si_fence.c revision 7ec681f3
1/*
2 * Copyright 2013-2017 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 *
24 */
25
26#include "si_build_pm4.h"
27#include "util/os_time.h"
28#include "util/u_memory.h"
29#include "util/u_queue.h"
30#include "util/u_upload_mgr.h"
31
32#include <libsync.h>
33
34struct si_fine_fence {
35   struct si_resource *buf;
36   unsigned offset;
37};
38
39struct si_fence {
40   struct pipe_reference reference;
41   struct pipe_fence_handle *gfx;
42   struct tc_unflushed_batch_token *tc_token;
43   struct util_queue_fence ready;
44
45   /* If the context wasn't flushed at fence creation, this is non-NULL. */
46   struct {
47      struct si_context *ctx;
48      unsigned ib_index;
49   } gfx_unflushed;
50
51   struct si_fine_fence fine;
52};
53
54/**
55 * Write an EOP event.
56 *
57 * \param event		EVENT_TYPE_*
58 * \param event_flags	Optional cache flush flags (TC)
59 * \param dst_sel       MEM or TC_L2
60 * \param int_sel       NONE or SEND_DATA_AFTER_WR_CONFIRM
61 * \param data_sel	DISCARD, VALUE_32BIT, TIMESTAMP, or GDS
62 * \param buf		Buffer
63 * \param va		GPU address
64 * \param old_value	Previous fence value (for a bug workaround)
65 * \param new_value	Fence value to write for this event.
66 */
67void si_cp_release_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, unsigned event,
68                       unsigned event_flags, unsigned dst_sel, unsigned int_sel, unsigned data_sel,
69                       struct si_resource *buf, uint64_t va, uint32_t new_fence,
70                       unsigned query_type)
71{
72   unsigned op = EVENT_TYPE(event) |
73                 EVENT_INDEX(event == V_028A90_CS_DONE || event == V_028A90_PS_DONE ? 6 : 5) |
74                 event_flags;
75   unsigned sel = EOP_DST_SEL(dst_sel) | EOP_INT_SEL(int_sel) | EOP_DATA_SEL(data_sel);
76   bool compute_ib = !ctx->has_graphics;
77
78   radeon_begin(cs);
79
80   if (ctx->chip_class >= GFX9 || (compute_ib && ctx->chip_class >= GFX7)) {
81      /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
82       * counters) must immediately precede every timestamp event to
83       * prevent a GPU hang on GFX9.
84       *
85       * Occlusion queries don't need to do it here, because they
86       * always do ZPASS_DONE before the timestamp.
87       */
88      if (ctx->chip_class == GFX9 && !compute_ib && query_type != PIPE_QUERY_OCCLUSION_COUNTER &&
89          query_type != PIPE_QUERY_OCCLUSION_PREDICATE &&
90          query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) {
91         struct si_resource *scratch = unlikely(ctx->ws->cs_is_secure(&ctx->gfx_cs)) ?
92            ctx->eop_bug_scratch_tmz : ctx->eop_bug_scratch;
93
94         assert(16 * ctx->screen->info.max_render_backends <= scratch->b.b.width0);
95         radeon_emit(PKT3(PKT3_EVENT_WRITE, 2, 0));
96         radeon_emit(EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
97         radeon_emit(scratch->gpu_address);
98         radeon_emit(scratch->gpu_address >> 32);
99
100         radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch, RADEON_USAGE_WRITE,
101                                   RADEON_PRIO_QUERY);
102      }
103
104      radeon_emit(PKT3(PKT3_RELEASE_MEM, ctx->chip_class >= GFX9 ? 6 : 5, 0));
105      radeon_emit(op);
106      radeon_emit(sel);
107      radeon_emit(va);        /* address lo */
108      radeon_emit(va >> 32);  /* address hi */
109      radeon_emit(new_fence); /* immediate data lo */
110      radeon_emit(0);         /* immediate data hi */
111      if (ctx->chip_class >= GFX9)
112         radeon_emit(0); /* unused */
113   } else {
114      if (ctx->chip_class == GFX7 || ctx->chip_class == GFX8) {
115         struct si_resource *scratch = ctx->eop_bug_scratch;
116         uint64_t va = scratch->gpu_address;
117
118         /* Two EOP events are required to make all engines go idle
119          * (and optional cache flushes executed) before the timestamp
120          * is written.
121          */
122         radeon_emit(PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
123         radeon_emit(op);
124         radeon_emit(va);
125         radeon_emit(((va >> 32) & 0xffff) | sel);
126         radeon_emit(0); /* immediate data */
127         radeon_emit(0); /* unused */
128
129         radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, scratch, RADEON_USAGE_WRITE,
130                                   RADEON_PRIO_QUERY);
131      }
132
133      radeon_emit(PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
134      radeon_emit(op);
135      radeon_emit(va);
136      radeon_emit(((va >> 32) & 0xffff) | sel);
137      radeon_emit(new_fence); /* immediate data */
138      radeon_emit(0);         /* unused */
139   }
140
141   radeon_end();
142
143   if (buf) {
144      radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
145   }
146}
147
148unsigned si_cp_write_fence_dwords(struct si_screen *screen)
149{
150   unsigned dwords = 6;
151
152   if (screen->info.chip_class == GFX7 || screen->info.chip_class == GFX8)
153      dwords *= 2;
154
155   return dwords;
156}
157
158void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs, uint64_t va, uint32_t ref,
159                    uint32_t mask, unsigned flags)
160{
161   radeon_begin(cs);
162   radeon_emit(PKT3(PKT3_WAIT_REG_MEM, 5, 0));
163   radeon_emit(WAIT_REG_MEM_MEM_SPACE(1) | flags);
164   radeon_emit(va);
165   radeon_emit(va >> 32);
166   radeon_emit(ref);  /* reference value */
167   radeon_emit(mask); /* mask */
168   radeon_emit(4);    /* poll interval */
169   radeon_end();
170}
171
172static void si_add_fence_dependency(struct si_context *sctx, struct pipe_fence_handle *fence)
173{
174   struct radeon_winsys *ws = sctx->ws;
175
176   ws->cs_add_fence_dependency(&sctx->gfx_cs, fence, 0);
177}
178
179static void si_add_syncobj_signal(struct si_context *sctx, struct pipe_fence_handle *fence)
180{
181   sctx->ws->cs_add_syncobj_signal(&sctx->gfx_cs, fence);
182}
183
184static void si_fence_reference(struct pipe_screen *screen, struct pipe_fence_handle **dst,
185                               struct pipe_fence_handle *src)
186{
187   struct radeon_winsys *ws = ((struct si_screen *)screen)->ws;
188   struct si_fence **sdst = (struct si_fence **)dst;
189   struct si_fence *ssrc = (struct si_fence *)src;
190
191   if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) {
192      ws->fence_reference(&(*sdst)->gfx, NULL);
193      tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL);
194      si_resource_reference(&(*sdst)->fine.buf, NULL);
195      FREE(*sdst);
196   }
197   *sdst = ssrc;
198}
199
200static struct si_fence *si_create_multi_fence()
201{
202   struct si_fence *fence = CALLOC_STRUCT(si_fence);
203   if (!fence)
204      return NULL;
205
206   pipe_reference_init(&fence->reference, 1);
207   util_queue_fence_init(&fence->ready);
208
209   return fence;
210}
211
212struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
213                                          struct tc_unflushed_batch_token *tc_token)
214{
215   struct si_fence *fence = si_create_multi_fence();
216   if (!fence)
217      return NULL;
218
219   util_queue_fence_reset(&fence->ready);
220   tc_unflushed_batch_token_reference(&fence->tc_token, tc_token);
221
222   return (struct pipe_fence_handle *)fence;
223}
224
225static bool si_fine_fence_signaled(struct radeon_winsys *rws, const struct si_fine_fence *fine)
226{
227   char *map =
228      rws->buffer_map(rws, fine->buf->buf, NULL, PIPE_MAP_READ | PIPE_MAP_UNSYNCHRONIZED);
229   if (!map)
230      return false;
231
232   uint32_t *fence = (uint32_t *)(map + fine->offset);
233   return *fence != 0;
234}
235
236static void si_fine_fence_set(struct si_context *ctx, struct si_fine_fence *fine, unsigned flags)
237{
238   uint32_t *fence_ptr;
239
240   assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
241
242   /* Use cached system memory for the fence. */
243   u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4, &fine->offset,
244                  (struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
245   if (!fine->buf)
246      return;
247
248   *fence_ptr = 0;
249
250   if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
251      uint32_t value = 0x80000000;
252
253      si_cp_write_data(ctx, fine->buf, fine->offset, 4, V_370_MEM, V_370_PFP, &value);
254   } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
255      uint64_t fence_va = fine->buf->gpu_address + fine->offset;
256
257      radeon_add_to_buffer_list(ctx, &ctx->gfx_cs, fine->buf, RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
258      si_cp_release_mem(ctx, &ctx->gfx_cs, V_028A90_BOTTOM_OF_PIPE_TS, 0, EOP_DST_SEL_MEM,
259                        EOP_INT_SEL_NONE, EOP_DATA_SEL_VALUE_32BIT, NULL, fence_va, 0x80000000,
260                        PIPE_QUERY_GPU_FINISHED);
261   } else {
262      assert(false);
263   }
264}
265
266static bool si_fence_finish(struct pipe_screen *screen, struct pipe_context *ctx,
267                            struct pipe_fence_handle *fence, uint64_t timeout)
268{
269   struct radeon_winsys *rws = ((struct si_screen *)screen)->ws;
270   struct si_fence *sfence = (struct si_fence *)fence;
271   struct si_context *sctx;
272   int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
273
274   ctx = threaded_context_unwrap_sync(ctx);
275   sctx = (struct si_context *)(ctx ? ctx : NULL);
276
277   if (!util_queue_fence_is_signalled(&sfence->ready)) {
278      if (sfence->tc_token) {
279         /* Ensure that si_flush_from_st will be called for
280          * this fence, but only if we're in the API thread
281          * where the context is current.
282          *
283          * Note that the batch containing the flush may already
284          * be in flight in the driver thread, so the fence
285          * may not be ready yet when this call returns.
286          */
287         threaded_context_flush(ctx, sfence->tc_token, timeout == 0);
288      }
289
290      if (!timeout)
291         return false;
292
293      if (timeout == PIPE_TIMEOUT_INFINITE) {
294         util_queue_fence_wait(&sfence->ready);
295      } else {
296         if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout))
297            return false;
298      }
299
300      if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
301         int64_t time = os_time_get_nano();
302         timeout = abs_timeout > time ? abs_timeout - time : 0;
303      }
304   }
305
306   if (!sfence->gfx)
307      return true;
308
309   if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine)) {
310      rws->fence_reference(&sfence->gfx, NULL);
311      si_resource_reference(&sfence->fine.buf, NULL);
312      return true;
313   }
314
315   /* Flush the gfx IB if it hasn't been flushed yet. */
316   if (sctx && sfence->gfx_unflushed.ctx == sctx &&
317       sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) {
318      /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
319       * spec says:
320       *
321       *    "If the sync object being blocked upon will not be
322       *     signaled in finite time (for example, by an associated
323       *     fence command issued previously, but not yet flushed to
324       *     the graphics pipeline), then ClientWaitSync may hang
325       *     forever. To help prevent this behavior, if
326       *     ClientWaitSync is called and all of the following are
327       *     true:
328       *
329       *     * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
330       *     * sync is unsignaled when ClientWaitSync is called,
331       *     * and the calls to ClientWaitSync and FenceSync were
332       *       issued from the same context,
333       *
334       *     then the GL will behave as if the equivalent of Flush
335       *     were inserted immediately after the creation of sync."
336       *
337       * This means we need to flush for such fences even when we're
338       * not going to wait.
339       */
340      si_flush_gfx_cs(sctx, (timeout ? 0 : PIPE_FLUSH_ASYNC) | RADEON_FLUSH_START_NEXT_GFX_IB_NOW,
341                      NULL);
342      sfence->gfx_unflushed.ctx = NULL;
343
344      if (!timeout)
345         return false;
346
347      /* Recompute the timeout after all that. */
348      if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
349         int64_t time = os_time_get_nano();
350         timeout = abs_timeout > time ? abs_timeout - time : 0;
351      }
352   }
353
354   if (rws->fence_wait(rws, sfence->gfx, timeout))
355      return true;
356
357   /* Re-check in case the GPU is slow or hangs, but the commands before
358    * the fine-grained fence have completed. */
359   if (sfence->fine.buf && si_fine_fence_signaled(rws, &sfence->fine))
360      return true;
361
362   return false;
363}
364
365static void si_create_fence_fd(struct pipe_context *ctx, struct pipe_fence_handle **pfence, int fd,
366                               enum pipe_fd_type type)
367{
368   struct si_screen *sscreen = (struct si_screen *)ctx->screen;
369   struct radeon_winsys *ws = sscreen->ws;
370   struct si_fence *sfence;
371
372   *pfence = NULL;
373
374   sfence = si_create_multi_fence();
375   if (!sfence)
376      return;
377
378   switch (type) {
379   case PIPE_FD_TYPE_NATIVE_SYNC:
380      if (!sscreen->info.has_fence_to_handle)
381         goto finish;
382
383      sfence->gfx = ws->fence_import_sync_file(ws, fd);
384      break;
385
386   case PIPE_FD_TYPE_SYNCOBJ:
387      if (!sscreen->info.has_syncobj)
388         goto finish;
389
390      sfence->gfx = ws->fence_import_syncobj(ws, fd);
391      break;
392
393   default:
394      unreachable("bad fence fd type when importing");
395   }
396
397finish:
398   if (!sfence->gfx) {
399      FREE(sfence);
400      return;
401   }
402
403   *pfence = (struct pipe_fence_handle *)sfence;
404}
405
406static int si_fence_get_fd(struct pipe_screen *screen, struct pipe_fence_handle *fence)
407{
408   struct si_screen *sscreen = (struct si_screen *)screen;
409   struct radeon_winsys *ws = sscreen->ws;
410   struct si_fence *sfence = (struct si_fence *)fence;
411   int gfx_fd = -1;
412
413   if (!sscreen->info.has_fence_to_handle)
414      return -1;
415
416   util_queue_fence_wait(&sfence->ready);
417
418   /* Deferred fences aren't supported. */
419   assert(!sfence->gfx_unflushed.ctx);
420   if (sfence->gfx_unflushed.ctx)
421      return -1;
422
423   if (sfence->gfx) {
424      gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx);
425      if (gfx_fd == -1) {
426         return -1;
427      }
428   }
429
430   /* If we don't have FDs at this point, it means we don't have fences
431    * either. */
432   if (gfx_fd == -1)
433      return ws->export_signalled_sync_file(ws);
434
435   return gfx_fd;
436}
437
438static void si_flush_all_queues(struct pipe_context *ctx,
439                                struct pipe_fence_handle **fence,
440                                unsigned flags, bool force_flush)
441{
442   struct pipe_screen *screen = ctx->screen;
443   struct si_context *sctx = (struct si_context *)ctx;
444   struct radeon_winsys *ws = sctx->ws;
445   struct pipe_fence_handle *gfx_fence = NULL;
446   bool deferred_fence = false;
447   struct si_fine_fence fine = {};
448   unsigned rflags = PIPE_FLUSH_ASYNC;
449
450   if (!(flags & PIPE_FLUSH_DEFERRED)) {
451      si_flush_implicit_resources(sctx);
452   }
453
454   if (flags & PIPE_FLUSH_END_OF_FRAME)
455      rflags |= PIPE_FLUSH_END_OF_FRAME;
456
457   if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
458      assert(flags & PIPE_FLUSH_DEFERRED);
459      assert(fence);
460
461      si_fine_fence_set(sctx, &fine, flags);
462   }
463
464   if (force_flush) {
465      sctx->initial_gfx_cs_size = 0;
466   }
467
468   if (!radeon_emitted(&sctx->gfx_cs, sctx->initial_gfx_cs_size)) {
469      if (fence)
470         ws->fence_reference(&gfx_fence, sctx->last_gfx_fence);
471      if (!(flags & PIPE_FLUSH_DEFERRED))
472         ws->cs_sync_flush(&sctx->gfx_cs);
473
474      tc_driver_internal_flush_notify(sctx->tc);
475   } else {
476      /* Instead of flushing, create a deferred fence. Constraints:
477		 * - the gallium frontend must allow a deferred flush.
478		 * - the gallium frontend must request a fence.
479       * - fence_get_fd is not allowed.
480		 * Thread safety in fence_finish must be ensured by the gallium frontend.
481       */
482      if (flags & PIPE_FLUSH_DEFERRED && !(flags & PIPE_FLUSH_FENCE_FD) && fence) {
483         gfx_fence = sctx->ws->cs_get_next_fence(&sctx->gfx_cs);
484         deferred_fence = true;
485      } else {
486         si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL);
487      }
488   }
489
490   /* Both engines can signal out of order, so we need to keep both fences. */
491   if (fence) {
492      struct si_fence *new_fence;
493
494      if (flags & TC_FLUSH_ASYNC) {
495         new_fence = (struct si_fence *)*fence;
496         assert(new_fence);
497      } else {
498         new_fence = si_create_multi_fence();
499         if (!new_fence) {
500            ws->fence_reference(&gfx_fence, NULL);
501            goto finish;
502         }
503
504         screen->fence_reference(screen, fence, NULL);
505         *fence = (struct pipe_fence_handle *)new_fence;
506      }
507
508      /* If both fences are NULL, fence_finish will always return true. */
509      new_fence->gfx = gfx_fence;
510
511      if (deferred_fence) {
512         new_fence->gfx_unflushed.ctx = sctx;
513         new_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes;
514      }
515
516      new_fence->fine = fine;
517      fine.buf = NULL;
518
519      if (flags & TC_FLUSH_ASYNC) {
520         util_queue_fence_signal(&new_fence->ready);
521         tc_unflushed_batch_token_reference(&new_fence->tc_token, NULL);
522      }
523   }
524   assert(!fine.buf);
525finish:
526   if (!(flags & (PIPE_FLUSH_DEFERRED | PIPE_FLUSH_ASYNC))) {
527      ws->cs_sync_flush(&sctx->gfx_cs);
528   }
529}
530
531static void si_flush_from_st(struct pipe_context *ctx, struct pipe_fence_handle **fence,
532                             unsigned flags)
533{
534   return si_flush_all_queues(ctx, fence, flags, false);
535}
536
537static void si_fence_server_signal(struct pipe_context *ctx, struct pipe_fence_handle *fence)
538{
539   struct si_context *sctx = (struct si_context *)ctx;
540   struct si_fence *sfence = (struct si_fence *)fence;
541
542   assert(sfence->gfx);
543
544   if (sfence->gfx)
545      si_add_syncobj_signal(sctx, sfence->gfx);
546
547   /**
548    * The spec does not require a flush here. We insert a flush
549    * because syncobj based signals are not directly placed into
550    * the command stream. Instead the signal happens when the
551    * submission associated with the syncobj finishes execution.
552    *
553    * Therefore, we must make sure that we flush the pipe to avoid
554    * new work being emitted and getting executed before the signal
555    * operation.
556    *
557    * Forces a flush even if the GFX CS is empty.
558    */
559   si_flush_all_queues(ctx, NULL, PIPE_FLUSH_ASYNC, true);
560}
561
562static void si_fence_server_sync(struct pipe_context *ctx, struct pipe_fence_handle *fence)
563{
564   struct si_context *sctx = (struct si_context *)ctx;
565   struct si_fence *sfence = (struct si_fence *)fence;
566
567   util_queue_fence_wait(&sfence->ready);
568
569   /* Unflushed fences from the same context are no-ops. */
570   if (sfence->gfx_unflushed.ctx && sfence->gfx_unflushed.ctx == sctx)
571      return;
572
573   /* All unflushed commands will not start execution before this fence
574    * dependency is signalled. That's fine. Flushing is very expensive
575    * if we get fence_server_sync after every draw call. (which happens
576    * with Android/SurfaceFlinger)
577    *
578    * In a nutshell, when CPU overhead is greater than GPU overhead,
579    * or when the time it takes to execute an IB on the GPU is less than
580    * the time it takes to create and submit that IB, flushing decreases
581    * performance. Therefore, DO NOT FLUSH.
582    */
583   if (sfence->gfx)
584      si_add_fence_dependency(sctx, sfence->gfx);
585}
586
587void si_init_fence_functions(struct si_context *ctx)
588{
589   ctx->b.flush = si_flush_from_st;
590   ctx->b.create_fence_fd = si_create_fence_fd;
591   ctx->b.fence_server_sync = si_fence_server_sync;
592   ctx->b.fence_server_signal = si_fence_server_signal;
593}
594
595void si_init_screen_fence_functions(struct si_screen *screen)
596{
597   screen->b.fence_finish = si_fence_finish;
598   screen->b.fence_reference = si_fence_reference;
599   screen->b.fence_get_fd = si_fence_get_fd;
600}
601