si_fence.c revision 7ec681f3
1/* 2 * Copyright 2013-2017 Advanced Micro Devices, Inc. 3 * All Rights Reserved. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 * 24 */ 25 26#include "si_build_pm4.h" 27#include "util/os_time.h" 28#include "util/u_memory.h" 29#include "util/u_queue.h" 30#include "util/u_upload_mgr.h" 31 32#include <libsync.h> 33 34struct si_fine_fence { 35 struct si_resource *buf; 36 unsigned offset; 37}; 38 39struct si_fence { 40 struct pipe_reference reference; 41 struct pipe_fence_handle *gfx; 42 struct tc_unflushed_batch_token *tc_token; 43 struct util_queue_fence ready; 44 45 /* If the context wasn't flushed at fence creation, this is non-NULL. */ 46 struct { 47 struct si_context *ctx; 48 unsigned ib_index; 49 } gfx_unflushed; 50 51 struct si_fine_fence fine; 52}; 53 54/** 55 * Write an EOP event. 56 * 57 * \param event EVENT_TYPE_* 58 * \param event_flags Optional cache flush flags (TC) 59 * \param dst_sel MEM or TC_L2 60 * \param int_sel NONE or SEND_DATA_AFTER_WR_CONFIRM 61 * \param data_sel DISCARD, VALUE_32BIT, TIMESTAMP, or GDS 62 * \param buf Buffer 63 * \param va GPU address 64 * \param old_value Previous fence value (for a bug workaround) 65 * \param new_value Fence value to write for this event. 66 */ 67void si_cp_release_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, unsigned event, 68 unsigned event_flags, unsigned dst_sel, unsigned int_sel, unsigned data_sel, 69 struct si_resource *buf, uint64_t va, uint32_t new_fence, 70 unsigned query_type) 71{ 72 unsigned op = EVENT_TYPE(event) | 73 EVENT_INDEX(event == V_028A90_CS_DONE || event == V_028A90_PS_DONE ? 6 : 5) | 74 event_flags; 75 unsigned sel = EOP_DST_SEL(dst_sel) | EOP_INT_SEL(int_sel) | EOP_DATA_SEL(data_sel); 76 bool compute_ib = !ctx->has_graphics; 77 78 radeon_begin(cs); 79 80 if (ctx->chip_class >= GFX9 || (compute_ib && ctx->chip_class >= GFX7)) { 81 /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion 82 * counters) must immediately precede every timestamp event to 83 * prevent a GPU hang on GFX9. 84 * 85 * Occlusion queries don't need to do it here, because they 86 * always do ZPASS_DONE before the timestamp. 87 */ 88 if (ctx->chip_class == GFX9 && !compute_ib && query_type != PIPE_QUERY_OCCLUSION_COUNTER && 89 query_type != PIPE_QUERY_OCCLUSION_PREDICATE && 90 query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) { 91 struct si_resource *scratch = unlikely(ctx->ws->cs_is_secure(&ctx->gfx_cs)) ? 92 ctx->eop_bug_scratch_tmz : ctx->eop_bug_scratch; 93 94 assert(16 * ctx->screen->info.max_render_backends <= scratch->b.b.width0); 95 radeon_emit(PKT3(PKT3_EVENT_WRITE, 2, 0)); 96 radeon_emit(EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1)); 97 radeon_emit(scratch->gpu_address); 98 radeon_emit(scratch->gpu_address >> 32); 99 100 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch, RADEON_USAGE_WRITE, 101 RADEON_PRIO_QUERY); 102 } 103 104 radeon_emit(PKT3(PKT3_RELEASE_MEM, ctx->chip_class >= GFX9 ? 6 : 5, 0)); 105 radeon_emit(op); 106 radeon_emit(sel); 107 radeon_emit(va); /* address lo */ 108 radeon_emit(va >> 32); /* address hi */ 109 radeon_emit(new_fence); /* immediate data lo */ 110 radeon_emit(0); /* immediate data hi */ 111 if (ctx->chip_class >= GFX9) 112 radeon_emit(0); /* unused */ 113 } else { 114 if (ctx->chip_class == GFX7 || ctx->chip_class == GFX8) { 115 struct si_resource *scratch = ctx->eop_bug_scratch; 116 uint64_t va = scratch->gpu_address; 117 118 /* Two EOP events are required to make all engines go idle 119 * (and optional cache flushes executed) before the timestamp 120 * is written. 121 */ 122 radeon_emit(PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); 123 radeon_emit(op); 124 radeon_emit(va); 125 radeon_emit(((va >> 32) & 0xffff) | sel); 126 radeon_emit(0); /* immediate data */ 127 radeon_emit(0); /* unused */ 128 129 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch, RADEON_USAGE_WRITE, 130 RADEON_PRIO_QUERY); 131 } 132 133 radeon_emit(PKT3(PKT3_EVENT_WRITE_EOP, 4, 0)); 134 radeon_emit(op); 135 radeon_emit(va); 136 radeon_emit(((va >> 32) & 0xffff) | sel); 137 radeon_emit(new_fence); /* immediate data */ 138 radeon_emit(0); /* unused */ 139 } 140 141 radeon_end(); 142 143 if (buf) { 144 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); 145 } 146} 147 148unsigned si_cp_write_fence_dwords(struct si_screen *screen) 149{ 150 unsigned dwords = 6; 151 152 if (screen->info.chip_class == GFX7 || screen->info.chip_class == GFX8) 153 dwords *= 2; 154 155 return dwords; 156} 157 158void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, uint64_t va, uint32_t ref, 159 uint32_t mask, unsigned flags) 160{ 161 radeon_begin(cs); 162 radeon_emit(PKT3(PKT3_WAIT_REG_MEM, 5, 0)); 163 radeon_emit(WAIT_REG_MEM_MEM_SPACE(1) | flags); 164 radeon_emit(va); 165 radeon_emit(va >> 32); 166 radeon_emit(ref); /* reference value */ 167 radeon_emit(mask); /* mask */ 168 radeon_emit(4); /* poll interval */ 169 radeon_end(); 170} 171 172static void si_add_fence_dependency(struct si_context *sctx, struct pipe_fence_handle *fence) 173{ 174 struct radeon_winsys *ws = sctx->ws; 175 176 ws->cs_add_fence_dependency(&sctx->gfx_cs, fence, 0); 177} 178 179static void si_add_syncobj_signal(struct si_context *sctx, struct pipe_fence_handle *fence) 180{ 181 sctx->ws->cs_add_syncobj_signal(&sctx->gfx_cs, fence); 182} 183 184static void si_fence_reference(struct pipe_screen *screen, struct pipe_fence_handle **dst, 185 struct pipe_fence_handle *src) 186{ 187 struct radeon_winsys *ws = ((struct si_screen *)screen)->ws; 188 struct si_fence **sdst = (struct si_fence **)dst; 189 struct si_fence *ssrc = (struct si_fence *)src; 190 191 if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) { 192 ws->fence_reference(&(*sdst)->gfx, NULL); 193 tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL); 194 si_resource_reference(&(*sdst)->fine.buf, NULL); 195 FREE(*sdst); 196 } 197 *sdst = ssrc; 198} 199 200static struct si_fence *si_create_multi_fence() 201{ 202 struct si_fence *fence = CALLOC_STRUCT(si_fence); 203 if (!fence) 204 return NULL; 205 206 pipe_reference_init(&fence->reference, 1); 207 util_queue_fence_init(&fence->ready); 208 209 return fence; 210} 211 212struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx, 213 struct tc_unflushed_batch_token *tc_token) 214{ 215 struct si_fence *fence = si_create_multi_fence(); 216 if (!fence) 217 return NULL; 218 219 util_queue_fence_reset(&fence->ready); 220 tc_unflushed_batch_token_reference(&fence->tc_token, tc_token); 221 222 return (struct pipe_fence_handle *)fence; 223} 224 225static bool si_fine_fence_signaled(struct radeon_winsys *rws, const struct si_fine_fence *fine) 226{ 227 char *map = 228 rws->buffer_map(rws, fine->buf->buf, NULL, PIPE_MAP_READ | PIPE_MAP_UNSYNCHRONIZED); 229 if (!map) 230 return false; 231 232 uint32_t *fence = (uint32_t *)(map + fine->offset); 233 return *fence != 0; 234} 235 236static void si_fine_fence_set(struct si_context *ctx, struct si_fine_fence *fine, unsigned flags) 237{ 238 uint32_t *fence_ptr; 239 240 assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1); 241 242 /* Use cached system memory for the fence. */ 243 u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, &fine->offset, 244 (struct pipe_resource **)&fine->buf, (void **)&fence_ptr); 245 if (!fine->buf) 246 return; 247 248 *fence_ptr = 0; 249 250 if (flags & PIPE_FLUSH_TOP_OF_PIPE) { 251 uint32_t value = 0x80000000; 252 253 si_cp_write_data(ctx, fine->buf, fine->offset, 4, V_370_MEM, V_370_PFP, &value); 254 } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) { 255 uint64_t fence_va = fine->buf->gpu_address + fine->offset; 256 257 radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, fine->buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY); 258 si_cp_release_mem(ctx, &ctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM, 259 EOP_INT_SEL_NONE, EOP_DATA_SEL_VALUE_32BIT, NULL, fence_va, 0x80000000, 260 PIPE_QUERY_GPU_FINISHED); 261 } else { 262 assert(false); 263 } 264} 265 266static bool si_fence_finish(struct pipe_screen *screen, struct pipe_context *ctx, 267 struct pipe_fence_handle *fence, uint64_t timeout) 268{ 269 struct radeon_winsys *rws = ((struct si_screen *)screen)->ws; 270 struct si_fence *sfence = (struct si_fence *)fence; 271 struct si_context *sctx; 272 int64_t abs_timeout = os_time_get_absolute_timeout(timeout); 273 274 ctx = threaded_context_unwrap_sync(ctx); 275 sctx = (struct si_context *)(ctx ? ctx : NULL); 276 277 if (!util_queue_fence_is_signalled(&sfence->ready)) { 278 if (sfence->tc_token) { 279 /* Ensure that si_flush_from_st will be called for 280 * this fence, but only if we're in the API thread 281 * where the context is current. 282 * 283 * Note that the batch containing the flush may already 284 * be in flight in the driver thread, so the fence 285 * may not be ready yet when this call returns. 286 */ 287 threaded_context_flush(ctx, sfence->tc_token, timeout == 0); 288 } 289 290 if (!timeout) 291 return false; 292 293 if (timeout == PIPE_TIMEOUT_INFINITE) { 294 util_queue_fence_wait(&sfence->ready); 295 } else { 296 if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout)) 297 return false; 298 } 299 300 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { 301 int64_t time = os_time_get_nano(); 302 timeout = abs_timeout > time ? abs_timeout - time : 0; 303 } 304 } 305 306 if (!sfence->gfx) 307 return true; 308 309 if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) { 310 rws->fence_reference(&sfence->gfx, NULL); 311 si_resource_reference(&sfence->fine.buf, NULL); 312 return true; 313 } 314 315 /* Flush the gfx IB if it hasn't been flushed yet. */ 316 if (sctx && sfence->gfx_unflushed.ctx == sctx && 317 sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) { 318 /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile) 319 * spec says: 320 * 321 * "If the sync object being blocked upon will not be 322 * signaled in finite time (for example, by an associated 323 * fence command issued previously, but not yet flushed to 324 * the graphics pipeline), then ClientWaitSync may hang 325 * forever. To help prevent this behavior, if 326 * ClientWaitSync is called and all of the following are 327 * true: 328 * 329 * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags, 330 * * sync is unsignaled when ClientWaitSync is called, 331 * * and the calls to ClientWaitSync and FenceSync were 332 * issued from the same context, 333 * 334 * then the GL will behave as if the equivalent of Flush 335 * were inserted immediately after the creation of sync." 336 * 337 * This means we need to flush for such fences even when we're 338 * not going to wait. 339 */ 340 si_flush_gfx_cs(sctx, (timeout ? 0 : PIPE_FLUSH_ASYNC) | RADEON_FLUSH_START_NEXT_GFX_IB_NOW, 341 NULL); 342 sfence->gfx_unflushed.ctx = NULL; 343 344 if (!timeout) 345 return false; 346 347 /* Recompute the timeout after all that. */ 348 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) { 349 int64_t time = os_time_get_nano(); 350 timeout = abs_timeout > time ? abs_timeout - time : 0; 351 } 352 } 353 354 if (rws->fence_wait(rws, sfence->gfx, timeout)) 355 return true; 356 357 /* Re-check in case the GPU is slow or hangs, but the commands before 358 * the fine-grained fence have completed. */ 359 if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) 360 return true; 361 362 return false; 363} 364 365static void si_create_fence_fd(struct pipe_context *ctx, struct pipe_fence_handle **pfence, int fd, 366 enum pipe_fd_type type) 367{ 368 struct si_screen *sscreen = (struct si_screen *)ctx->screen; 369 struct radeon_winsys *ws = sscreen->ws; 370 struct si_fence *sfence; 371 372 *pfence = NULL; 373 374 sfence = si_create_multi_fence(); 375 if (!sfence) 376 return; 377 378 switch (type) { 379 case PIPE_FD_TYPE_NATIVE_SYNC: 380 if (!sscreen->info.has_fence_to_handle) 381 goto finish; 382 383 sfence->gfx = ws->fence_import_sync_file(ws, fd); 384 break; 385 386 case PIPE_FD_TYPE_SYNCOBJ: 387 if (!sscreen->info.has_syncobj) 388 goto finish; 389 390 sfence->gfx = ws->fence_import_syncobj(ws, fd); 391 break; 392 393 default: 394 unreachable("bad fence fd type when importing"); 395 } 396 397finish: 398 if (!sfence->gfx) { 399 FREE(sfence); 400 return; 401 } 402 403 *pfence = (struct pipe_fence_handle *)sfence; 404} 405 406static int si_fence_get_fd(struct pipe_screen *screen, struct pipe_fence_handle *fence) 407{ 408 struct si_screen *sscreen = (struct si_screen *)screen; 409 struct radeon_winsys *ws = sscreen->ws; 410 struct si_fence *sfence = (struct si_fence *)fence; 411 int gfx_fd = -1; 412 413 if (!sscreen->info.has_fence_to_handle) 414 return -1; 415 416 util_queue_fence_wait(&sfence->ready); 417 418 /* Deferred fences aren't supported. */ 419 assert(!sfence->gfx_unflushed.ctx); 420 if (sfence->gfx_unflushed.ctx) 421 return -1; 422 423 if (sfence->gfx) { 424 gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx); 425 if (gfx_fd == -1) { 426 return -1; 427 } 428 } 429 430 /* If we don't have FDs at this point, it means we don't have fences 431 * either. */ 432 if (gfx_fd == -1) 433 return ws->export_signalled_sync_file(ws); 434 435 return gfx_fd; 436} 437 438static void si_flush_all_queues(struct pipe_context *ctx, 439 struct pipe_fence_handle **fence, 440 unsigned flags, bool force_flush) 441{ 442 struct pipe_screen *screen = ctx->screen; 443 struct si_context *sctx = (struct si_context *)ctx; 444 struct radeon_winsys *ws = sctx->ws; 445 struct pipe_fence_handle *gfx_fence = NULL; 446 bool deferred_fence = false; 447 struct si_fine_fence fine = {}; 448 unsigned rflags = PIPE_FLUSH_ASYNC; 449 450 if (!(flags & PIPE_FLUSH_DEFERRED)) { 451 si_flush_implicit_resources(sctx); 452 } 453 454 if (flags & PIPE_FLUSH_END_OF_FRAME) 455 rflags |= PIPE_FLUSH_END_OF_FRAME; 456 457 if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) { 458 assert(flags & PIPE_FLUSH_DEFERRED); 459 assert(fence); 460 461 si_fine_fence_set(sctx, &fine, flags); 462 } 463 464 if (force_flush) { 465 sctx->initial_gfx_cs_size = 0; 466 } 467 468 if (!radeon_emitted(&sctx->gfx_cs, sctx->initial_gfx_cs_size)) { 469 if (fence) 470 ws->fence_reference(&gfx_fence, sctx->last_gfx_fence); 471 if (!(flags & PIPE_FLUSH_DEFERRED)) 472 ws->cs_sync_flush(&sctx->gfx_cs); 473 474 tc_driver_internal_flush_notify(sctx->tc); 475 } else { 476 /* Instead of flushing, create a deferred fence. Constraints: 477 * - the gallium frontend must allow a deferred flush. 478 * - the gallium frontend must request a fence. 479 * - fence_get_fd is not allowed. 480 * Thread safety in fence_finish must be ensured by the gallium frontend. 481 */ 482 if (flags & PIPE_FLUSH_DEFERRED && !(flags & PIPE_FLUSH_FENCE_FD) && fence) { 483 gfx_fence = sctx->ws->cs_get_next_fence(&sctx->gfx_cs); 484 deferred_fence = true; 485 } else { 486 si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL); 487 } 488 } 489 490 /* Both engines can signal out of order, so we need to keep both fences. */ 491 if (fence) { 492 struct si_fence *new_fence; 493 494 if (flags & TC_FLUSH_ASYNC) { 495 new_fence = (struct si_fence *)*fence; 496 assert(new_fence); 497 } else { 498 new_fence = si_create_multi_fence(); 499 if (!new_fence) { 500 ws->fence_reference(&gfx_fence, NULL); 501 goto finish; 502 } 503 504 screen->fence_reference(screen, fence, NULL); 505 *fence = (struct pipe_fence_handle *)new_fence; 506 } 507 508 /* If both fences are NULL, fence_finish will always return true. */ 509 new_fence->gfx = gfx_fence; 510 511 if (deferred_fence) { 512 new_fence->gfx_unflushed.ctx = sctx; 513 new_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes; 514 } 515 516 new_fence->fine = fine; 517 fine.buf = NULL; 518 519 if (flags & TC_FLUSH_ASYNC) { 520 util_queue_fence_signal(&new_fence->ready); 521 tc_unflushed_batch_token_reference(&new_fence->tc_token, NULL); 522 } 523 } 524 assert(!fine.buf); 525finish: 526 if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) { 527 ws->cs_sync_flush(&sctx->gfx_cs); 528 } 529} 530 531static void si_flush_from_st(struct pipe_context *ctx, struct pipe_fence_handle **fence, 532 unsigned flags) 533{ 534 return si_flush_all_queues(ctx, fence, flags, false); 535} 536 537static void si_fence_server_signal(struct pipe_context *ctx, struct pipe_fence_handle *fence) 538{ 539 struct si_context *sctx = (struct si_context *)ctx; 540 struct si_fence *sfence = (struct si_fence *)fence; 541 542 assert(sfence->gfx); 543 544 if (sfence->gfx) 545 si_add_syncobj_signal(sctx, sfence->gfx); 546 547 /** 548 * The spec does not require a flush here. We insert a flush 549 * because syncobj based signals are not directly placed into 550 * the command stream. Instead the signal happens when the 551 * submission associated with the syncobj finishes execution. 552 * 553 * Therefore, we must make sure that we flush the pipe to avoid 554 * new work being emitted and getting executed before the signal 555 * operation. 556 * 557 * Forces a flush even if the GFX CS is empty. 558 */ 559 si_flush_all_queues(ctx, NULL, PIPE_FLUSH_ASYNC, true); 560} 561 562static void si_fence_server_sync(struct pipe_context *ctx, struct pipe_fence_handle *fence) 563{ 564 struct si_context *sctx = (struct si_context *)ctx; 565 struct si_fence *sfence = (struct si_fence *)fence; 566 567 util_queue_fence_wait(&sfence->ready); 568 569 /* Unflushed fences from the same context are no-ops. */ 570 if (sfence->gfx_unflushed.ctx && sfence->gfx_unflushed.ctx == sctx) 571 return; 572 573 /* All unflushed commands will not start execution before this fence 574 * dependency is signalled. That's fine. Flushing is very expensive 575 * if we get fence_server_sync after every draw call. (which happens 576 * with Android/SurfaceFlinger) 577 * 578 * In a nutshell, when CPU overhead is greater than GPU overhead, 579 * or when the time it takes to execute an IB on the GPU is less than 580 * the time it takes to create and submit that IB, flushing decreases 581 * performance. Therefore, DO NOT FLUSH. 582 */ 583 if (sfence->gfx) 584 si_add_fence_dependency(sctx, sfence->gfx); 585} 586 587void si_init_fence_functions(struct si_context *ctx) 588{ 589 ctx->b.flush = si_flush_from_st; 590 ctx->b.create_fence_fd = si_create_fence_fd; 591 ctx->b.fence_server_sync = si_fence_server_sync; 592 ctx->b.fence_server_signal = si_fence_server_signal; 593} 594 595void si_init_screen_fence_functions(struct si_screen *screen) 596{ 597 screen->b.fence_finish = si_fence_finish; 598 screen->b.fence_reference = si_fence_reference; 599 screen->b.fence_get_fd = si_fence_get_fd; 600} 601