brw_eu.cpp revision 7ec681f3
1/* 2 Copyright (C) Intel Corp. 2006. All Rights Reserved. 3 Intel funded Tungsten Graphics to 4 develop this 3D driver. 5 6 Permission is hereby granted, free of charge, to any person obtaining 7 a copy of this software and associated documentation files (the 8 "Software"), to deal in the Software without restriction, including 9 without limitation the rights to use, copy, modify, merge, publish, 10 distribute, sublicense, and/or sell copies of the Software, and to 11 permit persons to whom the Software is furnished to do so, subject to 12 the following conditions: 13 14 The above copyright notice and this permission notice (including the 15 next paragraph) shall be included in all copies or substantial 16 portions of the Software. 17 18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE 22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 25 26 **********************************************************************/ 27 /* 28 * Authors: 29 * Keith Whitwell <keithw@vmware.com> 30 */ 31 32#include <sys/stat.h> 33#include <fcntl.h> 34 35#include "brw_eu_defines.h" 36#include "brw_eu.h" 37#include "brw_shader.h" 38#include "brw_gfx_ver_enum.h" 39#include "dev/intel_debug.h" 40 41#include "util/ralloc.h" 42 43/* Returns a conditional modifier that negates the condition. */ 44enum brw_conditional_mod 45brw_negate_cmod(enum brw_conditional_mod cmod) 46{ 47 switch (cmod) { 48 case BRW_CONDITIONAL_Z: 49 return BRW_CONDITIONAL_NZ; 50 case BRW_CONDITIONAL_NZ: 51 return BRW_CONDITIONAL_Z; 52 case BRW_CONDITIONAL_G: 53 return BRW_CONDITIONAL_LE; 54 case BRW_CONDITIONAL_GE: 55 return BRW_CONDITIONAL_L; 56 case BRW_CONDITIONAL_L: 57 return BRW_CONDITIONAL_GE; 58 case BRW_CONDITIONAL_LE: 59 return BRW_CONDITIONAL_G; 60 default: 61 unreachable("Can't negate this cmod"); 62 } 63} 64 65/* Returns the corresponding conditional mod for swapping src0 and 66 * src1 in e.g. CMP. 67 */ 68enum brw_conditional_mod 69brw_swap_cmod(enum brw_conditional_mod cmod) 70{ 71 switch (cmod) { 72 case BRW_CONDITIONAL_Z: 73 case BRW_CONDITIONAL_NZ: 74 return cmod; 75 case BRW_CONDITIONAL_G: 76 return BRW_CONDITIONAL_L; 77 case BRW_CONDITIONAL_GE: 78 return BRW_CONDITIONAL_LE; 79 case BRW_CONDITIONAL_L: 80 return BRW_CONDITIONAL_G; 81 case BRW_CONDITIONAL_LE: 82 return BRW_CONDITIONAL_GE; 83 default: 84 return BRW_CONDITIONAL_NONE; 85 } 86} 87 88/** 89 * Get the least significant bit offset of the i+1-th component of immediate 90 * type \p type. For \p i equal to the two's complement of j, return the 91 * offset of the j-th component starting from the end of the vector. For 92 * scalar register types return zero. 93 */ 94static unsigned 95imm_shift(enum brw_reg_type type, unsigned i) 96{ 97 assert(type != BRW_REGISTER_TYPE_UV && type != BRW_REGISTER_TYPE_V && 98 "Not implemented."); 99 100 if (type == BRW_REGISTER_TYPE_VF) 101 return 8 * (i & 3); 102 else 103 return 0; 104} 105 106/** 107 * Swizzle an arbitrary immediate \p x of the given type according to the 108 * permutation specified as \p swz. 109 */ 110uint32_t 111brw_swizzle_immediate(enum brw_reg_type type, uint32_t x, unsigned swz) 112{ 113 if (imm_shift(type, 1)) { 114 const unsigned n = 32 / imm_shift(type, 1); 115 uint32_t y = 0; 116 117 for (unsigned i = 0; i < n; i++) { 118 /* Shift the specified component all the way to the right and left to 119 * discard any undesired L/MSBs, then shift it right into component i. 120 */ 121 y |= x >> imm_shift(type, (i & ~3) + BRW_GET_SWZ(swz, i & 3)) 122 << imm_shift(type, ~0u) 123 >> imm_shift(type, ~0u - i); 124 } 125 126 return y; 127 } else { 128 return x; 129 } 130} 131 132unsigned 133brw_get_default_exec_size(struct brw_codegen *p) 134{ 135 return p->current->exec_size; 136} 137 138unsigned 139brw_get_default_group(struct brw_codegen *p) 140{ 141 return p->current->group; 142} 143 144unsigned 145brw_get_default_access_mode(struct brw_codegen *p) 146{ 147 return p->current->access_mode; 148} 149 150tgl_swsb 151brw_get_default_swsb(struct brw_codegen *p) 152{ 153 return p->current->swsb; 154} 155 156void 157brw_set_default_exec_size(struct brw_codegen *p, unsigned value) 158{ 159 p->current->exec_size = value; 160} 161 162void brw_set_default_predicate_control(struct brw_codegen *p, enum brw_predicate pc) 163{ 164 p->current->predicate = pc; 165} 166 167void brw_set_default_predicate_inverse(struct brw_codegen *p, bool predicate_inverse) 168{ 169 p->current->pred_inv = predicate_inverse; 170} 171 172void brw_set_default_flag_reg(struct brw_codegen *p, int reg, int subreg) 173{ 174 assert(subreg < 2); 175 p->current->flag_subreg = reg * 2 + subreg; 176} 177 178void brw_set_default_access_mode( struct brw_codegen *p, unsigned access_mode ) 179{ 180 p->current->access_mode = access_mode; 181} 182 183void 184brw_set_default_compression_control(struct brw_codegen *p, 185 enum brw_compression compression_control) 186{ 187 switch (compression_control) { 188 case BRW_COMPRESSION_NONE: 189 /* This is the "use the first set of bits of dmask/vmask/arf 190 * according to execsize" option. 191 */ 192 p->current->group = 0; 193 break; 194 case BRW_COMPRESSION_2NDHALF: 195 /* For SIMD8, this is "use the second set of 8 bits." */ 196 p->current->group = 8; 197 break; 198 case BRW_COMPRESSION_COMPRESSED: 199 /* For SIMD16 instruction compression, use the first set of 16 bits 200 * since we don't do SIMD32 dispatch. 201 */ 202 p->current->group = 0; 203 break; 204 default: 205 unreachable("not reached"); 206 } 207 208 if (p->devinfo->ver <= 6) { 209 p->current->compressed = 210 (compression_control == BRW_COMPRESSION_COMPRESSED); 211 } 212} 213 214/** 215 * Enable or disable instruction compression on the given instruction leaving 216 * the currently selected channel enable group untouched. 217 */ 218void 219brw_inst_set_compression(const struct intel_device_info *devinfo, 220 brw_inst *inst, bool on) 221{ 222 if (devinfo->ver >= 6) { 223 /* No-op, the EU will figure out for us whether the instruction needs to 224 * be compressed. 225 */ 226 } else { 227 /* The channel group and compression controls are non-orthogonal, there 228 * are two possible representations for uncompressed instructions and we 229 * may need to preserve the current one to avoid changing the selected 230 * channel group inadvertently. 231 */ 232 if (on) 233 brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_COMPRESSED); 234 else if (brw_inst_qtr_control(devinfo, inst) 235 == BRW_COMPRESSION_COMPRESSED) 236 brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_NONE); 237 } 238} 239 240void 241brw_set_default_compression(struct brw_codegen *p, bool on) 242{ 243 p->current->compressed = on; 244} 245 246/** 247 * Apply the range of channel enable signals given by 248 * [group, group + exec_size) to the instruction passed as argument. 249 */ 250void 251brw_inst_set_group(const struct intel_device_info *devinfo, 252 brw_inst *inst, unsigned group) 253{ 254 if (devinfo->ver >= 7) { 255 assert(group % 4 == 0 && group < 32); 256 brw_inst_set_qtr_control(devinfo, inst, group / 8); 257 brw_inst_set_nib_control(devinfo, inst, (group / 4) % 2); 258 259 } else if (devinfo->ver == 6) { 260 assert(group % 8 == 0 && group < 32); 261 brw_inst_set_qtr_control(devinfo, inst, group / 8); 262 263 } else { 264 assert(group % 8 == 0 && group < 16); 265 /* The channel group and compression controls are non-orthogonal, there 266 * are two possible representations for group zero and we may need to 267 * preserve the current one to avoid changing the selected compression 268 * enable inadvertently. 269 */ 270 if (group == 8) 271 brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_2NDHALF); 272 else if (brw_inst_qtr_control(devinfo, inst) == BRW_COMPRESSION_2NDHALF) 273 brw_inst_set_qtr_control(devinfo, inst, BRW_COMPRESSION_NONE); 274 } 275} 276 277void 278brw_set_default_group(struct brw_codegen *p, unsigned group) 279{ 280 p->current->group = group; 281} 282 283void brw_set_default_mask_control( struct brw_codegen *p, unsigned value ) 284{ 285 p->current->mask_control = value; 286} 287 288void brw_set_default_saturate( struct brw_codegen *p, bool enable ) 289{ 290 p->current->saturate = enable; 291} 292 293void brw_set_default_acc_write_control(struct brw_codegen *p, unsigned value) 294{ 295 p->current->acc_wr_control = value; 296} 297 298void brw_set_default_swsb(struct brw_codegen *p, tgl_swsb value) 299{ 300 p->current->swsb = value; 301} 302 303void brw_push_insn_state( struct brw_codegen *p ) 304{ 305 assert(p->current != &p->stack[BRW_EU_MAX_INSN_STACK-1]); 306 *(p->current + 1) = *p->current; 307 p->current++; 308} 309 310void brw_pop_insn_state( struct brw_codegen *p ) 311{ 312 assert(p->current != p->stack); 313 p->current--; 314} 315 316 317/*********************************************************************** 318 */ 319void 320brw_init_codegen(const struct intel_device_info *devinfo, 321 struct brw_codegen *p, void *mem_ctx) 322{ 323 memset(p, 0, sizeof(*p)); 324 325 p->devinfo = devinfo; 326 p->automatic_exec_sizes = true; 327 /* 328 * Set the initial instruction store array size to 1024, if found that 329 * isn't enough, then it will double the store size at brw_next_insn() 330 * until out of memory. 331 */ 332 p->store_size = 1024; 333 p->store = rzalloc_array(mem_ctx, brw_inst, p->store_size); 334 p->nr_insn = 0; 335 p->current = p->stack; 336 memset(p->current, 0, sizeof(p->current[0])); 337 338 p->mem_ctx = mem_ctx; 339 340 /* Some defaults? 341 */ 342 brw_set_default_exec_size(p, BRW_EXECUTE_8); 343 brw_set_default_mask_control(p, BRW_MASK_ENABLE); /* what does this do? */ 344 brw_set_default_saturate(p, 0); 345 brw_set_default_compression_control(p, BRW_COMPRESSION_NONE); 346 347 /* Set up control flow stack */ 348 p->if_stack_depth = 0; 349 p->if_stack_array_size = 16; 350 p->if_stack = rzalloc_array(mem_ctx, int, p->if_stack_array_size); 351 352 p->loop_stack_depth = 0; 353 p->loop_stack_array_size = 16; 354 p->loop_stack = rzalloc_array(mem_ctx, int, p->loop_stack_array_size); 355 p->if_depth_in_loop = rzalloc_array(mem_ctx, int, p->loop_stack_array_size); 356} 357 358 359const unsigned *brw_get_program( struct brw_codegen *p, 360 unsigned *sz ) 361{ 362 *sz = p->next_insn_offset; 363 return (const unsigned *)p->store; 364} 365 366const brw_shader_reloc * 367brw_get_shader_relocs(struct brw_codegen *p, unsigned *num_relocs) 368{ 369 *num_relocs = p->num_relocs; 370 return p->relocs; 371} 372 373bool brw_try_override_assembly(struct brw_codegen *p, int start_offset, 374 const char *identifier) 375{ 376 const char *read_path = getenv("INTEL_SHADER_ASM_READ_PATH"); 377 if (!read_path) { 378 return false; 379 } 380 381 char *name = ralloc_asprintf(NULL, "%s/%s.bin", read_path, identifier); 382 383 int fd = open(name, O_RDONLY); 384 ralloc_free(name); 385 386 if (fd == -1) { 387 return false; 388 } 389 390 struct stat sb; 391 if (fstat(fd, &sb) != 0 || (!S_ISREG(sb.st_mode))) { 392 close(fd); 393 return false; 394 } 395 396 p->nr_insn -= (p->next_insn_offset - start_offset) / sizeof(brw_inst); 397 p->nr_insn += sb.st_size / sizeof(brw_inst); 398 399 p->next_insn_offset = start_offset + sb.st_size; 400 p->store_size = (start_offset + sb.st_size) / sizeof(brw_inst); 401 p->store = (brw_inst *)reralloc_size(p->mem_ctx, p->store, p->next_insn_offset); 402 assert(p->store); 403 404 ssize_t ret = read(fd, (char *)p->store + start_offset, sb.st_size); 405 close(fd); 406 if (ret != sb.st_size) { 407 return false; 408 } 409 410 ASSERTED bool valid = 411 brw_validate_instructions(p->devinfo, p->store, 412 start_offset, p->next_insn_offset, 413 NULL); 414 assert(valid); 415 416 return true; 417} 418 419const struct brw_label * 420brw_find_label(const struct brw_label *root, int offset) 421{ 422 const struct brw_label *curr = root; 423 424 if (curr != NULL) 425 { 426 do { 427 if (curr->offset == offset) 428 return curr; 429 430 curr = curr->next; 431 } while (curr != NULL); 432 } 433 434 return curr; 435} 436 437void 438brw_create_label(struct brw_label **labels, int offset, void *mem_ctx) 439{ 440 if (*labels != NULL) { 441 struct brw_label *curr = *labels; 442 struct brw_label *prev; 443 444 do { 445 prev = curr; 446 447 if (curr->offset == offset) 448 return; 449 450 curr = curr->next; 451 } while (curr != NULL); 452 453 curr = ralloc(mem_ctx, struct brw_label); 454 curr->offset = offset; 455 curr->number = prev->number + 1; 456 curr->next = NULL; 457 prev->next = curr; 458 } else { 459 struct brw_label *root = ralloc(mem_ctx, struct brw_label); 460 root->number = 0; 461 root->offset = offset; 462 root->next = NULL; 463 *labels = root; 464 } 465} 466 467const struct brw_label * 468brw_label_assembly(const struct intel_device_info *devinfo, 469 const void *assembly, int start, int end, void *mem_ctx) 470{ 471 struct brw_label *root_label = NULL; 472 473 int to_bytes_scale = sizeof(brw_inst) / brw_jump_scale(devinfo); 474 475 for (int offset = start; offset < end;) { 476 const brw_inst *inst = (const brw_inst *) ((const char *) assembly + offset); 477 brw_inst uncompacted; 478 479 bool is_compact = brw_inst_cmpt_control(devinfo, inst); 480 481 if (is_compact) { 482 brw_compact_inst *compacted = (brw_compact_inst *)inst; 483 brw_uncompact_instruction(devinfo, &uncompacted, compacted); 484 inst = &uncompacted; 485 } 486 487 if (brw_has_uip(devinfo, brw_inst_opcode(devinfo, inst))) { 488 /* Instructions that have UIP also have JIP. */ 489 brw_create_label(&root_label, 490 offset + brw_inst_uip(devinfo, inst) * to_bytes_scale, mem_ctx); 491 brw_create_label(&root_label, 492 offset + brw_inst_jip(devinfo, inst) * to_bytes_scale, mem_ctx); 493 } else if (brw_has_jip(devinfo, brw_inst_opcode(devinfo, inst))) { 494 int jip; 495 if (devinfo->ver >= 7) { 496 jip = brw_inst_jip(devinfo, inst); 497 } else { 498 jip = brw_inst_gfx6_jump_count(devinfo, inst); 499 } 500 501 brw_create_label(&root_label, offset + jip * to_bytes_scale, mem_ctx); 502 } 503 504 if (is_compact) { 505 offset += sizeof(brw_compact_inst); 506 } else { 507 offset += sizeof(brw_inst); 508 } 509 } 510 511 return root_label; 512} 513 514void 515brw_disassemble_with_labels(const struct intel_device_info *devinfo, 516 const void *assembly, int start, int end, FILE *out) 517{ 518 void *mem_ctx = ralloc_context(NULL); 519 const struct brw_label *root_label = 520 brw_label_assembly(devinfo, assembly, start, end, mem_ctx); 521 522 brw_disassemble(devinfo, assembly, start, end, root_label, out); 523 524 ralloc_free(mem_ctx); 525} 526 527void 528brw_disassemble(const struct intel_device_info *devinfo, 529 const void *assembly, int start, int end, 530 const struct brw_label *root_label, FILE *out) 531{ 532 bool dump_hex = INTEL_DEBUG(DEBUG_HEX); 533 534 for (int offset = start; offset < end;) { 535 const brw_inst *insn = (const brw_inst *)((char *)assembly + offset); 536 brw_inst uncompacted; 537 538 if (root_label != NULL) { 539 const struct brw_label *label = brw_find_label(root_label, offset); 540 if (label != NULL) { 541 fprintf(out, "\nLABEL%d:\n", label->number); 542 } 543 } 544 545 bool compacted = brw_inst_cmpt_control(devinfo, insn); 546 if (0) 547 fprintf(out, "0x%08x: ", offset); 548 549 if (compacted) { 550 brw_compact_inst *compacted = (brw_compact_inst *)insn; 551 if (dump_hex) { 552 unsigned char * insn_ptr = ((unsigned char *)&insn[0]); 553 const unsigned int blank_spaces = 24; 554 for (int i = 0 ; i < 8; i = i + 4) { 555 fprintf(out, "%02x %02x %02x %02x ", 556 insn_ptr[i], 557 insn_ptr[i + 1], 558 insn_ptr[i + 2], 559 insn_ptr[i + 3]); 560 } 561 /* Make compacted instructions hex value output vertically aligned 562 * with uncompacted instructions hex value 563 */ 564 fprintf(out, "%*c", blank_spaces, ' '); 565 } 566 567 brw_uncompact_instruction(devinfo, &uncompacted, compacted); 568 insn = &uncompacted; 569 } else { 570 if (dump_hex) { 571 unsigned char * insn_ptr = ((unsigned char *)&insn[0]); 572 for (int i = 0 ; i < 16; i = i + 4) { 573 fprintf(out, "%02x %02x %02x %02x ", 574 insn_ptr[i], 575 insn_ptr[i + 1], 576 insn_ptr[i + 2], 577 insn_ptr[i + 3]); 578 } 579 } 580 } 581 582 brw_disassemble_inst(out, devinfo, insn, compacted, offset, root_label); 583 584 if (compacted) { 585 offset += sizeof(brw_compact_inst); 586 } else { 587 offset += sizeof(brw_inst); 588 } 589 } 590} 591 592static const struct opcode_desc opcode_descs[] = { 593 /* IR, HW, name, nsrc, ndst, gfx_vers */ 594 { BRW_OPCODE_ILLEGAL, 0, "illegal", 0, 0, GFX_ALL }, 595 { BRW_OPCODE_SYNC, 1, "sync", 1, 0, GFX_GE(GFX12) }, 596 { BRW_OPCODE_MOV, 1, "mov", 1, 1, GFX_LT(GFX12) }, 597 { BRW_OPCODE_MOV, 97, "mov", 1, 1, GFX_GE(GFX12) }, 598 { BRW_OPCODE_SEL, 2, "sel", 2, 1, GFX_LT(GFX12) }, 599 { BRW_OPCODE_SEL, 98, "sel", 2, 1, GFX_GE(GFX12) }, 600 { BRW_OPCODE_MOVI, 3, "movi", 2, 1, GFX_GE(GFX45) & GFX_LT(GFX12) }, 601 { BRW_OPCODE_MOVI, 99, "movi", 2, 1, GFX_GE(GFX12) }, 602 { BRW_OPCODE_NOT, 4, "not", 1, 1, GFX_LT(GFX12) }, 603 { BRW_OPCODE_NOT, 100, "not", 1, 1, GFX_GE(GFX12) }, 604 { BRW_OPCODE_AND, 5, "and", 2, 1, GFX_LT(GFX12) }, 605 { BRW_OPCODE_AND, 101, "and", 2, 1, GFX_GE(GFX12) }, 606 { BRW_OPCODE_OR, 6, "or", 2, 1, GFX_LT(GFX12) }, 607 { BRW_OPCODE_OR, 102, "or", 2, 1, GFX_GE(GFX12) }, 608 { BRW_OPCODE_XOR, 7, "xor", 2, 1, GFX_LT(GFX12) }, 609 { BRW_OPCODE_XOR, 103, "xor", 2, 1, GFX_GE(GFX12) }, 610 { BRW_OPCODE_SHR, 8, "shr", 2, 1, GFX_LT(GFX12) }, 611 { BRW_OPCODE_SHR, 104, "shr", 2, 1, GFX_GE(GFX12) }, 612 { BRW_OPCODE_SHL, 9, "shl", 2, 1, GFX_LT(GFX12) }, 613 { BRW_OPCODE_SHL, 105, "shl", 2, 1, GFX_GE(GFX12) }, 614 { BRW_OPCODE_DIM, 10, "dim", 1, 1, GFX75 }, 615 { BRW_OPCODE_SMOV, 10, "smov", 0, 0, GFX_GE(GFX8) & GFX_LT(GFX12) }, 616 { BRW_OPCODE_SMOV, 106, "smov", 0, 0, GFX_GE(GFX12) }, 617 { BRW_OPCODE_ASR, 12, "asr", 2, 1, GFX_LT(GFX12) }, 618 { BRW_OPCODE_ASR, 108, "asr", 2, 1, GFX_GE(GFX12) }, 619 { BRW_OPCODE_ROR, 14, "ror", 2, 1, GFX11 }, 620 { BRW_OPCODE_ROR, 110, "ror", 2, 1, GFX_GE(GFX12) }, 621 { BRW_OPCODE_ROL, 15, "rol", 2, 1, GFX11 }, 622 { BRW_OPCODE_ROL, 111, "rol", 2, 1, GFX_GE(GFX12) }, 623 { BRW_OPCODE_CMP, 16, "cmp", 2, 1, GFX_LT(GFX12) }, 624 { BRW_OPCODE_CMP, 112, "cmp", 2, 1, GFX_GE(GFX12) }, 625 { BRW_OPCODE_CMPN, 17, "cmpn", 2, 1, GFX_LT(GFX12) }, 626 { BRW_OPCODE_CMPN, 113, "cmpn", 2, 1, GFX_GE(GFX12) }, 627 { BRW_OPCODE_CSEL, 18, "csel", 3, 1, GFX_GE(GFX8) & GFX_LT(GFX12) }, 628 { BRW_OPCODE_CSEL, 114, "csel", 3, 1, GFX_GE(GFX12) }, 629 { BRW_OPCODE_F32TO16, 19, "f32to16", 1, 1, GFX7 | GFX75 }, 630 { BRW_OPCODE_F16TO32, 20, "f16to32", 1, 1, GFX7 | GFX75 }, 631 { BRW_OPCODE_BFREV, 23, "bfrev", 1, 1, GFX_GE(GFX7) & GFX_LT(GFX12) }, 632 { BRW_OPCODE_BFREV, 119, "bfrev", 1, 1, GFX_GE(GFX12) }, 633 { BRW_OPCODE_BFE, 24, "bfe", 3, 1, GFX_GE(GFX7) & GFX_LT(GFX12) }, 634 { BRW_OPCODE_BFE, 120, "bfe", 3, 1, GFX_GE(GFX12) }, 635 { BRW_OPCODE_BFI1, 25, "bfi1", 2, 1, GFX_GE(GFX7) & GFX_LT(GFX12) }, 636 { BRW_OPCODE_BFI1, 121, "bfi1", 2, 1, GFX_GE(GFX12) }, 637 { BRW_OPCODE_BFI2, 26, "bfi2", 3, 1, GFX_GE(GFX7) & GFX_LT(GFX12) }, 638 { BRW_OPCODE_BFI2, 122, "bfi2", 3, 1, GFX_GE(GFX12) }, 639 { BRW_OPCODE_JMPI, 32, "jmpi", 0, 0, GFX_ALL }, 640 { BRW_OPCODE_BRD, 33, "brd", 0, 0, GFX_GE(GFX7) }, 641 { BRW_OPCODE_IF, 34, "if", 0, 0, GFX_ALL }, 642 { BRW_OPCODE_IFF, 35, "iff", 0, 0, GFX_LE(GFX5) }, 643 { BRW_OPCODE_BRC, 35, "brc", 0, 0, GFX_GE(GFX7) }, 644 { BRW_OPCODE_ELSE, 36, "else", 0, 0, GFX_ALL }, 645 { BRW_OPCODE_ENDIF, 37, "endif", 0, 0, GFX_ALL }, 646 { BRW_OPCODE_DO, 38, "do", 0, 0, GFX_LE(GFX5) }, 647 { BRW_OPCODE_CASE, 38, "case", 0, 0, GFX6 }, 648 { BRW_OPCODE_WHILE, 39, "while", 0, 0, GFX_ALL }, 649 { BRW_OPCODE_BREAK, 40, "break", 0, 0, GFX_ALL }, 650 { BRW_OPCODE_CONTINUE, 41, "cont", 0, 0, GFX_ALL }, 651 { BRW_OPCODE_HALT, 42, "halt", 0, 0, GFX_ALL }, 652 { BRW_OPCODE_CALLA, 43, "calla", 0, 0, GFX_GE(GFX75) }, 653 { BRW_OPCODE_MSAVE, 44, "msave", 0, 0, GFX_LE(GFX5) }, 654 { BRW_OPCODE_CALL, 44, "call", 0, 0, GFX_GE(GFX6) }, 655 { BRW_OPCODE_MREST, 45, "mrest", 0, 0, GFX_LE(GFX5) }, 656 { BRW_OPCODE_RET, 45, "ret", 0, 0, GFX_GE(GFX6) }, 657 { BRW_OPCODE_PUSH, 46, "push", 0, 0, GFX_LE(GFX5) }, 658 { BRW_OPCODE_FORK, 46, "fork", 0, 0, GFX6 }, 659 { BRW_OPCODE_GOTO, 46, "goto", 0, 0, GFX_GE(GFX8) }, 660 { BRW_OPCODE_POP, 47, "pop", 2, 0, GFX_LE(GFX5) }, 661 { BRW_OPCODE_WAIT, 48, "wait", 0, 1, GFX_LT(GFX12) }, 662 { BRW_OPCODE_SEND, 49, "send", 1, 1, GFX_LT(GFX12) }, 663 { BRW_OPCODE_SENDC, 50, "sendc", 1, 1, GFX_LT(GFX12) }, 664 { BRW_OPCODE_SEND, 49, "send", 2, 1, GFX_GE(GFX12) }, 665 { BRW_OPCODE_SENDC, 50, "sendc", 2, 1, GFX_GE(GFX12) }, 666 { BRW_OPCODE_SENDS, 51, "sends", 2, 1, GFX_GE(GFX9) & GFX_LT(GFX12) }, 667 { BRW_OPCODE_SENDSC, 52, "sendsc", 2, 1, GFX_GE(GFX9) & GFX_LT(GFX12) }, 668 { BRW_OPCODE_MATH, 56, "math", 2, 1, GFX_GE(GFX6) }, 669 { BRW_OPCODE_ADD, 64, "add", 2, 1, GFX_ALL }, 670 { BRW_OPCODE_MUL, 65, "mul", 2, 1, GFX_ALL }, 671 { BRW_OPCODE_AVG, 66, "avg", 2, 1, GFX_ALL }, 672 { BRW_OPCODE_FRC, 67, "frc", 1, 1, GFX_ALL }, 673 { BRW_OPCODE_RNDU, 68, "rndu", 1, 1, GFX_ALL }, 674 { BRW_OPCODE_RNDD, 69, "rndd", 1, 1, GFX_ALL }, 675 { BRW_OPCODE_RNDE, 70, "rnde", 1, 1, GFX_ALL }, 676 { BRW_OPCODE_RNDZ, 71, "rndz", 1, 1, GFX_ALL }, 677 { BRW_OPCODE_MAC, 72, "mac", 2, 1, GFX_ALL }, 678 { BRW_OPCODE_MACH, 73, "mach", 2, 1, GFX_ALL }, 679 { BRW_OPCODE_LZD, 74, "lzd", 1, 1, GFX_ALL }, 680 { BRW_OPCODE_FBH, 75, "fbh", 1, 1, GFX_GE(GFX7) }, 681 { BRW_OPCODE_FBL, 76, "fbl", 1, 1, GFX_GE(GFX7) }, 682 { BRW_OPCODE_CBIT, 77, "cbit", 1, 1, GFX_GE(GFX7) }, 683 { BRW_OPCODE_ADDC, 78, "addc", 2, 1, GFX_GE(GFX7) }, 684 { BRW_OPCODE_SUBB, 79, "subb", 2, 1, GFX_GE(GFX7) }, 685 { BRW_OPCODE_SAD2, 80, "sad2", 2, 1, GFX_ALL }, 686 { BRW_OPCODE_SADA2, 81, "sada2", 2, 1, GFX_ALL }, 687 { BRW_OPCODE_ADD3, 82, "add3", 3, 1, GFX_GE(GFX125) }, 688 { BRW_OPCODE_DP4, 84, "dp4", 2, 1, GFX_LT(GFX11) }, 689 { BRW_OPCODE_DPH, 85, "dph", 2, 1, GFX_LT(GFX11) }, 690 { BRW_OPCODE_DP3, 86, "dp3", 2, 1, GFX_LT(GFX11) }, 691 { BRW_OPCODE_DP2, 87, "dp2", 2, 1, GFX_LT(GFX11) }, 692 { BRW_OPCODE_DP4A, 88, "dp4a", 3, 1, GFX_GE(GFX12) }, 693 { BRW_OPCODE_LINE, 89, "line", 2, 1, GFX_LE(GFX10) }, 694 { BRW_OPCODE_PLN, 90, "pln", 2, 1, GFX_GE(GFX45) & GFX_LE(GFX10) }, 695 { BRW_OPCODE_MAD, 91, "mad", 3, 1, GFX_GE(GFX6) }, 696 { BRW_OPCODE_LRP, 92, "lrp", 3, 1, GFX_GE(GFX6) & GFX_LE(GFX10) }, 697 { BRW_OPCODE_MADM, 93, "madm", 3, 1, GFX_GE(GFX8) }, 698 { BRW_OPCODE_NENOP, 125, "nenop", 0, 0, GFX45 }, 699 { BRW_OPCODE_NOP, 126, "nop", 0, 0, GFX_LT(GFX12) }, 700 { BRW_OPCODE_NOP, 96, "nop", 0, 0, GFX_GE(GFX12) } 701}; 702 703/** 704 * Look up the opcode_descs[] entry with \p key member matching \p k which is 705 * supported by the device specified by \p devinfo, or NULL if there is no 706 * matching entry. 707 * 708 * This is implemented by using an index data structure (storage for which is 709 * provided by the caller as \p index_ver and \p index_descs) in order to 710 * provide efficient constant-time look-up. 711 */ 712static const opcode_desc * 713lookup_opcode_desc(gfx_ver *index_ver, 714 const opcode_desc **index_descs, 715 unsigned index_size, 716 unsigned opcode_desc::*key, 717 const intel_device_info *devinfo, 718 unsigned k) 719{ 720 if (*index_ver != gfx_ver_from_devinfo(devinfo)) { 721 *index_ver = gfx_ver_from_devinfo(devinfo); 722 723 for (unsigned l = 0; l < index_size; l++) 724 index_descs[l] = NULL; 725 726 for (unsigned i = 0; i < ARRAY_SIZE(opcode_descs); i++) { 727 if (opcode_descs[i].gfx_vers & *index_ver) { 728 const unsigned l = opcode_descs[i].*key; 729 assert(l < index_size && !index_descs[l]); 730 index_descs[l] = &opcode_descs[i]; 731 } 732 } 733 } 734 735 if (k < index_size) 736 return index_descs[k]; 737 else 738 return NULL; 739} 740 741/** 742 * Return the matching opcode_desc for the specified IR opcode and hardware 743 * generation, or NULL if the opcode is not supported by the device. 744 */ 745const struct opcode_desc * 746brw_opcode_desc(const struct intel_device_info *devinfo, enum opcode opcode) 747{ 748 static __thread gfx_ver index_ver = {}; 749 static __thread const opcode_desc *index_descs[NUM_BRW_OPCODES]; 750 return lookup_opcode_desc(&index_ver, index_descs, ARRAY_SIZE(index_descs), 751 &opcode_desc::ir, devinfo, opcode); 752} 753 754/** 755 * Return the matching opcode_desc for the specified HW opcode and hardware 756 * generation, or NULL if the opcode is not supported by the device. 757 */ 758const struct opcode_desc * 759brw_opcode_desc_from_hw(const struct intel_device_info *devinfo, unsigned hw) 760{ 761 static __thread gfx_ver index_ver = {}; 762 static __thread const opcode_desc *index_descs[128]; 763 return lookup_opcode_desc(&index_ver, index_descs, ARRAY_SIZE(index_descs), 764 &opcode_desc::hw, devinfo, hw); 765} 766