brw_fs_nir.cpp revision 01e04c3f
1/*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "compiler/glsl/ir.h"
25#include "brw_fs.h"
26#include "brw_fs_surface_builder.h"
27#include "brw_nir.h"
28#include "util/u_math.h"
29
30using namespace brw;
31using namespace brw::surface_access;
32
33void
34fs_visitor::emit_nir_code()
35{
36   /* emit the arrays used for inputs and outputs - load/store intrinsics will
37    * be converted to reads/writes of these arrays
38    */
39   nir_setup_outputs();
40   nir_setup_uniforms();
41   nir_emit_system_values();
42
43   nir_emit_impl(nir_shader_get_entrypoint((nir_shader *)nir));
44}
45
46void
47fs_visitor::nir_setup_outputs()
48{
49   if (stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_FRAGMENT)
50      return;
51
52   unsigned vec4s[VARYING_SLOT_TESS_MAX] = { 0, };
53
54   /* Calculate the size of output registers in a separate pass, before
55    * allocating them.  With ARB_enhanced_layouts, multiple output variables
56    * may occupy the same slot, but have different type sizes.
57    */
58   nir_foreach_variable(var, &nir->outputs) {
59      const int loc = var->data.driver_location;
60      const unsigned var_vec4s =
61         var->data.compact ? DIV_ROUND_UP(glsl_get_length(var->type), 4)
62                           : type_size_vec4(var->type);
63      vec4s[loc] = MAX2(vec4s[loc], var_vec4s);
64   }
65
66   for (unsigned loc = 0; loc < ARRAY_SIZE(vec4s);) {
67      if (vec4s[loc] == 0) {
68         loc++;
69         continue;
70      }
71
72      unsigned reg_size = vec4s[loc];
73
74      /* Check if there are any ranges that start within this range and extend
75       * past it. If so, include them in this allocation.
76       */
77      for (unsigned i = 1; i < reg_size; i++)
78         reg_size = MAX2(vec4s[i + loc] + i, reg_size);
79
80      fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_F, 4 * reg_size);
81      for (unsigned i = 0; i < reg_size; i++)
82         outputs[loc + i] = offset(reg, bld, 4 * i);
83
84      loc += reg_size;
85   }
86}
87
88void
89fs_visitor::nir_setup_uniforms()
90{
91   /* Only the first compile gets to set up uniforms. */
92   if (push_constant_loc) {
93      assert(pull_constant_loc);
94      return;
95   }
96
97   uniforms = nir->num_uniforms / 4;
98
99   if (stage == MESA_SHADER_COMPUTE) {
100      /* Add a uniform for the thread local id.  It must be the last uniform
101       * on the list.
102       */
103      assert(uniforms == prog_data->nr_params);
104      uint32_t *param = brw_stage_prog_data_add_params(prog_data, 1);
105      *param = BRW_PARAM_BUILTIN_SUBGROUP_ID;
106      subgroup_id = fs_reg(UNIFORM, uniforms++, BRW_REGISTER_TYPE_UD);
107   }
108}
109
110static bool
111emit_system_values_block(nir_block *block, fs_visitor *v)
112{
113   fs_reg *reg;
114
115   nir_foreach_instr(instr, block) {
116      if (instr->type != nir_instr_type_intrinsic)
117         continue;
118
119      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
120      switch (intrin->intrinsic) {
121      case nir_intrinsic_load_vertex_id:
122      case nir_intrinsic_load_base_vertex:
123         unreachable("should be lowered by nir_lower_system_values().");
124
125      case nir_intrinsic_load_vertex_id_zero_base:
126      case nir_intrinsic_load_is_indexed_draw:
127      case nir_intrinsic_load_first_vertex:
128      case nir_intrinsic_load_instance_id:
129      case nir_intrinsic_load_base_instance:
130      case nir_intrinsic_load_draw_id:
131         unreachable("should be lowered by brw_nir_lower_vs_inputs().");
132
133      case nir_intrinsic_load_invocation_id:
134         if (v->stage == MESA_SHADER_TESS_CTRL)
135            break;
136         assert(v->stage == MESA_SHADER_GEOMETRY);
137         reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
138         if (reg->file == BAD_FILE) {
139            const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
140            fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
141            fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
142            abld.SHR(iid, g1, brw_imm_ud(27u));
143            *reg = iid;
144         }
145         break;
146
147      case nir_intrinsic_load_sample_pos:
148         assert(v->stage == MESA_SHADER_FRAGMENT);
149         reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
150         if (reg->file == BAD_FILE)
151            *reg = *v->emit_samplepos_setup();
152         break;
153
154      case nir_intrinsic_load_sample_id:
155         assert(v->stage == MESA_SHADER_FRAGMENT);
156         reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
157         if (reg->file == BAD_FILE)
158            *reg = *v->emit_sampleid_setup();
159         break;
160
161      case nir_intrinsic_load_sample_mask_in:
162         assert(v->stage == MESA_SHADER_FRAGMENT);
163         assert(v->devinfo->gen >= 7);
164         reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
165         if (reg->file == BAD_FILE)
166            *reg = *v->emit_samplemaskin_setup();
167         break;
168
169      case nir_intrinsic_load_work_group_id:
170         assert(v->stage == MESA_SHADER_COMPUTE);
171         reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
172         if (reg->file == BAD_FILE)
173            *reg = *v->emit_cs_work_group_id_setup();
174         break;
175
176      case nir_intrinsic_load_helper_invocation:
177         assert(v->stage == MESA_SHADER_FRAGMENT);
178         reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
179         if (reg->file == BAD_FILE) {
180            const fs_builder abld =
181               v->bld.annotate("gl_HelperInvocation", NULL);
182
183            /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
184             * pixel mask is in g1.7 of the thread payload.
185             *
186             * We move the per-channel pixel enable bit to the low bit of each
187             * channel by shifting the byte containing the pixel mask by the
188             * vector immediate 0x76543210UV.
189             *
190             * The region of <1,8,0> reads only 1 byte (the pixel masks for
191             * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
192             * masks for 2 and 3) in SIMD16.
193             */
194            fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
195
196            for (unsigned i = 0; i < DIV_ROUND_UP(v->dispatch_width, 16); i++) {
197               const fs_builder hbld = abld.group(MIN2(16, v->dispatch_width), i);
198               hbld.SHR(offset(shifted, hbld, i),
199                        stride(retype(brw_vec1_grf(1 + i, 7),
200                                      BRW_REGISTER_TYPE_UB),
201                               1, 8, 0),
202                        brw_imm_v(0x76543210));
203            }
204
205            /* A set bit in the pixel mask means the channel is enabled, but
206             * that is the opposite of gl_HelperInvocation so we need to invert
207             * the mask.
208             *
209             * The negate source-modifier bit of logical instructions on Gen8+
210             * performs 1's complement negation, so we can use that instead of
211             * a NOT instruction.
212             */
213            fs_reg inverted = negate(shifted);
214            if (v->devinfo->gen < 8) {
215               inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
216               abld.NOT(inverted, shifted);
217            }
218
219            /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
220             * with 1 and negating.
221             */
222            fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
223            abld.AND(anded, inverted, brw_imm_uw(1));
224
225            fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
226            abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
227            *reg = dst;
228         }
229         break;
230
231      default:
232         break;
233      }
234   }
235
236   return true;
237}
238
239void
240fs_visitor::nir_emit_system_values()
241{
242   nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
243   for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
244      nir_system_values[i] = fs_reg();
245   }
246
247   /* Always emit SUBGROUP_INVOCATION.  Dead code will clean it up if we
248    * never end up using it.
249    */
250   {
251      const fs_builder abld = bld.annotate("gl_SubgroupInvocation", NULL);
252      fs_reg &reg = nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION];
253      reg = abld.vgrf(BRW_REGISTER_TYPE_UW);
254
255      const fs_builder allbld8 = abld.group(8, 0).exec_all();
256      allbld8.MOV(reg, brw_imm_v(0x76543210));
257      if (dispatch_width > 8)
258         allbld8.ADD(byte_offset(reg, 16), reg, brw_imm_uw(8u));
259      if (dispatch_width > 16) {
260         const fs_builder allbld16 = abld.group(16, 0).exec_all();
261         allbld16.ADD(byte_offset(reg, 32), reg, brw_imm_uw(16u));
262      }
263   }
264
265   nir_function_impl *impl = nir_shader_get_entrypoint((nir_shader *)nir);
266   nir_foreach_block(block, impl)
267      emit_system_values_block(block, this);
268}
269
270/*
271 * Returns a type based on a reference_type (word, float, half-float) and a
272 * given bit_size.
273 *
274 * Reference BRW_REGISTER_TYPE are HF,F,DF,W,D,UW,UD.
275 *
276 * @FIXME: 64-bit return types are always DF on integer types to maintain
277 * compability with uses of DF previously to the introduction of int64
278 * support.
279 */
280static brw_reg_type
281brw_reg_type_from_bit_size(const unsigned bit_size,
282                           const brw_reg_type reference_type)
283{
284   switch(reference_type) {
285   case BRW_REGISTER_TYPE_HF:
286   case BRW_REGISTER_TYPE_F:
287   case BRW_REGISTER_TYPE_DF:
288      switch(bit_size) {
289      case 16:
290         return BRW_REGISTER_TYPE_HF;
291      case 32:
292         return BRW_REGISTER_TYPE_F;
293      case 64:
294         return BRW_REGISTER_TYPE_DF;
295      default:
296         unreachable("Invalid bit size");
297      }
298   case BRW_REGISTER_TYPE_B:
299   case BRW_REGISTER_TYPE_W:
300   case BRW_REGISTER_TYPE_D:
301   case BRW_REGISTER_TYPE_Q:
302      switch(bit_size) {
303      case 8:
304         return BRW_REGISTER_TYPE_B;
305      case 16:
306         return BRW_REGISTER_TYPE_W;
307      case 32:
308         return BRW_REGISTER_TYPE_D;
309      case 64:
310         return BRW_REGISTER_TYPE_Q;
311      default:
312         unreachable("Invalid bit size");
313      }
314   case BRW_REGISTER_TYPE_UB:
315   case BRW_REGISTER_TYPE_UW:
316   case BRW_REGISTER_TYPE_UD:
317   case BRW_REGISTER_TYPE_UQ:
318      switch(bit_size) {
319      case 8:
320         return BRW_REGISTER_TYPE_UB;
321      case 16:
322         return BRW_REGISTER_TYPE_UW;
323      case 32:
324         return BRW_REGISTER_TYPE_UD;
325      case 64:
326         return BRW_REGISTER_TYPE_UQ;
327      default:
328         unreachable("Invalid bit size");
329      }
330   default:
331      unreachable("Unknown type");
332   }
333}
334
335void
336fs_visitor::nir_emit_impl(nir_function_impl *impl)
337{
338   nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
339   for (unsigned i = 0; i < impl->reg_alloc; i++) {
340      nir_locals[i] = fs_reg();
341   }
342
343   foreach_list_typed(nir_register, reg, node, &impl->registers) {
344      unsigned array_elems =
345         reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
346      unsigned size = array_elems * reg->num_components;
347      const brw_reg_type reg_type =
348         brw_reg_type_from_bit_size(reg->bit_size, BRW_REGISTER_TYPE_F);
349      nir_locals[reg->index] = bld.vgrf(reg_type, size);
350   }
351
352   nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
353                             impl->ssa_alloc);
354
355   nir_emit_cf_list(&impl->body);
356}
357
358void
359fs_visitor::nir_emit_cf_list(exec_list *list)
360{
361   exec_list_validate(list);
362   foreach_list_typed(nir_cf_node, node, node, list) {
363      switch (node->type) {
364      case nir_cf_node_if:
365         nir_emit_if(nir_cf_node_as_if(node));
366         break;
367
368      case nir_cf_node_loop:
369         nir_emit_loop(nir_cf_node_as_loop(node));
370         break;
371
372      case nir_cf_node_block:
373         nir_emit_block(nir_cf_node_as_block(node));
374         break;
375
376      default:
377         unreachable("Invalid CFG node block");
378      }
379   }
380}
381
382void
383fs_visitor::nir_emit_if(nir_if *if_stmt)
384{
385   /* first, put the condition into f0 */
386   fs_inst *inst = bld.MOV(bld.null_reg_d(),
387                            retype(get_nir_src(if_stmt->condition),
388                                   BRW_REGISTER_TYPE_D));
389   inst->conditional_mod = BRW_CONDITIONAL_NZ;
390
391   bld.IF(BRW_PREDICATE_NORMAL);
392
393   nir_emit_cf_list(&if_stmt->then_list);
394
395   /* note: if the else is empty, dead CF elimination will remove it */
396   bld.emit(BRW_OPCODE_ELSE);
397
398   nir_emit_cf_list(&if_stmt->else_list);
399
400   bld.emit(BRW_OPCODE_ENDIF);
401
402   if (devinfo->gen < 7)
403      limit_dispatch_width(16, "Non-uniform control flow unsupported "
404                           "in SIMD32 mode.");
405}
406
407void
408fs_visitor::nir_emit_loop(nir_loop *loop)
409{
410   bld.emit(BRW_OPCODE_DO);
411
412   nir_emit_cf_list(&loop->body);
413
414   bld.emit(BRW_OPCODE_WHILE);
415
416   if (devinfo->gen < 7)
417      limit_dispatch_width(16, "Non-uniform control flow unsupported "
418                           "in SIMD32 mode.");
419}
420
421void
422fs_visitor::nir_emit_block(nir_block *block)
423{
424   nir_foreach_instr(instr, block) {
425      nir_emit_instr(instr);
426   }
427}
428
429void
430fs_visitor::nir_emit_instr(nir_instr *instr)
431{
432   const fs_builder abld = bld.annotate(NULL, instr);
433
434   switch (instr->type) {
435   case nir_instr_type_alu:
436      nir_emit_alu(abld, nir_instr_as_alu(instr));
437      break;
438
439   case nir_instr_type_deref:
440      /* Derefs can exist for images but they do nothing */
441      break;
442
443   case nir_instr_type_intrinsic:
444      switch (stage) {
445      case MESA_SHADER_VERTEX:
446         nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
447         break;
448      case MESA_SHADER_TESS_CTRL:
449         nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
450         break;
451      case MESA_SHADER_TESS_EVAL:
452         nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
453         break;
454      case MESA_SHADER_GEOMETRY:
455         nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
456         break;
457      case MESA_SHADER_FRAGMENT:
458         nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
459         break;
460      case MESA_SHADER_COMPUTE:
461         nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
462         break;
463      default:
464         unreachable("unsupported shader stage");
465      }
466      break;
467
468   case nir_instr_type_tex:
469      nir_emit_texture(abld, nir_instr_as_tex(instr));
470      break;
471
472   case nir_instr_type_load_const:
473      nir_emit_load_const(abld, nir_instr_as_load_const(instr));
474      break;
475
476   case nir_instr_type_ssa_undef:
477      /* We create a new VGRF for undefs on every use (by handling
478       * them in get_nir_src()), rather than for each definition.
479       * This helps register coalescing eliminate MOVs from undef.
480       */
481      break;
482
483   case nir_instr_type_jump:
484      nir_emit_jump(abld, nir_instr_as_jump(instr));
485      break;
486
487   default:
488      unreachable("unknown instruction type");
489   }
490}
491
492/**
493 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
494 * match instr.
495 */
496bool
497fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
498                                      const fs_reg &result)
499{
500   if (!instr->src[0].src.is_ssa ||
501       !instr->src[0].src.ssa->parent_instr)
502      return false;
503
504   if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
505      return false;
506
507   nir_alu_instr *src0 =
508      nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
509
510   if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
511       src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
512      return false;
513
514   nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
515   assert(element != NULL);
516
517   /* Element type to extract.*/
518   const brw_reg_type type = brw_int_type(
519      src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
520      src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
521
522   fs_reg op0 = get_nir_src(src0->src[0].src);
523   op0.type = brw_type_for_nir_type(devinfo,
524      (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
525                     nir_src_bit_size(src0->src[0].src)));
526   op0 = offset(op0, bld, src0->src[0].swizzle[0]);
527
528   set_saturate(instr->dest.saturate,
529                bld.MOV(result, subscript(op0, type, element->u32[0])));
530   return true;
531}
532
533bool
534fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
535                                         const fs_reg &result)
536{
537   if (!instr->src[0].src.is_ssa ||
538       instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
539      return false;
540
541   nir_intrinsic_instr *src0 =
542      nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
543
544   if (src0->intrinsic != nir_intrinsic_load_front_face)
545      return false;
546
547   nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
548   if (!value1 || fabsf(value1->f32[0]) != 1.0f)
549      return false;
550
551   nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
552   if (!value2 || fabsf(value2->f32[0]) != 1.0f)
553      return false;
554
555   fs_reg tmp = vgrf(glsl_type::int_type);
556
557   if (devinfo->gen >= 6) {
558      /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
559      fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
560
561      /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
562       *
563       *    or(8)  tmp.1<2>W  g0.0<0,1,0>W  0x00003f80W
564       *    and(8) dst<1>D    tmp<8,8,1>D   0xbf800000D
565       *
566       * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
567       *
568       * This negation looks like it's safe in practice, because bits 0:4 will
569       * surely be TRIANGLES
570       */
571
572      if (value1->f32[0] == -1.0f) {
573         g0.negate = true;
574      }
575
576      bld.OR(subscript(tmp, BRW_REGISTER_TYPE_W, 1),
577             g0, brw_imm_uw(0x3f80));
578   } else {
579      /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
580      fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
581
582      /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
583       *
584       *    or(8)  tmp<1>D  g1.6<0,1,0>D  0x3f800000D
585       *    and(8) dst<1>D  tmp<8,8,1>D   0xbf800000D
586       *
587       * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
588       *
589       * This negation looks like it's safe in practice, because bits 0:4 will
590       * surely be TRIANGLES
591       */
592
593      if (value1->f32[0] == -1.0f) {
594         g1_6.negate = true;
595      }
596
597      bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
598   }
599   bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
600
601   return true;
602}
603
604static void
605emit_find_msb_using_lzd(const fs_builder &bld,
606                        const fs_reg &result,
607                        const fs_reg &src,
608                        bool is_signed)
609{
610   fs_inst *inst;
611   fs_reg temp = src;
612
613   if (is_signed) {
614      /* LZD of an absolute value source almost always does the right
615       * thing.  There are two problem values:
616       *
617       * * 0x80000000.  Since abs(0x80000000) == 0x80000000, LZD returns
618       *   0.  However, findMSB(int(0x80000000)) == 30.
619       *
620       * * 0xffffffff.  Since abs(0xffffffff) == 1, LZD returns
621       *   31.  Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
622       *
623       *    For a value of zero or negative one, -1 will be returned.
624       *
625       * * Negative powers of two.  LZD(abs(-(1<<x))) returns x, but
626       *   findMSB(-(1<<x)) should return x-1.
627       *
628       * For all negative number cases, including 0x80000000 and
629       * 0xffffffff, the correct value is obtained from LZD if instead of
630       * negating the (already negative) value the logical-not is used.  A
631       * conditonal logical-not can be achieved in two instructions.
632       */
633      temp = bld.vgrf(BRW_REGISTER_TYPE_D);
634
635      bld.ASR(temp, src, brw_imm_d(31));
636      bld.XOR(temp, temp, src);
637   }
638
639   bld.LZD(retype(result, BRW_REGISTER_TYPE_UD),
640           retype(temp, BRW_REGISTER_TYPE_UD));
641
642   /* LZD counts from the MSB side, while GLSL's findMSB() wants the count
643    * from the LSB side. Subtract the result from 31 to convert the MSB
644    * count into an LSB count.  If no bits are set, LZD will return 32.
645    * 31-32 = -1, which is exactly what findMSB() is supposed to return.
646    */
647   inst = bld.ADD(result, retype(result, BRW_REGISTER_TYPE_D), brw_imm_d(31));
648   inst->src[0].negate = true;
649}
650
651static brw_rnd_mode
652brw_rnd_mode_from_nir_op (const nir_op op) {
653   switch (op) {
654   case nir_op_f2f16_rtz:
655      return BRW_RND_MODE_RTZ;
656   case nir_op_f2f16_rtne:
657      return BRW_RND_MODE_RTNE;
658   default:
659      unreachable("Operation doesn't support rounding mode");
660   }
661}
662
663void
664fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
665{
666   struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
667   fs_inst *inst;
668
669   fs_reg result = get_nir_dest(instr->dest.dest);
670   result.type = brw_type_for_nir_type(devinfo,
671      (nir_alu_type)(nir_op_infos[instr->op].output_type |
672                     nir_dest_bit_size(instr->dest.dest)));
673
674   fs_reg op[4];
675   for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
676      op[i] = get_nir_src(instr->src[i].src);
677      op[i].type = brw_type_for_nir_type(devinfo,
678         (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
679                        nir_src_bit_size(instr->src[i].src)));
680      op[i].abs = instr->src[i].abs;
681      op[i].negate = instr->src[i].negate;
682   }
683
684   /* We get a bunch of mov's out of the from_ssa pass and they may still
685    * be vectorized.  We'll handle them as a special-case.  We'll also
686    * handle vecN here because it's basically the same thing.
687    */
688   switch (instr->op) {
689   case nir_op_imov:
690   case nir_op_fmov:
691   case nir_op_vec2:
692   case nir_op_vec3:
693   case nir_op_vec4: {
694      fs_reg temp = result;
695      bool need_extra_copy = false;
696      for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
697         if (!instr->src[i].src.is_ssa &&
698             instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
699            need_extra_copy = true;
700            temp = bld.vgrf(result.type, 4);
701            break;
702         }
703      }
704
705      for (unsigned i = 0; i < 4; i++) {
706         if (!(instr->dest.write_mask & (1 << i)))
707            continue;
708
709         if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
710            inst = bld.MOV(offset(temp, bld, i),
711                           offset(op[0], bld, instr->src[0].swizzle[i]));
712         } else {
713            inst = bld.MOV(offset(temp, bld, i),
714                           offset(op[i], bld, instr->src[i].swizzle[0]));
715         }
716         inst->saturate = instr->dest.saturate;
717      }
718
719      /* In this case the source and destination registers were the same,
720       * so we need to insert an extra set of moves in order to deal with
721       * any swizzling.
722       */
723      if (need_extra_copy) {
724         for (unsigned i = 0; i < 4; i++) {
725            if (!(instr->dest.write_mask & (1 << i)))
726               continue;
727
728            bld.MOV(offset(result, bld, i), offset(temp, bld, i));
729         }
730      }
731      return;
732   }
733   default:
734      break;
735   }
736
737   /* At this point, we have dealt with any instruction that operates on
738    * more than a single channel.  Therefore, we can just adjust the source
739    * and destination registers for that channel and emit the instruction.
740    */
741   unsigned channel = 0;
742   if (nir_op_infos[instr->op].output_size == 0) {
743      /* Since NIR is doing the scalarizing for us, we should only ever see
744       * vectorized operations with a single channel.
745       */
746      assert(util_bitcount(instr->dest.write_mask) == 1);
747      channel = ffs(instr->dest.write_mask) - 1;
748
749      result = offset(result, bld, channel);
750   }
751
752   for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
753      assert(nir_op_infos[instr->op].input_sizes[i] < 2);
754      op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
755   }
756
757   switch (instr->op) {
758   case nir_op_i2f32:
759   case nir_op_u2f32:
760      if (optimize_extract_to_float(instr, result))
761         return;
762      inst = bld.MOV(result, op[0]);
763      inst->saturate = instr->dest.saturate;
764      break;
765
766   case nir_op_f2f16_rtne:
767   case nir_op_f2f16_rtz:
768      bld.emit(SHADER_OPCODE_RND_MODE, bld.null_reg_ud(),
769               brw_imm_d(brw_rnd_mode_from_nir_op(instr->op)));
770      /* fallthrough */
771
772      /* In theory, it would be better to use BRW_OPCODE_F32TO16. Depending
773       * on the HW gen, it is a special hw opcode or just a MOV, and
774       * brw_F32TO16 (at brw_eu_emit) would do the work to chose.
775       *
776       * But if we want to use that opcode, we need to provide support on
777       * different optimizations and lowerings. As right now HF support is
778       * only for gen8+, it will be better to use directly the MOV, and use
779       * BRW_OPCODE_F32TO16 when/if we work for HF support on gen7.
780       */
781
782   case nir_op_f2f16:
783      inst = bld.MOV(result, op[0]);
784      inst->saturate = instr->dest.saturate;
785      break;
786
787   case nir_op_b2i:
788   case nir_op_b2f:
789      op[0].type = BRW_REGISTER_TYPE_D;
790      op[0].negate = !op[0].negate;
791      /* fallthrough */
792   case nir_op_f2f64:
793   case nir_op_f2i64:
794   case nir_op_f2u64:
795   case nir_op_i2f64:
796   case nir_op_i2i64:
797   case nir_op_u2f64:
798   case nir_op_u2u64:
799      /* CHV PRM, vol07, 3D Media GPGPU Engine, Register Region Restrictions:
800       *
801       *    "When source or destination is 64b (...), regioning in Align1
802       *     must follow these rules:
803       *
804       *     1. Source and destination horizontal stride must be aligned to
805       *        the same qword.
806       *     (...)"
807       *
808       * This means that conversions from bit-sizes smaller than 64-bit to
809       * 64-bit need to have the source data elements aligned to 64-bit.
810       * This restriction does not apply to BDW and later.
811       */
812      if (nir_dest_bit_size(instr->dest.dest) == 64 &&
813          nir_src_bit_size(instr->src[0].src) < 64 &&
814          (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
815         fs_reg tmp = bld.vgrf(result.type, 1);
816         tmp = subscript(tmp, op[0].type, 0);
817         inst = bld.MOV(tmp, op[0]);
818         inst = bld.MOV(result, tmp);
819         inst->saturate = instr->dest.saturate;
820         break;
821      }
822      /* fallthrough */
823   case nir_op_f2f32:
824   case nir_op_f2i32:
825   case nir_op_f2u32:
826   case nir_op_f2i16:
827   case nir_op_f2u16:
828   case nir_op_i2i32:
829   case nir_op_u2u32:
830   case nir_op_i2i16:
831   case nir_op_u2u16:
832   case nir_op_i2f16:
833   case nir_op_u2f16:
834   case nir_op_i2i8:
835   case nir_op_u2u8:
836      inst = bld.MOV(result, op[0]);
837      inst->saturate = instr->dest.saturate;
838      break;
839
840   case nir_op_fsign: {
841      assert(!instr->dest.saturate);
842      if (op[0].abs) {
843         /* Straightforward since the source can be assumed to be either
844          * strictly >= 0 or strictly <= 0 depending on the setting of the
845          * negate flag.
846          */
847         set_condmod(BRW_CONDITIONAL_NZ, bld.MOV(result, op[0]));
848
849         inst = (op[0].negate)
850            ? bld.MOV(result, brw_imm_f(-1.0f))
851            : bld.MOV(result, brw_imm_f(1.0f));
852
853         set_predicate(BRW_PREDICATE_NORMAL, inst);
854      } else if (type_sz(op[0].type) < 8) {
855         /* AND(val, 0x80000000) gives the sign bit.
856          *
857          * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
858          * zero.
859          */
860         bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
861
862         fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
863         op[0].type = BRW_REGISTER_TYPE_UD;
864         result.type = BRW_REGISTER_TYPE_UD;
865         bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
866
867         inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
868         inst->predicate = BRW_PREDICATE_NORMAL;
869      } else {
870         /* For doubles we do the same but we need to consider:
871          *
872          * - 2-src instructions can't operate with 64-bit immediates
873          * - The sign is encoded in the high 32-bit of each DF
874          * - We need to produce a DF result.
875          */
876
877         fs_reg zero = vgrf(glsl_type::double_type);
878         bld.MOV(zero, setup_imm_df(bld, 0.0));
879         bld.CMP(bld.null_reg_df(), op[0], zero, BRW_CONDITIONAL_NZ);
880
881         bld.MOV(result, zero);
882
883         fs_reg r = subscript(result, BRW_REGISTER_TYPE_UD, 1);
884         bld.AND(r, subscript(op[0], BRW_REGISTER_TYPE_UD, 1),
885                 brw_imm_ud(0x80000000u));
886
887         set_predicate(BRW_PREDICATE_NORMAL,
888                       bld.OR(r, r, brw_imm_ud(0x3ff00000u)));
889      }
890      break;
891   }
892
893   case nir_op_isign: {
894      /*  ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
895       *               -> non-negative val generates 0x00000000.
896       *  Predicated OR sets 1 if val is positive.
897       */
898      uint32_t bit_size = nir_dest_bit_size(instr->dest.dest);
899      assert(bit_size == 32 || bit_size == 16);
900
901      fs_reg zero = bit_size == 32 ? brw_imm_d(0) : brw_imm_w(0);
902      fs_reg one = bit_size == 32 ? brw_imm_d(1) : brw_imm_w(1);
903      fs_reg shift = bit_size == 32 ? brw_imm_d(31) : brw_imm_w(15);
904
905      bld.CMP(bld.null_reg_d(), op[0], zero, BRW_CONDITIONAL_G);
906      bld.ASR(result, op[0], shift);
907      inst = bld.OR(result, result, one);
908      inst->predicate = BRW_PREDICATE_NORMAL;
909      break;
910   }
911
912   case nir_op_frcp:
913      inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
914      inst->saturate = instr->dest.saturate;
915      break;
916
917   case nir_op_fexp2:
918      inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
919      inst->saturate = instr->dest.saturate;
920      break;
921
922   case nir_op_flog2:
923      inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
924      inst->saturate = instr->dest.saturate;
925      break;
926
927   case nir_op_fsin:
928      inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
929      inst->saturate = instr->dest.saturate;
930      break;
931
932   case nir_op_fcos:
933      inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
934      inst->saturate = instr->dest.saturate;
935      break;
936
937   case nir_op_fddx:
938      if (fs_key->high_quality_derivatives) {
939         inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
940      } else {
941         inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
942      }
943      inst->saturate = instr->dest.saturate;
944      break;
945   case nir_op_fddx_fine:
946      inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
947      inst->saturate = instr->dest.saturate;
948      break;
949   case nir_op_fddx_coarse:
950      inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
951      inst->saturate = instr->dest.saturate;
952      break;
953   case nir_op_fddy:
954      if (fs_key->high_quality_derivatives) {
955         inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
956      } else {
957         inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
958      }
959      inst->saturate = instr->dest.saturate;
960      break;
961   case nir_op_fddy_fine:
962      inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
963      inst->saturate = instr->dest.saturate;
964      break;
965   case nir_op_fddy_coarse:
966      inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
967      inst->saturate = instr->dest.saturate;
968      break;
969
970   case nir_op_iadd:
971   case nir_op_fadd:
972      inst = bld.ADD(result, op[0], op[1]);
973      inst->saturate = instr->dest.saturate;
974      break;
975
976   case nir_op_fmul:
977      inst = bld.MUL(result, op[0], op[1]);
978      inst->saturate = instr->dest.saturate;
979      break;
980
981   case nir_op_imul:
982      assert(nir_dest_bit_size(instr->dest.dest) < 64);
983      bld.MUL(result, op[0], op[1]);
984      break;
985
986   case nir_op_imul_high:
987   case nir_op_umul_high:
988      assert(nir_dest_bit_size(instr->dest.dest) < 64);
989      bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
990      break;
991
992   case nir_op_idiv:
993   case nir_op_udiv:
994      assert(nir_dest_bit_size(instr->dest.dest) < 64);
995      bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
996      break;
997
998   case nir_op_uadd_carry:
999      unreachable("Should have been lowered by carry_to_arith().");
1000
1001   case nir_op_usub_borrow:
1002      unreachable("Should have been lowered by borrow_to_arith().");
1003
1004   case nir_op_umod:
1005   case nir_op_irem:
1006      /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
1007       * appears that our hardware just does the right thing for signed
1008       * remainder.
1009       */
1010      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1011      bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1012      break;
1013
1014   case nir_op_imod: {
1015      /* Get a regular C-style remainder.  If a % b == 0, set the predicate. */
1016      bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
1017
1018      /* Math instructions don't support conditional mod */
1019      inst = bld.MOV(bld.null_reg_d(), result);
1020      inst->conditional_mod = BRW_CONDITIONAL_NZ;
1021
1022      /* Now, we need to determine if signs of the sources are different.
1023       * When we XOR the sources, the top bit is 0 if they are the same and 1
1024       * if they are different.  We can then use a conditional modifier to
1025       * turn that into a predicate.  This leads us to an XOR.l instruction.
1026       *
1027       * Technically, according to the PRM, you're not allowed to use .l on a
1028       * XOR instruction.  However, emperical experiments and Curro's reading
1029       * of the simulator source both indicate that it's safe.
1030       */
1031      fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
1032      inst = bld.XOR(tmp, op[0], op[1]);
1033      inst->predicate = BRW_PREDICATE_NORMAL;
1034      inst->conditional_mod = BRW_CONDITIONAL_L;
1035
1036      /* If the result of the initial remainder operation is non-zero and the
1037       * two sources have different signs, add in a copy of op[1] to get the
1038       * final integer modulus value.
1039       */
1040      inst = bld.ADD(result, result, op[1]);
1041      inst->predicate = BRW_PREDICATE_NORMAL;
1042      break;
1043   }
1044
1045   case nir_op_flt:
1046   case nir_op_fge:
1047   case nir_op_feq:
1048   case nir_op_fne: {
1049      fs_reg dest = result;
1050
1051      const uint32_t bit_size =  nir_src_bit_size(instr->src[0].src);
1052      if (bit_size != 32)
1053         dest = bld.vgrf(op[0].type, 1);
1054
1055      brw_conditional_mod cond;
1056      switch (instr->op) {
1057      case nir_op_flt:
1058         cond = BRW_CONDITIONAL_L;
1059         break;
1060      case nir_op_fge:
1061         cond = BRW_CONDITIONAL_GE;
1062         break;
1063      case nir_op_feq:
1064         cond = BRW_CONDITIONAL_Z;
1065         break;
1066      case nir_op_fne:
1067         cond = BRW_CONDITIONAL_NZ;
1068         break;
1069      default:
1070         unreachable("bad opcode");
1071      }
1072
1073      bld.CMP(dest, op[0], op[1], cond);
1074
1075      if (bit_size > 32) {
1076         bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1077      } else if(bit_size < 32) {
1078         /* When we convert the result to 32-bit we need to be careful and do
1079          * it as a signed conversion to get sign extension (for 32-bit true)
1080          */
1081         const brw_reg_type src_type =
1082            brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1083
1084         bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1085      }
1086      break;
1087   }
1088
1089   case nir_op_ilt:
1090   case nir_op_ult:
1091   case nir_op_ige:
1092   case nir_op_uge:
1093   case nir_op_ieq:
1094   case nir_op_ine: {
1095      fs_reg dest = result;
1096
1097      const uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1098      if (bit_size != 32)
1099         dest = bld.vgrf(op[0].type, 1);
1100
1101      brw_conditional_mod cond;
1102      switch (instr->op) {
1103      case nir_op_ilt:
1104      case nir_op_ult:
1105         cond = BRW_CONDITIONAL_L;
1106         break;
1107      case nir_op_ige:
1108      case nir_op_uge:
1109         cond = BRW_CONDITIONAL_GE;
1110         break;
1111      case nir_op_ieq:
1112         cond = BRW_CONDITIONAL_Z;
1113         break;
1114      case nir_op_ine:
1115         cond = BRW_CONDITIONAL_NZ;
1116         break;
1117      default:
1118         unreachable("bad opcode");
1119      }
1120      bld.CMP(dest, op[0], op[1], cond);
1121
1122      if (bit_size > 32) {
1123         bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1124      } else if (bit_size < 32) {
1125         /* When we convert the result to 32-bit we need to be careful and do
1126          * it as a signed conversion to get sign extension (for 32-bit true)
1127          */
1128         const brw_reg_type src_type =
1129            brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_D);
1130
1131         bld.MOV(retype(result, BRW_REGISTER_TYPE_D), retype(dest, src_type));
1132      }
1133      break;
1134   }
1135
1136   case nir_op_inot:
1137      if (devinfo->gen >= 8) {
1138         op[0] = resolve_source_modifiers(op[0]);
1139      }
1140      bld.NOT(result, op[0]);
1141      break;
1142   case nir_op_ixor:
1143      if (devinfo->gen >= 8) {
1144         op[0] = resolve_source_modifiers(op[0]);
1145         op[1] = resolve_source_modifiers(op[1]);
1146      }
1147      bld.XOR(result, op[0], op[1]);
1148      break;
1149   case nir_op_ior:
1150      if (devinfo->gen >= 8) {
1151         op[0] = resolve_source_modifiers(op[0]);
1152         op[1] = resolve_source_modifiers(op[1]);
1153      }
1154      bld.OR(result, op[0], op[1]);
1155      break;
1156   case nir_op_iand:
1157      if (devinfo->gen >= 8) {
1158         op[0] = resolve_source_modifiers(op[0]);
1159         op[1] = resolve_source_modifiers(op[1]);
1160      }
1161      bld.AND(result, op[0], op[1]);
1162      break;
1163
1164   case nir_op_fdot2:
1165   case nir_op_fdot3:
1166   case nir_op_fdot4:
1167   case nir_op_ball_fequal2:
1168   case nir_op_ball_iequal2:
1169   case nir_op_ball_fequal3:
1170   case nir_op_ball_iequal3:
1171   case nir_op_ball_fequal4:
1172   case nir_op_ball_iequal4:
1173   case nir_op_bany_fnequal2:
1174   case nir_op_bany_inequal2:
1175   case nir_op_bany_fnequal3:
1176   case nir_op_bany_inequal3:
1177   case nir_op_bany_fnequal4:
1178   case nir_op_bany_inequal4:
1179      unreachable("Lowered by nir_lower_alu_reductions");
1180
1181   case nir_op_fnoise1_1:
1182   case nir_op_fnoise1_2:
1183   case nir_op_fnoise1_3:
1184   case nir_op_fnoise1_4:
1185   case nir_op_fnoise2_1:
1186   case nir_op_fnoise2_2:
1187   case nir_op_fnoise2_3:
1188   case nir_op_fnoise2_4:
1189   case nir_op_fnoise3_1:
1190   case nir_op_fnoise3_2:
1191   case nir_op_fnoise3_3:
1192   case nir_op_fnoise3_4:
1193   case nir_op_fnoise4_1:
1194   case nir_op_fnoise4_2:
1195   case nir_op_fnoise4_3:
1196   case nir_op_fnoise4_4:
1197      unreachable("not reached: should be handled by lower_noise");
1198
1199   case nir_op_ldexp:
1200      unreachable("not reached: should be handled by ldexp_to_arith()");
1201
1202   case nir_op_fsqrt:
1203      inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1204      inst->saturate = instr->dest.saturate;
1205      break;
1206
1207   case nir_op_frsq:
1208      inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1209      inst->saturate = instr->dest.saturate;
1210      break;
1211
1212   case nir_op_i2b:
1213   case nir_op_f2b: {
1214      uint32_t bit_size = nir_src_bit_size(instr->src[0].src);
1215      if (bit_size == 64) {
1216         /* two-argument instructions can't take 64-bit immediates */
1217         fs_reg zero;
1218         fs_reg tmp;
1219
1220         if (instr->op == nir_op_f2b) {
1221            zero = vgrf(glsl_type::double_type);
1222            tmp = vgrf(glsl_type::double_type);
1223            bld.MOV(zero, setup_imm_df(bld, 0.0));
1224         } else {
1225            zero = vgrf(glsl_type::int64_t_type);
1226            tmp = vgrf(glsl_type::int64_t_type);
1227            bld.MOV(zero, brw_imm_q(0));
1228         }
1229
1230         /* A SIMD16 execution needs to be split in two instructions, so use
1231          * a vgrf instead of the flag register as dst so instruction splitting
1232          * works
1233          */
1234         bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1235         bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1236      } else {
1237         fs_reg zero;
1238         if (bit_size == 32) {
1239            zero = instr->op == nir_op_f2b ? brw_imm_f(0.0f) : brw_imm_d(0);
1240         } else {
1241            assert(bit_size == 16);
1242            zero = instr->op == nir_op_f2b ?
1243               retype(brw_imm_w(0), BRW_REGISTER_TYPE_HF) : brw_imm_w(0);
1244         }
1245         bld.CMP(result, op[0], zero, BRW_CONDITIONAL_NZ);
1246      }
1247      break;
1248   }
1249
1250   case nir_op_ftrunc:
1251      inst = bld.RNDZ(result, op[0]);
1252      inst->saturate = instr->dest.saturate;
1253      break;
1254
1255   case nir_op_fceil: {
1256      op[0].negate = !op[0].negate;
1257      fs_reg temp = vgrf(glsl_type::float_type);
1258      bld.RNDD(temp, op[0]);
1259      temp.negate = true;
1260      inst = bld.MOV(result, temp);
1261      inst->saturate = instr->dest.saturate;
1262      break;
1263   }
1264   case nir_op_ffloor:
1265      inst = bld.RNDD(result, op[0]);
1266      inst->saturate = instr->dest.saturate;
1267      break;
1268   case nir_op_ffract:
1269      inst = bld.FRC(result, op[0]);
1270      inst->saturate = instr->dest.saturate;
1271      break;
1272   case nir_op_fround_even:
1273      inst = bld.RNDE(result, op[0]);
1274      inst->saturate = instr->dest.saturate;
1275      break;
1276
1277   case nir_op_fquantize2f16: {
1278      fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1279      fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1280      fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1281
1282      /* The destination stride must be at least as big as the source stride. */
1283      tmp16.type = BRW_REGISTER_TYPE_W;
1284      tmp16.stride = 2;
1285
1286      /* Check for denormal */
1287      fs_reg abs_src0 = op[0];
1288      abs_src0.abs = true;
1289      bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1290              BRW_CONDITIONAL_L);
1291      /* Get the appropriately signed zero */
1292      bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1293              retype(op[0], BRW_REGISTER_TYPE_UD),
1294              brw_imm_ud(0x80000000));
1295      /* Do the actual F32 -> F16 -> F32 conversion */
1296      bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1297      bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1298      /* Select that or zero based on normal status */
1299      inst = bld.SEL(result, zero, tmp32);
1300      inst->predicate = BRW_PREDICATE_NORMAL;
1301      inst->saturate = instr->dest.saturate;
1302      break;
1303   }
1304
1305   case nir_op_imin:
1306   case nir_op_umin:
1307   case nir_op_fmin:
1308      inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1309      inst->saturate = instr->dest.saturate;
1310      break;
1311
1312   case nir_op_imax:
1313   case nir_op_umax:
1314   case nir_op_fmax:
1315      inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1316      inst->saturate = instr->dest.saturate;
1317      break;
1318
1319   case nir_op_pack_snorm_2x16:
1320   case nir_op_pack_snorm_4x8:
1321   case nir_op_pack_unorm_2x16:
1322   case nir_op_pack_unorm_4x8:
1323   case nir_op_unpack_snorm_2x16:
1324   case nir_op_unpack_snorm_4x8:
1325   case nir_op_unpack_unorm_2x16:
1326   case nir_op_unpack_unorm_4x8:
1327   case nir_op_unpack_half_2x16:
1328   case nir_op_pack_half_2x16:
1329      unreachable("not reached: should be handled by lower_packing_builtins");
1330
1331   case nir_op_unpack_half_2x16_split_x:
1332      inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1333      inst->saturate = instr->dest.saturate;
1334      break;
1335   case nir_op_unpack_half_2x16_split_y:
1336      inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1337      inst->saturate = instr->dest.saturate;
1338      break;
1339
1340   case nir_op_pack_64_2x32_split:
1341   case nir_op_pack_32_2x16_split:
1342      bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1343      break;
1344
1345   case nir_op_unpack_64_2x32_split_x:
1346   case nir_op_unpack_64_2x32_split_y: {
1347      if (instr->op == nir_op_unpack_64_2x32_split_x)
1348         bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1349      else
1350         bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1351      break;
1352   }
1353
1354   case nir_op_unpack_32_2x16_split_x:
1355   case nir_op_unpack_32_2x16_split_y: {
1356      if (instr->op == nir_op_unpack_32_2x16_split_x)
1357         bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 0));
1358      else
1359         bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UW, 1));
1360      break;
1361   }
1362
1363   case nir_op_fpow:
1364      inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1365      inst->saturate = instr->dest.saturate;
1366      break;
1367
1368   case nir_op_bitfield_reverse:
1369      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1370      bld.BFREV(result, op[0]);
1371      break;
1372
1373   case nir_op_bit_count:
1374      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1375      bld.CBIT(result, op[0]);
1376      break;
1377
1378   case nir_op_ufind_msb: {
1379      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1380      emit_find_msb_using_lzd(bld, result, op[0], false);
1381      break;
1382   }
1383
1384   case nir_op_ifind_msb: {
1385      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1386
1387      if (devinfo->gen < 7) {
1388         emit_find_msb_using_lzd(bld, result, op[0], true);
1389      } else {
1390         bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1391
1392         /* FBH counts from the MSB side, while GLSL's findMSB() wants the
1393          * count from the LSB side. If FBH didn't return an error
1394          * (0xFFFFFFFF), then subtract the result from 31 to convert the MSB
1395          * count into an LSB count.
1396          */
1397         bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1398
1399         inst = bld.ADD(result, result, brw_imm_d(31));
1400         inst->predicate = BRW_PREDICATE_NORMAL;
1401         inst->src[0].negate = true;
1402      }
1403      break;
1404   }
1405
1406   case nir_op_find_lsb:
1407      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1408
1409      if (devinfo->gen < 7) {
1410         fs_reg temp = vgrf(glsl_type::int_type);
1411
1412         /* (x & -x) generates a value that consists of only the LSB of x.
1413          * For all powers of 2, findMSB(y) == findLSB(y).
1414          */
1415         fs_reg src = retype(op[0], BRW_REGISTER_TYPE_D);
1416         fs_reg negated_src = src;
1417
1418         /* One must be negated, and the other must be non-negated.  It
1419          * doesn't matter which is which.
1420          */
1421         negated_src.negate = true;
1422         src.negate = false;
1423
1424         bld.AND(temp, src, negated_src);
1425         emit_find_msb_using_lzd(bld, result, temp, false);
1426      } else {
1427         bld.FBL(result, op[0]);
1428      }
1429      break;
1430
1431   case nir_op_ubitfield_extract:
1432   case nir_op_ibitfield_extract:
1433      unreachable("should have been lowered");
1434   case nir_op_ubfe:
1435   case nir_op_ibfe:
1436      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1437      bld.BFE(result, op[2], op[1], op[0]);
1438      break;
1439   case nir_op_bfm:
1440      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1441      bld.BFI1(result, op[0], op[1]);
1442      break;
1443   case nir_op_bfi:
1444      assert(nir_dest_bit_size(instr->dest.dest) < 64);
1445      bld.BFI2(result, op[0], op[1], op[2]);
1446      break;
1447
1448   case nir_op_bitfield_insert:
1449      unreachable("not reached: should have been lowered");
1450
1451   case nir_op_ishl:
1452   case nir_op_ishr:
1453   case nir_op_ushr: {
1454      fs_reg shift_count = op[1];
1455
1456      if (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo)) {
1457         if (op[1].file == VGRF &&
1458             (result.type == BRW_REGISTER_TYPE_Q ||
1459              result.type == BRW_REGISTER_TYPE_UQ)) {
1460            shift_count = fs_reg(VGRF, alloc.allocate(dispatch_width / 4),
1461                                 BRW_REGISTER_TYPE_UD);
1462            shift_count.stride = 2;
1463            bld.MOV(shift_count, op[1]);
1464         }
1465      }
1466
1467      switch (instr->op) {
1468      case nir_op_ishl:
1469         bld.SHL(result, op[0], shift_count);
1470         break;
1471      case nir_op_ishr:
1472         bld.ASR(result, op[0], shift_count);
1473         break;
1474      case nir_op_ushr:
1475         bld.SHR(result, op[0], shift_count);
1476         break;
1477      default:
1478         unreachable("not reached");
1479      }
1480      break;
1481   }
1482
1483   case nir_op_pack_half_2x16_split:
1484      bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1485      break;
1486
1487   case nir_op_ffma:
1488      inst = bld.MAD(result, op[2], op[1], op[0]);
1489      inst->saturate = instr->dest.saturate;
1490      break;
1491
1492   case nir_op_flrp:
1493      inst = bld.LRP(result, op[0], op[1], op[2]);
1494      inst->saturate = instr->dest.saturate;
1495      break;
1496
1497   case nir_op_bcsel:
1498      if (optimize_frontfacing_ternary(instr, result))
1499         return;
1500
1501      bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1502      inst = bld.SEL(result, op[1], op[2]);
1503      inst->predicate = BRW_PREDICATE_NORMAL;
1504      break;
1505
1506   case nir_op_extract_u8:
1507   case nir_op_extract_i8: {
1508      nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1509      assert(byte != NULL);
1510
1511      /* The PRMs say:
1512       *
1513       *    BDW+
1514       *    There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB.
1515       *    Use two instructions and a word or DWord intermediate integer type.
1516       */
1517      if (nir_dest_bit_size(instr->dest.dest) == 64) {
1518         const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i8);
1519
1520         if (instr->op == nir_op_extract_i8) {
1521            /* If we need to sign extend, extract to a word first */
1522            fs_reg w_temp = bld.vgrf(BRW_REGISTER_TYPE_W);
1523            bld.MOV(w_temp, subscript(op[0], type, byte->u32[0]));
1524            bld.MOV(result, w_temp);
1525         } else {
1526            /* Otherwise use an AND with 0xff and a word type */
1527            bld.AND(result, subscript(op[0], type, byte->u32[0] / 2), brw_imm_uw(0xff));
1528         }
1529      } else {
1530         const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1531         bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1532      }
1533      break;
1534   }
1535
1536   case nir_op_extract_u16:
1537   case nir_op_extract_i16: {
1538      const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1539      nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1540      assert(word != NULL);
1541      bld.MOV(result, subscript(op[0], type, word->u32[0]));
1542      break;
1543   }
1544
1545   default:
1546      unreachable("unhandled instruction");
1547   }
1548
1549   /* If we need to do a boolean resolve, replace the result with -(x & 1)
1550    * to sign extend the low bit to 0/~0
1551    */
1552   if (devinfo->gen <= 5 &&
1553       (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1554      fs_reg masked = vgrf(glsl_type::int_type);
1555      bld.AND(masked, result, brw_imm_d(1));
1556      masked.negate = true;
1557      bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1558   }
1559}
1560
1561void
1562fs_visitor::nir_emit_load_const(const fs_builder &bld,
1563                                nir_load_const_instr *instr)
1564{
1565   const brw_reg_type reg_type =
1566      brw_reg_type_from_bit_size(instr->def.bit_size, BRW_REGISTER_TYPE_D);
1567   fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1568
1569   switch (instr->def.bit_size) {
1570   case 8:
1571      for (unsigned i = 0; i < instr->def.num_components; i++)
1572         bld.MOV(offset(reg, bld, i), setup_imm_b(bld, instr->value.i8[i]));
1573      break;
1574
1575   case 16:
1576      for (unsigned i = 0; i < instr->def.num_components; i++)
1577         bld.MOV(offset(reg, bld, i), brw_imm_w(instr->value.i16[i]));
1578      break;
1579
1580   case 32:
1581      for (unsigned i = 0; i < instr->def.num_components; i++)
1582         bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1583      break;
1584
1585   case 64:
1586      assert(devinfo->gen >= 7);
1587      if (devinfo->gen == 7) {
1588         /* We don't get 64-bit integer types until gen8 */
1589         for (unsigned i = 0; i < instr->def.num_components; i++) {
1590            bld.MOV(retype(offset(reg, bld, i), BRW_REGISTER_TYPE_DF),
1591                    setup_imm_df(bld, instr->value.f64[i]));
1592         }
1593      } else {
1594         for (unsigned i = 0; i < instr->def.num_components; i++)
1595            bld.MOV(offset(reg, bld, i), brw_imm_q(instr->value.i64[i]));
1596      }
1597      break;
1598
1599   default:
1600      unreachable("Invalid bit size");
1601   }
1602
1603   nir_ssa_values[instr->def.index] = reg;
1604}
1605
1606fs_reg
1607fs_visitor::get_nir_src(const nir_src &src)
1608{
1609   fs_reg reg;
1610   if (src.is_ssa) {
1611      if (src.ssa->parent_instr->type == nir_instr_type_ssa_undef) {
1612         const brw_reg_type reg_type =
1613            brw_reg_type_from_bit_size(src.ssa->bit_size, BRW_REGISTER_TYPE_D);
1614         reg = bld.vgrf(reg_type, src.ssa->num_components);
1615      } else {
1616         reg = nir_ssa_values[src.ssa->index];
1617      }
1618   } else {
1619      /* We don't handle indirects on locals */
1620      assert(src.reg.indirect == NULL);
1621      reg = offset(nir_locals[src.reg.reg->index], bld,
1622                   src.reg.base_offset * src.reg.reg->num_components);
1623   }
1624
1625   if (nir_src_bit_size(src) == 64 && devinfo->gen == 7) {
1626      /* The only 64-bit type available on gen7 is DF, so use that. */
1627      reg.type = BRW_REGISTER_TYPE_DF;
1628   } else {
1629      /* To avoid floating-point denorm flushing problems, set the type by
1630       * default to an integer type - instructions that need floating point
1631       * semantics will set this to F if they need to
1632       */
1633      reg.type = brw_reg_type_from_bit_size(nir_src_bit_size(src),
1634                                            BRW_REGISTER_TYPE_D);
1635   }
1636
1637   return reg;
1638}
1639
1640/**
1641 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1642 *
1643 * This function should not be called on any value which may be 64 bits.
1644 * We could theoretically support 64-bit on gen8+ but we choose not to
1645 * because it wouldn't work in general (no gen7 support) and there are
1646 * enough restrictions in 64-bit immediates that you can't take the return
1647 * value and treat it the same as the result of get_nir_src().
1648 */
1649fs_reg
1650fs_visitor::get_nir_src_imm(const nir_src &src)
1651{
1652   nir_const_value *val = nir_src_as_const_value(src);
1653   assert(nir_src_bit_size(src) == 32);
1654   return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1655}
1656
1657fs_reg
1658fs_visitor::get_nir_dest(const nir_dest &dest)
1659{
1660   if (dest.is_ssa) {
1661      const brw_reg_type reg_type =
1662         brw_reg_type_from_bit_size(dest.ssa.bit_size,
1663                                    dest.ssa.bit_size == 8 ?
1664                                    BRW_REGISTER_TYPE_D :
1665                                    BRW_REGISTER_TYPE_F);
1666      nir_ssa_values[dest.ssa.index] =
1667         bld.vgrf(reg_type, dest.ssa.num_components);
1668      return nir_ssa_values[dest.ssa.index];
1669   } else {
1670      /* We don't handle indirects on locals */
1671      assert(dest.reg.indirect == NULL);
1672      return offset(nir_locals[dest.reg.reg->index], bld,
1673                    dest.reg.base_offset * dest.reg.reg->num_components);
1674   }
1675}
1676
1677void
1678fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1679                         unsigned wr_mask)
1680{
1681   for (unsigned i = 0; i < 4; i++) {
1682      if (!((wr_mask >> i) & 1))
1683         continue;
1684
1685      fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1686      new_inst->dst = offset(new_inst->dst, bld, i);
1687      for (unsigned j = 0; j < new_inst->sources; j++)
1688         if (new_inst->src[j].file == VGRF)
1689            new_inst->src[j] = offset(new_inst->src[j], bld, i);
1690
1691      bld.emit(new_inst);
1692   }
1693}
1694
1695static fs_inst *
1696emit_pixel_interpolater_send(const fs_builder &bld,
1697                             enum opcode opcode,
1698                             const fs_reg &dst,
1699                             const fs_reg &src,
1700                             const fs_reg &desc,
1701                             glsl_interp_mode interpolation)
1702{
1703   struct brw_wm_prog_data *wm_prog_data =
1704      brw_wm_prog_data(bld.shader->stage_prog_data);
1705
1706   fs_inst *inst = bld.emit(opcode, dst, src, desc);
1707   /* 2 floats per slot returned */
1708   inst->size_written = 2 * dst.component_size(inst->exec_size);
1709   inst->pi_noperspective = interpolation == INTERP_MODE_NOPERSPECTIVE;
1710
1711   wm_prog_data->pulls_bary = true;
1712
1713   return inst;
1714}
1715
1716/**
1717 * Computes 1 << x, given a D/UD register containing some value x.
1718 */
1719static fs_reg
1720intexp2(const fs_builder &bld, const fs_reg &x)
1721{
1722   assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1723
1724   fs_reg result = bld.vgrf(x.type, 1);
1725   fs_reg one = bld.vgrf(x.type, 1);
1726
1727   bld.MOV(one, retype(brw_imm_d(1), one.type));
1728   bld.SHL(result, one, x);
1729   return result;
1730}
1731
1732void
1733fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1734{
1735   assert(stage == MESA_SHADER_GEOMETRY);
1736
1737   struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1738
1739   if (gs_compile->control_data_header_size_bits == 0)
1740      return;
1741
1742   /* We can only do EndPrimitive() functionality when the control data
1743    * consists of cut bits.  Fortunately, the only time it isn't is when the
1744    * output type is points, in which case EndPrimitive() is a no-op.
1745    */
1746   if (gs_prog_data->control_data_format !=
1747       GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1748      return;
1749   }
1750
1751   /* Cut bits use one bit per vertex. */
1752   assert(gs_compile->control_data_bits_per_vertex == 1);
1753
1754   fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1755   vertex_count.type = BRW_REGISTER_TYPE_UD;
1756
1757   /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1758    * vertex n, 0 otherwise.  So all we need to do here is mark bit
1759    * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1760    * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1761    * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1762    *
1763    * Note that if EndPrimitive() is called before emitting any vertices, this
1764    * will cause us to set bit 31 of the control_data_bits register to 1.
1765    * That's fine because:
1766    *
1767    * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1768    *   output, so the hardware will ignore cut bit 31.
1769    *
1770    * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1771    *   last vertex, so setting cut bit 31 has no effect (since the primitive
1772    *   is automatically ended when the GS terminates).
1773    *
1774    * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1775    *   control_data_bits register to 0 when the first vertex is emitted.
1776    */
1777
1778   const fs_builder abld = bld.annotate("end primitive");
1779
1780   /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1781   fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1782   abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1783   fs_reg mask = intexp2(abld, prev_count);
1784   /* Note: we're relying on the fact that the GEN SHL instruction only pays
1785    * attention to the lower 5 bits of its second source argument, so on this
1786    * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1787    * ((vertex_count - 1) % 32).
1788    */
1789   abld.OR(this->control_data_bits, this->control_data_bits, mask);
1790}
1791
1792void
1793fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1794{
1795   assert(stage == MESA_SHADER_GEOMETRY);
1796   assert(gs_compile->control_data_bits_per_vertex != 0);
1797
1798   struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1799
1800   const fs_builder abld = bld.annotate("emit control data bits");
1801   const fs_builder fwa_bld = bld.exec_all();
1802
1803   /* We use a single UD register to accumulate control data bits (32 bits
1804    * for each of the SIMD8 channels).  So we need to write a DWord (32 bits)
1805    * at a time.
1806    *
1807    * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1808    * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1809    * use the Channel Mask phase to enable/disable which DWord within that
1810    * group to write.  (Remember, different SIMD8 channels may have emitted
1811    * different numbers of vertices, so we may need per-slot offsets.)
1812    *
1813    * Channel masking presents an annoying problem: we may have to replicate
1814    * the data up to 4 times:
1815    *
1816    * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1817    *
1818    * To avoid penalizing shaders that emit a small number of vertices, we
1819    * can avoid these sometimes: if the size of the control data header is
1820    * <= 128 bits, then there is only 1 OWord.  All SIMD8 channels will land
1821    * land in the same 128-bit group, so we can skip per-slot offsets.
1822    *
1823    * Similarly, if the control data header is <= 32 bits, there is only one
1824    * DWord, so we can skip channel masks.
1825    */
1826   enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1827
1828   fs_reg channel_mask, per_slot_offset;
1829
1830   if (gs_compile->control_data_header_size_bits > 32) {
1831      opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1832      channel_mask = vgrf(glsl_type::uint_type);
1833   }
1834
1835   if (gs_compile->control_data_header_size_bits > 128) {
1836      opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1837      per_slot_offset = vgrf(glsl_type::uint_type);
1838   }
1839
1840   /* Figure out which DWord we're trying to write to using the formula:
1841    *
1842    *    dword_index = (vertex_count - 1) * bits_per_vertex / 32
1843    *
1844    * Since bits_per_vertex is a power of two, and is known at compile
1845    * time, this can be optimized to:
1846    *
1847    *    dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1848    */
1849   if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1850      fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1851      fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1852      abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1853      unsigned log2_bits_per_vertex =
1854         util_last_bit(gs_compile->control_data_bits_per_vertex);
1855      abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1856
1857      if (per_slot_offset.file != BAD_FILE) {
1858         /* Set the per-slot offset to dword_index / 4, so that we'll write to
1859          * the appropriate OWord within the control data header.
1860          */
1861         abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1862      }
1863
1864      /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1865       * write to the appropriate DWORD within the OWORD.
1866       */
1867      fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1868      fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1869      channel_mask = intexp2(fwa_bld, channel);
1870      /* Then the channel masks need to be in bits 23:16. */
1871      fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1872   }
1873
1874   /* Store the control data bits in the message payload and send it. */
1875   int mlen = 2;
1876   if (channel_mask.file != BAD_FILE)
1877      mlen += 4; /* channel masks, plus 3 extra copies of the data */
1878   if (per_slot_offset.file != BAD_FILE)
1879      mlen++;
1880
1881   fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1882   fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1883   int i = 0;
1884   sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1885   if (per_slot_offset.file != BAD_FILE)
1886      sources[i++] = per_slot_offset;
1887   if (channel_mask.file != BAD_FILE)
1888      sources[i++] = channel_mask;
1889   while (i < mlen) {
1890      sources[i++] = this->control_data_bits;
1891   }
1892
1893   abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1894   fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1895   inst->mlen = mlen;
1896   /* We need to increment Global Offset by 256-bits to make room for
1897    * Broadwell's extra "Vertex Count" payload at the beginning of the
1898    * URB entry.  Since this is an OWord message, Global Offset is counted
1899    * in 128-bit units, so we must set it to 2.
1900    */
1901   if (gs_prog_data->static_vertex_count == -1)
1902      inst->offset = 2;
1903}
1904
1905void
1906fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1907                                            unsigned stream_id)
1908{
1909   /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1910
1911   /* Note: we are calling this *before* increasing vertex_count, so
1912    * this->vertex_count == vertex_count - 1 in the formula above.
1913    */
1914
1915   /* Stream mode uses 2 bits per vertex */
1916   assert(gs_compile->control_data_bits_per_vertex == 2);
1917
1918   /* Must be a valid stream */
1919   assert(stream_id < MAX_VERTEX_STREAMS);
1920
1921   /* Control data bits are initialized to 0 so we don't have to set any
1922    * bits when sending vertices to stream 0.
1923    */
1924   if (stream_id == 0)
1925      return;
1926
1927   const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1928
1929   /* reg::sid = stream_id */
1930   fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1931   abld.MOV(sid, brw_imm_ud(stream_id));
1932
1933   /* reg:shift_count = 2 * (vertex_count - 1) */
1934   fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1935   abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1936
1937   /* Note: we're relying on the fact that the GEN SHL instruction only pays
1938    * attention to the lower 5 bits of its second source argument, so on this
1939    * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1940    * stream_id << ((2 * (vertex_count - 1)) % 32).
1941    */
1942   fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1943   abld.SHL(mask, sid, shift_count);
1944   abld.OR(this->control_data_bits, this->control_data_bits, mask);
1945}
1946
1947void
1948fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1949                           unsigned stream_id)
1950{
1951   assert(stage == MESA_SHADER_GEOMETRY);
1952
1953   struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1954
1955   fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1956   vertex_count.type = BRW_REGISTER_TYPE_UD;
1957
1958   /* Haswell and later hardware ignores the "Render Stream Select" bits
1959    * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1960    * and instead sends all primitives down the pipeline for rasterization.
1961    * If the SOL stage is enabled, "Render Stream Select" is honored and
1962    * primitives bound to non-zero streams are discarded after stream output.
1963    *
1964    * Since the only purpose of primives sent to non-zero streams is to
1965    * be recorded by transform feedback, we can simply discard all geometry
1966    * bound to these streams when transform feedback is disabled.
1967    */
1968   if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1969      return;
1970
1971   /* If we're outputting 32 control data bits or less, then we can wait
1972    * until the shader is over to output them all.  Otherwise we need to
1973    * output them as we go.  Now is the time to do it, since we're about to
1974    * output the vertex_count'th vertex, so it's guaranteed that the
1975    * control data bits associated with the (vertex_count - 1)th vertex are
1976    * correct.
1977    */
1978   if (gs_compile->control_data_header_size_bits > 32) {
1979      const fs_builder abld =
1980         bld.annotate("emit vertex: emit control data bits");
1981
1982      /* Only emit control data bits if we've finished accumulating a batch
1983       * of 32 bits.  This is the case when:
1984       *
1985       *     (vertex_count * bits_per_vertex) % 32 == 0
1986       *
1987       * (in other words, when the last 5 bits of vertex_count *
1988       * bits_per_vertex are 0).  Assuming bits_per_vertex == 2^n for some
1989       * integer n (which is always the case, since bits_per_vertex is
1990       * always 1 or 2), this is equivalent to requiring that the last 5-n
1991       * bits of vertex_count are 0:
1992       *
1993       *     vertex_count & (2^(5-n) - 1) == 0
1994       *
1995       * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1996       * equivalent to:
1997       *
1998       *     vertex_count & (32 / bits_per_vertex - 1) == 0
1999       *
2000       * TODO: If vertex_count is an immediate, we could do some of this math
2001       *       at compile time...
2002       */
2003      fs_inst *inst =
2004         abld.AND(bld.null_reg_d(), vertex_count,
2005                  brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
2006      inst->conditional_mod = BRW_CONDITIONAL_Z;
2007
2008      abld.IF(BRW_PREDICATE_NORMAL);
2009      /* If vertex_count is 0, then no control data bits have been
2010       * accumulated yet, so we can skip emitting them.
2011       */
2012      abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
2013               BRW_CONDITIONAL_NEQ);
2014      abld.IF(BRW_PREDICATE_NORMAL);
2015      emit_gs_control_data_bits(vertex_count);
2016      abld.emit(BRW_OPCODE_ENDIF);
2017
2018      /* Reset control_data_bits to 0 so we can start accumulating a new
2019       * batch.
2020       *
2021       * Note: in the case where vertex_count == 0, this neutralizes the
2022       * effect of any call to EndPrimitive() that the shader may have
2023       * made before outputting its first vertex.
2024       */
2025      inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
2026      inst->force_writemask_all = true;
2027      abld.emit(BRW_OPCODE_ENDIF);
2028   }
2029
2030   emit_urb_writes(vertex_count);
2031
2032   /* In stream mode we have to set control data bits for all vertices
2033    * unless we have disabled control data bits completely (which we do
2034    * do for GL_POINTS outputs that don't use streams).
2035    */
2036   if (gs_compile->control_data_header_size_bits > 0 &&
2037       gs_prog_data->control_data_format ==
2038          GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
2039      set_gs_stream_control_data_bits(vertex_count, stream_id);
2040   }
2041}
2042
2043void
2044fs_visitor::emit_gs_input_load(const fs_reg &dst,
2045                               const nir_src &vertex_src,
2046                               unsigned base_offset,
2047                               const nir_src &offset_src,
2048                               unsigned num_components,
2049                               unsigned first_component)
2050{
2051   struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
2052
2053   nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2054   nir_const_value *offset_const = nir_src_as_const_value(offset_src);
2055   const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
2056
2057   /* TODO: figure out push input layout for invocations == 1 */
2058   /* TODO: make this work with 64-bit inputs */
2059   if (gs_prog_data->invocations == 1 &&
2060       type_sz(dst.type) <= 4 &&
2061       offset_const != NULL && vertex_const != NULL &&
2062       4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2063      int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2064                       vertex_const->u32[0] * push_reg_count;
2065      for (unsigned i = 0; i < num_components; i++) {
2066         bld.MOV(offset(dst, bld, i),
2067                 fs_reg(ATTR, imm_offset + i + first_component, dst.type));
2068      }
2069      return;
2070   }
2071
2072   /* Resort to the pull model.  Ensure the VUE handles are provided. */
2073   assert(gs_prog_data->base.include_vue_handles);
2074
2075   unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2076   fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2077
2078   if (gs_prog_data->invocations == 1) {
2079      if (vertex_const) {
2080         /* The vertex index is constant; just select the proper URB handle. */
2081         icp_handle =
2082            retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2083                   BRW_REGISTER_TYPE_UD);
2084      } else {
2085         /* The vertex index is non-constant.  We need to use indirect
2086          * addressing to fetch the proper URB handle.
2087          *
2088          * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2089          * indicating that channel <n> should read the handle from
2090          * DWord <n>.  We convert that to bytes by multiplying by 4.
2091          *
2092          * Next, we convert the vertex index to bytes by multiplying
2093          * by 32 (shifting by 5), and add the two together.  This is
2094          * the final indirect byte offset.
2095          */
2096         fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_UW, 1);
2097         fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2098         fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2099         fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2100
2101         /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2102         bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2103         /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2104         bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2105         /* Convert vertex_index to bytes (multiply by 32) */
2106         bld.SHL(vertex_offset_bytes,
2107                 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2108                 brw_imm_ud(5u));
2109         bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2110
2111         /* Use first_icp_handle as the base offset.  There is one register
2112          * of URB handles per vertex, so inform the register allocator that
2113          * we might read up to nir->info.gs.vertices_in registers.
2114          */
2115         bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2116                  retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2117                  fs_reg(icp_offset_bytes),
2118                  brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2119      }
2120   } else {
2121      assert(gs_prog_data->invocations > 1);
2122
2123      if (vertex_const) {
2124         assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2125         bld.MOV(icp_handle,
2126                 retype(brw_vec1_grf(first_icp_handle +
2127                                     vertex_const->i32[0] / 8,
2128                                     vertex_const->i32[0] % 8),
2129                        BRW_REGISTER_TYPE_UD));
2130      } else {
2131         /* The vertex index is non-constant.  We need to use indirect
2132          * addressing to fetch the proper URB handle.
2133          *
2134          */
2135         fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2136
2137         /* Convert vertex_index to bytes (multiply by 4) */
2138         bld.SHL(icp_offset_bytes,
2139                 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2140                 brw_imm_ud(2u));
2141
2142         /* Use first_icp_handle as the base offset.  There is one DWord
2143          * of URB handles per vertex, so inform the register allocator that
2144          * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2145          */
2146         bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2147                  retype(brw_vec8_grf(first_icp_handle, 0), icp_handle.type),
2148                  fs_reg(icp_offset_bytes),
2149                  brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2150                             REG_SIZE));
2151      }
2152   }
2153
2154   fs_inst *inst;
2155
2156   fs_reg tmp_dst = dst;
2157   fs_reg indirect_offset = get_nir_src(offset_src);
2158   unsigned num_iterations = 1;
2159   unsigned orig_num_components = num_components;
2160
2161   if (type_sz(dst.type) == 8) {
2162      if (num_components > 2) {
2163         num_iterations = 2;
2164         num_components = 2;
2165      }
2166      fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2167      tmp_dst = tmp;
2168      first_component = first_component / 2;
2169   }
2170
2171   for (unsigned iter = 0; iter < num_iterations; iter++) {
2172      if (offset_const) {
2173         /* Constant indexing - use global offset. */
2174         if (first_component != 0) {
2175            unsigned read_components = num_components + first_component;
2176            fs_reg tmp = bld.vgrf(dst.type, read_components);
2177            inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2178            inst->size_written = read_components *
2179                                 tmp.component_size(inst->exec_size);
2180            for (unsigned i = 0; i < num_components; i++) {
2181               bld.MOV(offset(tmp_dst, bld, i),
2182                       offset(tmp, bld, i + first_component));
2183            }
2184         } else {
2185            inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp_dst,
2186                            icp_handle);
2187            inst->size_written = num_components *
2188                                 tmp_dst.component_size(inst->exec_size);
2189         }
2190         inst->offset = base_offset + offset_const->u32[0];
2191         inst->mlen = 1;
2192      } else {
2193         /* Indirect indexing - use per-slot offsets as well. */
2194         const fs_reg srcs[] = { icp_handle, indirect_offset };
2195         unsigned read_components = num_components + first_component;
2196         fs_reg tmp = bld.vgrf(dst.type, read_components);
2197         fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2198         bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2199         if (first_component != 0) {
2200            inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2201                            payload);
2202            inst->size_written = read_components *
2203                                 tmp.component_size(inst->exec_size);
2204            for (unsigned i = 0; i < num_components; i++) {
2205               bld.MOV(offset(tmp_dst, bld, i),
2206                       offset(tmp, bld, i + first_component));
2207            }
2208         } else {
2209            inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp_dst,
2210                         payload);
2211            inst->size_written = num_components *
2212                                 tmp_dst.component_size(inst->exec_size);
2213         }
2214         inst->offset = base_offset;
2215         inst->mlen = 2;
2216      }
2217
2218      if (type_sz(dst.type) == 8) {
2219         shuffle_from_32bit_read(bld,
2220                                 offset(dst, bld, iter * 2),
2221                                 retype(tmp_dst, BRW_REGISTER_TYPE_D),
2222                                 0,
2223                                 num_components);
2224      }
2225
2226      if (num_iterations > 1) {
2227         num_components = orig_num_components - 2;
2228         if(offset_const) {
2229            base_offset++;
2230         } else {
2231            fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2232            bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2233            indirect_offset = new_indirect;
2234         }
2235      }
2236   }
2237}
2238
2239fs_reg
2240fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2241{
2242   nir_src *offset_src = nir_get_io_offset_src(instr);
2243   nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2244
2245   if (const_value) {
2246      /* The only constant offset we should find is 0.  brw_nir.c's
2247       * add_const_offset_to_base() will fold other constant offsets
2248       * into instr->const_index[0].
2249       */
2250      assert(const_value->u32[0] == 0);
2251      return fs_reg();
2252   }
2253
2254   return get_nir_src(*offset_src);
2255}
2256
2257static void
2258do_untyped_vector_read(const fs_builder &bld,
2259                       const fs_reg dest,
2260                       const fs_reg surf_index,
2261                       const fs_reg offset_reg,
2262                       unsigned num_components)
2263{
2264   if (type_sz(dest.type) <= 2) {
2265      assert(dest.stride == 1);
2266      boolean is_const_offset = offset_reg.file == BRW_IMMEDIATE_VALUE;
2267
2268      if (is_const_offset) {
2269         uint32_t start = offset_reg.ud & ~3;
2270         uint32_t end = offset_reg.ud + num_components * type_sz(dest.type);
2271         end = ALIGN(end, 4);
2272         assert (end - start <= 16);
2273
2274         /* At this point we have 16-bit component/s that have constant
2275          * offset aligned to 4-bytes that can be read with untyped_reads.
2276          * untyped_read message requires 32-bit aligned offsets.
2277          */
2278         unsigned first_component = (offset_reg.ud & 3) / type_sz(dest.type);
2279         unsigned num_components_32bit = (end - start) / 4;
2280
2281         fs_reg read_result =
2282            emit_untyped_read(bld, surf_index, brw_imm_ud(start),
2283                              1 /* dims */,
2284                              num_components_32bit,
2285                              BRW_PREDICATE_NONE);
2286         shuffle_from_32bit_read(bld, dest, read_result, first_component,
2287                                 num_components);
2288      } else {
2289         fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2290         for (unsigned i = 0; i < num_components; i++) {
2291            if (i == 0) {
2292               bld.MOV(read_offset, offset_reg);
2293            } else {
2294               bld.ADD(read_offset, offset_reg,
2295                       brw_imm_ud(i * type_sz(dest.type)));
2296            }
2297            /* Non constant offsets are not guaranteed to be aligned 32-bits
2298             * so they are read using one byte_scattered_read message
2299             * for each component.
2300             */
2301            fs_reg read_result =
2302               emit_byte_scattered_read(bld, surf_index, read_offset,
2303                                        1 /* dims */, 1,
2304                                        type_sz(dest.type) * 8 /* bit_size */,
2305                                        BRW_PREDICATE_NONE);
2306            bld.MOV(offset(dest, bld, i),
2307                    subscript (read_result, dest.type, 0));
2308         }
2309      }
2310   } else if (type_sz(dest.type) == 4) {
2311      fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2312                                             1 /* dims */,
2313                                             num_components,
2314                                             BRW_PREDICATE_NONE);
2315      read_result.type = dest.type;
2316      for (unsigned i = 0; i < num_components; i++)
2317         bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2318   } else if (type_sz(dest.type) == 8) {
2319      /* Reading a dvec, so we need to:
2320       *
2321       * 1. Multiply num_components by 2, to account for the fact that we
2322       *    need to read 64-bit components.
2323       * 2. Shuffle the result of the load to form valid 64-bit elements
2324       * 3. Emit a second load (for components z/w) if needed.
2325       */
2326      fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2327      bld.MOV(read_offset, offset_reg);
2328
2329      int iters = num_components <= 2 ? 1 : 2;
2330
2331      /* Load the dvec, the first iteration loads components x/y, the second
2332       * iteration, if needed, loads components z/w
2333       */
2334      for (int it = 0; it < iters; it++) {
2335         /* Compute number of components to read in this iteration */
2336         int iter_components = MIN2(2, num_components);
2337         num_components -= iter_components;
2338
2339         /* Read. Since this message reads 32-bit components, we need to
2340          * read twice as many components.
2341          */
2342         fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2343                                                1 /* dims */,
2344                                                iter_components * 2,
2345                                                BRW_PREDICATE_NONE);
2346
2347         /* Shuffle the 32-bit load result into valid 64-bit data */
2348         shuffle_from_32bit_read(bld, offset(dest, bld, it * 2),
2349                                 read_result, 0, iter_components);
2350
2351         bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2352      }
2353   } else {
2354      unreachable("Unsupported type");
2355   }
2356}
2357
2358void
2359fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2360                                  nir_intrinsic_instr *instr)
2361{
2362   assert(stage == MESA_SHADER_VERTEX);
2363
2364   fs_reg dest;
2365   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2366      dest = get_nir_dest(instr->dest);
2367
2368   switch (instr->intrinsic) {
2369   case nir_intrinsic_load_vertex_id:
2370   case nir_intrinsic_load_base_vertex:
2371      unreachable("should be lowered by nir_lower_system_values()");
2372
2373   case nir_intrinsic_load_input: {
2374      fs_reg src = fs_reg(ATTR, nir_intrinsic_base(instr) * 4, dest.type);
2375      unsigned first_component = nir_intrinsic_component(instr);
2376      unsigned num_components = instr->num_components;
2377
2378      nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2379      assert(const_offset && "Indirect input loads not allowed");
2380      src = offset(src, bld, const_offset->u32[0]);
2381
2382      if (type_sz(dest.type) == 8)
2383         first_component /= 2;
2384
2385      /* For 16-bit support maybe a temporary will be needed to copy from
2386       * the ATTR file.
2387       */
2388      shuffle_from_32bit_read(bld, dest, retype(src, BRW_REGISTER_TYPE_D),
2389                              first_component, num_components);
2390      break;
2391   }
2392
2393   case nir_intrinsic_load_vertex_id_zero_base:
2394   case nir_intrinsic_load_instance_id:
2395   case nir_intrinsic_load_base_instance:
2396   case nir_intrinsic_load_draw_id:
2397   case nir_intrinsic_load_first_vertex:
2398   case nir_intrinsic_load_is_indexed_draw:
2399      unreachable("lowered by brw_nir_lower_vs_inputs");
2400
2401   default:
2402      nir_emit_intrinsic(bld, instr);
2403      break;
2404   }
2405}
2406
2407void
2408fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2409                                   nir_intrinsic_instr *instr)
2410{
2411   assert(stage == MESA_SHADER_TESS_CTRL);
2412   struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2413   struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
2414
2415   fs_reg dst;
2416   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2417      dst = get_nir_dest(instr->dest);
2418
2419   switch (instr->intrinsic) {
2420   case nir_intrinsic_load_primitive_id:
2421      bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2422      break;
2423   case nir_intrinsic_load_invocation_id:
2424      bld.MOV(retype(dst, invocation_id.type), invocation_id);
2425      break;
2426   case nir_intrinsic_load_patch_vertices_in:
2427      bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2428              brw_imm_d(tcs_key->input_vertices));
2429      break;
2430
2431   case nir_intrinsic_barrier: {
2432      if (tcs_prog_data->instances == 1)
2433         break;
2434
2435      fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2436      fs_reg m0_2 = component(m0, 2);
2437
2438      const fs_builder chanbld = bld.exec_all().group(1, 0);
2439
2440      /* Zero the message header */
2441      bld.exec_all().MOV(m0, brw_imm_ud(0u));
2442
2443      /* Copy "Barrier ID" from r0.2, bits 16:13 */
2444      chanbld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2445                  brw_imm_ud(INTEL_MASK(16, 13)));
2446
2447      /* Shift it up to bits 27:24. */
2448      chanbld.SHL(m0_2, m0_2, brw_imm_ud(11));
2449
2450      /* Set the Barrier Count and the enable bit */
2451      chanbld.OR(m0_2, m0_2,
2452                 brw_imm_ud(tcs_prog_data->instances << 9 | (1 << 15)));
2453
2454      bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2455      break;
2456   }
2457
2458   case nir_intrinsic_load_input:
2459      unreachable("nir_lower_io should never give us these.");
2460      break;
2461
2462   case nir_intrinsic_load_per_vertex_input: {
2463      fs_reg indirect_offset = get_indirect_offset(instr);
2464      unsigned imm_offset = instr->const_index[0];
2465
2466      const nir_src &vertex_src = instr->src[0];
2467      nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2468
2469      fs_inst *inst;
2470
2471      fs_reg icp_handle;
2472
2473      if (vertex_const) {
2474         /* Emit a MOV to resolve <0,1,0> regioning. */
2475         icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2476         bld.MOV(icp_handle,
2477                 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2478                                     vertex_const->i32[0] & 7),
2479                        BRW_REGISTER_TYPE_UD));
2480      } else if (tcs_prog_data->instances == 1 &&
2481                 vertex_src.is_ssa &&
2482                 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2483                 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2484         /* For the common case of only 1 instance, an array index of
2485          * gl_InvocationID means reading g1.  Skip all the indirect work.
2486          */
2487         icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2488      } else {
2489         /* The vertex index is non-constant.  We need to use indirect
2490          * addressing to fetch the proper URB handle.
2491          */
2492         icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2493
2494         /* Each ICP handle is a single DWord (4 bytes) */
2495         fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2496         bld.SHL(vertex_offset_bytes,
2497                 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2498                 brw_imm_ud(2u));
2499
2500         /* Start at g1.  We might read up to 4 registers. */
2501         bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2502                  retype(brw_vec8_grf(1, 0), icp_handle.type), vertex_offset_bytes,
2503                  brw_imm_ud(4 * REG_SIZE));
2504      }
2505
2506      /* We can only read two double components with each URB read, so
2507       * we send two read messages in that case, each one loading up to
2508       * two double components.
2509       */
2510      unsigned num_iterations = 1;
2511      unsigned num_components = instr->num_components;
2512      unsigned first_component = nir_intrinsic_component(instr);
2513      fs_reg orig_dst = dst;
2514      if (type_sz(dst.type) == 8) {
2515         first_component = first_component / 2;
2516         if (instr->num_components > 2) {
2517            num_iterations = 2;
2518            num_components = 2;
2519         }
2520
2521         fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2522         dst = tmp;
2523      }
2524
2525      for (unsigned iter = 0; iter < num_iterations; iter++) {
2526         if (indirect_offset.file == BAD_FILE) {
2527            /* Constant indexing - use global offset. */
2528            if (first_component != 0) {
2529               unsigned read_components = num_components + first_component;
2530               fs_reg tmp = bld.vgrf(dst.type, read_components);
2531               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, icp_handle);
2532               for (unsigned i = 0; i < num_components; i++) {
2533                  bld.MOV(offset(dst, bld, i),
2534                          offset(tmp, bld, i + first_component));
2535               }
2536            } else {
2537               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2538            }
2539            inst->offset = imm_offset;
2540            inst->mlen = 1;
2541         } else {
2542            /* Indirect indexing - use per-slot offsets as well. */
2543            const fs_reg srcs[] = { icp_handle, indirect_offset };
2544            fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2545            bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2546            if (first_component != 0) {
2547               unsigned read_components = num_components + first_component;
2548               fs_reg tmp = bld.vgrf(dst.type, read_components);
2549               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2550                               payload);
2551               for (unsigned i = 0; i < num_components; i++) {
2552                  bld.MOV(offset(dst, bld, i),
2553                          offset(tmp, bld, i + first_component));
2554               }
2555            } else {
2556               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2557                               payload);
2558            }
2559            inst->offset = imm_offset;
2560            inst->mlen = 2;
2561         }
2562         inst->size_written = (num_components + first_component) *
2563                              inst->dst.component_size(inst->exec_size);
2564
2565         /* If we are reading 64-bit data using 32-bit read messages we need
2566          * build proper 64-bit data elements by shuffling the low and high
2567          * 32-bit components around like we do for other things like UBOs
2568          * or SSBOs.
2569          */
2570         if (type_sz(dst.type) == 8) {
2571            shuffle_from_32bit_read(bld,
2572                                    offset(orig_dst, bld, iter * 2),
2573                                    retype(dst, BRW_REGISTER_TYPE_D),
2574                                    0, num_components);
2575         }
2576
2577         /* Copy the temporary to the destination to deal with writemasking.
2578          *
2579          * Also attempt to deal with gl_PointSize being in the .w component.
2580          */
2581         if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2582            assert(type_sz(dst.type) < 8);
2583            inst->dst = bld.vgrf(dst.type, 4);
2584            inst->size_written = 4 * REG_SIZE;
2585            bld.MOV(dst, offset(inst->dst, bld, 3));
2586         }
2587
2588         /* If we are loading double data and we need a second read message
2589          * adjust the write offset
2590          */
2591         if (num_iterations > 1) {
2592            num_components = instr->num_components - 2;
2593            imm_offset++;
2594         }
2595      }
2596      break;
2597   }
2598
2599   case nir_intrinsic_load_output:
2600   case nir_intrinsic_load_per_vertex_output: {
2601      fs_reg indirect_offset = get_indirect_offset(instr);
2602      unsigned imm_offset = instr->const_index[0];
2603      unsigned first_component = nir_intrinsic_component(instr);
2604
2605      fs_inst *inst;
2606      if (indirect_offset.file == BAD_FILE) {
2607         /* Replicate the patch handle to all enabled channels */
2608         fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2609         bld.MOV(patch_handle,
2610                 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2611
2612         {
2613            if (first_component != 0) {
2614               unsigned read_components =
2615                  instr->num_components + first_component;
2616               fs_reg tmp = bld.vgrf(dst.type, read_components);
2617               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2618                               patch_handle);
2619               inst->size_written = read_components * REG_SIZE;
2620               for (unsigned i = 0; i < instr->num_components; i++) {
2621                  bld.MOV(offset(dst, bld, i),
2622                          offset(tmp, bld, i + first_component));
2623               }
2624            } else {
2625               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
2626                               patch_handle);
2627               inst->size_written = instr->num_components * REG_SIZE;
2628            }
2629            inst->offset = imm_offset;
2630            inst->mlen = 1;
2631         }
2632      } else {
2633         /* Indirect indexing - use per-slot offsets as well. */
2634         const fs_reg srcs[] = {
2635            retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2636            indirect_offset
2637         };
2638         fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2639         bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2640         if (first_component != 0) {
2641            unsigned read_components =
2642               instr->num_components + first_component;
2643            fs_reg tmp = bld.vgrf(dst.type, read_components);
2644            inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2645                            payload);
2646            inst->size_written = read_components * REG_SIZE;
2647            for (unsigned i = 0; i < instr->num_components; i++) {
2648               bld.MOV(offset(dst, bld, i),
2649                       offset(tmp, bld, i + first_component));
2650            }
2651         } else {
2652            inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst,
2653                            payload);
2654            inst->size_written = instr->num_components * REG_SIZE;
2655         }
2656         inst->offset = imm_offset;
2657         inst->mlen = 2;
2658      }
2659      break;
2660   }
2661
2662   case nir_intrinsic_store_output:
2663   case nir_intrinsic_store_per_vertex_output: {
2664      fs_reg value = get_nir_src(instr->src[0]);
2665      bool is_64bit = (instr->src[0].is_ssa ?
2666         instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2667      fs_reg indirect_offset = get_indirect_offset(instr);
2668      unsigned imm_offset = instr->const_index[0];
2669      unsigned mask = instr->const_index[1];
2670      unsigned header_regs = 0;
2671      fs_reg srcs[7];
2672      srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2673
2674      if (indirect_offset.file != BAD_FILE) {
2675         srcs[header_regs++] = indirect_offset;
2676      }
2677
2678      if (mask == 0)
2679         break;
2680
2681      unsigned num_components = util_last_bit(mask);
2682      enum opcode opcode;
2683
2684      /* We can only pack two 64-bit components in a single message, so send
2685       * 2 messages if we have more components
2686       */
2687      unsigned num_iterations = 1;
2688      unsigned iter_components = num_components;
2689      unsigned first_component = nir_intrinsic_component(instr);
2690      if (is_64bit) {
2691         first_component = first_component / 2;
2692         if (instr->num_components > 2) {
2693            num_iterations = 2;
2694            iter_components = 2;
2695         }
2696      }
2697
2698      mask = mask << first_component;
2699
2700      for (unsigned iter = 0; iter < num_iterations; iter++) {
2701         if (!is_64bit && mask != WRITEMASK_XYZW) {
2702            srcs[header_regs++] = brw_imm_ud(mask << 16);
2703            opcode = indirect_offset.file != BAD_FILE ?
2704               SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2705               SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2706         } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2707            /* Expand the 64-bit mask to 32-bit channels. We only handle
2708             * two channels in each iteration, so we only care about X/Y.
2709             */
2710            unsigned mask32 = 0;
2711            if (mask & WRITEMASK_X)
2712               mask32 |= WRITEMASK_XY;
2713            if (mask & WRITEMASK_Y)
2714               mask32 |= WRITEMASK_ZW;
2715
2716            /* If the mask does not include any of the channels X or Y there
2717             * is nothing to do in this iteration. Move on to the next couple
2718             * of 64-bit channels.
2719             */
2720            if (!mask32) {
2721               mask >>= 2;
2722               imm_offset++;
2723               continue;
2724            }
2725
2726            srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2727            opcode = indirect_offset.file != BAD_FILE ?
2728               SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2729               SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2730         } else {
2731            opcode = indirect_offset.file != BAD_FILE ?
2732               SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2733               SHADER_OPCODE_URB_WRITE_SIMD8;
2734         }
2735
2736         for (unsigned i = 0; i < iter_components; i++) {
2737            if (!(mask & (1 << (i + first_component))))
2738               continue;
2739
2740            if (!is_64bit) {
2741               srcs[header_regs + i + first_component] = offset(value, bld, i);
2742            } else {
2743               /* We need to shuffle the 64-bit data to match the layout
2744                * expected by our 32-bit URB write messages. We use a temporary
2745                * for that.
2746                */
2747               unsigned channel = iter * 2 + i;
2748               fs_reg dest = shuffle_for_32bit_write(bld, value, channel, 1);
2749
2750               srcs[header_regs + (i + first_component) * 2] = dest;
2751               srcs[header_regs + (i + first_component) * 2 + 1] =
2752                  offset(dest, bld, 1);
2753            }
2754         }
2755
2756         unsigned mlen =
2757            header_regs + (is_64bit ? 2 * iter_components : iter_components) +
2758            (is_64bit ? 2 * first_component : first_component);
2759         fs_reg payload =
2760            bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2761         bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2762
2763         fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2764         inst->offset = imm_offset;
2765         inst->mlen = mlen;
2766
2767         /* If this is a 64-bit attribute, select the next two 64-bit channels
2768          * to be handled in the next iteration.
2769          */
2770         if (is_64bit) {
2771            mask >>= 2;
2772            imm_offset++;
2773         }
2774      }
2775      break;
2776   }
2777
2778   default:
2779      nir_emit_intrinsic(bld, instr);
2780      break;
2781   }
2782}
2783
2784void
2785fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2786                                   nir_intrinsic_instr *instr)
2787{
2788   assert(stage == MESA_SHADER_TESS_EVAL);
2789   struct brw_tes_prog_data *tes_prog_data = brw_tes_prog_data(prog_data);
2790
2791   fs_reg dest;
2792   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2793      dest = get_nir_dest(instr->dest);
2794
2795   switch (instr->intrinsic) {
2796   case nir_intrinsic_load_primitive_id:
2797      bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2798      break;
2799   case nir_intrinsic_load_tess_coord:
2800      /* gl_TessCoord is part of the payload in g1-3 */
2801      for (unsigned i = 0; i < 3; i++) {
2802         bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2803      }
2804      break;
2805
2806   case nir_intrinsic_load_input:
2807   case nir_intrinsic_load_per_vertex_input: {
2808      fs_reg indirect_offset = get_indirect_offset(instr);
2809      unsigned imm_offset = instr->const_index[0];
2810      unsigned first_component = nir_intrinsic_component(instr);
2811
2812      if (type_sz(dest.type) == 8) {
2813         first_component = first_component / 2;
2814      }
2815
2816      fs_inst *inst;
2817      if (indirect_offset.file == BAD_FILE) {
2818         /* Arbitrarily only push up to 32 vec4 slots worth of data,
2819          * which is 16 registers (since each holds 2 vec4 slots).
2820          */
2821         unsigned slot_count = 1;
2822         if (type_sz(dest.type) == 8 && instr->num_components > 2)
2823            slot_count++;
2824
2825         const unsigned max_push_slots = 32;
2826         if (imm_offset + slot_count <= max_push_slots) {
2827            fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2828            for (int i = 0; i < instr->num_components; i++) {
2829               unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) +
2830                  i + first_component;
2831               bld.MOV(offset(dest, bld, i), component(src, comp));
2832            }
2833
2834            tes_prog_data->base.urb_read_length =
2835               MAX2(tes_prog_data->base.urb_read_length,
2836                    DIV_ROUND_UP(imm_offset + slot_count, 2));
2837         } else {
2838            /* Replicate the patch handle to all enabled channels */
2839            const fs_reg srcs[] = {
2840               retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2841            };
2842            fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2843            bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2844
2845            if (first_component != 0) {
2846               unsigned read_components =
2847                  instr->num_components + first_component;
2848               fs_reg tmp = bld.vgrf(dest.type, read_components);
2849               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
2850                               patch_handle);
2851               inst->size_written = read_components * REG_SIZE;
2852               for (unsigned i = 0; i < instr->num_components; i++) {
2853                  bld.MOV(offset(dest, bld, i),
2854                          offset(tmp, bld, i + first_component));
2855               }
2856            } else {
2857               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest,
2858                               patch_handle);
2859               inst->size_written = instr->num_components * REG_SIZE;
2860            }
2861            inst->mlen = 1;
2862            inst->offset = imm_offset;
2863         }
2864      } else {
2865         /* Indirect indexing - use per-slot offsets as well. */
2866
2867         /* We can only read two double components with each URB read, so
2868          * we send two read messages in that case, each one loading up to
2869          * two double components.
2870          */
2871         unsigned num_iterations = 1;
2872         unsigned num_components = instr->num_components;
2873         fs_reg orig_dest = dest;
2874         if (type_sz(dest.type) == 8) {
2875            if (instr->num_components > 2) {
2876               num_iterations = 2;
2877               num_components = 2;
2878            }
2879            fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dest.type);
2880            dest = tmp;
2881         }
2882
2883         for (unsigned iter = 0; iter < num_iterations; iter++) {
2884            const fs_reg srcs[] = {
2885               retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2886               indirect_offset
2887            };
2888            fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2889            bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2890
2891            if (first_component != 0) {
2892               unsigned read_components =
2893                   num_components + first_component;
2894               fs_reg tmp = bld.vgrf(dest.type, read_components);
2895               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, tmp,
2896                               payload);
2897               for (unsigned i = 0; i < num_components; i++) {
2898                  bld.MOV(offset(dest, bld, i),
2899                          offset(tmp, bld, i + first_component));
2900               }
2901            } else {
2902               inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest,
2903                               payload);
2904            }
2905            inst->mlen = 2;
2906            inst->offset = imm_offset;
2907            inst->size_written = (num_components + first_component) *
2908                                 inst->dst.component_size(inst->exec_size);
2909
2910            /* If we are reading 64-bit data using 32-bit read messages we need
2911             * build proper 64-bit data elements by shuffling the low and high
2912             * 32-bit components around like we do for other things like UBOs
2913             * or SSBOs.
2914             */
2915            if (type_sz(dest.type) == 8) {
2916               shuffle_from_32bit_read(bld,
2917                                       offset(orig_dest, bld, iter * 2),
2918                                       retype(dest, BRW_REGISTER_TYPE_D),
2919                                       0, num_components);
2920            }
2921
2922            /* If we are loading double data and we need a second read message
2923             * adjust the offset
2924             */
2925            if (num_iterations > 1) {
2926               num_components = instr->num_components - 2;
2927               imm_offset++;
2928            }
2929         }
2930      }
2931      break;
2932   }
2933   default:
2934      nir_emit_intrinsic(bld, instr);
2935      break;
2936   }
2937}
2938
2939void
2940fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2941                                  nir_intrinsic_instr *instr)
2942{
2943   assert(stage == MESA_SHADER_GEOMETRY);
2944   fs_reg indirect_offset;
2945
2946   fs_reg dest;
2947   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2948      dest = get_nir_dest(instr->dest);
2949
2950   switch (instr->intrinsic) {
2951   case nir_intrinsic_load_primitive_id:
2952      assert(stage == MESA_SHADER_GEOMETRY);
2953      assert(brw_gs_prog_data(prog_data)->include_primitive_id);
2954      bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2955              retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2956      break;
2957
2958   case nir_intrinsic_load_input:
2959      unreachable("load_input intrinsics are invalid for the GS stage");
2960
2961   case nir_intrinsic_load_per_vertex_input:
2962      emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2963                         instr->src[1], instr->num_components,
2964                         nir_intrinsic_component(instr));
2965      break;
2966
2967   case nir_intrinsic_emit_vertex_with_counter:
2968      emit_gs_vertex(instr->src[0], instr->const_index[0]);
2969      break;
2970
2971   case nir_intrinsic_end_primitive_with_counter:
2972      emit_gs_end_primitive(instr->src[0]);
2973      break;
2974
2975   case nir_intrinsic_set_vertex_count:
2976      bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2977      break;
2978
2979   case nir_intrinsic_load_invocation_id: {
2980      fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2981      assert(val.file != BAD_FILE);
2982      dest.type = val.type;
2983      bld.MOV(dest, val);
2984      break;
2985   }
2986
2987   default:
2988      nir_emit_intrinsic(bld, instr);
2989      break;
2990   }
2991}
2992
2993/**
2994 * Fetch the current render target layer index.
2995 */
2996static fs_reg
2997fetch_render_target_array_index(const fs_builder &bld)
2998{
2999   if (bld.shader->devinfo->gen >= 6) {
3000      /* The render target array index is provided in the thread payload as
3001       * bits 26:16 of r0.0.
3002       */
3003      const fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_UD);
3004      bld.AND(idx, brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, 0, 1),
3005              brw_imm_uw(0x7ff));
3006      return idx;
3007   } else {
3008      /* Pre-SNB we only ever render into the first layer of the framebuffer
3009       * since layered rendering is not implemented.
3010       */
3011      return brw_imm_ud(0);
3012   }
3013}
3014
3015/**
3016 * Fake non-coherent framebuffer read implemented using TXF to fetch from the
3017 * framebuffer at the current fragment coordinates and sample index.
3018 */
3019fs_inst *
3020fs_visitor::emit_non_coherent_fb_read(const fs_builder &bld, const fs_reg &dst,
3021                                      unsigned target)
3022{
3023   const struct gen_device_info *devinfo = bld.shader->devinfo;
3024
3025   assert(bld.shader->stage == MESA_SHADER_FRAGMENT);
3026   const brw_wm_prog_key *wm_key =
3027      reinterpret_cast<const brw_wm_prog_key *>(key);
3028   assert(!wm_key->coherent_fb_fetch);
3029   const struct brw_wm_prog_data *wm_prog_data =
3030      brw_wm_prog_data(stage_prog_data);
3031
3032   /* Calculate the surface index relative to the start of the texture binding
3033    * table block, since that's what the texturing messages expect.
3034    */
3035   const unsigned surface = target +
3036      wm_prog_data->binding_table.render_target_read_start -
3037      wm_prog_data->base.binding_table.texture_start;
3038
3039   brw_mark_surface_used(
3040      bld.shader->stage_prog_data,
3041      wm_prog_data->binding_table.render_target_read_start + target);
3042
3043   /* Calculate the fragment coordinates. */
3044   const fs_reg coords = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
3045   bld.MOV(offset(coords, bld, 0), pixel_x);
3046   bld.MOV(offset(coords, bld, 1), pixel_y);
3047   bld.MOV(offset(coords, bld, 2), fetch_render_target_array_index(bld));
3048
3049   /* Calculate the sample index and MCS payload when multisampling.  Luckily
3050    * the MCS fetch message behaves deterministically for UMS surfaces, so it
3051    * shouldn't be necessary to recompile based on whether the framebuffer is
3052    * CMS or UMS.
3053    */
3054   if (wm_key->multisample_fbo &&
3055       nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
3056      nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
3057
3058   const fs_reg sample = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
3059   const fs_reg mcs = wm_key->multisample_fbo ?
3060      emit_mcs_fetch(coords, 3, brw_imm_ud(surface)) : fs_reg();
3061
3062   /* Use either a normal or a CMS texel fetch message depending on whether
3063    * the framebuffer is single or multisample.  On SKL+ use the wide CMS
3064    * message just in case the framebuffer uses 16x multisampling, it should
3065    * be equivalent to the normal CMS fetch for lower multisampling modes.
3066    */
3067   const opcode op = !wm_key->multisample_fbo ? SHADER_OPCODE_TXF_LOGICAL :
3068                     devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W_LOGICAL :
3069                     SHADER_OPCODE_TXF_CMS_LOGICAL;
3070
3071   /* Emit the instruction. */
3072   const fs_reg srcs[] = { coords, fs_reg(), brw_imm_ud(0), fs_reg(),
3073                           sample, mcs,
3074                           brw_imm_ud(surface), brw_imm_ud(0),
3075                           fs_reg(), brw_imm_ud(3), brw_imm_ud(0) };
3076   STATIC_ASSERT(ARRAY_SIZE(srcs) == TEX_LOGICAL_NUM_SRCS);
3077
3078   fs_inst *inst = bld.emit(op, dst, srcs, ARRAY_SIZE(srcs));
3079   inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3080
3081   return inst;
3082}
3083
3084/**
3085 * Actual coherent framebuffer read implemented using the native render target
3086 * read message.  Requires SKL+.
3087 */
3088static fs_inst *
3089emit_coherent_fb_read(const fs_builder &bld, const fs_reg &dst, unsigned target)
3090{
3091   assert(bld.shader->devinfo->gen >= 9);
3092   fs_inst *inst = bld.emit(FS_OPCODE_FB_READ_LOGICAL, dst);
3093   inst->target = target;
3094   inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
3095
3096   return inst;
3097}
3098
3099static fs_reg
3100alloc_temporary(const fs_builder &bld, unsigned size, fs_reg *regs, unsigned n)
3101{
3102   if (n && regs[0].file != BAD_FILE) {
3103      return regs[0];
3104
3105   } else {
3106      const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, size);
3107
3108      for (unsigned i = 0; i < n; i++)
3109         regs[i] = tmp;
3110
3111      return tmp;
3112   }
3113}
3114
3115static fs_reg
3116alloc_frag_output(fs_visitor *v, unsigned location)
3117{
3118   assert(v->stage == MESA_SHADER_FRAGMENT);
3119   const brw_wm_prog_key *const key =
3120      reinterpret_cast<const brw_wm_prog_key *>(v->key);
3121   const unsigned l = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_LOCATION);
3122   const unsigned i = GET_FIELD(location, BRW_NIR_FRAG_OUTPUT_INDEX);
3123
3124   if (i > 0 || (key->force_dual_color_blend && l == FRAG_RESULT_DATA1))
3125      return alloc_temporary(v->bld, 4, &v->dual_src_output, 1);
3126
3127   else if (l == FRAG_RESULT_COLOR)
3128      return alloc_temporary(v->bld, 4, v->outputs,
3129                             MAX2(key->nr_color_regions, 1));
3130
3131   else if (l == FRAG_RESULT_DEPTH)
3132      return alloc_temporary(v->bld, 1, &v->frag_depth, 1);
3133
3134   else if (l == FRAG_RESULT_STENCIL)
3135      return alloc_temporary(v->bld, 1, &v->frag_stencil, 1);
3136
3137   else if (l == FRAG_RESULT_SAMPLE_MASK)
3138      return alloc_temporary(v->bld, 1, &v->sample_mask, 1);
3139
3140   else if (l >= FRAG_RESULT_DATA0 &&
3141            l < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS)
3142      return alloc_temporary(v->bld, 4,
3143                             &v->outputs[l - FRAG_RESULT_DATA0], 1);
3144
3145   else
3146      unreachable("Invalid location");
3147}
3148
3149void
3150fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
3151                                  nir_intrinsic_instr *instr)
3152{
3153   assert(stage == MESA_SHADER_FRAGMENT);
3154
3155   fs_reg dest;
3156   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3157      dest = get_nir_dest(instr->dest);
3158
3159   switch (instr->intrinsic) {
3160   case nir_intrinsic_load_front_face:
3161      bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
3162              *emit_frontfacing_interpolation());
3163      break;
3164
3165   case nir_intrinsic_load_sample_pos: {
3166      fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
3167      assert(sample_pos.file != BAD_FILE);
3168      dest.type = sample_pos.type;
3169      bld.MOV(dest, sample_pos);
3170      bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
3171      break;
3172   }
3173
3174   case nir_intrinsic_load_layer_id:
3175      dest.type = BRW_REGISTER_TYPE_UD;
3176      bld.MOV(dest, fetch_render_target_array_index(bld));
3177      break;
3178
3179   case nir_intrinsic_load_helper_invocation:
3180   case nir_intrinsic_load_sample_mask_in:
3181   case nir_intrinsic_load_sample_id: {
3182      gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3183      fs_reg val = nir_system_values[sv];
3184      assert(val.file != BAD_FILE);
3185      dest.type = val.type;
3186      bld.MOV(dest, val);
3187      break;
3188   }
3189
3190   case nir_intrinsic_store_output: {
3191      const fs_reg src = get_nir_src(instr->src[0]);
3192      const nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3193      assert(const_offset && "Indirect output stores not allowed");
3194      const unsigned location = nir_intrinsic_base(instr) +
3195         SET_FIELD(const_offset->u32[0], BRW_NIR_FRAG_OUTPUT_LOCATION);
3196      const fs_reg new_dest = retype(alloc_frag_output(this, location),
3197                                     src.type);
3198
3199      for (unsigned j = 0; j < instr->num_components; j++)
3200         bld.MOV(offset(new_dest, bld, nir_intrinsic_component(instr) + j),
3201                 offset(src, bld, j));
3202
3203      break;
3204   }
3205
3206   case nir_intrinsic_load_output: {
3207      const unsigned l = GET_FIELD(nir_intrinsic_base(instr),
3208                                   BRW_NIR_FRAG_OUTPUT_LOCATION);
3209      assert(l >= FRAG_RESULT_DATA0);
3210      nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3211      assert(const_offset && "Indirect output loads not allowed");
3212      const unsigned target = l - FRAG_RESULT_DATA0 + const_offset->u32[0];
3213      const fs_reg tmp = bld.vgrf(dest.type, 4);
3214
3215      if (reinterpret_cast<const brw_wm_prog_key *>(key)->coherent_fb_fetch)
3216         emit_coherent_fb_read(bld, tmp, target);
3217      else
3218         emit_non_coherent_fb_read(bld, tmp, target);
3219
3220      for (unsigned j = 0; j < instr->num_components; j++) {
3221         bld.MOV(offset(dest, bld, j),
3222                 offset(tmp, bld, nir_intrinsic_component(instr) + j));
3223      }
3224
3225      break;
3226   }
3227
3228   case nir_intrinsic_discard:
3229   case nir_intrinsic_discard_if: {
3230      /* We track our discarded pixels in f0.1.  By predicating on it, we can
3231       * update just the flag bits that aren't yet discarded.  If there's no
3232       * condition, we emit a CMP of g0 != g0, so all currently executing
3233       * channels will get turned off.
3234       */
3235      fs_inst *cmp;
3236      if (instr->intrinsic == nir_intrinsic_discard_if) {
3237         cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
3238                       brw_imm_d(0), BRW_CONDITIONAL_Z);
3239      } else {
3240         fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
3241                                       BRW_REGISTER_TYPE_UW));
3242         cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
3243      }
3244      cmp->predicate = BRW_PREDICATE_NORMAL;
3245      cmp->flag_subreg = 1;
3246
3247      if (devinfo->gen >= 6) {
3248         emit_discard_jump();
3249      }
3250
3251      limit_dispatch_width(16, "Fragment discard not implemented in SIMD32 mode.");
3252      break;
3253   }
3254
3255   case nir_intrinsic_load_input: {
3256      /* load_input is only used for flat inputs */
3257      unsigned base = nir_intrinsic_base(instr);
3258      unsigned comp = nir_intrinsic_component(instr);
3259      unsigned num_components = instr->num_components;
3260      fs_reg orig_dest = dest;
3261      enum brw_reg_type type = dest.type;
3262
3263      /* Special case fields in the VUE header */
3264      if (base == VARYING_SLOT_LAYER)
3265         comp = 1;
3266      else if (base == VARYING_SLOT_VIEWPORT)
3267         comp = 2;
3268
3269      if (nir_dest_bit_size(instr->dest) == 64) {
3270         /* const_index is in 32-bit type size units that could not be aligned
3271          * with DF. We need to read the double vector as if it was a float
3272          * vector of twice the number of components to fetch the right data.
3273          */
3274         type = BRW_REGISTER_TYPE_F;
3275         num_components *= 2;
3276         dest = bld.vgrf(type, num_components);
3277      }
3278
3279      for (unsigned int i = 0; i < num_components; i++) {
3280         bld.MOV(offset(retype(dest, type), bld, i),
3281                 retype(component(interp_reg(base, comp + i), 3), type));
3282      }
3283
3284      if (nir_dest_bit_size(instr->dest) == 64) {
3285         shuffle_from_32bit_read(bld, orig_dest, dest, 0,
3286                                 instr->num_components);
3287      }
3288      break;
3289   }
3290
3291   case nir_intrinsic_load_barycentric_pixel:
3292   case nir_intrinsic_load_barycentric_centroid:
3293   case nir_intrinsic_load_barycentric_sample:
3294      /* Do nothing - load_interpolated_input handling will handle it later. */
3295      break;
3296
3297   case nir_intrinsic_load_barycentric_at_sample: {
3298      const glsl_interp_mode interpolation =
3299         (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3300
3301      nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3302
3303      if (const_sample) {
3304         unsigned msg_data = const_sample->i32[0] << 4;
3305
3306         emit_pixel_interpolater_send(bld,
3307                                      FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3308                                      dest,
3309                                      fs_reg(), /* src */
3310                                      brw_imm_ud(msg_data),
3311                                      interpolation);
3312      } else {
3313         const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3314                                          BRW_REGISTER_TYPE_UD);
3315
3316         if (nir_src_is_dynamically_uniform(instr->src[0])) {
3317            const fs_reg sample_id = bld.emit_uniformize(sample_src);
3318            const fs_reg msg_data = vgrf(glsl_type::uint_type);
3319            bld.exec_all().group(1, 0)
3320               .SHL(msg_data, sample_id, brw_imm_ud(4u));
3321            emit_pixel_interpolater_send(bld,
3322                                         FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3323                                         dest,
3324                                         fs_reg(), /* src */
3325                                         msg_data,
3326                                         interpolation);
3327         } else {
3328            /* Make a loop that sends a message to the pixel interpolater
3329             * for the sample number in each live channel. If there are
3330             * multiple channels with the same sample number then these
3331             * will be handled simultaneously with a single interation of
3332             * the loop.
3333             */
3334            bld.emit(BRW_OPCODE_DO);
3335
3336            /* Get the next live sample number into sample_id_reg */
3337            const fs_reg sample_id = bld.emit_uniformize(sample_src);
3338
3339            /* Set the flag register so that we can perform the send
3340             * message on all channels that have the same sample number
3341             */
3342            bld.CMP(bld.null_reg_ud(),
3343                    sample_src, sample_id,
3344                    BRW_CONDITIONAL_EQ);
3345            const fs_reg msg_data = vgrf(glsl_type::uint_type);
3346            bld.exec_all().group(1, 0)
3347               .SHL(msg_data, sample_id, brw_imm_ud(4u));
3348            fs_inst *inst =
3349               emit_pixel_interpolater_send(bld,
3350                                            FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3351                                            dest,
3352                                            fs_reg(), /* src */
3353                                            component(msg_data, 0),
3354                                            interpolation);
3355            set_predicate(BRW_PREDICATE_NORMAL, inst);
3356
3357            /* Continue the loop if there are any live channels left */
3358            set_predicate_inv(BRW_PREDICATE_NORMAL,
3359                              true, /* inverse */
3360                              bld.emit(BRW_OPCODE_WHILE));
3361         }
3362      }
3363      break;
3364   }
3365
3366   case nir_intrinsic_load_barycentric_at_offset: {
3367      const glsl_interp_mode interpolation =
3368         (enum glsl_interp_mode) nir_intrinsic_interp_mode(instr);
3369
3370      nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3371
3372      if (const_offset) {
3373         unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3374         unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3375
3376         emit_pixel_interpolater_send(bld,
3377                                      FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3378                                      dest,
3379                                      fs_reg(), /* src */
3380                                      brw_imm_ud(off_x | (off_y << 4)),
3381                                      interpolation);
3382      } else {
3383         fs_reg src = vgrf(glsl_type::ivec2_type);
3384         fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3385                                    BRW_REGISTER_TYPE_F);
3386         for (int i = 0; i < 2; i++) {
3387            fs_reg temp = vgrf(glsl_type::float_type);
3388            bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3389            fs_reg itemp = vgrf(glsl_type::int_type);
3390            /* float to int */
3391            bld.MOV(itemp, temp);
3392
3393            /* Clamp the upper end of the range to +7/16.
3394             * ARB_gpu_shader5 requires that we support a maximum offset
3395             * of +0.5, which isn't representable in a S0.4 value -- if
3396             * we didn't clamp it, we'd end up with -8/16, which is the
3397             * opposite of what the shader author wanted.
3398             *
3399             * This is legal due to ARB_gpu_shader5's quantization
3400             * rules:
3401             *
3402             * "Not all values of <offset> may be supported; x and y
3403             * offsets may be rounded to fixed-point values with the
3404             * number of fraction bits given by the
3405             * implementation-dependent constant
3406             * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3407             */
3408            set_condmod(BRW_CONDITIONAL_L,
3409                        bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3410         }
3411
3412         const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3413         emit_pixel_interpolater_send(bld,
3414                                      opcode,
3415                                      dest,
3416                                      src,
3417                                      brw_imm_ud(0u),
3418                                      interpolation);
3419      }
3420      break;
3421   }
3422
3423   case nir_intrinsic_load_interpolated_input: {
3424      if (nir_intrinsic_base(instr) == VARYING_SLOT_POS) {
3425         emit_fragcoord_interpolation(dest);
3426         break;
3427      }
3428
3429      assert(instr->src[0].ssa &&
3430             instr->src[0].ssa->parent_instr->type == nir_instr_type_intrinsic);
3431      nir_intrinsic_instr *bary_intrinsic =
3432         nir_instr_as_intrinsic(instr->src[0].ssa->parent_instr);
3433      nir_intrinsic_op bary_intrin = bary_intrinsic->intrinsic;
3434      enum glsl_interp_mode interp_mode =
3435         (enum glsl_interp_mode) nir_intrinsic_interp_mode(bary_intrinsic);
3436      fs_reg dst_xy;
3437
3438      if (bary_intrin == nir_intrinsic_load_barycentric_at_offset ||
3439          bary_intrin == nir_intrinsic_load_barycentric_at_sample) {
3440         /* Use the result of the PI message */
3441         dst_xy = retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_F);
3442      } else {
3443         /* Use the delta_xy values computed from the payload */
3444         enum brw_barycentric_mode bary =
3445            brw_barycentric_mode(interp_mode, bary_intrin);
3446
3447         dst_xy = this->delta_xy[bary];
3448      }
3449
3450      for (unsigned int i = 0; i < instr->num_components; i++) {
3451         fs_reg interp =
3452            component(interp_reg(nir_intrinsic_base(instr),
3453                                 nir_intrinsic_component(instr) + i), 0);
3454         interp.type = BRW_REGISTER_TYPE_F;
3455         dest.type = BRW_REGISTER_TYPE_F;
3456
3457         if (devinfo->gen < 6 && interp_mode == INTERP_MODE_SMOOTH) {
3458            fs_reg tmp = vgrf(glsl_type::float_type);
3459            bld.emit(FS_OPCODE_LINTERP, tmp, dst_xy, interp);
3460            bld.MUL(offset(dest, bld, i), tmp, this->pixel_w);
3461         } else {
3462            bld.emit(FS_OPCODE_LINTERP, offset(dest, bld, i), dst_xy, interp);
3463         }
3464      }
3465      break;
3466   }
3467
3468   default:
3469      nir_emit_intrinsic(bld, instr);
3470      break;
3471   }
3472}
3473
3474static int
3475get_op_for_atomic_add(nir_intrinsic_instr *instr, unsigned src)
3476{
3477   const nir_const_value *const val = nir_src_as_const_value(instr->src[src]);
3478
3479   if (val != NULL) {
3480      if (val->i32[0] == 1)
3481         return BRW_AOP_INC;
3482      else if (val->i32[0] == -1)
3483         return BRW_AOP_DEC;
3484   }
3485
3486   return BRW_AOP_ADD;
3487}
3488
3489void
3490fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3491                                  nir_intrinsic_instr *instr)
3492{
3493   assert(stage == MESA_SHADER_COMPUTE);
3494   struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
3495
3496   fs_reg dest;
3497   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3498      dest = get_nir_dest(instr->dest);
3499
3500   switch (instr->intrinsic) {
3501   case nir_intrinsic_barrier:
3502      emit_barrier();
3503      cs_prog_data->uses_barrier = true;
3504      break;
3505
3506   case nir_intrinsic_load_subgroup_id:
3507      bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), subgroup_id);
3508      break;
3509
3510   case nir_intrinsic_load_local_invocation_id:
3511   case nir_intrinsic_load_work_group_id: {
3512      gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3513      fs_reg val = nir_system_values[sv];
3514      assert(val.file != BAD_FILE);
3515      dest.type = val.type;
3516      for (unsigned i = 0; i < 3; i++)
3517         bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3518      break;
3519   }
3520
3521   case nir_intrinsic_load_num_work_groups: {
3522      const unsigned surface =
3523         cs_prog_data->binding_table.work_groups_start;
3524
3525      cs_prog_data->uses_num_work_groups = true;
3526
3527      fs_reg surf_index = brw_imm_ud(surface);
3528      brw_mark_surface_used(prog_data, surface);
3529
3530      /* Read the 3 GLuint components of gl_NumWorkGroups */
3531      for (unsigned i = 0; i < 3; i++) {
3532         fs_reg read_result =
3533            emit_untyped_read(bld, surf_index,
3534                              brw_imm_ud(i << 2),
3535                              1 /* dims */, 1 /* size */,
3536                              BRW_PREDICATE_NONE);
3537         read_result.type = dest.type;
3538         bld.MOV(dest, read_result);
3539         dest = offset(dest, bld, 1);
3540      }
3541      break;
3542   }
3543
3544   case nir_intrinsic_shared_atomic_add:
3545      nir_emit_shared_atomic(bld, get_op_for_atomic_add(instr, 1), instr);
3546      break;
3547   case nir_intrinsic_shared_atomic_imin:
3548      nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3549      break;
3550   case nir_intrinsic_shared_atomic_umin:
3551      nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3552      break;
3553   case nir_intrinsic_shared_atomic_imax:
3554      nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3555      break;
3556   case nir_intrinsic_shared_atomic_umax:
3557      nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3558      break;
3559   case nir_intrinsic_shared_atomic_and:
3560      nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3561      break;
3562   case nir_intrinsic_shared_atomic_or:
3563      nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3564      break;
3565   case nir_intrinsic_shared_atomic_xor:
3566      nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3567      break;
3568   case nir_intrinsic_shared_atomic_exchange:
3569      nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3570      break;
3571   case nir_intrinsic_shared_atomic_comp_swap:
3572      nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3573      break;
3574   case nir_intrinsic_shared_atomic_fmin:
3575      nir_emit_shared_atomic_float(bld, BRW_AOP_FMIN, instr);
3576      break;
3577   case nir_intrinsic_shared_atomic_fmax:
3578      nir_emit_shared_atomic_float(bld, BRW_AOP_FMAX, instr);
3579      break;
3580   case nir_intrinsic_shared_atomic_fcomp_swap:
3581      nir_emit_shared_atomic_float(bld, BRW_AOP_FCMPWR, instr);
3582      break;
3583
3584   case nir_intrinsic_load_shared: {
3585      assert(devinfo->gen >= 7);
3586
3587      fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3588
3589      /* Get the offset to read from */
3590      fs_reg offset_reg;
3591      nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3592      if (const_offset) {
3593         offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3594      } else {
3595         offset_reg = vgrf(glsl_type::uint_type);
3596         bld.ADD(offset_reg,
3597                 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3598                 brw_imm_ud(instr->const_index[0]));
3599      }
3600
3601      /* Read the vector */
3602      do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3603                             instr->num_components);
3604      break;
3605   }
3606
3607   case nir_intrinsic_store_shared: {
3608      assert(devinfo->gen >= 7);
3609
3610      /* Block index */
3611      fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3612
3613      /* Value */
3614      fs_reg val_reg = get_nir_src(instr->src[0]);
3615
3616      /* Writemask */
3617      unsigned writemask = instr->const_index[1];
3618
3619      /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3620       * since the untyped writes below operate in units of 32-bits, which
3621       * means that we need to write twice as many components each time.
3622       * Also, we have to suffle 64-bit data to be in the appropriate layout
3623       * expected by our 32-bit write messages.
3624       */
3625      unsigned type_size = 4;
3626      if (nir_src_bit_size(instr->src[0]) == 64) {
3627         type_size = 8;
3628         val_reg = shuffle_for_32bit_write(bld, val_reg, 0,
3629                                           instr->num_components);
3630      }
3631
3632      unsigned type_slots = type_size / 4;
3633
3634      /* Combine groups of consecutive enabled channels in one write
3635       * message. We use ffs to find the first enabled channel and then ffs on
3636       * the bit-inverse, down-shifted writemask to determine the length of
3637       * the block of enabled bits.
3638       */
3639      while (writemask) {
3640         unsigned first_component = ffs(writemask) - 1;
3641         unsigned length = ffs(~(writemask >> first_component)) - 1;
3642
3643         /* We can't write more than 2 64-bit components at once. Limit the
3644          * length of the write to what we can do and let the next iteration
3645          * handle the rest
3646          */
3647         if (type_size > 4)
3648            length = MIN2(2, length);
3649
3650         fs_reg offset_reg;
3651         nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3652         if (const_offset) {
3653            offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3654                                    type_size * first_component);
3655         } else {
3656            offset_reg = vgrf(glsl_type::uint_type);
3657            bld.ADD(offset_reg,
3658                    retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3659                    brw_imm_ud(instr->const_index[0] + type_size * first_component));
3660         }
3661
3662         emit_untyped_write(bld, surf_index, offset_reg,
3663                            offset(val_reg, bld, first_component * type_slots),
3664                            1 /* dims */, length * type_slots,
3665                            BRW_PREDICATE_NONE);
3666
3667         /* Clear the bits in the writemask that we just wrote, then try
3668          * again to see if more channels are left.
3669          */
3670         writemask &= (15 << (first_component + length));
3671      }
3672
3673      break;
3674   }
3675
3676   default:
3677      nir_emit_intrinsic(bld, instr);
3678      break;
3679   }
3680}
3681
3682static fs_reg
3683brw_nir_reduction_op_identity(const fs_builder &bld,
3684                              nir_op op, brw_reg_type type)
3685{
3686   nir_const_value value = nir_alu_binop_identity(op, type_sz(type) * 8);
3687   switch (type_sz(type)) {
3688   case 2:
3689      assert(type != BRW_REGISTER_TYPE_HF);
3690      return retype(brw_imm_uw(value.u16[0]), type);
3691   case 4:
3692      return retype(brw_imm_ud(value.u32[0]), type);
3693   case 8:
3694      if (type == BRW_REGISTER_TYPE_DF)
3695         return setup_imm_df(bld, value.f64[0]);
3696      else
3697         return retype(brw_imm_u64(value.u64[0]), type);
3698   default:
3699      unreachable("Invalid type size");
3700   }
3701}
3702
3703static opcode
3704brw_op_for_nir_reduction_op(nir_op op)
3705{
3706   switch (op) {
3707   case nir_op_iadd: return BRW_OPCODE_ADD;
3708   case nir_op_fadd: return BRW_OPCODE_ADD;
3709   case nir_op_imul: return BRW_OPCODE_MUL;
3710   case nir_op_fmul: return BRW_OPCODE_MUL;
3711   case nir_op_imin: return BRW_OPCODE_SEL;
3712   case nir_op_umin: return BRW_OPCODE_SEL;
3713   case nir_op_fmin: return BRW_OPCODE_SEL;
3714   case nir_op_imax: return BRW_OPCODE_SEL;
3715   case nir_op_umax: return BRW_OPCODE_SEL;
3716   case nir_op_fmax: return BRW_OPCODE_SEL;
3717   case nir_op_iand: return BRW_OPCODE_AND;
3718   case nir_op_ior:  return BRW_OPCODE_OR;
3719   case nir_op_ixor: return BRW_OPCODE_XOR;
3720   default:
3721      unreachable("Invalid reduction operation");
3722   }
3723}
3724
3725static brw_conditional_mod
3726brw_cond_mod_for_nir_reduction_op(nir_op op)
3727{
3728   switch (op) {
3729   case nir_op_iadd: return BRW_CONDITIONAL_NONE;
3730   case nir_op_fadd: return BRW_CONDITIONAL_NONE;
3731   case nir_op_imul: return BRW_CONDITIONAL_NONE;
3732   case nir_op_fmul: return BRW_CONDITIONAL_NONE;
3733   case nir_op_imin: return BRW_CONDITIONAL_L;
3734   case nir_op_umin: return BRW_CONDITIONAL_L;
3735   case nir_op_fmin: return BRW_CONDITIONAL_L;
3736   case nir_op_imax: return BRW_CONDITIONAL_GE;
3737   case nir_op_umax: return BRW_CONDITIONAL_GE;
3738   case nir_op_fmax: return BRW_CONDITIONAL_GE;
3739   case nir_op_iand: return BRW_CONDITIONAL_NONE;
3740   case nir_op_ior:  return BRW_CONDITIONAL_NONE;
3741   case nir_op_ixor: return BRW_CONDITIONAL_NONE;
3742   default:
3743      unreachable("Invalid reduction operation");
3744   }
3745}
3746
3747fs_reg
3748fs_visitor::get_nir_image_intrinsic_image(const brw::fs_builder &bld,
3749                                          nir_intrinsic_instr *instr)
3750{
3751   fs_reg image = retype(get_nir_src_imm(instr->src[0]), BRW_REGISTER_TYPE_UD);
3752
3753   if (stage_prog_data->binding_table.image_start > 0) {
3754      if (image.file == BRW_IMMEDIATE_VALUE) {
3755         image.d += stage_prog_data->binding_table.image_start;
3756      } else {
3757         bld.ADD(image, image,
3758                 brw_imm_d(stage_prog_data->binding_table.image_start));
3759      }
3760   }
3761
3762   return bld.emit_uniformize(image);
3763}
3764
3765static unsigned
3766image_intrinsic_coord_components(nir_intrinsic_instr *instr)
3767{
3768   switch (nir_intrinsic_image_dim(instr)) {
3769   case GLSL_SAMPLER_DIM_1D:
3770      return 1 + nir_intrinsic_image_array(instr);
3771   case GLSL_SAMPLER_DIM_2D:
3772   case GLSL_SAMPLER_DIM_RECT:
3773      return 2 + nir_intrinsic_image_array(instr);
3774   case GLSL_SAMPLER_DIM_3D:
3775   case GLSL_SAMPLER_DIM_CUBE:
3776      return 3;
3777   case GLSL_SAMPLER_DIM_BUF:
3778      return 1;
3779   case GLSL_SAMPLER_DIM_MS:
3780      return 2 + nir_intrinsic_image_array(instr);
3781   default:
3782      unreachable("Invalid image dimension");
3783   }
3784}
3785
3786void
3787fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3788{
3789   fs_reg dest;
3790   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3791      dest = get_nir_dest(instr->dest);
3792
3793   switch (instr->intrinsic) {
3794   case nir_intrinsic_image_load:
3795   case nir_intrinsic_image_store:
3796   case nir_intrinsic_image_atomic_add:
3797   case nir_intrinsic_image_atomic_min:
3798   case nir_intrinsic_image_atomic_max:
3799   case nir_intrinsic_image_atomic_and:
3800   case nir_intrinsic_image_atomic_or:
3801   case nir_intrinsic_image_atomic_xor:
3802   case nir_intrinsic_image_atomic_exchange:
3803   case nir_intrinsic_image_atomic_comp_swap: {
3804      if (stage == MESA_SHADER_FRAGMENT &&
3805          instr->intrinsic != nir_intrinsic_image_load)
3806         brw_wm_prog_data(prog_data)->has_side_effects = true;
3807
3808      /* Get some metadata from the image intrinsic. */
3809      const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3810      const unsigned dims = image_intrinsic_coord_components(instr);
3811      const GLenum format = nir_intrinsic_format(instr);
3812      const unsigned dest_components = nir_intrinsic_dest_components(instr);
3813
3814      /* Get the arguments of the image intrinsic. */
3815      const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3816      const fs_reg coords = retype(get_nir_src(instr->src[1]),
3817                                   BRW_REGISTER_TYPE_UD);
3818      fs_reg tmp;
3819
3820      /* Emit an image load, store or atomic op. */
3821      if (instr->intrinsic == nir_intrinsic_image_load) {
3822         tmp = emit_typed_read(bld, image, coords, dims,
3823                               instr->num_components);
3824      } else if (instr->intrinsic == nir_intrinsic_image_store) {
3825         const fs_reg src0 = get_nir_src(instr->src[3]);
3826         emit_typed_write(bld, image, coords, src0, dims,
3827                          instr->num_components);
3828      } else {
3829         int op;
3830         unsigned num_srcs = info->num_srcs;
3831
3832         switch (instr->intrinsic) {
3833         case nir_intrinsic_image_atomic_add:
3834            assert(num_srcs == 4);
3835
3836            op = get_op_for_atomic_add(instr, 3);
3837
3838            if (op != BRW_AOP_ADD)
3839               num_srcs = 3;
3840            break;
3841         case nir_intrinsic_image_atomic_min:
3842            assert(format == GL_R32UI || format == GL_R32I);
3843            op = (format == GL_R32I) ? BRW_AOP_IMIN : BRW_AOP_UMIN;
3844            break;
3845         case nir_intrinsic_image_atomic_max:
3846            assert(format == GL_R32UI || format == GL_R32I);
3847            op = (format == GL_R32I) ? BRW_AOP_IMAX : BRW_AOP_UMAX;
3848            break;
3849         case nir_intrinsic_image_atomic_and:
3850            op = BRW_AOP_AND;
3851            break;
3852         case nir_intrinsic_image_atomic_or:
3853            op = BRW_AOP_OR;
3854            break;
3855         case nir_intrinsic_image_atomic_xor:
3856            op = BRW_AOP_XOR;
3857            break;
3858         case nir_intrinsic_image_atomic_exchange:
3859            op = BRW_AOP_MOV;
3860            break;
3861         case nir_intrinsic_image_atomic_comp_swap:
3862            op = BRW_AOP_CMPWR;
3863            break;
3864         default:
3865            unreachable("Not reachable.");
3866         }
3867
3868         const fs_reg src0 = (num_srcs >= 4 ?
3869                              get_nir_src(instr->src[3]) : fs_reg());
3870         const fs_reg src1 = (num_srcs >= 5 ?
3871                              get_nir_src(instr->src[4]) : fs_reg());
3872
3873         tmp = emit_typed_atomic(bld, image, coords, src0, src1, dims, 1, op);
3874      }
3875
3876      /* Assign the result. */
3877      for (unsigned c = 0; c < dest_components; ++c) {
3878         bld.MOV(offset(retype(dest, tmp.type), bld, c),
3879                 offset(tmp, bld, c));
3880      }
3881      break;
3882   }
3883
3884   case nir_intrinsic_image_size: {
3885      /* Unlike the [un]typed load and store opcodes, the TXS that this turns
3886       * into will handle the binding table index for us in the geneerator.
3887       */
3888      fs_reg image = retype(get_nir_src_imm(instr->src[0]),
3889                            BRW_REGISTER_TYPE_UD);
3890      image = bld.emit_uniformize(image);
3891
3892      /* Since the image size is always uniform, we can just emit a SIMD8
3893       * query instruction and splat the result out.
3894       */
3895      const fs_builder ubld = bld.exec_all().group(8, 0);
3896
3897      /* The LOD also serves as the message payload */
3898      fs_reg lod = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3899      ubld.MOV(lod, brw_imm_ud(0));
3900
3901      fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3902      fs_inst *inst = ubld.emit(SHADER_OPCODE_IMAGE_SIZE, tmp, lod, image);
3903      inst->mlen = 1;
3904      inst->size_written = 4 * REG_SIZE;
3905
3906      for (unsigned c = 0; c < instr->dest.ssa.num_components; ++c) {
3907         if (c == 2 && nir_intrinsic_image_dim(instr) == GLSL_SAMPLER_DIM_CUBE) {
3908            bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3909                     offset(retype(dest, tmp.type), bld, c),
3910                     component(offset(tmp, ubld, c), 0), brw_imm_ud(6));
3911         } else {
3912            bld.MOV(offset(retype(dest, tmp.type), bld, c),
3913                    component(offset(tmp, ubld, c), 0));
3914         }
3915      }
3916      break;
3917   }
3918
3919   case nir_intrinsic_image_load_raw_intel: {
3920      const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3921      const fs_reg addr = retype(get_nir_src(instr->src[1]),
3922                                 BRW_REGISTER_TYPE_UD);
3923
3924      fs_reg tmp = emit_untyped_read(bld, image, addr, 1,
3925                                     instr->num_components);
3926
3927      for (unsigned c = 0; c < instr->num_components; ++c) {
3928         bld.MOV(offset(retype(dest, tmp.type), bld, c),
3929                 offset(tmp, bld, c));
3930      }
3931      break;
3932   }
3933
3934   case nir_intrinsic_image_store_raw_intel: {
3935      const fs_reg image = get_nir_image_intrinsic_image(bld, instr);
3936      const fs_reg addr = retype(get_nir_src(instr->src[1]),
3937                                 BRW_REGISTER_TYPE_UD);
3938      const fs_reg data = retype(get_nir_src(instr->src[2]),
3939                                 BRW_REGISTER_TYPE_UD);
3940
3941      brw_wm_prog_data(prog_data)->has_side_effects = true;
3942
3943      emit_untyped_write(bld, image, addr, data, 1,
3944                         instr->num_components);
3945      break;
3946   }
3947
3948   case nir_intrinsic_group_memory_barrier:
3949   case nir_intrinsic_memory_barrier_shared:
3950   case nir_intrinsic_memory_barrier_atomic_counter:
3951   case nir_intrinsic_memory_barrier_buffer:
3952   case nir_intrinsic_memory_barrier_image:
3953   case nir_intrinsic_memory_barrier: {
3954      const fs_builder ubld = bld.group(8, 0);
3955      const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3956      ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3957         ->size_written = 2 * REG_SIZE;
3958      break;
3959   }
3960
3961   case nir_intrinsic_shader_clock: {
3962      /* We cannot do anything if there is an event, so ignore it for now */
3963      const fs_reg shader_clock = get_timestamp(bld);
3964      const fs_reg srcs[] = { component(shader_clock, 0),
3965                              component(shader_clock, 1) };
3966      bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3967      break;
3968   }
3969
3970   case nir_intrinsic_image_samples:
3971      /* The driver does not support multi-sampled images. */
3972      bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3973      break;
3974
3975   case nir_intrinsic_load_uniform: {
3976      /* Offsets are in bytes but they should always aligned to
3977       * the type size
3978       */
3979      assert(instr->const_index[0] % 4 == 0 ||
3980             instr->const_index[0] % type_sz(dest.type) == 0);
3981
3982      fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3983
3984      nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3985      if (const_offset) {
3986         assert(const_offset->u32[0] % type_sz(dest.type) == 0);
3987         /* For 16-bit types we add the module of the const_index[0]
3988          * offset to access to not 32-bit aligned element
3989          */
3990         src.offset = const_offset->u32[0] + instr->const_index[0] % 4;
3991
3992         for (unsigned j = 0; j < instr->num_components; j++) {
3993            bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3994         }
3995      } else {
3996         fs_reg indirect = retype(get_nir_src(instr->src[0]),
3997                                  BRW_REGISTER_TYPE_UD);
3998
3999         /* We need to pass a size to the MOV_INDIRECT but we don't want it to
4000          * go past the end of the uniform.  In order to keep the n'th
4001          * component from running past, we subtract off the size of all but
4002          * one component of the vector.
4003          */
4004         assert(instr->const_index[1] >=
4005                instr->num_components * (int) type_sz(dest.type));
4006         unsigned read_size = instr->const_index[1] -
4007            (instr->num_components - 1) * type_sz(dest.type);
4008
4009         bool supports_64bit_indirects =
4010            !devinfo->is_cherryview && !gen_device_info_is_9lp(devinfo);
4011
4012         if (type_sz(dest.type) != 8 || supports_64bit_indirects) {
4013            for (unsigned j = 0; j < instr->num_components; j++) {
4014               bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4015                        offset(dest, bld, j), offset(src, bld, j),
4016                        indirect, brw_imm_ud(read_size));
4017            }
4018         } else {
4019            const unsigned num_mov_indirects =
4020               type_sz(dest.type) / type_sz(BRW_REGISTER_TYPE_UD);
4021            /* We read a little bit less per MOV INDIRECT, as they are now
4022             * 32-bits ones instead of 64-bit. Fix read_size then.
4023             */
4024            const unsigned read_size_32bit = read_size -
4025                (num_mov_indirects - 1) * type_sz(BRW_REGISTER_TYPE_UD);
4026            for (unsigned j = 0; j < instr->num_components; j++) {
4027               for (unsigned i = 0; i < num_mov_indirects; i++) {
4028                  bld.emit(SHADER_OPCODE_MOV_INDIRECT,
4029                           subscript(offset(dest, bld, j), BRW_REGISTER_TYPE_UD, i),
4030                           subscript(offset(src, bld, j), BRW_REGISTER_TYPE_UD, i),
4031                           indirect, brw_imm_ud(read_size_32bit));
4032               }
4033            }
4034         }
4035      }
4036      break;
4037   }
4038
4039   case nir_intrinsic_load_ubo: {
4040      nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
4041      fs_reg surf_index;
4042
4043      if (const_index) {
4044         const unsigned index = stage_prog_data->binding_table.ubo_start +
4045                                const_index->u32[0];
4046         surf_index = brw_imm_ud(index);
4047         brw_mark_surface_used(prog_data, index);
4048      } else {
4049         /* The block index is not a constant. Evaluate the index expression
4050          * per-channel and add the base UBO index; we have to select a value
4051          * from any live channel.
4052          */
4053         surf_index = vgrf(glsl_type::uint_type);
4054         bld.ADD(surf_index, get_nir_src(instr->src[0]),
4055                 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
4056         surf_index = bld.emit_uniformize(surf_index);
4057
4058         /* Assume this may touch any UBO. It would be nice to provide
4059          * a tighter bound, but the array information is already lowered away.
4060          */
4061         brw_mark_surface_used(prog_data,
4062                               stage_prog_data->binding_table.ubo_start +
4063                               nir->info.num_ubos - 1);
4064      }
4065
4066      nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4067      if (const_offset == NULL) {
4068         fs_reg base_offset = retype(get_nir_src(instr->src[1]),
4069                                     BRW_REGISTER_TYPE_UD);
4070
4071         for (int i = 0; i < instr->num_components; i++)
4072            VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
4073                                       base_offset, i * type_sz(dest.type));
4074      } else {
4075         /* Even if we are loading doubles, a pull constant load will load
4076          * a 32-bit vec4, so should only reserve vgrf space for that. If we
4077          * need to load a full dvec4 we will have to emit 2 loads. This is
4078          * similar to demote_pull_constants(), except that in that case we
4079          * see individual accesses to each component of the vector and then
4080          * we let CSE deal with duplicate loads. Here we see a vector access
4081          * and we have to split it if necessary.
4082          */
4083         const unsigned type_size = type_sz(dest.type);
4084
4085         /* See if we've selected this as a push constant candidate */
4086         if (const_index) {
4087            const unsigned ubo_block = const_index->u32[0];
4088            const unsigned offset_256b = const_offset->u32[0] / 32;
4089
4090            fs_reg push_reg;
4091            for (int i = 0; i < 4; i++) {
4092               const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4093               if (range->block == ubo_block &&
4094                   offset_256b >= range->start &&
4095                   offset_256b < range->start + range->length) {
4096
4097                  push_reg = fs_reg(UNIFORM, UBO_START + i, dest.type);
4098                  push_reg.offset = const_offset->u32[0] - 32 * range->start;
4099                  break;
4100               }
4101            }
4102
4103            if (push_reg.file != BAD_FILE) {
4104               for (unsigned i = 0; i < instr->num_components; i++) {
4105                  bld.MOV(offset(dest, bld, i),
4106                          byte_offset(push_reg, i * type_size));
4107               }
4108               break;
4109            }
4110         }
4111
4112         const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
4113         const fs_builder ubld = bld.exec_all().group(block_sz / 4, 0);
4114         const fs_reg packed_consts = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4115
4116         for (unsigned c = 0; c < instr->num_components;) {
4117            const unsigned base = const_offset->u32[0] + c * type_size;
4118            /* Number of usable components in the next block-aligned load. */
4119            const unsigned count = MIN2(instr->num_components - c,
4120                                        (block_sz - base % block_sz) / type_size);
4121
4122            ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
4123                      packed_consts, surf_index,
4124                      brw_imm_ud(base & ~(block_sz - 1)));
4125
4126            const fs_reg consts =
4127               retype(byte_offset(packed_consts, base & (block_sz - 1)),
4128                      dest.type);
4129
4130            for (unsigned d = 0; d < count; d++)
4131               bld.MOV(offset(dest, bld, c + d), component(consts, d));
4132
4133            c += count;
4134         }
4135      }
4136      break;
4137   }
4138
4139   case nir_intrinsic_load_ssbo: {
4140      assert(devinfo->gen >= 7);
4141
4142      nir_const_value *const_uniform_block =
4143         nir_src_as_const_value(instr->src[0]);
4144
4145      fs_reg surf_index;
4146      if (const_uniform_block) {
4147         unsigned index = stage_prog_data->binding_table.ssbo_start +
4148                          const_uniform_block->u32[0];
4149         surf_index = brw_imm_ud(index);
4150         brw_mark_surface_used(prog_data, index);
4151      } else {
4152         surf_index = vgrf(glsl_type::uint_type);
4153         bld.ADD(surf_index, get_nir_src(instr->src[0]),
4154                 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4155
4156         /* Assume this may touch any UBO. It would be nice to provide
4157          * a tighter bound, but the array information is already lowered away.
4158          */
4159         brw_mark_surface_used(prog_data,
4160                               stage_prog_data->binding_table.ssbo_start +
4161                               nir->info.num_ssbos - 1);
4162      }
4163
4164      fs_reg offset_reg;
4165      nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4166      if (const_offset) {
4167         offset_reg = brw_imm_ud(const_offset->u32[0]);
4168      } else {
4169         offset_reg = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD);
4170      }
4171
4172      /* Read the vector */
4173      do_untyped_vector_read(bld, dest, surf_index, offset_reg,
4174                             instr->num_components);
4175
4176      break;
4177   }
4178
4179   case nir_intrinsic_store_ssbo: {
4180      assert(devinfo->gen >= 7);
4181
4182      if (stage == MESA_SHADER_FRAGMENT)
4183         brw_wm_prog_data(prog_data)->has_side_effects = true;
4184
4185      /* Block index */
4186      fs_reg surf_index;
4187      nir_const_value *const_uniform_block =
4188         nir_src_as_const_value(instr->src[1]);
4189      if (const_uniform_block) {
4190         unsigned index = stage_prog_data->binding_table.ssbo_start +
4191                          const_uniform_block->u32[0];
4192         surf_index = brw_imm_ud(index);
4193         brw_mark_surface_used(prog_data, index);
4194      } else {
4195         surf_index = vgrf(glsl_type::uint_type);
4196         bld.ADD(surf_index, get_nir_src(instr->src[1]),
4197                  brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4198
4199         brw_mark_surface_used(prog_data,
4200                               stage_prog_data->binding_table.ssbo_start +
4201                               nir->info.num_ssbos - 1);
4202      }
4203
4204      /* Value */
4205      fs_reg val_reg = get_nir_src(instr->src[0]);
4206
4207      /* Writemask */
4208      unsigned writemask = instr->const_index[0];
4209
4210      /* get_nir_src() retypes to integer. Be wary of 64-bit types though
4211       * since the untyped writes below operate in units of 32-bits, which
4212       * means that we need to write twice as many components each time.
4213       * Also, we have to suffle 64-bit data to be in the appropriate layout
4214       * expected by our 32-bit write messages.
4215       */
4216      unsigned bit_size = nir_src_bit_size(instr->src[0]);
4217      unsigned type_size = bit_size / 8;
4218
4219      /* Combine groups of consecutive enabled channels in one write
4220       * message. We use ffs to find the first enabled channel and then ffs on
4221       * the bit-inverse, down-shifted writemask to determine the num_components
4222       * of the block of enabled bits.
4223       */
4224      while (writemask) {
4225         unsigned first_component = ffs(writemask) - 1;
4226         unsigned num_components = ffs(~(writemask >> first_component)) - 1;
4227         fs_reg write_src = offset(val_reg, bld, first_component);
4228
4229         nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
4230
4231         if (type_size > 4) {
4232            /* We can't write more than 2 64-bit components at once. Limit
4233             * the num_components of the write to what we can do and let the next
4234             * iteration handle the rest.
4235             */
4236            num_components = MIN2(2, num_components);
4237            write_src = shuffle_for_32bit_write(bld, write_src, 0,
4238                                                num_components);
4239         } else if (type_size < 4) {
4240            /* For 16-bit types we pack two consecutive values into a 32-bit
4241             * word and use an untyped write message. For single values or not
4242             * 32-bit-aligned we need to use byte-scattered writes because
4243             * untyped writes works with 32-bit components with 32-bit
4244             * alignment. byte_scattered_write messages only support one
4245             * 16-bit component at a time. As VK_KHR_relaxed_block_layout
4246             * could be enabled we can not guarantee that not constant offsets
4247             * to be 32-bit aligned for 16-bit types. For example an array, of
4248             * 16-bit vec3 with array element stride of 6.
4249             *
4250             * In the case of 32-bit aligned constant offsets if there is
4251             * a 3-components vector we submit one untyped-write message
4252             * of 32-bit (first two components), and one byte-scattered
4253             * write message (the last component).
4254             */
4255
4256            if ( !const_offset || ((const_offset->u32[0] +
4257                                   type_size * first_component) % 4)) {
4258               /* If we use a .yz writemask we also need to emit 2
4259                * byte-scattered write messages because of y-component not
4260                * being aligned to 32-bit.
4261                */
4262               num_components = 1;
4263            } else if (num_components * type_size > 4 &&
4264                       (num_components * type_size % 4)) {
4265               /* If the pending components size is not a multiple of 4 bytes
4266                * we left the not aligned components for following emits of
4267                * length == 1 with byte_scattered_write.
4268                */
4269               num_components -= (num_components * type_size % 4) / type_size;
4270            } else if (num_components * type_size < 4) {
4271               num_components = 1;
4272            }
4273            /* For num_components == 1 we are also shuffling the component
4274             * because byte scattered writes of 16-bit need values to be dword
4275             * aligned. Shuffling only one component would be the same as
4276             * striding it.
4277             */
4278            write_src = shuffle_for_32bit_write(bld, write_src, 0,
4279                                                num_components);
4280         }
4281
4282         fs_reg offset_reg;
4283
4284         if (const_offset) {
4285            offset_reg = brw_imm_ud(const_offset->u32[0] +
4286                                    type_size * first_component);
4287         } else {
4288            offset_reg = vgrf(glsl_type::uint_type);
4289            bld.ADD(offset_reg,
4290                    retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
4291                    brw_imm_ud(type_size * first_component));
4292         }
4293
4294         if (type_size < 4 && num_components == 1) {
4295            /* Untyped Surface messages have a fixed 32-bit size, so we need
4296             * to rely on byte scattered in order to write 16-bit elements.
4297             * The byte_scattered_write message needs that every written 16-bit
4298             * type to be aligned 32-bits (stride=2).
4299             */
4300            emit_byte_scattered_write(bld, surf_index, offset_reg,
4301                                      write_src,
4302                                      1 /* dims */,
4303                                      bit_size,
4304                                      BRW_PREDICATE_NONE);
4305         } else {
4306            assert(num_components * type_size <= 16);
4307            assert((num_components * type_size) % 4 == 0);
4308            assert(offset_reg.file != BRW_IMMEDIATE_VALUE ||
4309                   offset_reg.ud % 4 == 0);
4310            unsigned num_slots = (num_components * type_size) / 4;
4311
4312            emit_untyped_write(bld, surf_index, offset_reg,
4313                               write_src,
4314                               1 /* dims */, num_slots,
4315                               BRW_PREDICATE_NONE);
4316         }
4317
4318         /* Clear the bits in the writemask that we just wrote, then try
4319          * again to see if more channels are left.
4320          */
4321         writemask &= (15 << (first_component + num_components));
4322      }
4323      break;
4324   }
4325
4326   case nir_intrinsic_store_output: {
4327      fs_reg src = get_nir_src(instr->src[0]);
4328
4329      nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
4330      assert(const_offset && "Indirect output stores not allowed");
4331
4332      unsigned num_components = instr->num_components;
4333      unsigned first_component = nir_intrinsic_component(instr);
4334      if (nir_src_bit_size(instr->src[0]) == 64) {
4335         src = shuffle_for_32bit_write(bld, src, 0, num_components);
4336         num_components *= 2;
4337      }
4338
4339      fs_reg new_dest = retype(offset(outputs[instr->const_index[0]], bld,
4340                                      4 * const_offset->u32[0]), src.type);
4341      for (unsigned j = 0; j < num_components; j++) {
4342         bld.MOV(offset(new_dest, bld, j + first_component),
4343                 offset(src, bld, j));
4344      }
4345      break;
4346   }
4347
4348   case nir_intrinsic_ssbo_atomic_add:
4349      nir_emit_ssbo_atomic(bld, get_op_for_atomic_add(instr, 2), instr);
4350      break;
4351   case nir_intrinsic_ssbo_atomic_imin:
4352      nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
4353      break;
4354   case nir_intrinsic_ssbo_atomic_umin:
4355      nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
4356      break;
4357   case nir_intrinsic_ssbo_atomic_imax:
4358      nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
4359      break;
4360   case nir_intrinsic_ssbo_atomic_umax:
4361      nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
4362      break;
4363   case nir_intrinsic_ssbo_atomic_and:
4364      nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
4365      break;
4366   case nir_intrinsic_ssbo_atomic_or:
4367      nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
4368      break;
4369   case nir_intrinsic_ssbo_atomic_xor:
4370      nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
4371      break;
4372   case nir_intrinsic_ssbo_atomic_exchange:
4373      nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
4374      break;
4375   case nir_intrinsic_ssbo_atomic_comp_swap:
4376      nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
4377      break;
4378   case nir_intrinsic_ssbo_atomic_fmin:
4379      nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMIN, instr);
4380      break;
4381   case nir_intrinsic_ssbo_atomic_fmax:
4382      nir_emit_ssbo_atomic_float(bld, BRW_AOP_FMAX, instr);
4383      break;
4384   case nir_intrinsic_ssbo_atomic_fcomp_swap:
4385      nir_emit_ssbo_atomic_float(bld, BRW_AOP_FCMPWR, instr);
4386      break;
4387
4388   case nir_intrinsic_get_buffer_size: {
4389      nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
4390      unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
4391
4392      /* A resinfo's sampler message is used to get the buffer size.  The
4393       * SIMD8's writeback message consists of four registers and SIMD16's
4394       * writeback message consists of 8 destination registers (two per each
4395       * component).  Because we are only interested on the first channel of
4396       * the first returned component, where resinfo returns the buffer size
4397       * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
4398       * the dispatch width.
4399       */
4400      const fs_builder ubld = bld.exec_all().group(8, 0);
4401      fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4402      fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
4403
4404      /* Set LOD = 0 */
4405      ubld.MOV(src_payload, brw_imm_d(0));
4406
4407      const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
4408      fs_inst *inst = ubld.emit(SHADER_OPCODE_GET_BUFFER_SIZE, ret_payload,
4409                                src_payload, brw_imm_ud(index));
4410      inst->header_size = 0;
4411      inst->mlen = 1;
4412      inst->size_written = 4 * REG_SIZE;
4413
4414      /* SKL PRM, vol07, 3D Media GPGPU Engine, Bounds Checking and Faulting:
4415       *
4416       * "Out-of-bounds checking is always performed at a DWord granularity. If
4417       * any part of the DWord is out-of-bounds then the whole DWord is
4418       * considered out-of-bounds."
4419       *
4420       * This implies that types with size smaller than 4-bytes need to be
4421       * padded if they don't complete the last dword of the buffer. But as we
4422       * need to maintain the original size we need to reverse the padding
4423       * calculation to return the correct size to know the number of elements
4424       * of an unsized array. As we stored in the last two bits of the surface
4425       * size the needed padding for the buffer, we calculate here the
4426       * original buffer_size reversing the surface_size calculation:
4427       *
4428       * surface_size = isl_align(buffer_size, 4) +
4429       *                (isl_align(buffer_size) - buffer_size)
4430       *
4431       * buffer_size = surface_size & ~3 - surface_size & 3
4432       */
4433
4434      fs_reg size_aligned4 = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4435      fs_reg size_padding = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4436      fs_reg buffer_size = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4437
4438      ubld.AND(size_padding, ret_payload, brw_imm_ud(3));
4439      ubld.AND(size_aligned4, ret_payload, brw_imm_ud(~3));
4440      ubld.ADD(buffer_size, size_aligned4, negate(size_padding));
4441
4442      bld.MOV(retype(dest, ret_payload.type), component(buffer_size, 0));
4443
4444      brw_mark_surface_used(prog_data, index);
4445      break;
4446   }
4447
4448   case nir_intrinsic_load_subgroup_invocation:
4449      bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
4450              nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION]);
4451      break;
4452
4453   case nir_intrinsic_load_subgroup_eq_mask:
4454   case nir_intrinsic_load_subgroup_ge_mask:
4455   case nir_intrinsic_load_subgroup_gt_mask:
4456   case nir_intrinsic_load_subgroup_le_mask:
4457   case nir_intrinsic_load_subgroup_lt_mask:
4458      unreachable("not reached");
4459
4460   case nir_intrinsic_vote_any: {
4461      const fs_builder ubld = bld.exec_all().group(1, 0);
4462
4463      /* The any/all predicates do not consider channel enables. To prevent
4464       * dead channels from affecting the result, we initialize the flag with
4465       * with the identity value for the logical operation.
4466       */
4467      if (dispatch_width == 32) {
4468         /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4469         ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4470                         brw_imm_ud(0));
4471      } else {
4472         ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0));
4473      }
4474      bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4475
4476      /* For some reason, the any/all predicates don't work properly with
4477       * SIMD32.  In particular, it appears that a SEL with a QtrCtrl of 2H
4478       * doesn't read the correct subset of the flag register and you end up
4479       * getting garbage in the second half.  Work around this by using a pair
4480       * of 1-wide MOVs and scattering the result.
4481       */
4482      fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4483      ubld.MOV(res1, brw_imm_d(0));
4484      set_predicate(dispatch_width == 8  ? BRW_PREDICATE_ALIGN1_ANY8H :
4485                    dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H :
4486                                           BRW_PREDICATE_ALIGN1_ANY32H,
4487                    ubld.MOV(res1, brw_imm_d(-1)));
4488
4489      bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4490      break;
4491   }
4492   case nir_intrinsic_vote_all: {
4493      const fs_builder ubld = bld.exec_all().group(1, 0);
4494
4495      /* The any/all predicates do not consider channel enables. To prevent
4496       * dead channels from affecting the result, we initialize the flag with
4497       * with the identity value for the logical operation.
4498       */
4499      if (dispatch_width == 32) {
4500         /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4501         ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4502                         brw_imm_ud(0xffffffff));
4503      } else {
4504         ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4505      }
4506      bld.CMP(bld.null_reg_d(), get_nir_src(instr->src[0]), brw_imm_d(0), BRW_CONDITIONAL_NZ);
4507
4508      /* For some reason, the any/all predicates don't work properly with
4509       * SIMD32.  In particular, it appears that a SEL with a QtrCtrl of 2H
4510       * doesn't read the correct subset of the flag register and you end up
4511       * getting garbage in the second half.  Work around this by using a pair
4512       * of 1-wide MOVs and scattering the result.
4513       */
4514      fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4515      ubld.MOV(res1, brw_imm_d(0));
4516      set_predicate(dispatch_width == 8  ? BRW_PREDICATE_ALIGN1_ALL8H :
4517                    dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4518                                           BRW_PREDICATE_ALIGN1_ALL32H,
4519                    ubld.MOV(res1, brw_imm_d(-1)));
4520
4521      bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4522      break;
4523   }
4524   case nir_intrinsic_vote_feq:
4525   case nir_intrinsic_vote_ieq: {
4526      fs_reg value = get_nir_src(instr->src[0]);
4527      if (instr->intrinsic == nir_intrinsic_vote_feq) {
4528         const unsigned bit_size = nir_src_bit_size(instr->src[0]);
4529         value.type = brw_reg_type_from_bit_size(bit_size, BRW_REGISTER_TYPE_F);
4530      }
4531
4532      fs_reg uniformized = bld.emit_uniformize(value);
4533      const fs_builder ubld = bld.exec_all().group(1, 0);
4534
4535      /* The any/all predicates do not consider channel enables. To prevent
4536       * dead channels from affecting the result, we initialize the flag with
4537       * with the identity value for the logical operation.
4538       */
4539      if (dispatch_width == 32) {
4540         /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */
4541         ubld.MOV(retype(brw_flag_reg(0, 0), BRW_REGISTER_TYPE_UD),
4542                         brw_imm_ud(0xffffffff));
4543      } else {
4544         ubld.MOV(brw_flag_reg(0, 0), brw_imm_uw(0xffff));
4545      }
4546      bld.CMP(bld.null_reg_d(), value, uniformized, BRW_CONDITIONAL_Z);
4547
4548      /* For some reason, the any/all predicates don't work properly with
4549       * SIMD32.  In particular, it appears that a SEL with a QtrCtrl of 2H
4550       * doesn't read the correct subset of the flag register and you end up
4551       * getting garbage in the second half.  Work around this by using a pair
4552       * of 1-wide MOVs and scattering the result.
4553       */
4554      fs_reg res1 = ubld.vgrf(BRW_REGISTER_TYPE_D);
4555      ubld.MOV(res1, brw_imm_d(0));
4556      set_predicate(dispatch_width == 8  ? BRW_PREDICATE_ALIGN1_ALL8H :
4557                    dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H :
4558                                           BRW_PREDICATE_ALIGN1_ALL32H,
4559                    ubld.MOV(res1, brw_imm_d(-1)));
4560
4561      bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), component(res1, 0));
4562      break;
4563   }
4564
4565   case nir_intrinsic_ballot: {
4566      const fs_reg value = retype(get_nir_src(instr->src[0]),
4567                                  BRW_REGISTER_TYPE_UD);
4568      struct brw_reg flag = brw_flag_reg(0, 0);
4569      /* FIXME: For SIMD32 programs, this causes us to stomp on f0.1 as well
4570       * as f0.0.  This is a problem for fragment programs as we currently use
4571       * f0.1 for discards.  Fortunately, we don't support SIMD32 fragment
4572       * programs yet so this isn't a problem.  When we do, something will
4573       * have to change.
4574       */
4575      if (dispatch_width == 32)
4576         flag.type = BRW_REGISTER_TYPE_UD;
4577
4578      bld.exec_all().group(1, 0).MOV(flag, brw_imm_ud(0u));
4579      bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ);
4580
4581      if (instr->dest.ssa.bit_size > 32) {
4582         dest.type = BRW_REGISTER_TYPE_UQ;
4583      } else {
4584         dest.type = BRW_REGISTER_TYPE_UD;
4585      }
4586      bld.MOV(dest, flag);
4587      break;
4588   }
4589
4590   case nir_intrinsic_read_invocation: {
4591      const fs_reg value = get_nir_src(instr->src[0]);
4592      const fs_reg invocation = get_nir_src(instr->src[1]);
4593      fs_reg tmp = bld.vgrf(value.type);
4594
4595      bld.exec_all().emit(SHADER_OPCODE_BROADCAST, tmp, value,
4596                          bld.emit_uniformize(invocation));
4597
4598      bld.MOV(retype(dest, value.type), fs_reg(component(tmp, 0)));
4599      break;
4600   }
4601
4602   case nir_intrinsic_read_first_invocation: {
4603      const fs_reg value = get_nir_src(instr->src[0]);
4604      bld.MOV(retype(dest, value.type), bld.emit_uniformize(value));
4605      break;
4606   }
4607
4608   case nir_intrinsic_shuffle: {
4609      const fs_reg value = get_nir_src(instr->src[0]);
4610      const fs_reg index = get_nir_src(instr->src[1]);
4611
4612      bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, index);
4613      break;
4614   }
4615
4616   case nir_intrinsic_first_invocation: {
4617      fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4618      bld.exec_all().emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, tmp);
4619      bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
4620              fs_reg(component(tmp, 0)));
4621      break;
4622   }
4623
4624   case nir_intrinsic_quad_broadcast: {
4625      const fs_reg value = get_nir_src(instr->src[0]);
4626      nir_const_value *index = nir_src_as_const_value(instr->src[1]);
4627      assert(nir_src_bit_size(instr->src[1]) == 32);
4628
4629      bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, retype(dest, value.type),
4630               value, brw_imm_ud(index->u32[0]), brw_imm_ud(4));
4631      break;
4632   }
4633
4634   case nir_intrinsic_quad_swap_horizontal: {
4635      const fs_reg value = get_nir_src(instr->src[0]);
4636      const fs_reg tmp = bld.vgrf(value.type);
4637      const fs_builder ubld = bld.exec_all().group(dispatch_width / 2, 0);
4638
4639      const fs_reg src_left = horiz_stride(value, 2);
4640      const fs_reg src_right = horiz_stride(horiz_offset(value, 1), 2);
4641      const fs_reg tmp_left = horiz_stride(tmp, 2);
4642      const fs_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2);
4643
4644      /* From the Cherryview PRM Vol. 7, "Register Region Restrictiosn":
4645       *
4646       *    "When source or destination datatype is 64b or operation is
4647       *    integer DWord multiply, regioning in Align1 must follow
4648       *    these rules:
4649       *
4650       *    [...]
4651       *
4652       *    3. Source and Destination offset must be the same, except
4653       *       the case of scalar source."
4654       *
4655       * In order to work around this, we have to emit two 32-bit MOVs instead
4656       * of a single 64-bit MOV to do the shuffle.
4657       */
4658      if (type_sz(value.type) > 4 &&
4659          (devinfo->is_cherryview || gen_device_info_is_9lp(devinfo))) {
4660         ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 0),
4661                  subscript(src_right, BRW_REGISTER_TYPE_D, 0));
4662         ubld.MOV(subscript(tmp_left, BRW_REGISTER_TYPE_D, 1),
4663                  subscript(src_right, BRW_REGISTER_TYPE_D, 1));
4664         ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 0),
4665                  subscript(src_left, BRW_REGISTER_TYPE_D, 0));
4666         ubld.MOV(subscript(tmp_right, BRW_REGISTER_TYPE_D, 1),
4667                  subscript(src_left, BRW_REGISTER_TYPE_D, 1));
4668      } else {
4669         ubld.MOV(tmp_left, src_right);
4670         ubld.MOV(tmp_right, src_left);
4671      }
4672      bld.MOV(retype(dest, value.type), tmp);
4673      break;
4674   }
4675
4676   case nir_intrinsic_quad_swap_vertical: {
4677      const fs_reg value = get_nir_src(instr->src[0]);
4678      if (nir_src_bit_size(instr->src[0]) == 32) {
4679         /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4680         const fs_reg tmp = bld.vgrf(value.type);
4681         const fs_builder ubld = bld.exec_all();
4682         ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4683                   brw_imm_ud(BRW_SWIZZLE4(2,3,0,1)));
4684         bld.MOV(retype(dest, value.type), tmp);
4685      } else {
4686         /* For larger data types, we have to either emit dispatch_width many
4687          * MOVs or else fall back to doing indirects.
4688          */
4689         fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4690         bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4691                      brw_imm_w(0x2));
4692         bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4693      }
4694      break;
4695   }
4696
4697   case nir_intrinsic_quad_swap_diagonal: {
4698      const fs_reg value = get_nir_src(instr->src[0]);
4699      if (nir_src_bit_size(instr->src[0]) == 32) {
4700         /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */
4701         const fs_reg tmp = bld.vgrf(value.type);
4702         const fs_builder ubld = bld.exec_all();
4703         ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value,
4704                   brw_imm_ud(BRW_SWIZZLE4(3,2,1,0)));
4705         bld.MOV(retype(dest, value.type), tmp);
4706      } else {
4707         /* For larger data types, we have to either emit dispatch_width many
4708          * MOVs or else fall back to doing indirects.
4709          */
4710         fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4711         bld.XOR(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4712                      brw_imm_w(0x3));
4713         bld.emit(SHADER_OPCODE_SHUFFLE, retype(dest, value.type), value, idx);
4714      }
4715      break;
4716   }
4717
4718   case nir_intrinsic_reduce: {
4719      fs_reg src = get_nir_src(instr->src[0]);
4720      nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4721      unsigned cluster_size = nir_intrinsic_cluster_size(instr);
4722      if (cluster_size == 0 || cluster_size > dispatch_width)
4723         cluster_size = dispatch_width;
4724
4725      /* Figure out the source type */
4726      src.type = brw_type_for_nir_type(devinfo,
4727         (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4728                        nir_src_bit_size(instr->src[0])));
4729
4730      fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4731      opcode brw_op = brw_op_for_nir_reduction_op(redop);
4732      brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4733
4734      /* Set up a register for all of our scratching around and initialize it
4735       * to reduction operation's identity value.
4736       */
4737      fs_reg scan = bld.vgrf(src.type);
4738      bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4739
4740      bld.emit_scan(brw_op, scan, cluster_size, cond_mod);
4741
4742      dest.type = src.type;
4743      if (cluster_size * type_sz(src.type) >= REG_SIZE * 2) {
4744         /* In this case, CLUSTER_BROADCAST instruction isn't needed because
4745          * the distance between clusters is at least 2 GRFs.  In this case,
4746          * we don't need the weird striding of the CLUSTER_BROADCAST
4747          * instruction and can just do regular MOVs.
4748          */
4749         assert((cluster_size * type_sz(src.type)) % (REG_SIZE * 2) == 0);
4750         const unsigned groups =
4751            (dispatch_width * type_sz(src.type)) / (REG_SIZE * 2);
4752         const unsigned group_size = dispatch_width / groups;
4753         for (unsigned i = 0; i < groups; i++) {
4754            const unsigned cluster = (i * group_size) / cluster_size;
4755            const unsigned comp = cluster * cluster_size + (cluster_size - 1);
4756            bld.group(group_size, i).MOV(horiz_offset(dest, i * group_size),
4757                                         component(scan, comp));
4758         }
4759      } else {
4760         bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dest, scan,
4761                  brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size));
4762      }
4763      break;
4764   }
4765
4766   case nir_intrinsic_inclusive_scan:
4767   case nir_intrinsic_exclusive_scan: {
4768      fs_reg src = get_nir_src(instr->src[0]);
4769      nir_op redop = (nir_op)nir_intrinsic_reduction_op(instr);
4770
4771      /* Figure out the source type */
4772      src.type = brw_type_for_nir_type(devinfo,
4773         (nir_alu_type)(nir_op_infos[redop].input_types[0] |
4774                        nir_src_bit_size(instr->src[0])));
4775
4776      fs_reg identity = brw_nir_reduction_op_identity(bld, redop, src.type);
4777      opcode brw_op = brw_op_for_nir_reduction_op(redop);
4778      brw_conditional_mod cond_mod = brw_cond_mod_for_nir_reduction_op(redop);
4779
4780      /* Set up a register for all of our scratching around and initialize it
4781       * to reduction operation's identity value.
4782       */
4783      fs_reg scan = bld.vgrf(src.type);
4784      const fs_builder allbld = bld.exec_all();
4785      allbld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, identity);
4786
4787      if (instr->intrinsic == nir_intrinsic_exclusive_scan) {
4788         /* Exclusive scan is a bit harder because we have to do an annoying
4789          * shift of the contents before we can begin.  To make things worse,
4790          * we can't do this with a normal stride; we have to use indirects.
4791          */
4792         fs_reg shifted = bld.vgrf(src.type);
4793         fs_reg idx = bld.vgrf(BRW_REGISTER_TYPE_W);
4794         allbld.ADD(idx, nir_system_values[SYSTEM_VALUE_SUBGROUP_INVOCATION],
4795                         brw_imm_w(-1));
4796         allbld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx);
4797         allbld.group(1, 0).MOV(component(shifted, 0), identity);
4798         scan = shifted;
4799      }
4800
4801      bld.emit_scan(brw_op, scan, dispatch_width, cond_mod);
4802
4803      bld.MOV(retype(dest, src.type), scan);
4804      break;
4805   }
4806
4807   case nir_intrinsic_begin_invocation_interlock: {
4808      const fs_builder ubld = bld.group(8, 0);
4809      const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
4810
4811      ubld.emit(SHADER_OPCODE_INTERLOCK, tmp)->size_written = 2 *
4812         REG_SIZE;
4813
4814      break;
4815   }
4816
4817   case nir_intrinsic_end_invocation_interlock: {
4818      /* We don't need to do anything here */
4819      break;
4820   }
4821
4822   default:
4823      unreachable("unknown intrinsic");
4824   }
4825}
4826
4827void
4828fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
4829                                 int op, nir_intrinsic_instr *instr)
4830{
4831   if (stage == MESA_SHADER_FRAGMENT)
4832      brw_wm_prog_data(prog_data)->has_side_effects = true;
4833
4834   fs_reg dest;
4835   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4836      dest = get_nir_dest(instr->dest);
4837
4838   fs_reg surface;
4839   nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4840   if (const_surface) {
4841      unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4842                            const_surface->u32[0];
4843      surface = brw_imm_ud(surf_index);
4844      brw_mark_surface_used(prog_data, surf_index);
4845   } else {
4846      surface = vgrf(glsl_type::uint_type);
4847      bld.ADD(surface, get_nir_src(instr->src[0]),
4848              brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4849
4850      /* Assume this may touch any SSBO. This is the same we do for other
4851       * UBO/SSBO accesses with non-constant surface.
4852       */
4853      brw_mark_surface_used(prog_data,
4854                            stage_prog_data->binding_table.ssbo_start +
4855                            nir->info.num_ssbos - 1);
4856   }
4857
4858   fs_reg offset = get_nir_src(instr->src[1]);
4859   fs_reg data1;
4860   if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4861      data1 = get_nir_src(instr->src[2]);
4862   fs_reg data2;
4863   if (op == BRW_AOP_CMPWR)
4864      data2 = get_nir_src(instr->src[3]);
4865
4866   /* Emit the actual atomic operation */
4867
4868   fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4869                                              data1, data2,
4870                                              1 /* dims */, 1 /* rsize */,
4871                                              op,
4872                                              BRW_PREDICATE_NONE);
4873   dest.type = atomic_result.type;
4874   bld.MOV(dest, atomic_result);
4875}
4876
4877void
4878fs_visitor::nir_emit_ssbo_atomic_float(const fs_builder &bld,
4879                                       int op, nir_intrinsic_instr *instr)
4880{
4881   if (stage == MESA_SHADER_FRAGMENT)
4882      brw_wm_prog_data(prog_data)->has_side_effects = true;
4883
4884   fs_reg dest;
4885   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4886      dest = get_nir_dest(instr->dest);
4887
4888   fs_reg surface;
4889   nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
4890   if (const_surface) {
4891      unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
4892                            const_surface->u32[0];
4893      surface = brw_imm_ud(surf_index);
4894      brw_mark_surface_used(prog_data, surf_index);
4895   } else {
4896      surface = vgrf(glsl_type::uint_type);
4897      bld.ADD(surface, get_nir_src(instr->src[0]),
4898              brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
4899
4900      /* Assume this may touch any SSBO. This is the same we do for other
4901       * UBO/SSBO accesses with non-constant surface.
4902       */
4903      brw_mark_surface_used(prog_data,
4904                            stage_prog_data->binding_table.ssbo_start +
4905                            nir->info.num_ssbos - 1);
4906   }
4907
4908   fs_reg offset = get_nir_src(instr->src[1]);
4909   fs_reg data1 = get_nir_src(instr->src[2]);
4910   fs_reg data2;
4911   if (op == BRW_AOP_FCMPWR)
4912      data2 = get_nir_src(instr->src[3]);
4913
4914   /* Emit the actual atomic operation */
4915
4916   fs_reg atomic_result = emit_untyped_atomic_float(bld, surface, offset,
4917                                                    data1, data2,
4918                                                    1 /* dims */, 1 /* rsize */,
4919                                                    op,
4920                                                    BRW_PREDICATE_NONE);
4921   dest.type = atomic_result.type;
4922   bld.MOV(dest, atomic_result);
4923}
4924
4925void
4926fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
4927                                   int op, nir_intrinsic_instr *instr)
4928{
4929   fs_reg dest;
4930   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4931      dest = get_nir_dest(instr->dest);
4932
4933   fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4934   fs_reg offset;
4935   fs_reg data1;
4936   if (op != BRW_AOP_INC && op != BRW_AOP_DEC && op != BRW_AOP_PREDEC)
4937      data1 = get_nir_src(instr->src[1]);
4938   fs_reg data2;
4939   if (op == BRW_AOP_CMPWR)
4940      data2 = get_nir_src(instr->src[2]);
4941
4942   /* Get the offset */
4943   nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4944   if (const_offset) {
4945      offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4946   } else {
4947      offset = vgrf(glsl_type::uint_type);
4948      bld.ADD(offset,
4949	      retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4950	      brw_imm_ud(instr->const_index[0]));
4951   }
4952
4953   /* Emit the actual atomic operation operation */
4954
4955   fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
4956                                              data1, data2,
4957                                              1 /* dims */, 1 /* rsize */,
4958                                              op,
4959                                              BRW_PREDICATE_NONE);
4960   dest.type = atomic_result.type;
4961   bld.MOV(dest, atomic_result);
4962}
4963
4964void
4965fs_visitor::nir_emit_shared_atomic_float(const fs_builder &bld,
4966                                         int op, nir_intrinsic_instr *instr)
4967{
4968   fs_reg dest;
4969   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
4970      dest = get_nir_dest(instr->dest);
4971
4972   fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
4973   fs_reg offset;
4974   fs_reg data1 = get_nir_src(instr->src[1]);
4975   fs_reg data2;
4976   if (op == BRW_AOP_FCMPWR)
4977      data2 = get_nir_src(instr->src[2]);
4978
4979   /* Get the offset */
4980   nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
4981   if (const_offset) {
4982      offset = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
4983   } else {
4984      offset = vgrf(glsl_type::uint_type);
4985      bld.ADD(offset,
4986              retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
4987              brw_imm_ud(instr->const_index[0]));
4988   }
4989
4990   /* Emit the actual atomic operation operation */
4991
4992   fs_reg atomic_result = emit_untyped_atomic_float(bld, surface, offset,
4993                                                    data1, data2,
4994                                                    1 /* dims */, 1 /* rsize */,
4995                                                    op,
4996                                                    BRW_PREDICATE_NONE);
4997   dest.type = atomic_result.type;
4998   bld.MOV(dest, atomic_result);
4999}
5000
5001void
5002fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
5003{
5004   unsigned texture = instr->texture_index;
5005   unsigned sampler = instr->sampler_index;
5006
5007   fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
5008
5009   srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
5010   srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
5011
5012   int lod_components = 0;
5013
5014   /* The hardware requires a LOD for buffer textures */
5015   if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
5016      srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
5017
5018   uint32_t header_bits = 0;
5019   for (unsigned i = 0; i < instr->num_srcs; i++) {
5020      fs_reg src = get_nir_src(instr->src[i].src);
5021      switch (instr->src[i].src_type) {
5022      case nir_tex_src_bias:
5023         srcs[TEX_LOGICAL_SRC_LOD] =
5024            retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5025         break;
5026      case nir_tex_src_comparator:
5027         srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
5028         break;
5029      case nir_tex_src_coord:
5030         switch (instr->op) {
5031         case nir_texop_txf:
5032         case nir_texop_txf_ms:
5033         case nir_texop_txf_ms_mcs:
5034         case nir_texop_samples_identical:
5035            srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
5036            break;
5037         default:
5038            srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
5039            break;
5040         }
5041         break;
5042      case nir_tex_src_ddx:
5043         srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
5044         lod_components = nir_tex_instr_src_size(instr, i);
5045         break;
5046      case nir_tex_src_ddy:
5047         srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
5048         break;
5049      case nir_tex_src_lod:
5050         switch (instr->op) {
5051         case nir_texop_txs:
5052            srcs[TEX_LOGICAL_SRC_LOD] =
5053               retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
5054            break;
5055         case nir_texop_txf:
5056            srcs[TEX_LOGICAL_SRC_LOD] =
5057               retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
5058            break;
5059         default:
5060            srcs[TEX_LOGICAL_SRC_LOD] =
5061               retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
5062            break;
5063         }
5064         break;
5065      case nir_tex_src_ms_index:
5066         srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
5067         break;
5068
5069      case nir_tex_src_offset: {
5070         nir_const_value *const_offset =
5071            nir_src_as_const_value(instr->src[i].src);
5072         unsigned offset_bits = 0;
5073         if (const_offset &&
5074             brw_texture_offset(const_offset->i32,
5075                                nir_tex_instr_src_size(instr, i),
5076                                &offset_bits)) {
5077            header_bits |= offset_bits;
5078         } else {
5079            srcs[TEX_LOGICAL_SRC_TG4_OFFSET] =
5080               retype(src, BRW_REGISTER_TYPE_D);
5081         }
5082         break;
5083      }
5084
5085      case nir_tex_src_projector:
5086         unreachable("should be lowered");
5087
5088      case nir_tex_src_texture_offset: {
5089         /* Figure out the highest possible texture index and mark it as used */
5090         uint32_t max_used = texture + instr->texture_array_size - 1;
5091         if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
5092            max_used += stage_prog_data->binding_table.gather_texture_start;
5093         } else {
5094            max_used += stage_prog_data->binding_table.texture_start;
5095         }
5096         brw_mark_surface_used(prog_data, max_used);
5097
5098         /* Emit code to evaluate the actual indexing expression */
5099         fs_reg tmp = vgrf(glsl_type::uint_type);
5100         bld.ADD(tmp, src, brw_imm_ud(texture));
5101         srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
5102         break;
5103      }
5104
5105      case nir_tex_src_sampler_offset: {
5106         /* Emit code to evaluate the actual indexing expression */
5107         fs_reg tmp = vgrf(glsl_type::uint_type);
5108         bld.ADD(tmp, src, brw_imm_ud(sampler));
5109         srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
5110         break;
5111      }
5112
5113      case nir_tex_src_ms_mcs:
5114         assert(instr->op == nir_texop_txf_ms);
5115         srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
5116         break;
5117
5118      case nir_tex_src_plane: {
5119         nir_const_value *const_plane =
5120            nir_src_as_const_value(instr->src[i].src);
5121         const uint32_t plane = const_plane->u32[0];
5122         const uint32_t texture_index =
5123            instr->texture_index +
5124            stage_prog_data->binding_table.plane_start[plane] -
5125            stage_prog_data->binding_table.texture_start;
5126
5127         srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
5128         break;
5129      }
5130
5131      default:
5132         unreachable("unknown texture source");
5133      }
5134   }
5135
5136   if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
5137       (instr->op == nir_texop_txf_ms ||
5138        instr->op == nir_texop_samples_identical)) {
5139      if (devinfo->gen >= 7 &&
5140          key_tex->compressed_multisample_layout_mask & (1 << texture)) {
5141         srcs[TEX_LOGICAL_SRC_MCS] =
5142            emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
5143                           instr->coord_components,
5144                           srcs[TEX_LOGICAL_SRC_SURFACE]);
5145      } else {
5146         srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
5147      }
5148   }
5149
5150   srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
5151   srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
5152
5153   enum opcode opcode;
5154   switch (instr->op) {
5155   case nir_texop_tex:
5156      opcode = (stage == MESA_SHADER_FRAGMENT ? SHADER_OPCODE_TEX_LOGICAL :
5157                SHADER_OPCODE_TXL_LOGICAL);
5158      break;
5159   case nir_texop_txb:
5160      opcode = FS_OPCODE_TXB_LOGICAL;
5161      break;
5162   case nir_texop_txl:
5163      opcode = SHADER_OPCODE_TXL_LOGICAL;
5164      break;
5165   case nir_texop_txd:
5166      opcode = SHADER_OPCODE_TXD_LOGICAL;
5167      break;
5168   case nir_texop_txf:
5169      opcode = SHADER_OPCODE_TXF_LOGICAL;
5170      break;
5171   case nir_texop_txf_ms:
5172      if ((key_tex->msaa_16 & (1 << sampler)))
5173         opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
5174      else
5175         opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
5176      break;
5177   case nir_texop_txf_ms_mcs:
5178      opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
5179      break;
5180   case nir_texop_query_levels:
5181   case nir_texop_txs:
5182      opcode = SHADER_OPCODE_TXS_LOGICAL;
5183      break;
5184   case nir_texop_lod:
5185      opcode = SHADER_OPCODE_LOD_LOGICAL;
5186      break;
5187   case nir_texop_tg4:
5188      if (srcs[TEX_LOGICAL_SRC_TG4_OFFSET].file != BAD_FILE)
5189         opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
5190      else
5191         opcode = SHADER_OPCODE_TG4_LOGICAL;
5192      break;
5193   case nir_texop_texture_samples:
5194      opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
5195      break;
5196   case nir_texop_samples_identical: {
5197      fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
5198
5199      /* If mcs is an immediate value, it means there is no MCS.  In that case
5200       * just return false.
5201       */
5202      if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
5203         bld.MOV(dst, brw_imm_ud(0u));
5204      } else if ((key_tex->msaa_16 & (1 << sampler))) {
5205         fs_reg tmp = vgrf(glsl_type::uint_type);
5206         bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
5207                offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
5208         bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
5209      } else {
5210         bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
5211                 BRW_CONDITIONAL_EQ);
5212      }
5213      return;
5214   }
5215   default:
5216      unreachable("unknown texture opcode");
5217   }
5218
5219   if (instr->op == nir_texop_tg4) {
5220      if (instr->component == 1 &&
5221          key_tex->gather_channel_quirk_mask & (1 << texture)) {
5222         /* gather4 sampler is broken for green channel on RG32F --
5223          * we must ask for blue instead.
5224          */
5225         header_bits |= 2 << 16;
5226      } else {
5227         header_bits |= instr->component << 16;
5228      }
5229   }
5230
5231   fs_reg dst = bld.vgrf(brw_type_for_nir_type(devinfo, instr->dest_type), 4);
5232   fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
5233   inst->offset = header_bits;
5234
5235   const unsigned dest_size = nir_tex_instr_dest_size(instr);
5236   if (devinfo->gen >= 9 &&
5237       instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
5238      unsigned write_mask = instr->dest.is_ssa ?
5239                            nir_ssa_def_components_read(&instr->dest.ssa):
5240                            (1 << dest_size) - 1;
5241      assert(write_mask != 0); /* dead code should have been eliminated */
5242      inst->size_written = util_last_bit(write_mask) *
5243                           inst->dst.component_size(inst->exec_size);
5244   } else {
5245      inst->size_written = 4 * inst->dst.component_size(inst->exec_size);
5246   }
5247
5248   if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
5249      inst->shadow_compare = true;
5250
5251   if (instr->op == nir_texop_tg4 && devinfo->gen == 6)
5252      emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
5253
5254   fs_reg nir_dest[4];
5255   for (unsigned i = 0; i < dest_size; i++)
5256      nir_dest[i] = offset(dst, bld, i);
5257
5258   if (instr->op == nir_texop_query_levels) {
5259      /* # levels is in .w */
5260      nir_dest[0] = offset(dst, bld, 3);
5261   } else if (instr->op == nir_texop_txs &&
5262              dest_size >= 3 && devinfo->gen < 7) {
5263      /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
5264      fs_reg depth = offset(dst, bld, 2);
5265      nir_dest[2] = vgrf(glsl_type::int_type);
5266      bld.emit_minmax(nir_dest[2], depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
5267   }
5268
5269   bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
5270}
5271
5272void
5273fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
5274{
5275   switch (instr->type) {
5276   case nir_jump_break:
5277      bld.emit(BRW_OPCODE_BREAK);
5278      break;
5279   case nir_jump_continue:
5280      bld.emit(BRW_OPCODE_CONTINUE);
5281      break;
5282   case nir_jump_return:
5283   default:
5284      unreachable("unknown jump");
5285   }
5286}
5287
5288/*
5289 * This helper takes a source register and un/shuffles it into the destination
5290 * register.
5291 *
5292 * If source type size is smaller than destination type size the operation
5293 * needed is a component shuffle. The opposite case would be an unshuffle. If
5294 * source/destination type size is equal a shuffle is done that would be
5295 * equivalent to a simple MOV.
5296 *
5297 * For example, if source is a 16-bit type and destination is 32-bit. A 3
5298 * components .xyz 16-bit vector on SIMD8 would be.
5299 *
5300 *    |x1|x2|x3|x4|x5|x6|x7|x8|y1|y2|y3|y4|y5|y6|y7|y8|
5301 *    |z1|z2|z3|z4|z5|z6|z7|z8|  |  |  |  |  |  |  |  |
5302 *
5303 * This helper will return the following 2 32-bit components with the 16-bit
5304 * values shuffled:
5305 *
5306 *    |x1 y1|x2 y2|x3 y3|x4 y4|x5 y5|x6 y6|x7 y7|x8 y8|
5307 *    |z1   |z2   |z3   |z4   |z5   |z6   |z7   |z8   |
5308 *
5309 * For unshuffle, the example would be the opposite, a 64-bit type source
5310 * and a 32-bit destination. A 2 component .xy 64-bit vector on SIMD8
5311 * would be:
5312 *
5313 *    | x1l   x1h | x2l   x2h | x3l   x3h | x4l   x4h |
5314 *    | x5l   x5h | x6l   x6h | x7l   x7h | x8l   x8h |
5315 *    | y1l   y1h | y2l   y2h | y3l   y3h | y4l   y4h |
5316 *    | y5l   y5h | y6l   y6h | y7l   y7h | y8l   y8h |
5317 *
5318 * The returned result would be the following 4 32-bit components unshuffled:
5319 *
5320 *    | x1l | x2l | x3l | x4l | x5l | x6l | x7l | x8l |
5321 *    | x1h | x2h | x3h | x4h | x5h | x6h | x7h | x8h |
5322 *    | y1l | y2l | y3l | y4l | y5l | y6l | y7l | y8l |
5323 *    | y1h | y2h | y3h | y4h | y5h | y6h | y7h | y8h |
5324 *
5325 * - Source and destination register must not be overlapped.
5326 * - components units are measured in terms of the smaller type between
5327 *   source and destination because we are un/shuffling the smaller
5328 *   components from/into the bigger ones.
5329 * - first_component parameter allows skipping source components.
5330 */
5331void
5332shuffle_src_to_dst(const fs_builder &bld,
5333                   const fs_reg &dst,
5334                   const fs_reg &src,
5335                   uint32_t first_component,
5336                   uint32_t components)
5337{
5338   if (type_sz(src.type) == type_sz(dst.type)) {
5339      assert(!regions_overlap(dst,
5340         type_sz(dst.type) * bld.dispatch_width() * components,
5341         offset(src, bld, first_component),
5342         type_sz(src.type) * bld.dispatch_width() * components));
5343      for (unsigned i = 0; i < components; i++) {
5344         bld.MOV(retype(offset(dst, bld, i), src.type),
5345                 offset(src, bld, i + first_component));
5346      }
5347   } else if (type_sz(src.type) < type_sz(dst.type)) {
5348      /* Source is shuffled into destination */
5349      unsigned size_ratio = type_sz(dst.type) / type_sz(src.type);
5350      assert(!regions_overlap(dst,
5351         type_sz(dst.type) * bld.dispatch_width() *
5352         DIV_ROUND_UP(components, size_ratio),
5353         offset(src, bld, first_component),
5354         type_sz(src.type) * bld.dispatch_width() * components));
5355
5356      brw_reg_type shuffle_type =
5357         brw_reg_type_from_bit_size(8 * type_sz(src.type),
5358                                    BRW_REGISTER_TYPE_D);
5359      for (unsigned i = 0; i < components; i++) {
5360         fs_reg shuffle_component_i =
5361            subscript(offset(dst, bld, i / size_ratio),
5362                      shuffle_type, i % size_ratio);
5363         bld.MOV(shuffle_component_i,
5364                 retype(offset(src, bld, i + first_component), shuffle_type));
5365      }
5366   } else {
5367      /* Source is unshuffled into destination */
5368      unsigned size_ratio = type_sz(src.type) / type_sz(dst.type);
5369      assert(!regions_overlap(dst,
5370         type_sz(dst.type) * bld.dispatch_width() * components,
5371         offset(src, bld, first_component / size_ratio),
5372         type_sz(src.type) * bld.dispatch_width() *
5373         DIV_ROUND_UP(components + (first_component % size_ratio),
5374                      size_ratio)));
5375
5376      brw_reg_type shuffle_type =
5377         brw_reg_type_from_bit_size(8 * type_sz(dst.type),
5378                                    BRW_REGISTER_TYPE_D);
5379      for (unsigned i = 0; i < components; i++) {
5380         fs_reg shuffle_component_i =
5381            subscript(offset(src, bld, (first_component + i) / size_ratio),
5382                      shuffle_type, (first_component + i) % size_ratio);
5383         bld.MOV(retype(offset(dst, bld, i), shuffle_type),
5384                 shuffle_component_i);
5385      }
5386   }
5387}
5388
5389void
5390shuffle_from_32bit_read(const fs_builder &bld,
5391                        const fs_reg &dst,
5392                        const fs_reg &src,
5393                        uint32_t first_component,
5394                        uint32_t components)
5395{
5396   assert(type_sz(src.type) == 4);
5397
5398   /* This function takes components in units of the destination type while
5399    * shuffle_src_to_dst takes components in units of the smallest type
5400    */
5401   if (type_sz(dst.type) > 4) {
5402      assert(type_sz(dst.type) == 8);
5403      first_component *= 2;
5404      components *= 2;
5405   }
5406
5407   shuffle_src_to_dst(bld, dst, src, first_component, components);
5408}
5409
5410fs_reg
5411shuffle_for_32bit_write(const fs_builder &bld,
5412                        const fs_reg &src,
5413                        uint32_t first_component,
5414                        uint32_t components)
5415{
5416   fs_reg dst = bld.vgrf(BRW_REGISTER_TYPE_D,
5417                         DIV_ROUND_UP (components * type_sz(src.type), 4));
5418   /* This function takes components in units of the source type while
5419    * shuffle_src_to_dst takes components in units of the smallest type
5420    */
5421   if (type_sz(src.type) > 4) {
5422      assert(type_sz(src.type) == 8);
5423      first_component *= 2;
5424      components *= 2;
5425   }
5426
5427   shuffle_src_to_dst(bld, dst, src, first_component, components);
5428
5429   return dst;
5430}
5431
5432fs_reg
5433setup_imm_df(const fs_builder &bld, double v)
5434{
5435   const struct gen_device_info *devinfo = bld.shader->devinfo;
5436   assert(devinfo->gen >= 7);
5437
5438   if (devinfo->gen >= 8)
5439      return brw_imm_df(v);
5440
5441   /* gen7.5 does not support DF immediates straighforward but the DIM
5442    * instruction allows to set the 64-bit immediate value.
5443    */
5444   if (devinfo->is_haswell) {
5445      const fs_builder ubld = bld.exec_all().group(1, 0);
5446      fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_DF, 1);
5447      ubld.DIM(dst, brw_imm_df(v));
5448      return component(dst, 0);
5449   }
5450
5451   /* gen7 does not support DF immediates, so we generate a 64-bit constant by
5452    * writing the low 32-bit of the constant to suboffset 0 of a VGRF and
5453    * the high 32-bit to suboffset 4 and then applying a stride of 0.
5454    *
5455    * Alternatively, we could also produce a normal VGRF (without stride 0)
5456    * by writing to all the channels in the VGRF, however, that would hit the
5457    * gen7 bug where we have to split writes that span more than 1 register
5458    * into instructions with a width of 4 (otherwise the write to the second
5459    * register written runs into an execmask hardware bug) which isn't very
5460    * nice.
5461    */
5462   union {
5463      double d;
5464      struct {
5465         uint32_t i1;
5466         uint32_t i2;
5467      };
5468   } di;
5469
5470   di.d = v;
5471
5472   const fs_builder ubld = bld.exec_all().group(1, 0);
5473   const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
5474   ubld.MOV(tmp, brw_imm_ud(di.i1));
5475   ubld.MOV(horiz_offset(tmp, 1), brw_imm_ud(di.i2));
5476
5477   return component(retype(tmp, BRW_REGISTER_TYPE_DF), 0);
5478}
5479
5480fs_reg
5481setup_imm_b(const fs_builder &bld, int8_t v)
5482{
5483   const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_B);
5484   bld.MOV(tmp, brw_imm_w(v));
5485   return tmp;
5486}
5487
5488fs_reg
5489setup_imm_ub(const fs_builder &bld, uint8_t v)
5490{
5491   const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UB);
5492   bld.MOV(tmp, brw_imm_uw(v));
5493   return tmp;
5494}
5495