nouveau_buffer.c revision af69d88d
1
2#include "util/u_inlines.h"
3#include "util/u_memory.h"
4#include "util/u_math.h"
5#include "util/u_surface.h"
6
7#include "nouveau_screen.h"
8#include "nouveau_context.h"
9#include "nouveau_winsys.h"
10#include "nouveau_fence.h"
11#include "nouveau_buffer.h"
12#include "nouveau_mm.h"
13
14#define NOUVEAU_TRANSFER_PUSHBUF_THRESHOLD 192
15
16struct nouveau_transfer {
17   struct pipe_transfer base;
18
19   uint8_t *map;
20   struct nouveau_bo *bo;
21   struct nouveau_mm_allocation *mm;
22   uint32_t offset;
23};
24
25static INLINE struct nouveau_transfer *
26nouveau_transfer(struct pipe_transfer *transfer)
27{
28   return (struct nouveau_transfer *)transfer;
29}
30
31static INLINE boolean
32nouveau_buffer_malloc(struct nv04_resource *buf)
33{
34   if (!buf->data)
35      buf->data = align_malloc(buf->base.width0, NOUVEAU_MIN_BUFFER_MAP_ALIGN);
36   return !!buf->data;
37}
38
39static INLINE boolean
40nouveau_buffer_allocate(struct nouveau_screen *screen,
41                        struct nv04_resource *buf, unsigned domain)
42{
43   uint32_t size = buf->base.width0;
44
45   if (buf->base.bind & (PIPE_BIND_CONSTANT_BUFFER |
46                         PIPE_BIND_COMPUTE_RESOURCE |
47                         PIPE_BIND_SHADER_RESOURCE))
48      size = align(size, 0x100);
49
50   if (domain == NOUVEAU_BO_VRAM) {
51      buf->mm = nouveau_mm_allocate(screen->mm_VRAM, size,
52                                    &buf->bo, &buf->offset);
53      if (!buf->bo)
54         return nouveau_buffer_allocate(screen, buf, NOUVEAU_BO_GART);
55      NOUVEAU_DRV_STAT(screen, buf_obj_current_bytes_vid, buf->base.width0);
56   } else
57   if (domain == NOUVEAU_BO_GART) {
58      buf->mm = nouveau_mm_allocate(screen->mm_GART, size,
59                                    &buf->bo, &buf->offset);
60      if (!buf->bo)
61         return FALSE;
62      NOUVEAU_DRV_STAT(screen, buf_obj_current_bytes_sys, buf->base.width0);
63   } else {
64      assert(domain == 0);
65      if (!nouveau_buffer_malloc(buf))
66         return FALSE;
67   }
68   buf->domain = domain;
69   if (buf->bo)
70      buf->address = buf->bo->offset + buf->offset;
71
72   util_range_set_empty(&buf->valid_buffer_range);
73
74   return TRUE;
75}
76
77static INLINE void
78release_allocation(struct nouveau_mm_allocation **mm,
79                   struct nouveau_fence *fence)
80{
81   nouveau_fence_work(fence, nouveau_mm_free_work, *mm);
82   (*mm) = NULL;
83}
84
85INLINE void
86nouveau_buffer_release_gpu_storage(struct nv04_resource *buf)
87{
88   nouveau_bo_ref(NULL, &buf->bo);
89
90   if (buf->mm)
91      release_allocation(&buf->mm, buf->fence);
92
93   if (buf->domain == NOUVEAU_BO_VRAM)
94      NOUVEAU_DRV_STAT_RES(buf, buf_obj_current_bytes_vid, -(uint64_t)buf->base.width0);
95   if (buf->domain == NOUVEAU_BO_GART)
96      NOUVEAU_DRV_STAT_RES(buf, buf_obj_current_bytes_sys, -(uint64_t)buf->base.width0);
97
98   buf->domain = 0;
99}
100
101static INLINE boolean
102nouveau_buffer_reallocate(struct nouveau_screen *screen,
103                          struct nv04_resource *buf, unsigned domain)
104{
105   nouveau_buffer_release_gpu_storage(buf);
106
107   nouveau_fence_ref(NULL, &buf->fence);
108   nouveau_fence_ref(NULL, &buf->fence_wr);
109
110   buf->status &= NOUVEAU_BUFFER_STATUS_REALLOC_MASK;
111
112   return nouveau_buffer_allocate(screen, buf, domain);
113}
114
115static void
116nouveau_buffer_destroy(struct pipe_screen *pscreen,
117                       struct pipe_resource *presource)
118{
119   struct nv04_resource *res = nv04_resource(presource);
120
121   nouveau_buffer_release_gpu_storage(res);
122
123   if (res->data && !(res->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY))
124      align_free(res->data);
125
126   nouveau_fence_ref(NULL, &res->fence);
127   nouveau_fence_ref(NULL, &res->fence_wr);
128
129   util_range_destroy(&res->valid_buffer_range);
130
131   FREE(res);
132
133   NOUVEAU_DRV_STAT(nouveau_screen(pscreen), buf_obj_current_count, -1);
134}
135
136/* Set up a staging area for the transfer. This is either done in "regular"
137 * system memory if the driver supports push_data (nv50+) and the data is
138 * small enough (and permit_pb == true), or in GART memory.
139 */
140static uint8_t *
141nouveau_transfer_staging(struct nouveau_context *nv,
142                         struct nouveau_transfer *tx, boolean permit_pb)
143{
144   const unsigned adj = tx->base.box.x & NOUVEAU_MIN_BUFFER_MAP_ALIGN_MASK;
145   const unsigned size = align(tx->base.box.width, 4) + adj;
146
147   if (!nv->push_data)
148      permit_pb = FALSE;
149
150   if ((size <= NOUVEAU_TRANSFER_PUSHBUF_THRESHOLD) && permit_pb) {
151      tx->map = align_malloc(size, NOUVEAU_MIN_BUFFER_MAP_ALIGN);
152      if (tx->map)
153         tx->map += adj;
154   } else {
155      tx->mm =
156         nouveau_mm_allocate(nv->screen->mm_GART, size, &tx->bo, &tx->offset);
157      if (tx->bo) {
158         tx->offset += adj;
159         if (!nouveau_bo_map(tx->bo, 0, NULL))
160            tx->map = (uint8_t *)tx->bo->map + tx->offset;
161      }
162   }
163   return tx->map;
164}
165
166/* Copies data from the resource into the the transfer's temporary GART
167 * buffer. Also updates buf->data if present.
168 *
169 * Maybe just migrate to GART right away if we actually need to do this. */
170static boolean
171nouveau_transfer_read(struct nouveau_context *nv, struct nouveau_transfer *tx)
172{
173   struct nv04_resource *buf = nv04_resource(tx->base.resource);
174   const unsigned base = tx->base.box.x;
175   const unsigned size = tx->base.box.width;
176
177   NOUVEAU_DRV_STAT(nv->screen, buf_read_bytes_staging_vid, size);
178
179   nv->copy_data(nv, tx->bo, tx->offset, NOUVEAU_BO_GART,
180                 buf->bo, buf->offset + base, buf->domain, size);
181
182   if (nouveau_bo_wait(tx->bo, NOUVEAU_BO_RD, nv->client))
183      return FALSE;
184
185   if (buf->data)
186      memcpy(buf->data + base, tx->map, size);
187
188   return TRUE;
189}
190
191static void
192nouveau_transfer_write(struct nouveau_context *nv, struct nouveau_transfer *tx,
193                       unsigned offset, unsigned size)
194{
195   struct nv04_resource *buf = nv04_resource(tx->base.resource);
196   uint8_t *data = tx->map + offset;
197   const unsigned base = tx->base.box.x + offset;
198   const boolean can_cb = !((base | size) & 3);
199
200   if (buf->data)
201      memcpy(data, buf->data + base, size);
202   else
203      buf->status |= NOUVEAU_BUFFER_STATUS_DIRTY;
204
205   if (buf->domain == NOUVEAU_BO_VRAM)
206      NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_staging_vid, size);
207   if (buf->domain == NOUVEAU_BO_GART)
208      NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_staging_sys, size);
209
210   if (tx->bo)
211      nv->copy_data(nv, buf->bo, buf->offset + base, buf->domain,
212                    tx->bo, tx->offset + offset, NOUVEAU_BO_GART, size);
213   else
214   if ((buf->base.bind & PIPE_BIND_CONSTANT_BUFFER) && nv->push_cb && can_cb)
215      nv->push_cb(nv, buf->bo, buf->domain, buf->offset, buf->base.width0,
216                  base, size / 4, (const uint32_t *)data);
217   else
218      nv->push_data(nv, buf->bo, buf->offset + base, buf->domain, size, data);
219
220   nouveau_fence_ref(nv->screen->fence.current, &buf->fence);
221   nouveau_fence_ref(nv->screen->fence.current, &buf->fence_wr);
222}
223
224/* Does a CPU wait for the buffer's backing data to become reliably accessible
225 * for write/read by waiting on the buffer's relevant fences.
226 */
227static INLINE boolean
228nouveau_buffer_sync(struct nv04_resource *buf, unsigned rw)
229{
230   if (rw == PIPE_TRANSFER_READ) {
231      if (!buf->fence_wr)
232         return TRUE;
233      NOUVEAU_DRV_STAT_RES(buf, buf_non_kernel_fence_sync_count,
234                           !nouveau_fence_signalled(buf->fence_wr));
235      if (!nouveau_fence_wait(buf->fence_wr))
236         return FALSE;
237   } else {
238      if (!buf->fence)
239         return TRUE;
240      NOUVEAU_DRV_STAT_RES(buf, buf_non_kernel_fence_sync_count,
241                           !nouveau_fence_signalled(buf->fence));
242      if (!nouveau_fence_wait(buf->fence))
243         return FALSE;
244
245      nouveau_fence_ref(NULL, &buf->fence);
246   }
247   nouveau_fence_ref(NULL, &buf->fence_wr);
248
249   return TRUE;
250}
251
252static INLINE boolean
253nouveau_buffer_busy(struct nv04_resource *buf, unsigned rw)
254{
255   if (rw == PIPE_TRANSFER_READ)
256      return (buf->fence_wr && !nouveau_fence_signalled(buf->fence_wr));
257   else
258      return (buf->fence && !nouveau_fence_signalled(buf->fence));
259}
260
261static INLINE void
262nouveau_buffer_transfer_init(struct nouveau_transfer *tx,
263                             struct pipe_resource *resource,
264                             const struct pipe_box *box,
265                             unsigned usage)
266{
267   tx->base.resource = resource;
268   tx->base.level = 0;
269   tx->base.usage = usage;
270   tx->base.box.x = box->x;
271   tx->base.box.y = 0;
272   tx->base.box.z = 0;
273   tx->base.box.width = box->width;
274   tx->base.box.height = 1;
275   tx->base.box.depth = 1;
276   tx->base.stride = 0;
277   tx->base.layer_stride = 0;
278
279   tx->bo = NULL;
280   tx->map = NULL;
281}
282
283static INLINE void
284nouveau_buffer_transfer_del(struct nouveau_context *nv,
285                            struct nouveau_transfer *tx)
286{
287   if (tx->map) {
288      if (likely(tx->bo)) {
289         nouveau_bo_ref(NULL, &tx->bo);
290         if (tx->mm)
291            release_allocation(&tx->mm, nv->screen->fence.current);
292      } else {
293         align_free(tx->map -
294                    (tx->base.box.x & NOUVEAU_MIN_BUFFER_MAP_ALIGN_MASK));
295      }
296   }
297}
298
299/* Creates a cache in system memory of the buffer data. */
300static boolean
301nouveau_buffer_cache(struct nouveau_context *nv, struct nv04_resource *buf)
302{
303   struct nouveau_transfer tx;
304   boolean ret;
305   tx.base.resource = &buf->base;
306   tx.base.box.x = 0;
307   tx.base.box.width = buf->base.width0;
308   tx.bo = NULL;
309   tx.map = NULL;
310
311   if (!buf->data)
312      if (!nouveau_buffer_malloc(buf))
313         return FALSE;
314   if (!(buf->status & NOUVEAU_BUFFER_STATUS_DIRTY))
315      return TRUE;
316   nv->stats.buf_cache_count++;
317
318   if (!nouveau_transfer_staging(nv, &tx, FALSE))
319      return FALSE;
320
321   ret = nouveau_transfer_read(nv, &tx);
322   if (ret) {
323      buf->status &= ~NOUVEAU_BUFFER_STATUS_DIRTY;
324      memcpy(buf->data, tx.map, buf->base.width0);
325   }
326   nouveau_buffer_transfer_del(nv, &tx);
327   return ret;
328}
329
330
331#define NOUVEAU_TRANSFER_DISCARD \
332   (PIPE_TRANSFER_DISCARD_RANGE | PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE)
333
334/* Checks whether it is possible to completely discard the memory backing this
335 * resource. This can be useful if we would otherwise have to wait for a read
336 * operation to complete on this data.
337 */
338static INLINE boolean
339nouveau_buffer_should_discard(struct nv04_resource *buf, unsigned usage)
340{
341   if (!(usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE))
342      return FALSE;
343   if (unlikely(buf->base.bind & PIPE_BIND_SHARED))
344      return FALSE;
345   if (unlikely(usage & PIPE_TRANSFER_PERSISTENT))
346      return FALSE;
347   return buf->mm && nouveau_buffer_busy(buf, PIPE_TRANSFER_WRITE);
348}
349
350/* Returns a pointer to a memory area representing a window into the
351 * resource's data.
352 *
353 * This may or may not be the _actual_ memory area of the resource. However
354 * when calling nouveau_buffer_transfer_unmap, if it wasn't the actual memory
355 * area, the contents of the returned map are copied over to the resource.
356 *
357 * The usage indicates what the caller plans to do with the map:
358 *
359 *   WRITE means that the user plans to write to it
360 *
361 *   READ means that the user plans on reading from it
362 *
363 *   DISCARD_WHOLE_RESOURCE means that the whole resource is going to be
364 *   potentially overwritten, and even if it isn't, the bits that aren't don't
365 *   need to be maintained.
366 *
367 *   DISCARD_RANGE means that all the data in the specified range is going to
368 *   be overwritten.
369 *
370 * The strategy for determining what kind of memory area to return is complex,
371 * see comments inside of the function.
372 */
373static void *
374nouveau_buffer_transfer_map(struct pipe_context *pipe,
375                            struct pipe_resource *resource,
376                            unsigned level, unsigned usage,
377                            const struct pipe_box *box,
378                            struct pipe_transfer **ptransfer)
379{
380   struct nouveau_context *nv = nouveau_context(pipe);
381   struct nv04_resource *buf = nv04_resource(resource);
382   struct nouveau_transfer *tx = MALLOC_STRUCT(nouveau_transfer);
383   uint8_t *map;
384   int ret;
385
386   if (!tx)
387      return NULL;
388   nouveau_buffer_transfer_init(tx, resource, box, usage);
389   *ptransfer = &tx->base;
390
391   if (usage & PIPE_TRANSFER_READ)
392      NOUVEAU_DRV_STAT(nv->screen, buf_transfers_rd, 1);
393   if (usage & PIPE_TRANSFER_WRITE)
394      NOUVEAU_DRV_STAT(nv->screen, buf_transfers_wr, 1);
395
396   /* If we are trying to write to an uninitialized range, the user shouldn't
397    * care what was there before. So we can treat the write as if the target
398    * range were being discarded. Furthermore, since we know that even if this
399    * buffer is busy due to GPU activity, because the contents were
400    * uninitialized, the GPU can't care what was there, and so we can treat
401    * the write as being unsynchronized.
402    */
403   if ((usage & PIPE_TRANSFER_WRITE) &&
404       !util_ranges_intersect(&buf->valid_buffer_range, box->x, box->x + box->width))
405      usage |= PIPE_TRANSFER_DISCARD_RANGE | PIPE_TRANSFER_UNSYNCHRONIZED;
406
407   if (usage & PIPE_TRANSFER_PERSISTENT)
408      usage |= PIPE_TRANSFER_UNSYNCHRONIZED;
409
410   if (buf->domain == NOUVEAU_BO_VRAM) {
411      if (usage & NOUVEAU_TRANSFER_DISCARD) {
412         /* Set up a staging area for the user to write to. It will be copied
413          * back into VRAM on unmap. */
414         if (usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE)
415            buf->status &= NOUVEAU_BUFFER_STATUS_REALLOC_MASK;
416         nouveau_transfer_staging(nv, tx, TRUE);
417      } else {
418         if (buf->status & NOUVEAU_BUFFER_STATUS_GPU_WRITING) {
419            /* The GPU is currently writing to this buffer. Copy its current
420             * contents to a staging area in the GART. This is necessary since
421             * not the whole area being mapped is being discarded.
422             */
423            if (buf->data) {
424               align_free(buf->data);
425               buf->data = NULL;
426            }
427            nouveau_transfer_staging(nv, tx, FALSE);
428            nouveau_transfer_read(nv, tx);
429         } else {
430            /* The buffer is currently idle. Create a staging area for writes,
431             * and make sure that the cached data is up-to-date. */
432            if (usage & PIPE_TRANSFER_WRITE)
433               nouveau_transfer_staging(nv, tx, TRUE);
434            if (!buf->data)
435               nouveau_buffer_cache(nv, buf);
436         }
437      }
438      return buf->data ? (buf->data + box->x) : tx->map;
439   } else
440   if (unlikely(buf->domain == 0)) {
441      return buf->data + box->x;
442   }
443
444   /* At this point, buf->domain == GART */
445
446   if (nouveau_buffer_should_discard(buf, usage)) {
447      int ref = buf->base.reference.count - 1;
448      nouveau_buffer_reallocate(nv->screen, buf, buf->domain);
449      if (ref > 0) /* any references inside context possible ? */
450         nv->invalidate_resource_storage(nv, &buf->base, ref);
451   }
452
453   /* Note that nouveau_bo_map ends up doing a nouveau_bo_wait with the
454    * relevant flags. If buf->mm is set, that means this resource is part of a
455    * larger slab bo that holds multiple resources. So in that case, don't
456    * wait on the whole slab and instead use the logic below to return a
457    * reasonable buffer for that case.
458    */
459   ret = nouveau_bo_map(buf->bo,
460                        buf->mm ? 0 : nouveau_screen_transfer_flags(usage),
461                        nv->client);
462   if (ret) {
463      FREE(tx);
464      return NULL;
465   }
466   map = (uint8_t *)buf->bo->map + buf->offset + box->x;
467
468   /* using kernel fences only if !buf->mm */
469   if ((usage & PIPE_TRANSFER_UNSYNCHRONIZED) || !buf->mm)
470      return map;
471
472   /* If the GPU is currently reading/writing this buffer, we shouldn't
473    * interfere with its progress. So instead we either wait for the GPU to
474    * complete its operation, or set up a staging area to perform our work in.
475    */
476   if (nouveau_buffer_busy(buf, usage & PIPE_TRANSFER_READ_WRITE)) {
477      if (unlikely(usage & PIPE_TRANSFER_DISCARD_WHOLE_RESOURCE)) {
478         /* Discarding was not possible, must sync because
479          * subsequent transfers might use UNSYNCHRONIZED. */
480         nouveau_buffer_sync(buf, usage & PIPE_TRANSFER_READ_WRITE);
481      } else
482      if (usage & PIPE_TRANSFER_DISCARD_RANGE) {
483         /* The whole range is being discarded, so it doesn't matter what was
484          * there before. No need to copy anything over. */
485         nouveau_transfer_staging(nv, tx, TRUE);
486         map = tx->map;
487      } else
488      if (nouveau_buffer_busy(buf, PIPE_TRANSFER_READ)) {
489         if (usage & PIPE_TRANSFER_DONTBLOCK)
490            map = NULL;
491         else
492            nouveau_buffer_sync(buf, usage & PIPE_TRANSFER_READ_WRITE);
493      } else {
494         /* It is expected that the returned buffer be a representation of the
495          * data in question, so we must copy it over from the buffer. */
496         nouveau_transfer_staging(nv, tx, TRUE);
497         if (tx->map)
498            memcpy(tx->map, map, box->width);
499         map = tx->map;
500      }
501   }
502   if (!map)
503      FREE(tx);
504   return map;
505}
506
507
508
509static void
510nouveau_buffer_transfer_flush_region(struct pipe_context *pipe,
511                                     struct pipe_transfer *transfer,
512                                     const struct pipe_box *box)
513{
514   struct nouveau_transfer *tx = nouveau_transfer(transfer);
515   struct nv04_resource *buf = nv04_resource(transfer->resource);
516
517   if (tx->map)
518      nouveau_transfer_write(nouveau_context(pipe), tx, box->x, box->width);
519
520   util_range_add(&buf->valid_buffer_range,
521                  tx->base.box.x + box->x,
522                  tx->base.box.x + box->x + box->width);
523}
524
525/* Unmap stage of the transfer. If it was a WRITE transfer and the map that
526 * was returned was not the real resource's data, this needs to transfer the
527 * data back to the resource.
528 *
529 * Also marks vbo dirty based on the buffer's binding
530 */
531static void
532nouveau_buffer_transfer_unmap(struct pipe_context *pipe,
533                              struct pipe_transfer *transfer)
534{
535   struct nouveau_context *nv = nouveau_context(pipe);
536   struct nouveau_transfer *tx = nouveau_transfer(transfer);
537   struct nv04_resource *buf = nv04_resource(transfer->resource);
538
539   if (tx->base.usage & PIPE_TRANSFER_WRITE) {
540      if (!(tx->base.usage & PIPE_TRANSFER_FLUSH_EXPLICIT) && tx->map)
541         nouveau_transfer_write(nv, tx, 0, tx->base.box.width);
542
543      if (likely(buf->domain)) {
544         const uint8_t bind = buf->base.bind;
545         /* make sure we invalidate dedicated caches */
546         if (bind & (PIPE_BIND_VERTEX_BUFFER | PIPE_BIND_INDEX_BUFFER))
547            nv->vbo_dirty = TRUE;
548      }
549
550      util_range_add(&buf->valid_buffer_range,
551                     tx->base.box.x, tx->base.box.x + tx->base.box.width);
552   }
553
554   if (!tx->bo && (tx->base.usage & PIPE_TRANSFER_WRITE))
555      NOUVEAU_DRV_STAT(nv->screen, buf_write_bytes_direct, tx->base.box.width);
556
557   nouveau_buffer_transfer_del(nv, tx);
558   FREE(tx);
559}
560
561
562void
563nouveau_copy_buffer(struct nouveau_context *nv,
564                    struct nv04_resource *dst, unsigned dstx,
565                    struct nv04_resource *src, unsigned srcx, unsigned size)
566{
567   assert(dst->base.target == PIPE_BUFFER && src->base.target == PIPE_BUFFER);
568
569   if (likely(dst->domain) && likely(src->domain)) {
570      nv->copy_data(nv,
571                    dst->bo, dst->offset + dstx, dst->domain,
572                    src->bo, src->offset + srcx, src->domain, size);
573
574      dst->status |= NOUVEAU_BUFFER_STATUS_GPU_WRITING;
575      nouveau_fence_ref(nv->screen->fence.current, &dst->fence);
576      nouveau_fence_ref(nv->screen->fence.current, &dst->fence_wr);
577
578      src->status |= NOUVEAU_BUFFER_STATUS_GPU_READING;
579      nouveau_fence_ref(nv->screen->fence.current, &src->fence);
580   } else {
581      struct pipe_box src_box;
582      src_box.x = srcx;
583      src_box.y = 0;
584      src_box.z = 0;
585      src_box.width = size;
586      src_box.height = 1;
587      src_box.depth = 1;
588      util_resource_copy_region(&nv->pipe,
589                                &dst->base, 0, dstx, 0, 0,
590                                &src->base, 0, &src_box);
591   }
592
593   util_range_add(&dst->valid_buffer_range, dstx, dstx + size);
594}
595
596
597void *
598nouveau_resource_map_offset(struct nouveau_context *nv,
599                            struct nv04_resource *res, uint32_t offset,
600                            uint32_t flags)
601{
602   if (unlikely(res->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY))
603      return res->data + offset;
604
605   if (res->domain == NOUVEAU_BO_VRAM) {
606      if (!res->data || (res->status & NOUVEAU_BUFFER_STATUS_GPU_WRITING))
607         nouveau_buffer_cache(nv, res);
608   }
609   if (res->domain != NOUVEAU_BO_GART)
610      return res->data + offset;
611
612   if (res->mm) {
613      unsigned rw;
614      rw = (flags & NOUVEAU_BO_WR) ? PIPE_TRANSFER_WRITE : PIPE_TRANSFER_READ;
615      nouveau_buffer_sync(res, rw);
616      if (nouveau_bo_map(res->bo, 0, NULL))
617         return NULL;
618   } else {
619      if (nouveau_bo_map(res->bo, flags, nv->client))
620         return NULL;
621   }
622   return (uint8_t *)res->bo->map + res->offset + offset;
623}
624
625
626const struct u_resource_vtbl nouveau_buffer_vtbl =
627{
628   u_default_resource_get_handle,     /* get_handle */
629   nouveau_buffer_destroy,               /* resource_destroy */
630   nouveau_buffer_transfer_map,          /* transfer_map */
631   nouveau_buffer_transfer_flush_region, /* transfer_flush_region */
632   nouveau_buffer_transfer_unmap,        /* transfer_unmap */
633   u_default_transfer_inline_write    /* transfer_inline_write */
634};
635
636struct pipe_resource *
637nouveau_buffer_create(struct pipe_screen *pscreen,
638                      const struct pipe_resource *templ)
639{
640   struct nouveau_screen *screen = nouveau_screen(pscreen);
641   struct nv04_resource *buffer;
642   boolean ret;
643
644   buffer = CALLOC_STRUCT(nv04_resource);
645   if (!buffer)
646      return NULL;
647
648   buffer->base = *templ;
649   buffer->vtbl = &nouveau_buffer_vtbl;
650   pipe_reference_init(&buffer->base.reference, 1);
651   buffer->base.screen = pscreen;
652
653   if (buffer->base.flags & (PIPE_RESOURCE_FLAG_MAP_PERSISTENT |
654                             PIPE_RESOURCE_FLAG_MAP_COHERENT)) {
655      buffer->domain = NOUVEAU_BO_GART;
656   } else if (buffer->base.bind &
657              (screen->vidmem_bindings & screen->sysmem_bindings)) {
658      switch (buffer->base.usage) {
659      case PIPE_USAGE_DEFAULT:
660      case PIPE_USAGE_IMMUTABLE:
661         buffer->domain = NOUVEAU_BO_VRAM;
662         break;
663      case PIPE_USAGE_DYNAMIC:
664         /* For most apps, we'd have to do staging transfers to avoid sync
665          * with this usage, and GART -> GART copies would be suboptimal.
666          */
667         buffer->domain = NOUVEAU_BO_VRAM;
668         break;
669      case PIPE_USAGE_STAGING:
670      case PIPE_USAGE_STREAM:
671         buffer->domain = NOUVEAU_BO_GART;
672         break;
673      default:
674         assert(0);
675         break;
676      }
677   } else {
678      if (buffer->base.bind & screen->vidmem_bindings)
679         buffer->domain = NOUVEAU_BO_VRAM;
680      else
681      if (buffer->base.bind & screen->sysmem_bindings)
682         buffer->domain = NOUVEAU_BO_GART;
683   }
684   ret = nouveau_buffer_allocate(screen, buffer, buffer->domain);
685
686   if (ret == FALSE)
687      goto fail;
688
689   if (buffer->domain == NOUVEAU_BO_VRAM && screen->hint_buf_keep_sysmem_copy)
690      nouveau_buffer_cache(NULL, buffer);
691
692   NOUVEAU_DRV_STAT(screen, buf_obj_current_count, 1);
693
694   util_range_init(&buffer->valid_buffer_range);
695
696   return &buffer->base;
697
698fail:
699   FREE(buffer);
700   return NULL;
701}
702
703
704struct pipe_resource *
705nouveau_user_buffer_create(struct pipe_screen *pscreen, void *ptr,
706                           unsigned bytes, unsigned bind)
707{
708   struct nv04_resource *buffer;
709
710   buffer = CALLOC_STRUCT(nv04_resource);
711   if (!buffer)
712      return NULL;
713
714   pipe_reference_init(&buffer->base.reference, 1);
715   buffer->vtbl = &nouveau_buffer_vtbl;
716   buffer->base.screen = pscreen;
717   buffer->base.format = PIPE_FORMAT_R8_UNORM;
718   buffer->base.usage = PIPE_USAGE_IMMUTABLE;
719   buffer->base.bind = bind;
720   buffer->base.width0 = bytes;
721   buffer->base.height0 = 1;
722   buffer->base.depth0 = 1;
723
724   buffer->data = ptr;
725   buffer->status = NOUVEAU_BUFFER_STATUS_USER_MEMORY;
726
727   util_range_init(&buffer->valid_buffer_range);
728   util_range_add(&buffer->valid_buffer_range, 0, bytes);
729
730   return &buffer->base;
731}
732
733static INLINE boolean
734nouveau_buffer_data_fetch(struct nouveau_context *nv, struct nv04_resource *buf,
735                          struct nouveau_bo *bo, unsigned offset, unsigned size)
736{
737   if (!nouveau_buffer_malloc(buf))
738      return FALSE;
739   if (nouveau_bo_map(bo, NOUVEAU_BO_RD, nv->client))
740      return FALSE;
741   memcpy(buf->data, (uint8_t *)bo->map + offset, size);
742   return TRUE;
743}
744
745/* Migrate a linear buffer (vertex, index, constants) USER -> GART -> VRAM. */
746boolean
747nouveau_buffer_migrate(struct nouveau_context *nv,
748                       struct nv04_resource *buf, const unsigned new_domain)
749{
750   struct nouveau_screen *screen = nv->screen;
751   struct nouveau_bo *bo;
752   const unsigned old_domain = buf->domain;
753   unsigned size = buf->base.width0;
754   unsigned offset;
755   int ret;
756
757   assert(new_domain != old_domain);
758
759   if (new_domain == NOUVEAU_BO_GART && old_domain == 0) {
760      if (!nouveau_buffer_allocate(screen, buf, new_domain))
761         return FALSE;
762      ret = nouveau_bo_map(buf->bo, 0, nv->client);
763      if (ret)
764         return ret;
765      memcpy((uint8_t *)buf->bo->map + buf->offset, buf->data, size);
766      align_free(buf->data);
767   } else
768   if (old_domain != 0 && new_domain != 0) {
769      struct nouveau_mm_allocation *mm = buf->mm;
770
771      if (new_domain == NOUVEAU_BO_VRAM) {
772         /* keep a system memory copy of our data in case we hit a fallback */
773         if (!nouveau_buffer_data_fetch(nv, buf, buf->bo, buf->offset, size))
774            return FALSE;
775         if (nouveau_mesa_debug)
776            debug_printf("migrating %u KiB to VRAM\n", size / 1024);
777      }
778
779      offset = buf->offset;
780      bo = buf->bo;
781      buf->bo = NULL;
782      buf->mm = NULL;
783      nouveau_buffer_allocate(screen, buf, new_domain);
784
785      nv->copy_data(nv, buf->bo, buf->offset, new_domain,
786                    bo, offset, old_domain, buf->base.width0);
787
788      nouveau_bo_ref(NULL, &bo);
789      if (mm)
790         release_allocation(&mm, screen->fence.current);
791   } else
792   if (new_domain == NOUVEAU_BO_VRAM && old_domain == 0) {
793      struct nouveau_transfer tx;
794      if (!nouveau_buffer_allocate(screen, buf, NOUVEAU_BO_VRAM))
795         return FALSE;
796      tx.base.resource = &buf->base;
797      tx.base.box.x = 0;
798      tx.base.box.width = buf->base.width0;
799      tx.bo = NULL;
800      tx.map = NULL;
801      if (!nouveau_transfer_staging(nv, &tx, FALSE))
802         return FALSE;
803      nouveau_transfer_write(nv, &tx, 0, tx.base.box.width);
804      nouveau_buffer_transfer_del(nv, &tx);
805   } else
806      return FALSE;
807
808   assert(buf->domain == new_domain);
809   return TRUE;
810}
811
812/* Migrate data from glVertexAttribPointer(non-VBO) user buffers to GART.
813 * We'd like to only allocate @size bytes here, but then we'd have to rebase
814 * the vertex indices ...
815 */
816boolean
817nouveau_user_buffer_upload(struct nouveau_context *nv,
818                           struct nv04_resource *buf,
819                           unsigned base, unsigned size)
820{
821   struct nouveau_screen *screen = nouveau_screen(buf->base.screen);
822   int ret;
823
824   assert(buf->status & NOUVEAU_BUFFER_STATUS_USER_MEMORY);
825
826   buf->base.width0 = base + size;
827   if (!nouveau_buffer_reallocate(screen, buf, NOUVEAU_BO_GART))
828      return FALSE;
829
830   ret = nouveau_bo_map(buf->bo, 0, nv->client);
831   if (ret)
832      return FALSE;
833   memcpy((uint8_t *)buf->bo->map + buf->offset + base, buf->data + base, size);
834
835   return TRUE;
836}
837
838
839/* Scratch data allocation. */
840
841static INLINE int
842nouveau_scratch_bo_alloc(struct nouveau_context *nv, struct nouveau_bo **pbo,
843                         unsigned size)
844{
845   return nouveau_bo_new(nv->screen->device, NOUVEAU_BO_GART | NOUVEAU_BO_MAP,
846                         4096, size, NULL, pbo);
847}
848
849void
850nouveau_scratch_runout_release(struct nouveau_context *nv)
851{
852   if (!nv->scratch.nr_runout)
853      return;
854   do {
855      --nv->scratch.nr_runout;
856      nouveau_bo_ref(NULL, &nv->scratch.runout[nv->scratch.nr_runout]);
857   } while (nv->scratch.nr_runout);
858
859   FREE(nv->scratch.runout);
860   nv->scratch.end = 0;
861   nv->scratch.runout = NULL;
862}
863
864/* Allocate an extra bo if we can't fit everything we need simultaneously.
865 * (Could happen for very large user arrays.)
866 */
867static INLINE boolean
868nouveau_scratch_runout(struct nouveau_context *nv, unsigned size)
869{
870   int ret;
871   const unsigned n = nv->scratch.nr_runout++;
872
873   nv->scratch.runout = REALLOC(nv->scratch.runout,
874                                (n + 0) * sizeof(*nv->scratch.runout),
875                                (n + 1) * sizeof(*nv->scratch.runout));
876   nv->scratch.runout[n] = NULL;
877
878   ret = nouveau_scratch_bo_alloc(nv, &nv->scratch.runout[n], size);
879   if (!ret) {
880      ret = nouveau_bo_map(nv->scratch.runout[n], 0, NULL);
881      if (ret)
882         nouveau_bo_ref(NULL, &nv->scratch.runout[--nv->scratch.nr_runout]);
883   }
884   if (!ret) {
885      nv->scratch.current = nv->scratch.runout[n];
886      nv->scratch.offset = 0;
887      nv->scratch.end = size;
888      nv->scratch.map = nv->scratch.current->map;
889   }
890   return !ret;
891}
892
893/* Continue to next scratch buffer, if available (no wrapping, large enough).
894 * Allocate it if it has not yet been created.
895 */
896static INLINE boolean
897nouveau_scratch_next(struct nouveau_context *nv, unsigned size)
898{
899   struct nouveau_bo *bo;
900   int ret;
901   const unsigned i = (nv->scratch.id + 1) % NOUVEAU_MAX_SCRATCH_BUFS;
902
903   if ((size > nv->scratch.bo_size) || (i == nv->scratch.wrap))
904      return FALSE;
905   nv->scratch.id = i;
906
907   bo = nv->scratch.bo[i];
908   if (!bo) {
909      ret = nouveau_scratch_bo_alloc(nv, &bo, nv->scratch.bo_size);
910      if (ret)
911         return FALSE;
912      nv->scratch.bo[i] = bo;
913   }
914   nv->scratch.current = bo;
915   nv->scratch.offset = 0;
916   nv->scratch.end = nv->scratch.bo_size;
917
918   ret = nouveau_bo_map(bo, NOUVEAU_BO_WR, nv->client);
919   if (!ret)
920      nv->scratch.map = bo->map;
921   return !ret;
922}
923
924static boolean
925nouveau_scratch_more(struct nouveau_context *nv, unsigned min_size)
926{
927   boolean ret;
928
929   ret = nouveau_scratch_next(nv, min_size);
930   if (!ret)
931      ret = nouveau_scratch_runout(nv, min_size);
932   return ret;
933}
934
935
936/* Copy data to a scratch buffer and return address & bo the data resides in. */
937uint64_t
938nouveau_scratch_data(struct nouveau_context *nv,
939                     const void *data, unsigned base, unsigned size,
940                     struct nouveau_bo **bo)
941{
942   unsigned bgn = MAX2(base, nv->scratch.offset);
943   unsigned end = bgn + size;
944
945   if (end >= nv->scratch.end) {
946      end = base + size;
947      if (!nouveau_scratch_more(nv, end))
948         return 0;
949      bgn = base;
950   }
951   nv->scratch.offset = align(end, 4);
952
953   memcpy(nv->scratch.map + bgn, (const uint8_t *)data + base, size);
954
955   *bo = nv->scratch.current;
956   return (*bo)->offset + (bgn - base);
957}
958
959void *
960nouveau_scratch_get(struct nouveau_context *nv,
961                    unsigned size, uint64_t *gpu_addr, struct nouveau_bo **pbo)
962{
963   unsigned bgn = nv->scratch.offset;
964   unsigned end = nv->scratch.offset + size;
965
966   if (end >= nv->scratch.end) {
967      end = size;
968      if (!nouveau_scratch_more(nv, end))
969         return NULL;
970      bgn = 0;
971   }
972   nv->scratch.offset = align(end, 4);
973
974   *pbo = nv->scratch.current;
975   *gpu_addr = nv->scratch.current->offset + bgn;
976   return nv->scratch.map + bgn;
977}
978