619 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].name = ralloc_strdup(p, fn->name); 4620 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].num_compat_types = fn->num_subroutine_types; 4621 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types = 4622 ralloc_array(p, const struct glsl_type *, 4623 fn->num_subroutine_types); 4624 4625 /* From Section 4.4.4(Subroutine Function Layout Qualifiers) of the 4626 * GLSL 4.5 spec: 4627 * 4628 * "Each subroutine with an index qualifier in the shader must be 4629 * given a unique index, otherwise a compile or link error will be 4630 * generated." 4631 */ 4632 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) { 4633 if (p->sh.SubroutineFunctions[j].index != -1 && 4634 p->sh.SubroutineFunctions[j].index == fn->subroutine_index) { 4635 linker_error(prog, "each subroutine index qualifier in the " 4636 "shader must be unique\n"); 4637 return; 4638 } 4639 } 4640 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].index = 4641 fn->subroutine_index; 4642 4643 if (fn->subroutine_index > (int)p->sh.MaxSubroutineFunctionIndex) 4644 p->sh.MaxSubroutineFunctionIndex = fn->subroutine_index; 4645 4646 for (int j = 0; j < fn->num_subroutine_types; j++) 4647 p->sh.SubroutineFunctions[p->sh.NumSubroutineFunctions].types[j] = fn->subroutine_types[j]; 4648 p->sh.NumSubroutineFunctions++; 4649 } 4650 } 4651} 4652 4653static void 4654verify_subroutine_associated_funcs(struct gl_shader_program *prog) 4655{ 4656 unsigned mask = prog->data->linked_stages; 4657 while (mask) { 4658 const int i = u_bit_scan(&mask); 4659 gl_program *p = prog->_LinkedShaders[i]->Program; 4660 glsl_symbol_table *symbols = prog->_LinkedShaders[i]->symbols; 4661 4662 /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says: 4663 * 4664 * "A program will fail to compile or link if any shader 4665 * or stage contains two or more functions with the same 4666 * name if the name is associated with a subroutine type." 4667 */ 4668 for (unsigned j = 0; j < p->sh.NumSubroutineFunctions; j++) { 4669 unsigned definitions = 0; 4670 char *name = p->sh.SubroutineFunctions[j].name; 4671 ir_function *fn = symbols->get_function(name); 4672 4673 /* Calculate number of function definitions with the same name */ 4674 foreach_in_list(ir_function_signature, sig, &fn->signatures) { 4675 if (sig->is_defined) { 4676 if (++definitions > 1) { 4677 linker_error(prog, "%s shader contains two or more function " 4678 "definitions with name `%s', which is " 4679 "associated with a subroutine type.\n", 4680 _mesa_shader_stage_to_string(i), 4681 fn->name); 4682 return; 4683 } 4684 } 4685 } 4686 } 4687 } 4688} 4689 4690 4691static void 4692set_always_active_io(exec_list *ir, ir_variable_mode io_mode) 4693{ 4694 assert(io_mode == ir_var_shader_in || io_mode == ir_var_shader_out); 4695 4696 foreach_in_list(ir_instruction, node, ir) { 4697 ir_variable *const var = node->as_variable(); 4698 4699 if (var == NULL || var->data.mode != io_mode) 4700 continue; 4701 4702 /* Don't set always active on builtins that haven't been redeclared */ 4703 if (var->data.how_declared == ir_var_declared_implicitly) 4704 continue; 4705 4706 var->data.always_active_io = true; 4707 } 4708} 4709 4710/** 4711 * When separate shader programs are enabled, only input/outputs between 4712 * the stages of a multi-stage separate program can be safely removed 4713 * from the shader interface. Other inputs/outputs must remain active. 4714 */ 4715static void 4716disable_varying_optimizations_for_sso(struct gl_shader_program *prog) 4717{ 4718 unsigned first, last; 4719 assert(prog->SeparateShader); 4720 4721 first = MESA_SHADER_STAGES; 4722 last = 0; 4723 4724 /* Determine first and last stage. Excluding the compute stage */ 4725 for (unsigned i = 0; i < MESA_SHADER_COMPUTE; i++) { 4726 if (!prog->_LinkedShaders[i]) 4727 continue; 4728 if (first == MESA_SHADER_STAGES) 4729 first = i; 4730 last = i; 4731 } 4732 4733 if (first == MESA_SHADER_STAGES) 4734 return; 4735 4736 for (unsigned stage = 0; stage < MESA_SHADER_STAGES; stage++) { 4737 gl_linked_shader *sh = prog->_LinkedShaders[stage]; 4738 if (!sh) 4739 continue; 4740 4741 /* Prevent the removal of inputs to the first and outputs from the last 4742 * stage, unless they are the initial pipeline inputs or final pipeline 4743 * outputs, respectively. 4744 * 4745 * The removal of IO between shaders in the same program is always 4746 * allowed. 4747 */ 4748 if (stage == first && stage != MESA_SHADER_VERTEX) 4749 set_always_active_io(sh->ir, ir_var_shader_in); 4750 if (stage == last && stage != MESA_SHADER_FRAGMENT) 4751 set_always_active_io(sh->ir, ir_var_shader_out); 4752 } 4753} 4754 4755static void 4756link_and_validate_uniforms(struct gl_context *ctx, 4757 struct gl_shader_program *prog) 4758{ 4759 update_array_sizes(prog); 4760 link_assign_uniform_locations(prog, ctx); 4761 4762 link_assign_atomic_counter_resources(ctx, prog); 4763 link_calculate_subroutine_compat(prog); 4764 check_resources(ctx, prog); 4765 check_subroutine_resources(prog); 4766 check_image_resources(ctx, prog); 4767 link_check_atomic_counter_resources(ctx, prog); 4768} 4769 4770static bool 4771link_varyings_and_uniforms(unsigned first, unsigned last, 4772 struct gl_context *ctx, 4773 struct gl_shader_program *prog, void *mem_ctx) 4774{ 4775 /* Mark all generic shader inputs and outputs as unpaired. */ 4776 for (unsigned i = MESA_SHADER_VERTEX; i <= MESA_SHADER_FRAGMENT; i++) { 4777 if (prog->_LinkedShaders[i] != NULL) { 4778 link_invalidate_variable_locations(prog->_LinkedShaders[i]->ir); 4779 } 4780 } 4781 4782 unsigned prev = first; 4783 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) { 4784 if (prog->_LinkedShaders[i] == NULL) 4785 continue; 4786 4787 match_explicit_outputs_to_inputs(prog->_LinkedShaders[prev], 4788 prog->_LinkedShaders[i]); 4789 prev = i; 4790 } 4791 4792 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const, 4793 MESA_SHADER_VERTEX, true)) { 4794 return false; 4795 } 4796 4797 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const, 4798 MESA_SHADER_FRAGMENT, true)) { 4799 return false; 4800 } 4801 4802 prog->last_vert_prog = NULL; 4803 for (int i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) { 4804 if (prog->_LinkedShaders[i] == NULL) 4805 continue; 4806 4807 prog->last_vert_prog = prog->_LinkedShaders[i]->Program; 4808 break; 4809 } 4810 4811 if (!link_varyings(prog, first, last, ctx, mem_ctx)) 4812 return false; 4813 4814 link_and_validate_uniforms(ctx, prog); 4815 4816 if (!prog->data->LinkStatus) 4817 return false; 4818 4819 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 4820 if (prog->_LinkedShaders[i] == NULL) 4821 continue; 4822 4823 const struct gl_shader_compiler_options *options = 4824 &ctx->Const.ShaderCompilerOptions[i]; 4825 4826 if (options->LowerBufferInterfaceBlocks) 4827 lower_ubo_reference(prog->_LinkedShaders[i], 4828 options->ClampBlockIndicesToArrayBounds, 4829 ctx->Const.UseSTD430AsDefaultPacking); 4830 4831 if (i == MESA_SHADER_COMPUTE) 4832 lower_shared_reference(ctx, prog, prog->_LinkedShaders[i]); 4833 4834 lower_vector_derefs(prog->_LinkedShaders[i]); 4835 do_vec_index_to_swizzle(prog->_LinkedShaders[i]->ir); 4836 } 4837 4838 return true; 4839} 4840 4841static void 4842linker_optimisation_loop(struct gl_context *ctx, exec_list *ir, 4843 unsigned stage) 4844{ 4845 if (ctx->Const.GLSLOptimizeConservatively) { 4846 /* Run it just once. */ 4847 do_common_optimization(ir, true, false, 4848 &ctx->Const.ShaderCompilerOptions[stage], 4849 ctx->Const.NativeIntegers); 4850 } else { 4851 /* Repeat it until it stops making changes. */ 4852 while (do_common_optimization(ir, true, false, 4853 &ctx->Const.ShaderCompilerOptions[stage], 4854 ctx->Const.NativeIntegers)) 4855 ; 4856 } 4857} 4858 4859void 4860link_shaders(struct gl_context *ctx, struct gl_shader_program *prog) 4861{ 4862 prog->data->LinkStatus = LINKING_SUCCESS; /* All error paths will set this to false */ 4863 prog->data->Validated = false; 4864 4865 /* Section 7.3 (Program Objects) of the OpenGL 4.5 Core Profile spec says: 4866 * 4867 * "Linking can fail for a variety of reasons as specified in the 4868 * OpenGL Shading Language Specification, as well as any of the 4869 * following reasons: 4870 * 4871 * - No shader objects are attached to program." 4872 * 4873 * The Compatibility Profile specification does not list the error. In 4874 * Compatibility Profile missing shader stages are replaced by 4875 * fixed-function. This applies to the case where all stages are 4876 * missing. 4877 */ 4878 if (prog->NumShaders == 0) { 4879 if (ctx->API != API_OPENGL_COMPAT) 4880 linker_error(prog, "no shaders attached to the program\n"); 4881 return; 4882 } 4883 4884#ifdef ENABLE_SHADER_CACHE 4885 if (shader_cache_read_program_metadata(ctx, prog)) 4886 return; 4887#endif 4888 4889 void *mem_ctx = ralloc_context(NULL); // temporary linker context 4890 4891 prog->ARB_fragment_coord_conventions_enable = false; 4892 4893 /* Separate the shaders into groups based on their type. 4894 */ 4895 struct gl_shader **shader_list[MESA_SHADER_STAGES]; 4896 unsigned num_shaders[MESA_SHADER_STAGES]; 4897 4898 for (int i = 0; i < MESA_SHADER_STAGES; i++) { 4899 shader_list[i] = (struct gl_shader **) 4900 calloc(prog->NumShaders, sizeof(struct gl_shader *)); 4901 num_shaders[i] = 0; 4902 } 4903 4904 unsigned min_version = UINT_MAX; 4905 unsigned max_version = 0; 4906 for (unsigned i = 0; i < prog->NumShaders; i++) { 4907 min_version = MIN2(min_version, prog->Shaders[i]->Version); 4908 max_version = MAX2(max_version, prog->Shaders[i]->Version); 4909 4910 if (!ctx->Const.AllowGLSLRelaxedES && 4911 prog->Shaders[i]->IsES != prog->Shaders[0]->IsES) { 4912 linker_error(prog, "all shaders must use same shading " 4913 "language version\n"); 4914 goto done; 4915 } 4916 4917 if (prog->Shaders[i]->ARB_fragment_coord_conventions_enable) { 4918 prog->ARB_fragment_coord_conventions_enable = true; 4919 } 4920 4921 gl_shader_stage shader_type = prog->Shaders[i]->Stage; 4922 shader_list[shader_type][num_shaders[shader_type]] = prog->Shaders[i]; 4923 num_shaders[shader_type]++; 4924 } 4925 4926 /* In desktop GLSL, different shader versions may be linked together. In 4927 * GLSL ES, all shader versions must be the same. 4928 */ 4929 if (!ctx->Const.AllowGLSLRelaxedES && prog->Shaders[0]->IsES && 4930 min_version != max_version) { 4931 linker_error(prog, "all shaders must use same shading " 4932 "language version\n"); 4933 goto done; 4934 } 4935 4936 prog->data->Version = max_version; 4937 prog->IsES = prog->Shaders[0]->IsES; 4938 4939 /* Some shaders have to be linked with some other shaders present. 4940 */ 4941 if (!prog->SeparateShader) { 4942 if (num_shaders[MESA_SHADER_GEOMETRY] > 0 && 4943 num_shaders[MESA_SHADER_VERTEX] == 0) { 4944 linker_error(prog, "Geometry shader must be linked with " 4945 "vertex shader\n"); 4946 goto done; 4947 } 4948 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 && 4949 num_shaders[MESA_SHADER_VERTEX] == 0) { 4950 linker_error(prog, "Tessellation evaluation shader must be linked " 4951 "with vertex shader\n"); 4952 goto done; 4953 } 4954 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 && 4955 num_shaders[MESA_SHADER_VERTEX] == 0) { 4956 linker_error(prog, "Tessellation control shader must be linked with " 4957 "vertex shader\n"); 4958 goto done; 4959 } 4960 4961 /* Section 7.3 of the OpenGL ES 3.2 specification says: 4962 * 4963 * "Linking can fail for [...] any of the following reasons: 4964 * 4965 * * program contains an object to form a tessellation control 4966 * shader [...] and [...] the program is not separable and 4967 * contains no object to form a tessellation evaluation shader" 4968 * 4969 * The OpenGL spec is contradictory. It allows linking without a tess 4970 * eval shader, but that can only be used with transform feedback and 4971 * rasterization disabled. However, transform feedback isn't allowed 4972 * with GL_PATCHES, so it can't be used. 4973 * 4974 * More investigation showed that the idea of transform feedback after 4975 * a tess control shader was dropped, because some hw vendors couldn't 4976 * support tessellation without a tess eval shader, but the linker 4977 * section wasn't updated to reflect that. 4978 * 4979 * All specifications (ARB_tessellation_shader, GL 4.0-4.5) have this 4980 * spec bug. 4981 * 4982 * Do what's reasonable and always require a tess eval shader if a tess 4983 * control shader is present. 4984 */ 4985 if (num_shaders[MESA_SHADER_TESS_CTRL] > 0 && 4986 num_shaders[MESA_SHADER_TESS_EVAL] == 0) { 4987 linker_error(prog, "Tessellation control shader must be linked with " 4988 "tessellation evaluation shader\n"); 4989 goto done; 4990 } 4991 4992 if (prog->IsES) { 4993 if (num_shaders[MESA_SHADER_TESS_EVAL] > 0 && 4994 num_shaders[MESA_SHADER_TESS_CTRL] == 0) { 4995 linker_error(prog, "GLSL ES requires non-separable programs " 4996 "containing a tessellation evaluation shader to also " 4997 "be linked with a tessellation control shader\n"); 4998 goto done; 4999 } 5000 } 5001 } 5002 5003 /* Compute shaders have additional restrictions. */ 5004 if (num_shaders[MESA_SHADER_COMPUTE] > 0 && 5005 num_shaders[MESA_SHADER_COMPUTE] != prog->NumShaders) { 5006 linker_error(prog, "Compute shaders may not be linked with any other " 5007 "type of shader\n"); 5008 } 5009 5010 /* Link all shaders for a particular stage and validate the result. 5011 */ 5012 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) { 5013 if (num_shaders[stage] > 0) { 5014 gl_linked_shader *const sh = 5015 link_intrastage_shaders(mem_ctx, ctx, prog, shader_list[stage], 5016 num_shaders[stage], false); 5017 5018 if (!prog->data->LinkStatus) { 5019 if (sh) 5020 _mesa_delete_linked_shader(ctx, sh); 5021 goto done; 5022 } 5023 5024 switch (stage) { 5025 case MESA_SHADER_VERTEX: 5026 validate_vertex_shader_executable(prog, sh, ctx); 5027 break; 5028 case MESA_SHADER_TESS_CTRL: 5029 /* nothing to be done */ 5030 break; 5031 case MESA_SHADER_TESS_EVAL: 5032 validate_tess_eval_shader_executable(prog, sh, ctx); 5033 break; 5034 case MESA_SHADER_GEOMETRY: 5035 validate_geometry_shader_executable(prog, sh, ctx); 5036 break; 5037 case MESA_SHADER_FRAGMENT: 5038 validate_fragment_shader_executable(prog, sh); 5039 break; 5040 } 5041 if (!prog->data->LinkStatus) { 5042 if (sh) 5043 _mesa_delete_linked_shader(ctx, sh); 5044 goto done; 5045 } 5046 5047 prog->_LinkedShaders[stage] = sh; 5048 prog->data->linked_stages |= 1 << stage; 5049 } 5050 } 5051 5052 /* Here begins the inter-stage linking phase. Some initial validation is 5053 * performed, then locations are assigned for uniforms, attributes, and 5054 * varyings. 5055 */ 5056 cross_validate_uniforms(ctx, prog); 5057 if (!prog->data->LinkStatus) 5058 goto done; 5059 5060 unsigned first, last, prev; 5061 5062 first = MESA_SHADER_STAGES; 5063 last = 0; 5064 5065 /* Determine first and last stage. */ 5066 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 5067 if (!prog->_LinkedShaders[i]) 5068 continue; 5069 if (first == MESA_SHADER_STAGES) 5070 first = i; 5071 last = i; 5072 } 5073 5074 check_explicit_uniform_locations(ctx, prog); 5075 link_assign_subroutine_types(prog); 5076 verify_subroutine_associated_funcs(prog); 5077 5078 if (!prog->data->LinkStatus) 5079 goto done; 5080 5081 resize_tes_inputs(ctx, prog); 5082 5083 /* Validate the inputs of each stage with the output of the preceding 5084 * stage. 5085 */ 5086 prev = first; 5087 for (unsigned i = prev + 1; i <= MESA_SHADER_FRAGMENT; i++) { 5088 if (prog->_LinkedShaders[i] == NULL) 5089 continue; 5090 5091 validate_interstage_inout_blocks(prog, prog->_LinkedShaders[prev], 5092 prog->_LinkedShaders[i]); 5093 if (!prog->data->LinkStatus) 5094 goto done; 5095 5096 cross_validate_outputs_to_inputs(ctx, prog, 5097 prog->_LinkedShaders[prev], 5098 prog->_LinkedShaders[i]); 5099 if (!prog->data->LinkStatus) 5100 goto done; 5101 5102 prev = i; 5103 } 5104 5105 /* The cross validation of outputs/inputs above validates explicit locations 5106 * but for SSO programs we need to do this also for the inputs in the 5107 * first stage and outputs of the last stage included in the program, since 5108 * there is no cross validation for these. 5109 */ 5110 if (prog->SeparateShader) 5111 validate_sso_explicit_locations(ctx, prog, 5112 (gl_shader_stage) first, 5113 (gl_shader_stage) last); 5114 5115 /* Cross-validate uniform blocks between shader stages */ 5116 validate_interstage_uniform_blocks(prog, prog->_LinkedShaders); 5117 if (!prog->data->LinkStatus) 5118 goto done; 5119 5120 for (unsigned int i = 0; i < MESA_SHADER_STAGES; i++) { 5121 if (prog->_LinkedShaders[i] != NULL) 5122 lower_named_interface_blocks(mem_ctx, prog->_LinkedShaders[i]); 5123 } 5124 5125 if (prog->IsES && prog->data->Version == 100) 5126 if (!validate_invariant_builtins(prog, 5127 prog->_LinkedShaders[MESA_SHADER_VERTEX], 5128 prog->_LinkedShaders[MESA_SHADER_FRAGMENT])) 5129 goto done; 5130 5131 /* Implement the GLSL 1.30+ rule for discard vs infinite loops Do 5132 * it before optimization because we want most of the checks to get 5133 * dropped thanks to constant propagation. 5134 * 5135 * This rule also applies to GLSL ES 3.00. 5136 */ 5137 if (max_version >= (prog->IsES ? 300 : 130)) { 5138 struct gl_linked_shader *sh = prog->_LinkedShaders[MESA_SHADER_FRAGMENT]; 5139 if (sh) { 5140 lower_discard_flow(sh->ir); 5141 } 5142 } 5143 5144 if (prog->SeparateShader) 5145 disable_varying_optimizations_for_sso(prog); 5146 5147 /* Process UBOs */ 5148 if (!interstage_cross_validate_uniform_blocks(prog, false)) 5149 goto done; 5150 5151 /* Process SSBOs */ 5152 if (!interstage_cross_validate_uniform_blocks(prog, true)) 5153 goto done; 5154 5155 /* Do common optimization before assigning storage for attributes, 5156 * uniforms, and varyings. Later optimization could possibly make 5157 * some of that unused. 5158 */ 5159 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 5160 if (prog->_LinkedShaders[i] == NULL) 5161 continue; 5162 5163 detect_recursion_linked(prog, prog->_LinkedShaders[i]->ir); 5164 if (!prog->data->LinkStatus) 5165 goto done; 5166 5167 if (ctx->Const.ShaderCompilerOptions[i].LowerCombinedClipCullDistance) { 5168 lower_clip_cull_distance(prog, prog->_LinkedShaders[i]); 5169 } 5170 5171 if (ctx->Const.LowerTessLevel) { 5172 lower_tess_level(prog->_LinkedShaders[i]); 5173 } 5174 5175 /* Section 13.46 (Vertex Attribute Aliasing) of the OpenGL ES 3.2 5176 * specification says: 5177 * 5178 * "In general, the behavior of GLSL ES should not depend on compiler 5179 * optimizations which might be implementation-dependent. Name matching 5180 * rules in most languages, including C++ from which GLSL ES is derived, 5181 * are based on declarations rather than use. 5182 * 5183 * RESOLUTION: The existence of aliasing is determined by declarations 5184 * present after preprocessing." 5185 * 5186 * Because of this rule, we do a 'dry-run' of attribute assignment for 5187 * vertex shader inputs here. 5188 */ 5189 if (prog->IsES && i == MESA_SHADER_VERTEX) { 5190 if (!assign_attribute_or_color_locations(mem_ctx, prog, &ctx->Const, 5191 MESA_SHADER_VERTEX, false)) { 5192 goto done; 5193 } 5194 } 5195 5196 /* Call opts before lowering const arrays to uniforms so we can const 5197 * propagate any elements accessed directly. 5198 */ 5199 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i); 5200 5201 /* Call opts after lowering const arrays to copy propagate things. */ 5202 if (lower_const_arrays_to_uniforms(prog->_LinkedShaders[i]->ir, i)) 5203 linker_optimisation_loop(ctx, prog->_LinkedShaders[i]->ir, i); 5204 5205 propagate_invariance(prog->_LinkedShaders[i]->ir); 5206 } 5207 5208 /* Validation for special cases where we allow sampler array indexing 5209 * with loop induction variable. This check emits a warning or error 5210 * depending if backend can handle dynamic indexing. 5211 */ 5212 if ((!prog->IsES && prog->data->Version < 130) || 5213 (prog->IsES && prog->data->Version < 300)) { 5214 if (!validate_sampler_array_indexing(ctx, prog)) 5215 goto done; 5216 } 5217 5218 /* Check and validate stream emissions in geometry shaders */ 5219 validate_geometry_shader_emissions(ctx, prog); 5220 5221 store_fragdepth_layout(prog); 5222 5223 if(!link_varyings_and_uniforms(first, last, ctx, prog, mem_ctx)) 5224 goto done; 5225 5226 /* Linking varyings can cause some extra, useless swizzles to be generated 5227 * due to packing and unpacking. 5228 */ 5229 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 5230 if (prog->_LinkedShaders[i] == NULL) 5231 continue; 5232 5233 optimize_swizzles(prog->_LinkedShaders[i]->ir); 5234 } 5235 5236 /* OpenGL ES < 3.1 requires that a vertex shader and a fragment shader both 5237 * be present in a linked program. GL_ARB_ES2_compatibility doesn't say 5238 * anything about shader linking when one of the shaders (vertex or 5239 * fragment shader) is absent. So, the extension shouldn't change the 5240 * behavior specified in GLSL specification. 5241 * 5242 * From OpenGL ES 3.1 specification (7.3 Program Objects): 5243 * "Linking can fail for a variety of reasons as specified in the 5244 * OpenGL ES Shading Language Specification, as well as any of the 5245 * following reasons: 5246 * 5247 * ... 5248 * 5249 * * program contains objects to form either a vertex shader or 5250 * fragment shader, and program is not separable, and does not 5251 * contain objects to form both a vertex shader and fragment 5252 * shader." 5253 * 5254 * However, the only scenario in 3.1+ where we don't require them both is 5255 * when we have a compute shader. For example: 5256 * 5257 * - No shaders is a link error. 5258 * - Geom or Tess without a Vertex shader is a link error which means we 5259 * always require a Vertex shader and hence a Fragment shader. 5260 * - Finally a Compute shader linked with any other stage is a link error. 5261 */ 5262 if (!prog->SeparateShader && ctx->API == API_OPENGLES2 && 5263 num_shaders[MESA_SHADER_COMPUTE] == 0) { 5264 if (prog->_LinkedShaders[MESA_SHADER_VERTEX] == NULL) { 5265 linker_error(prog, "program lacks a vertex shader\n"); 5266 } else if (prog->_LinkedShaders[MESA_SHADER_FRAGMENT] == NULL) { 5267 linker_error(prog, "program lacks a fragment shader\n"); 5268 } 5269 } 5270 5271done: 5272 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { 5273 free(shader_list[i]); 5274 if (prog->_LinkedShaders[i] == NULL) 5275 continue; 5276 5277 /* Do a final validation step to make sure that the IR wasn't 5278 * invalidated by any modifications performed after intrastage linking. 5279 */ 5280 validate_ir_tree(prog->_LinkedShaders[i]->ir); 5281 5282 /* Retain any live IR, but trash the rest. */ 5283 reparent_ir(prog->_LinkedShaders[i]->ir, prog->_LinkedShaders[i]->ir); 5284 5285 /* The symbol table in the linked shaders may contain references to 5286 * variables that were removed (e.g., unused uniforms). Since it may 5287 * contain junk, there is no possible valid use. Delete it and set the 5288 * pointer to NULL. 5289 */ 5290 delete prog->_LinkedShaders[i]->symbols; 5291 prog->_LinkedShaders[i]->symbols = NULL; 5292 } 5293 5294 ralloc_free(mem_ctx); 5295} 5296