brw_ir_fs.h revision 9f464c52
1/* -*- c++ -*- */ 2/* 3 * Copyright © 2010-2015 Intel Corporation 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a 6 * copy of this software and associated documentation files (the "Software"), 7 * to deal in the Software without restriction, including without limitation 8 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 9 * and/or sell copies of the Software, and to permit persons to whom the 10 * Software is furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice (including the next 13 * paragraph) shall be included in all copies or substantial portions of the 14 * Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 22 * IN THE SOFTWARE. 23 */ 24 25#ifndef BRW_IR_FS_H 26#define BRW_IR_FS_H 27 28#include "brw_shader.h" 29 30class fs_inst; 31 32class fs_reg : public backend_reg { 33public: 34 DECLARE_RALLOC_CXX_OPERATORS(fs_reg) 35 36 void init(); 37 38 fs_reg(); 39 fs_reg(struct ::brw_reg reg); 40 fs_reg(enum brw_reg_file file, int nr); 41 fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type); 42 43 bool equals(const fs_reg &r) const; 44 bool negative_equals(const fs_reg &r) const; 45 bool is_contiguous() const; 46 47 /** 48 * Return the size in bytes of a single logical component of the 49 * register assuming the given execution width. 50 */ 51 unsigned component_size(unsigned width) const; 52 53 /** Register region horizontal stride */ 54 uint8_t stride; 55}; 56 57static inline fs_reg 58negate(fs_reg reg) 59{ 60 assert(reg.file != IMM); 61 reg.negate = !reg.negate; 62 return reg; 63} 64 65static inline fs_reg 66retype(fs_reg reg, enum brw_reg_type type) 67{ 68 reg.type = type; 69 return reg; 70} 71 72static inline fs_reg 73byte_offset(fs_reg reg, unsigned delta) 74{ 75 switch (reg.file) { 76 case BAD_FILE: 77 break; 78 case VGRF: 79 case ATTR: 80 case UNIFORM: 81 reg.offset += delta; 82 break; 83 case MRF: { 84 const unsigned suboffset = reg.offset + delta; 85 reg.nr += suboffset / REG_SIZE; 86 reg.offset = suboffset % REG_SIZE; 87 break; 88 } 89 case ARF: 90 case FIXED_GRF: { 91 const unsigned suboffset = reg.subnr + delta; 92 reg.nr += suboffset / REG_SIZE; 93 reg.subnr = suboffset % REG_SIZE; 94 break; 95 } 96 case IMM: 97 default: 98 assert(delta == 0); 99 } 100 return reg; 101} 102 103static inline fs_reg 104horiz_offset(const fs_reg ®, unsigned delta) 105{ 106 switch (reg.file) { 107 case BAD_FILE: 108 case UNIFORM: 109 case IMM: 110 /* These only have a single component that is implicitly splatted. A 111 * horizontal offset should be a harmless no-op. 112 * XXX - Handle vector immediates correctly. 113 */ 114 return reg; 115 case VGRF: 116 case MRF: 117 case ATTR: 118 return byte_offset(reg, delta * reg.stride * type_sz(reg.type)); 119 case ARF: 120 case FIXED_GRF: 121 if (reg.is_null()) { 122 return reg; 123 } else { 124 const unsigned stride = reg.hstride ? 1 << (reg.hstride - 1) : 0; 125 return byte_offset(reg, delta * stride * type_sz(reg.type)); 126 } 127 } 128 unreachable("Invalid register file"); 129} 130 131static inline fs_reg 132offset(fs_reg reg, unsigned width, unsigned delta) 133{ 134 switch (reg.file) { 135 case BAD_FILE: 136 break; 137 case ARF: 138 case FIXED_GRF: 139 case MRF: 140 case VGRF: 141 case ATTR: 142 case UNIFORM: 143 return byte_offset(reg, delta * reg.component_size(width)); 144 case IMM: 145 assert(delta == 0); 146 } 147 return reg; 148} 149 150/** 151 * Get the scalar channel of \p reg given by \p idx and replicate it to all 152 * channels of the result. 153 */ 154static inline fs_reg 155component(fs_reg reg, unsigned idx) 156{ 157 reg = horiz_offset(reg, idx); 158 reg.stride = 0; 159 return reg; 160} 161 162/** 163 * Return an integer identifying the discrete address space a register is 164 * contained in. A register is by definition fully contained in the single 165 * reg_space it belongs to, so two registers with different reg_space ids are 166 * guaranteed not to overlap. Most register files are a single reg_space of 167 * its own, only the VGRF file is composed of multiple discrete address 168 * spaces, one for each VGRF allocation. 169 */ 170static inline uint32_t 171reg_space(const fs_reg &r) 172{ 173 return r.file << 16 | (r.file == VGRF ? r.nr : 0); 174} 175 176/** 177 * Return the base offset in bytes of a register relative to the start of its 178 * reg_space(). 179 */ 180static inline unsigned 181reg_offset(const fs_reg &r) 182{ 183 return (r.file == VGRF || r.file == IMM ? 0 : r.nr) * 184 (r.file == UNIFORM ? 4 : REG_SIZE) + r.offset + 185 (r.file == ARF || r.file == FIXED_GRF ? r.subnr : 0); 186} 187 188/** 189 * Return the amount of padding in bytes left unused between individual 190 * components of register \p r due to a (horizontal) stride value greater than 191 * one, or zero if components are tightly packed in the register file. 192 */ 193static inline unsigned 194reg_padding(const fs_reg &r) 195{ 196 const unsigned stride = ((r.file != ARF && r.file != FIXED_GRF) ? r.stride : 197 r.hstride == 0 ? 0 : 198 1 << (r.hstride - 1)); 199 return (MAX2(1, stride) - 1) * type_sz(r.type); 200} 201 202/** 203 * Return whether the register region starting at \p r and spanning \p dr 204 * bytes could potentially overlap the register region starting at \p s and 205 * spanning \p ds bytes. 206 */ 207static inline bool 208regions_overlap(const fs_reg &r, unsigned dr, const fs_reg &s, unsigned ds) 209{ 210 if (r.file == MRF && (r.nr & BRW_MRF_COMPR4)) { 211 fs_reg t = r; 212 t.nr &= ~BRW_MRF_COMPR4; 213 /* COMPR4 regions are translated by the hardware during decompression 214 * into two separate half-regions 4 MRFs apart from each other. 215 */ 216 return regions_overlap(t, dr / 2, s, ds) || 217 regions_overlap(byte_offset(t, 4 * REG_SIZE), dr / 2, s, ds); 218 219 } else if (s.file == MRF && (s.nr & BRW_MRF_COMPR4)) { 220 return regions_overlap(s, ds, r, dr); 221 222 } else { 223 return reg_space(r) == reg_space(s) && 224 !(reg_offset(r) + dr <= reg_offset(s) || 225 reg_offset(s) + ds <= reg_offset(r)); 226 } 227} 228 229/** 230 * Check that the register region given by r [r.offset, r.offset + dr[ 231 * is fully contained inside the register region given by s 232 * [s.offset, s.offset + ds[. 233 */ 234static inline bool 235region_contained_in(const fs_reg &r, unsigned dr, const fs_reg &s, unsigned ds) 236{ 237 return reg_space(r) == reg_space(s) && 238 reg_offset(r) >= reg_offset(s) && 239 reg_offset(r) + dr <= reg_offset(s) + ds; 240} 241 242/** 243 * Return whether the given register region is n-periodic, i.e. whether the 244 * original region remains invariant after shifting it by \p n scalar 245 * channels. 246 */ 247static inline bool 248is_periodic(const fs_reg ®, unsigned n) 249{ 250 if (reg.file == BAD_FILE || reg.is_null()) { 251 return true; 252 253 } else if (reg.file == IMM) { 254 const unsigned period = (reg.type == BRW_REGISTER_TYPE_UV || 255 reg.type == BRW_REGISTER_TYPE_V ? 8 : 256 reg.type == BRW_REGISTER_TYPE_VF ? 4 : 257 1); 258 return n % period == 0; 259 260 } else if (reg.file == ARF || reg.file == FIXED_GRF) { 261 const unsigned period = (reg.hstride == 0 && reg.vstride == 0 ? 1 : 262 reg.vstride == 0 ? 1 << reg.width : 263 ~0); 264 return n % period == 0; 265 266 } else { 267 return reg.stride == 0; 268 } 269} 270 271static inline bool 272is_uniform(const fs_reg ®) 273{ 274 return is_periodic(reg, 1); 275} 276 277/** 278 * Get the specified 8-component quarter of a register. 279 * XXX - Maybe come up with a less misleading name for this (e.g. quarter())? 280 */ 281static inline fs_reg 282half(const fs_reg ®, unsigned idx) 283{ 284 assert(idx < 2); 285 return horiz_offset(reg, 8 * idx); 286} 287 288/** 289 * Reinterpret each channel of register \p reg as a vector of values of the 290 * given smaller type and take the i-th subcomponent from each. 291 */ 292static inline fs_reg 293subscript(fs_reg reg, brw_reg_type type, unsigned i) 294{ 295 assert((i + 1) * type_sz(type) <= type_sz(reg.type)); 296 297 if (reg.file == ARF || reg.file == FIXED_GRF) { 298 /* The stride is encoded inconsistently for fixed GRF and ARF registers 299 * as the log2 of the actual vertical and horizontal strides. 300 */ 301 const int delta = _mesa_logbase2(type_sz(reg.type)) - 302 _mesa_logbase2(type_sz(type)); 303 reg.hstride += (reg.hstride ? delta : 0); 304 reg.vstride += (reg.vstride ? delta : 0); 305 306 } else if (reg.file == IMM) { 307 assert(reg.type == type); 308 309 } else { 310 reg.stride *= type_sz(reg.type) / type_sz(type); 311 } 312 313 return byte_offset(retype(reg, type), i * type_sz(type)); 314} 315 316static inline fs_reg 317horiz_stride(fs_reg reg, unsigned s) 318{ 319 reg.stride *= s; 320 return reg; 321} 322 323static const fs_reg reg_undef; 324 325class fs_inst : public backend_instruction { 326 fs_inst &operator=(const fs_inst &); 327 328 void init(enum opcode opcode, uint8_t exec_width, const fs_reg &dst, 329 const fs_reg *src, unsigned sources); 330 331public: 332 DECLARE_RALLOC_CXX_OPERATORS(fs_inst) 333 334 fs_inst(); 335 fs_inst(enum opcode opcode, uint8_t exec_size); 336 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst); 337 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, 338 const fs_reg &src0); 339 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, 340 const fs_reg &src0, const fs_reg &src1); 341 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, 342 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2); 343 fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst, 344 const fs_reg src[], unsigned sources); 345 fs_inst(const fs_inst &that); 346 ~fs_inst(); 347 348 void resize_sources(uint8_t num_sources); 349 350 bool is_send_from_grf() const; 351 bool is_partial_write() const; 352 bool is_copy_payload(const brw::simple_allocator &grf_alloc) const; 353 unsigned components_read(unsigned i) const; 354 unsigned size_read(int arg) const; 355 bool can_do_source_mods(const struct gen_device_info *devinfo) const; 356 bool can_do_cmod(); 357 bool can_change_types() const; 358 bool has_source_and_destination_hazard() const; 359 360 /** 361 * Return whether \p arg is a control source of a virtual instruction which 362 * shouldn't contribute to the execution type and usual regioning 363 * restriction calculations of arithmetic instructions. 364 */ 365 bool is_control_source(unsigned arg) const; 366 367 /** 368 * Return the subset of flag registers read by the instruction as a bitset 369 * with byte granularity. 370 */ 371 unsigned flags_read(const gen_device_info *devinfo) const; 372 373 /** 374 * Return the subset of flag registers updated by the instruction (either 375 * partially or fully) as a bitset with byte granularity. 376 */ 377 unsigned flags_written() const; 378 379 fs_reg dst; 380 fs_reg *src; 381 382 uint8_t sources; /**< Number of fs_reg sources. */ 383 384 bool last_rt:1; 385 bool pi_noperspective:1; /**< Pixel interpolator noperspective flag */ 386}; 387 388/** 389 * Make the execution of \p inst dependent on the evaluation of a possibly 390 * inverted predicate. 391 */ 392static inline fs_inst * 393set_predicate_inv(enum brw_predicate pred, bool inverse, 394 fs_inst *inst) 395{ 396 inst->predicate = pred; 397 inst->predicate_inverse = inverse; 398 return inst; 399} 400 401/** 402 * Make the execution of \p inst dependent on the evaluation of a predicate. 403 */ 404static inline fs_inst * 405set_predicate(enum brw_predicate pred, fs_inst *inst) 406{ 407 return set_predicate_inv(pred, false, inst); 408} 409 410/** 411 * Write the result of evaluating the condition given by \p mod to a flag 412 * register. 413 */ 414static inline fs_inst * 415set_condmod(enum brw_conditional_mod mod, fs_inst *inst) 416{ 417 inst->conditional_mod = mod; 418 return inst; 419} 420 421/** 422 * Clamp the result of \p inst to the saturation range of its destination 423 * datatype. 424 */ 425static inline fs_inst * 426set_saturate(bool saturate, fs_inst *inst) 427{ 428 inst->saturate = saturate; 429 return inst; 430} 431 432/** 433 * Return the number of dataflow registers written by the instruction (either 434 * fully or partially) counted from 'floor(reg_offset(inst->dst) / 435 * register_size)'. The somewhat arbitrary register size unit is 4B for the 436 * UNIFORM and IMM files and 32B for all other files. 437 */ 438inline unsigned 439regs_written(const fs_inst *inst) 440{ 441 assert(inst->dst.file != UNIFORM && inst->dst.file != IMM); 442 return DIV_ROUND_UP(reg_offset(inst->dst) % REG_SIZE + 443 inst->size_written - 444 MIN2(inst->size_written, reg_padding(inst->dst)), 445 REG_SIZE); 446} 447 448/** 449 * Return the number of dataflow registers read by the instruction (either 450 * fully or partially) counted from 'floor(reg_offset(inst->src[i]) / 451 * register_size)'. The somewhat arbitrary register size unit is 4B for the 452 * UNIFORM and IMM files and 32B for all other files. 453 */ 454inline unsigned 455regs_read(const fs_inst *inst, unsigned i) 456{ 457 const unsigned reg_size = 458 inst->src[i].file == UNIFORM || inst->src[i].file == IMM ? 4 : REG_SIZE; 459 return DIV_ROUND_UP(reg_offset(inst->src[i]) % reg_size + 460 inst->size_read(i) - 461 MIN2(inst->size_read(i), reg_padding(inst->src[i])), 462 reg_size); 463} 464 465static inline enum brw_reg_type 466get_exec_type(const fs_inst *inst) 467{ 468 brw_reg_type exec_type = BRW_REGISTER_TYPE_B; 469 470 for (int i = 0; i < inst->sources; i++) { 471 if (inst->src[i].file != BAD_FILE && 472 !inst->is_control_source(i)) { 473 const brw_reg_type t = get_exec_type(inst->src[i].type); 474 if (type_sz(t) > type_sz(exec_type)) 475 exec_type = t; 476 else if (type_sz(t) == type_sz(exec_type) && 477 brw_reg_type_is_floating_point(t)) 478 exec_type = t; 479 } 480 } 481 482 if (exec_type == BRW_REGISTER_TYPE_B) 483 exec_type = inst->dst.type; 484 485 assert(exec_type != BRW_REGISTER_TYPE_B); 486 487 /* Promotion of the execution type to 32-bit for conversions from or to 488 * half-float seems to be consistent with the following text from the 489 * Cherryview PRM Vol. 7, "Execution Data Type": 490 * 491 * "When single precision and half precision floats are mixed between 492 * source operands or between source and destination operand [..] single 493 * precision float is the execution datatype." 494 * 495 * and from "Register Region Restrictions": 496 * 497 * "Conversion between Integer and HF (Half Float) must be DWord aligned 498 * and strided by a DWord on the destination." 499 */ 500 if (type_sz(exec_type) == 2 && 501 inst->dst.type != exec_type) { 502 if (exec_type == BRW_REGISTER_TYPE_HF) 503 exec_type = BRW_REGISTER_TYPE_F; 504 else if (inst->dst.type == BRW_REGISTER_TYPE_HF) 505 exec_type = BRW_REGISTER_TYPE_D; 506 } 507 508 return exec_type; 509} 510 511static inline unsigned 512get_exec_type_size(const fs_inst *inst) 513{ 514 return type_sz(get_exec_type(inst)); 515} 516 517/** 518 * Return whether the instruction isn't an ALU instruction and cannot be 519 * assumed to complete in-order. 520 */ 521static inline bool 522is_unordered(const fs_inst *inst) 523{ 524 return inst->mlen || inst->is_send_from_grf() || inst->is_math(); 525} 526 527/** 528 * Return whether the following regioning restriction applies to the specified 529 * instruction. From the Cherryview PRM Vol 7. "Register Region 530 * Restrictions": 531 * 532 * "When source or destination datatype is 64b or operation is integer DWord 533 * multiply, regioning in Align1 must follow these rules: 534 * 535 * 1. Source and Destination horizontal stride must be aligned to the same qword. 536 * 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride. 537 * 3. Source and Destination offset must be the same, except the case of 538 * scalar source." 539 */ 540static inline bool 541has_dst_aligned_region_restriction(const gen_device_info *devinfo, 542 const fs_inst *inst) 543{ 544 const brw_reg_type exec_type = get_exec_type(inst); 545 /* Even though the hardware spec claims that "integer DWord multiply" 546 * operations are restricted, empirical evidence and the behavior of the 547 * simulator suggest that only 32x32-bit integer multiplication is 548 * restricted. 549 */ 550 const bool is_dword_multiply = !brw_reg_type_is_floating_point(exec_type) && 551 ((inst->opcode == BRW_OPCODE_MUL && 552 MIN2(type_sz(inst->src[0].type), type_sz(inst->src[1].type)) >= 4) || 553 (inst->opcode == BRW_OPCODE_MAD && 554 MIN2(type_sz(inst->src[1].type), type_sz(inst->src[2].type)) >= 4)); 555 556 if (type_sz(inst->dst.type) > 4 || type_sz(exec_type) > 4 || 557 (type_sz(exec_type) == 4 && is_dword_multiply)) 558 return devinfo->is_cherryview || gen_device_info_is_9lp(devinfo); 559 else 560 return false; 561} 562 563#endif 564