brw_vec4.cpp revision 01e04c3f
1/* 2 * Copyright © 2011 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24#include "brw_vec4.h" 25#include "brw_fs.h" 26#include "brw_cfg.h" 27#include "brw_nir.h" 28#include "brw_vec4_builder.h" 29#include "brw_vec4_live_variables.h" 30#include "brw_vec4_vs.h" 31#include "brw_dead_control_flow.h" 32#include "common/gen_debug.h" 33#include "program/prog_parameter.h" 34#include "util/u_math.h" 35 36#define MAX_INSTRUCTION (1 << 30) 37 38using namespace brw; 39 40namespace brw { 41 42void 43src_reg::init() 44{ 45 memset((void*)this, 0, sizeof(*this)); 46 this->file = BAD_FILE; 47 this->type = BRW_REGISTER_TYPE_UD; 48} 49 50src_reg::src_reg(enum brw_reg_file file, int nr, const glsl_type *type) 51{ 52 init(); 53 54 this->file = file; 55 this->nr = nr; 56 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix())) 57 this->swizzle = brw_swizzle_for_size(type->vector_elements); 58 else 59 this->swizzle = BRW_SWIZZLE_XYZW; 60 if (type) 61 this->type = brw_type_for_base_type(type); 62} 63 64/** Generic unset register constructor. */ 65src_reg::src_reg() 66{ 67 init(); 68} 69 70src_reg::src_reg(struct ::brw_reg reg) : 71 backend_reg(reg) 72{ 73 this->offset = 0; 74 this->reladdr = NULL; 75} 76 77src_reg::src_reg(const dst_reg ®) : 78 backend_reg(reg) 79{ 80 this->reladdr = reg.reladdr; 81 this->swizzle = brw_swizzle_for_mask(reg.writemask); 82} 83 84void 85dst_reg::init() 86{ 87 memset((void*)this, 0, sizeof(*this)); 88 this->file = BAD_FILE; 89 this->type = BRW_REGISTER_TYPE_UD; 90 this->writemask = WRITEMASK_XYZW; 91} 92 93dst_reg::dst_reg() 94{ 95 init(); 96} 97 98dst_reg::dst_reg(enum brw_reg_file file, int nr) 99{ 100 init(); 101 102 this->file = file; 103 this->nr = nr; 104} 105 106dst_reg::dst_reg(enum brw_reg_file file, int nr, const glsl_type *type, 107 unsigned writemask) 108{ 109 init(); 110 111 this->file = file; 112 this->nr = nr; 113 this->type = brw_type_for_base_type(type); 114 this->writemask = writemask; 115} 116 117dst_reg::dst_reg(enum brw_reg_file file, int nr, brw_reg_type type, 118 unsigned writemask) 119{ 120 init(); 121 122 this->file = file; 123 this->nr = nr; 124 this->type = type; 125 this->writemask = writemask; 126} 127 128dst_reg::dst_reg(struct ::brw_reg reg) : 129 backend_reg(reg) 130{ 131 this->offset = 0; 132 this->reladdr = NULL; 133} 134 135dst_reg::dst_reg(const src_reg ®) : 136 backend_reg(reg) 137{ 138 this->writemask = brw_mask_for_swizzle(reg.swizzle); 139 this->reladdr = reg.reladdr; 140} 141 142bool 143dst_reg::equals(const dst_reg &r) const 144{ 145 return (this->backend_reg::equals(r) && 146 (reladdr == r.reladdr || 147 (reladdr && r.reladdr && reladdr->equals(*r.reladdr)))); 148} 149 150bool 151vec4_instruction::is_send_from_grf() 152{ 153 switch (opcode) { 154 case SHADER_OPCODE_SHADER_TIME_ADD: 155 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: 156 case SHADER_OPCODE_UNTYPED_ATOMIC: 157 case SHADER_OPCODE_UNTYPED_SURFACE_READ: 158 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE: 159 case SHADER_OPCODE_TYPED_ATOMIC: 160 case SHADER_OPCODE_TYPED_SURFACE_READ: 161 case SHADER_OPCODE_TYPED_SURFACE_WRITE: 162 case VEC4_OPCODE_URB_READ: 163 case TCS_OPCODE_URB_WRITE: 164 case TCS_OPCODE_RELEASE_INPUT: 165 case SHADER_OPCODE_BARRIER: 166 return true; 167 default: 168 return false; 169 } 170} 171 172/** 173 * Returns true if this instruction's sources and destinations cannot 174 * safely be the same register. 175 * 176 * In most cases, a register can be written over safely by the same 177 * instruction that is its last use. For a single instruction, the 178 * sources are dereferenced before writing of the destination starts 179 * (naturally). 180 * 181 * However, there are a few cases where this can be problematic: 182 * 183 * - Virtual opcodes that translate to multiple instructions in the 184 * code generator: if src == dst and one instruction writes the 185 * destination before a later instruction reads the source, then 186 * src will have been clobbered. 187 * 188 * The register allocator uses this information to set up conflicts between 189 * GRF sources and the destination. 190 */ 191bool 192vec4_instruction::has_source_and_destination_hazard() const 193{ 194 switch (opcode) { 195 case TCS_OPCODE_SET_INPUT_URB_OFFSETS: 196 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS: 197 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET: 198 return true; 199 default: 200 /* 8-wide compressed DF operations are executed as two 4-wide operations, 201 * so we have a src/dst hazard if the first half of the instruction 202 * overwrites the source of the second half. Prevent this by marking 203 * compressed instructions as having src/dst hazards, so the register 204 * allocator assigns safe register regions for dst and srcs. 205 */ 206 return size_written > REG_SIZE; 207 } 208} 209 210unsigned 211vec4_instruction::size_read(unsigned arg) const 212{ 213 switch (opcode) { 214 case SHADER_OPCODE_SHADER_TIME_ADD: 215 case SHADER_OPCODE_UNTYPED_ATOMIC: 216 case SHADER_OPCODE_UNTYPED_SURFACE_READ: 217 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE: 218 case SHADER_OPCODE_TYPED_ATOMIC: 219 case SHADER_OPCODE_TYPED_SURFACE_READ: 220 case SHADER_OPCODE_TYPED_SURFACE_WRITE: 221 case TCS_OPCODE_URB_WRITE: 222 if (arg == 0) 223 return mlen * REG_SIZE; 224 break; 225 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: 226 if (arg == 1) 227 return mlen * REG_SIZE; 228 break; 229 default: 230 break; 231 } 232 233 switch (src[arg].file) { 234 case BAD_FILE: 235 return 0; 236 case IMM: 237 case UNIFORM: 238 return 4 * type_sz(src[arg].type); 239 default: 240 /* XXX - Represent actual vertical stride. */ 241 return exec_size * type_sz(src[arg].type); 242 } 243} 244 245bool 246vec4_instruction::can_do_source_mods(const struct gen_device_info *devinfo) 247{ 248 if (devinfo->gen == 6 && is_math()) 249 return false; 250 251 if (is_send_from_grf()) 252 return false; 253 254 if (!backend_instruction::can_do_source_mods()) 255 return false; 256 257 return true; 258} 259 260bool 261vec4_instruction::can_do_cmod() 262{ 263 if (!backend_instruction::can_do_cmod()) 264 return false; 265 266 /* The accumulator result appears to get used for the conditional modifier 267 * generation. When negating a UD value, there is a 33rd bit generated for 268 * the sign in the accumulator value, so now you can't check, for example, 269 * equality with a 32-bit value. See piglit fs-op-neg-uvec4. 270 */ 271 for (unsigned i = 0; i < 3; i++) { 272 if (src[i].file != BAD_FILE && 273 type_is_unsigned_int(src[i].type) && src[i].negate) 274 return false; 275 } 276 277 return true; 278} 279 280bool 281vec4_instruction::can_do_writemask(const struct gen_device_info *devinfo) 282{ 283 switch (opcode) { 284 case SHADER_OPCODE_GEN4_SCRATCH_READ: 285 case VEC4_OPCODE_DOUBLE_TO_F32: 286 case VEC4_OPCODE_DOUBLE_TO_D32: 287 case VEC4_OPCODE_DOUBLE_TO_U32: 288 case VEC4_OPCODE_TO_DOUBLE: 289 case VEC4_OPCODE_PICK_LOW_32BIT: 290 case VEC4_OPCODE_PICK_HIGH_32BIT: 291 case VEC4_OPCODE_SET_LOW_32BIT: 292 case VEC4_OPCODE_SET_HIGH_32BIT: 293 case VS_OPCODE_PULL_CONSTANT_LOAD: 294 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: 295 case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9: 296 case TCS_OPCODE_SET_INPUT_URB_OFFSETS: 297 case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS: 298 case TES_OPCODE_CREATE_INPUT_READ_HEADER: 299 case TES_OPCODE_ADD_INDIRECT_URB_OFFSET: 300 case VEC4_OPCODE_URB_READ: 301 case SHADER_OPCODE_MOV_INDIRECT: 302 return false; 303 default: 304 /* The MATH instruction on Gen6 only executes in align1 mode, which does 305 * not support writemasking. 306 */ 307 if (devinfo->gen == 6 && is_math()) 308 return false; 309 310 if (is_tex()) 311 return false; 312 313 return true; 314 } 315} 316 317bool 318vec4_instruction::can_change_types() const 319{ 320 return dst.type == src[0].type && 321 !src[0].abs && !src[0].negate && !saturate && 322 (opcode == BRW_OPCODE_MOV || 323 (opcode == BRW_OPCODE_SEL && 324 dst.type == src[1].type && 325 predicate != BRW_PREDICATE_NONE && 326 !src[1].abs && !src[1].negate)); 327} 328 329/** 330 * Returns how many MRFs an opcode will write over. 331 * 332 * Note that this is not the 0 or 1 implied writes in an actual gen 333 * instruction -- the generate_* functions generate additional MOVs 334 * for setup. 335 */ 336int 337vec4_visitor::implied_mrf_writes(vec4_instruction *inst) 338{ 339 if (inst->mlen == 0 || inst->is_send_from_grf()) 340 return 0; 341 342 switch (inst->opcode) { 343 case SHADER_OPCODE_RCP: 344 case SHADER_OPCODE_RSQ: 345 case SHADER_OPCODE_SQRT: 346 case SHADER_OPCODE_EXP2: 347 case SHADER_OPCODE_LOG2: 348 case SHADER_OPCODE_SIN: 349 case SHADER_OPCODE_COS: 350 return 1; 351 case SHADER_OPCODE_INT_QUOTIENT: 352 case SHADER_OPCODE_INT_REMAINDER: 353 case SHADER_OPCODE_POW: 354 case TCS_OPCODE_THREAD_END: 355 return 2; 356 case VS_OPCODE_URB_WRITE: 357 return 1; 358 case VS_OPCODE_PULL_CONSTANT_LOAD: 359 return 2; 360 case SHADER_OPCODE_GEN4_SCRATCH_READ: 361 return 2; 362 case SHADER_OPCODE_GEN4_SCRATCH_WRITE: 363 return 3; 364 case GS_OPCODE_URB_WRITE: 365 case GS_OPCODE_URB_WRITE_ALLOCATE: 366 case GS_OPCODE_THREAD_END: 367 return 0; 368 case GS_OPCODE_FF_SYNC: 369 return 1; 370 case TCS_OPCODE_URB_WRITE: 371 return 0; 372 case SHADER_OPCODE_SHADER_TIME_ADD: 373 return 0; 374 case SHADER_OPCODE_TEX: 375 case SHADER_OPCODE_TXL: 376 case SHADER_OPCODE_TXD: 377 case SHADER_OPCODE_TXF: 378 case SHADER_OPCODE_TXF_CMS: 379 case SHADER_OPCODE_TXF_CMS_W: 380 case SHADER_OPCODE_TXF_MCS: 381 case SHADER_OPCODE_TXS: 382 case SHADER_OPCODE_TG4: 383 case SHADER_OPCODE_TG4_OFFSET: 384 case SHADER_OPCODE_SAMPLEINFO: 385 case SHADER_OPCODE_GET_BUFFER_SIZE: 386 return inst->header_size; 387 default: 388 unreachable("not reached"); 389 } 390} 391 392bool 393src_reg::equals(const src_reg &r) const 394{ 395 return (this->backend_reg::equals(r) && 396 !reladdr && !r.reladdr); 397} 398 399bool 400src_reg::negative_equals(const src_reg &r) const 401{ 402 return this->backend_reg::negative_equals(r) && 403 !reladdr && !r.reladdr; 404} 405 406bool 407vec4_visitor::opt_vector_float() 408{ 409 bool progress = false; 410 411 foreach_block(block, cfg) { 412 int last_reg = -1, last_offset = -1; 413 enum brw_reg_file last_reg_file = BAD_FILE; 414 415 uint8_t imm[4] = { 0 }; 416 int inst_count = 0; 417 vec4_instruction *imm_inst[4]; 418 unsigned writemask = 0; 419 enum brw_reg_type dest_type = BRW_REGISTER_TYPE_F; 420 421 foreach_inst_in_block_safe(vec4_instruction, inst, block) { 422 int vf = -1; 423 enum brw_reg_type need_type; 424 425 /* Look for unconditional MOVs from an immediate with a partial 426 * writemask. Skip type-conversion MOVs other than integer 0, 427 * where the type doesn't matter. See if the immediate can be 428 * represented as a VF. 429 */ 430 if (inst->opcode == BRW_OPCODE_MOV && 431 inst->src[0].file == IMM && 432 inst->predicate == BRW_PREDICATE_NONE && 433 inst->dst.writemask != WRITEMASK_XYZW && 434 type_sz(inst->src[0].type) < 8 && 435 (inst->src[0].type == inst->dst.type || inst->src[0].d == 0)) { 436 437 vf = brw_float_to_vf(inst->src[0].d); 438 need_type = BRW_REGISTER_TYPE_D; 439 440 if (vf == -1) { 441 vf = brw_float_to_vf(inst->src[0].f); 442 need_type = BRW_REGISTER_TYPE_F; 443 } 444 } else { 445 last_reg = -1; 446 } 447 448 /* If this wasn't a MOV, or the destination register doesn't match, 449 * or we have to switch destination types, then this breaks our 450 * sequence. Combine anything we've accumulated so far. 451 */ 452 if (last_reg != inst->dst.nr || 453 last_offset != inst->dst.offset || 454 last_reg_file != inst->dst.file || 455 (vf > 0 && dest_type != need_type)) { 456 457 if (inst_count > 1) { 458 unsigned vf; 459 memcpy(&vf, imm, sizeof(vf)); 460 vec4_instruction *mov = MOV(imm_inst[0]->dst, brw_imm_vf(vf)); 461 mov->dst.type = dest_type; 462 mov->dst.writemask = writemask; 463 inst->insert_before(block, mov); 464 465 for (int i = 0; i < inst_count; i++) { 466 imm_inst[i]->remove(block); 467 } 468 469 progress = true; 470 } 471 472 inst_count = 0; 473 last_reg = -1; 474 writemask = 0; 475 dest_type = BRW_REGISTER_TYPE_F; 476 477 for (int i = 0; i < 4; i++) { 478 imm[i] = 0; 479 } 480 } 481 482 /* Record this instruction's value (if it was representable). */ 483 if (vf != -1) { 484 if ((inst->dst.writemask & WRITEMASK_X) != 0) 485 imm[0] = vf; 486 if ((inst->dst.writemask & WRITEMASK_Y) != 0) 487 imm[1] = vf; 488 if ((inst->dst.writemask & WRITEMASK_Z) != 0) 489 imm[2] = vf; 490 if ((inst->dst.writemask & WRITEMASK_W) != 0) 491 imm[3] = vf; 492 493 writemask |= inst->dst.writemask; 494 imm_inst[inst_count++] = inst; 495 496 last_reg = inst->dst.nr; 497 last_offset = inst->dst.offset; 498 last_reg_file = inst->dst.file; 499 if (vf > 0) 500 dest_type = need_type; 501 } 502 } 503 } 504 505 if (progress) 506 invalidate_live_intervals(); 507 508 return progress; 509} 510 511/* Replaces unused channels of a swizzle with channels that are used. 512 * 513 * For instance, this pass transforms 514 * 515 * mov vgrf4.yz, vgrf5.wxzy 516 * 517 * into 518 * 519 * mov vgrf4.yz, vgrf5.xxzx 520 * 521 * This eliminates false uses of some channels, letting dead code elimination 522 * remove the instructions that wrote them. 523 */ 524bool 525vec4_visitor::opt_reduce_swizzle() 526{ 527 bool progress = false; 528 529 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 530 if (inst->dst.file == BAD_FILE || 531 inst->dst.file == ARF || 532 inst->dst.file == FIXED_GRF || 533 inst->is_send_from_grf()) 534 continue; 535 536 unsigned swizzle; 537 538 /* Determine which channels of the sources are read. */ 539 switch (inst->opcode) { 540 case VEC4_OPCODE_PACK_BYTES: 541 case BRW_OPCODE_DP4: 542 case BRW_OPCODE_DPH: /* FINISHME: DPH reads only three channels of src0, 543 * but all four of src1. 544 */ 545 swizzle = brw_swizzle_for_size(4); 546 break; 547 case BRW_OPCODE_DP3: 548 swizzle = brw_swizzle_for_size(3); 549 break; 550 case BRW_OPCODE_DP2: 551 swizzle = brw_swizzle_for_size(2); 552 break; 553 554 case VEC4_OPCODE_TO_DOUBLE: 555 case VEC4_OPCODE_DOUBLE_TO_F32: 556 case VEC4_OPCODE_DOUBLE_TO_D32: 557 case VEC4_OPCODE_DOUBLE_TO_U32: 558 case VEC4_OPCODE_PICK_LOW_32BIT: 559 case VEC4_OPCODE_PICK_HIGH_32BIT: 560 case VEC4_OPCODE_SET_LOW_32BIT: 561 case VEC4_OPCODE_SET_HIGH_32BIT: 562 swizzle = brw_swizzle_for_size(4); 563 break; 564 565 default: 566 swizzle = brw_swizzle_for_mask(inst->dst.writemask); 567 break; 568 } 569 570 /* Update sources' swizzles. */ 571 for (int i = 0; i < 3; i++) { 572 if (inst->src[i].file != VGRF && 573 inst->src[i].file != ATTR && 574 inst->src[i].file != UNIFORM) 575 continue; 576 577 const unsigned new_swizzle = 578 brw_compose_swizzle(swizzle, inst->src[i].swizzle); 579 if (inst->src[i].swizzle != new_swizzle) { 580 inst->src[i].swizzle = new_swizzle; 581 progress = true; 582 } 583 } 584 } 585 586 if (progress) 587 invalidate_live_intervals(); 588 589 return progress; 590} 591 592void 593vec4_visitor::split_uniform_registers() 594{ 595 /* Prior to this, uniforms have been in an array sized according to 596 * the number of vector uniforms present, sparsely filled (so an 597 * aggregate results in reg indices being skipped over). Now we're 598 * going to cut those aggregates up so each .nr index is one 599 * vector. The goal is to make elimination of unused uniform 600 * components easier later. 601 */ 602 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 603 for (int i = 0 ; i < 3; i++) { 604 if (inst->src[i].file != UNIFORM) 605 continue; 606 607 assert(!inst->src[i].reladdr); 608 609 inst->src[i].nr += inst->src[i].offset / 16; 610 inst->src[i].offset %= 16; 611 } 612 } 613} 614 615/* This function returns the register number where we placed the uniform */ 616static int 617set_push_constant_loc(const int nr_uniforms, int *new_uniform_count, 618 const int src, const int size, const int channel_size, 619 int *new_loc, int *new_chan, 620 int *new_chans_used) 621{ 622 int dst; 623 /* Find the lowest place we can slot this uniform in. */ 624 for (dst = 0; dst < nr_uniforms; dst++) { 625 if (ALIGN(new_chans_used[dst], channel_size) + size <= 4) 626 break; 627 } 628 629 assert(dst < nr_uniforms); 630 631 new_loc[src] = dst; 632 new_chan[src] = ALIGN(new_chans_used[dst], channel_size); 633 new_chans_used[dst] = ALIGN(new_chans_used[dst], channel_size) + size; 634 635 *new_uniform_count = MAX2(*new_uniform_count, dst + 1); 636 return dst; 637} 638 639void 640vec4_visitor::pack_uniform_registers() 641{ 642 uint8_t chans_used[this->uniforms]; 643 int new_loc[this->uniforms]; 644 int new_chan[this->uniforms]; 645 bool is_aligned_to_dvec4[this->uniforms]; 646 int new_chans_used[this->uniforms]; 647 int channel_sizes[this->uniforms]; 648 649 memset(chans_used, 0, sizeof(chans_used)); 650 memset(new_loc, 0, sizeof(new_loc)); 651 memset(new_chan, 0, sizeof(new_chan)); 652 memset(new_chans_used, 0, sizeof(new_chans_used)); 653 memset(is_aligned_to_dvec4, 0, sizeof(is_aligned_to_dvec4)); 654 memset(channel_sizes, 0, sizeof(channel_sizes)); 655 656 /* Find which uniform vectors are actually used by the program. We 657 * expect unused vector elements when we've moved array access out 658 * to pull constants, and from some GLSL code generators like wine. 659 */ 660 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 661 unsigned readmask; 662 switch (inst->opcode) { 663 case VEC4_OPCODE_PACK_BYTES: 664 case BRW_OPCODE_DP4: 665 case BRW_OPCODE_DPH: 666 readmask = 0xf; 667 break; 668 case BRW_OPCODE_DP3: 669 readmask = 0x7; 670 break; 671 case BRW_OPCODE_DP2: 672 readmask = 0x3; 673 break; 674 default: 675 readmask = inst->dst.writemask; 676 break; 677 } 678 679 for (int i = 0 ; i < 3; i++) { 680 if (inst->src[i].file != UNIFORM) 681 continue; 682 683 assert(type_sz(inst->src[i].type) % 4 == 0); 684 int channel_size = type_sz(inst->src[i].type) / 4; 685 686 int reg = inst->src[i].nr; 687 for (int c = 0; c < 4; c++) { 688 if (!(readmask & (1 << c))) 689 continue; 690 691 unsigned channel = BRW_GET_SWZ(inst->src[i].swizzle, c) + 1; 692 unsigned used = MAX2(chans_used[reg], channel * channel_size); 693 if (used <= 4) { 694 chans_used[reg] = used; 695 channel_sizes[reg] = MAX2(channel_sizes[reg], channel_size); 696 } else { 697 is_aligned_to_dvec4[reg] = true; 698 is_aligned_to_dvec4[reg + 1] = true; 699 chans_used[reg + 1] = used - 4; 700 channel_sizes[reg + 1] = MAX2(channel_sizes[reg + 1], channel_size); 701 } 702 } 703 } 704 705 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && 706 inst->src[0].file == UNIFORM) { 707 assert(inst->src[2].file == BRW_IMMEDIATE_VALUE); 708 assert(inst->src[0].subnr == 0); 709 710 unsigned bytes_read = inst->src[2].ud; 711 assert(bytes_read % 4 == 0); 712 unsigned vec4s_read = DIV_ROUND_UP(bytes_read, 16); 713 714 /* We just mark every register touched by a MOV_INDIRECT as being 715 * fully used. This ensures that it doesn't broken up piecewise by 716 * the next part of our packing algorithm. 717 */ 718 int reg = inst->src[0].nr; 719 int channel_size = type_sz(inst->src[0].type) / 4; 720 for (unsigned i = 0; i < vec4s_read; i++) { 721 chans_used[reg + i] = 4; 722 channel_sizes[reg + i] = MAX2(channel_sizes[reg + i], channel_size); 723 } 724 } 725 } 726 727 int new_uniform_count = 0; 728 729 /* As the uniforms are going to be reordered, take the data from a temporary 730 * copy of the original param[]. 731 */ 732 uint32_t *param = ralloc_array(NULL, uint32_t, stage_prog_data->nr_params); 733 memcpy(param, stage_prog_data->param, 734 sizeof(uint32_t) * stage_prog_data->nr_params); 735 736 /* Now, figure out a packing of the live uniform vectors into our 737 * push constants. Start with dvec{3,4} because they are aligned to 738 * dvec4 size (2 vec4). 739 */ 740 for (int src = 0; src < uniforms; src++) { 741 int size = chans_used[src]; 742 743 if (size == 0 || !is_aligned_to_dvec4[src]) 744 continue; 745 746 /* dvec3 are aligned to dvec4 size, apply the alignment of the size 747 * to 4 to avoid moving last component of a dvec3 to the available 748 * location at the end of a previous dvec3. These available locations 749 * could be filled by smaller variables in next loop. 750 */ 751 size = ALIGN(size, 4); 752 int dst = set_push_constant_loc(uniforms, &new_uniform_count, 753 src, size, channel_sizes[src], 754 new_loc, new_chan, 755 new_chans_used); 756 /* Move the references to the data */ 757 for (int j = 0; j < size; j++) { 758 stage_prog_data->param[dst * 4 + new_chan[src] + j] = 759 param[src * 4 + j]; 760 } 761 } 762 763 /* Continue with the rest of data, which is aligned to vec4. */ 764 for (int src = 0; src < uniforms; src++) { 765 int size = chans_used[src]; 766 767 if (size == 0 || is_aligned_to_dvec4[src]) 768 continue; 769 770 int dst = set_push_constant_loc(uniforms, &new_uniform_count, 771 src, size, channel_sizes[src], 772 new_loc, new_chan, 773 new_chans_used); 774 /* Move the references to the data */ 775 for (int j = 0; j < size; j++) { 776 stage_prog_data->param[dst * 4 + new_chan[src] + j] = 777 param[src * 4 + j]; 778 } 779 } 780 781 ralloc_free(param); 782 this->uniforms = new_uniform_count; 783 784 /* Now, update the instructions for our repacked uniforms. */ 785 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 786 for (int i = 0 ; i < 3; i++) { 787 int src = inst->src[i].nr; 788 789 if (inst->src[i].file != UNIFORM) 790 continue; 791 792 int chan = new_chan[src] / channel_sizes[src]; 793 inst->src[i].nr = new_loc[src]; 794 inst->src[i].swizzle += BRW_SWIZZLE4(chan, chan, chan, chan); 795 } 796 } 797} 798 799/** 800 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a). 801 * 802 * While GLSL IR also performs this optimization, we end up with it in 803 * our instruction stream for a couple of reasons. One is that we 804 * sometimes generate silly instructions, for example in array access 805 * where we'll generate "ADD offset, index, base" even if base is 0. 806 * The other is that GLSL IR's constant propagation doesn't track the 807 * components of aggregates, so some VS patterns (initialize matrix to 808 * 0, accumulate in vertex blending factors) end up breaking down to 809 * instructions involving 0. 810 */ 811bool 812vec4_visitor::opt_algebraic() 813{ 814 bool progress = false; 815 816 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 817 switch (inst->opcode) { 818 case BRW_OPCODE_MOV: 819 if (inst->src[0].file != IMM) 820 break; 821 822 if (inst->saturate) { 823 /* Full mixed-type saturates don't happen. However, we can end up 824 * with things like: 825 * 826 * mov.sat(8) g21<1>DF -1F 827 * 828 * Other mixed-size-but-same-base-type cases may also be possible. 829 */ 830 if (inst->dst.type != inst->src[0].type && 831 inst->dst.type != BRW_REGISTER_TYPE_DF && 832 inst->src[0].type != BRW_REGISTER_TYPE_F) 833 assert(!"unimplemented: saturate mixed types"); 834 835 if (brw_saturate_immediate(inst->src[0].type, 836 &inst->src[0].as_brw_reg())) { 837 inst->saturate = false; 838 progress = true; 839 } 840 } 841 break; 842 843 case BRW_OPCODE_OR: 844 if (inst->src[1].is_zero()) { 845 inst->opcode = BRW_OPCODE_MOV; 846 inst->src[1] = src_reg(); 847 progress = true; 848 } 849 break; 850 851 case VEC4_OPCODE_UNPACK_UNIFORM: 852 if (inst->src[0].file != UNIFORM) { 853 inst->opcode = BRW_OPCODE_MOV; 854 progress = true; 855 } 856 break; 857 858 case BRW_OPCODE_ADD: 859 if (inst->src[1].is_zero()) { 860 inst->opcode = BRW_OPCODE_MOV; 861 inst->src[1] = src_reg(); 862 progress = true; 863 } 864 break; 865 866 case BRW_OPCODE_MUL: 867 if (inst->src[1].is_zero()) { 868 inst->opcode = BRW_OPCODE_MOV; 869 switch (inst->src[0].type) { 870 case BRW_REGISTER_TYPE_F: 871 inst->src[0] = brw_imm_f(0.0f); 872 break; 873 case BRW_REGISTER_TYPE_D: 874 inst->src[0] = brw_imm_d(0); 875 break; 876 case BRW_REGISTER_TYPE_UD: 877 inst->src[0] = brw_imm_ud(0u); 878 break; 879 default: 880 unreachable("not reached"); 881 } 882 inst->src[1] = src_reg(); 883 progress = true; 884 } else if (inst->src[1].is_one()) { 885 inst->opcode = BRW_OPCODE_MOV; 886 inst->src[1] = src_reg(); 887 progress = true; 888 } else if (inst->src[1].is_negative_one()) { 889 inst->opcode = BRW_OPCODE_MOV; 890 inst->src[0].negate = !inst->src[0].negate; 891 inst->src[1] = src_reg(); 892 progress = true; 893 } 894 break; 895 case BRW_OPCODE_CMP: 896 if (inst->conditional_mod == BRW_CONDITIONAL_GE && 897 inst->src[0].abs && 898 inst->src[0].negate && 899 inst->src[1].is_zero()) { 900 inst->src[0].abs = false; 901 inst->src[0].negate = false; 902 inst->conditional_mod = BRW_CONDITIONAL_Z; 903 progress = true; 904 break; 905 } 906 break; 907 case SHADER_OPCODE_BROADCAST: 908 if (is_uniform(inst->src[0]) || 909 inst->src[1].is_zero()) { 910 inst->opcode = BRW_OPCODE_MOV; 911 inst->src[1] = src_reg(); 912 inst->force_writemask_all = true; 913 progress = true; 914 } 915 break; 916 917 default: 918 break; 919 } 920 } 921 922 if (progress) 923 invalidate_live_intervals(); 924 925 return progress; 926} 927 928/** 929 * Only a limited number of hardware registers may be used for push 930 * constants, so this turns access to the overflowed constants into 931 * pull constants. 932 */ 933void 934vec4_visitor::move_push_constants_to_pull_constants() 935{ 936 int pull_constant_loc[this->uniforms]; 937 938 /* Only allow 32 registers (256 uniform components) as push constants, 939 * which is the limit on gen6. 940 * 941 * If changing this value, note the limitation about total_regs in 942 * brw_curbe.c. 943 */ 944 int max_uniform_components = 32 * 8; 945 if (this->uniforms * 4 <= max_uniform_components) 946 return; 947 948 /* Make some sort of choice as to which uniforms get sent to pull 949 * constants. We could potentially do something clever here like 950 * look for the most infrequently used uniform vec4s, but leave 951 * that for later. 952 */ 953 for (int i = 0; i < this->uniforms * 4; i += 4) { 954 pull_constant_loc[i / 4] = -1; 955 956 if (i >= max_uniform_components) { 957 uint32_t *values = &stage_prog_data->param[i]; 958 959 /* Try to find an existing copy of this uniform in the pull 960 * constants if it was part of an array access already. 961 */ 962 for (unsigned int j = 0; j < stage_prog_data->nr_pull_params; j += 4) { 963 int matches; 964 965 for (matches = 0; matches < 4; matches++) { 966 if (stage_prog_data->pull_param[j + matches] != values[matches]) 967 break; 968 } 969 970 if (matches == 4) { 971 pull_constant_loc[i / 4] = j / 4; 972 break; 973 } 974 } 975 976 if (pull_constant_loc[i / 4] == -1) { 977 assert(stage_prog_data->nr_pull_params % 4 == 0); 978 pull_constant_loc[i / 4] = stage_prog_data->nr_pull_params / 4; 979 980 for (int j = 0; j < 4; j++) { 981 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] = 982 values[j]; 983 } 984 } 985 } 986 } 987 988 /* Now actually rewrite usage of the things we've moved to pull 989 * constants. 990 */ 991 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 992 for (int i = 0 ; i < 3; i++) { 993 if (inst->src[i].file != UNIFORM || 994 pull_constant_loc[inst->src[i].nr] == -1) 995 continue; 996 997 int uniform = inst->src[i].nr; 998 999 const glsl_type *temp_type = type_sz(inst->src[i].type) == 8 ? 1000 glsl_type::dvec4_type : glsl_type::vec4_type; 1001 dst_reg temp = dst_reg(this, temp_type); 1002 1003 emit_pull_constant_load(block, inst, temp, inst->src[i], 1004 pull_constant_loc[uniform], src_reg()); 1005 1006 inst->src[i].file = temp.file; 1007 inst->src[i].nr = temp.nr; 1008 inst->src[i].offset %= 16; 1009 inst->src[i].reladdr = NULL; 1010 } 1011 } 1012 1013 /* Repack push constants to remove the now-unused ones. */ 1014 pack_uniform_registers(); 1015} 1016 1017/* Conditions for which we want to avoid setting the dependency control bits */ 1018bool 1019vec4_visitor::is_dep_ctrl_unsafe(const vec4_instruction *inst) 1020{ 1021#define IS_DWORD(reg) \ 1022 (reg.type == BRW_REGISTER_TYPE_UD || \ 1023 reg.type == BRW_REGISTER_TYPE_D) 1024 1025#define IS_64BIT(reg) (reg.file != BAD_FILE && type_sz(reg.type) == 8) 1026 1027 /* From the Cherryview and Broadwell PRMs: 1028 * 1029 * "When source or destination datatype is 64b or operation is integer DWord 1030 * multiply, DepCtrl must not be used." 1031 * 1032 * SKL PRMs don't include this restriction, however, gen7 seems to be 1033 * affected, at least by the 64b restriction, since DepCtrl with double 1034 * precision instructions seems to produce GPU hangs in some cases. 1035 */ 1036 if (devinfo->gen == 8 || gen_device_info_is_9lp(devinfo)) { 1037 if (inst->opcode == BRW_OPCODE_MUL && 1038 IS_DWORD(inst->src[0]) && 1039 IS_DWORD(inst->src[1])) 1040 return true; 1041 } 1042 1043 if (devinfo->gen >= 7 && devinfo->gen <= 8) { 1044 if (IS_64BIT(inst->dst) || IS_64BIT(inst->src[0]) || 1045 IS_64BIT(inst->src[1]) || IS_64BIT(inst->src[2])) 1046 return true; 1047 } 1048 1049#undef IS_64BIT 1050#undef IS_DWORD 1051 1052 if (devinfo->gen >= 8) { 1053 if (inst->opcode == BRW_OPCODE_F32TO16) 1054 return true; 1055 } 1056 1057 /* 1058 * mlen: 1059 * In the presence of send messages, totally interrupt dependency 1060 * control. They're long enough that the chance of dependency 1061 * control around them just doesn't matter. 1062 * 1063 * predicate: 1064 * From the Ivy Bridge PRM, volume 4 part 3.7, page 80: 1065 * When a sequence of NoDDChk and NoDDClr are used, the last instruction that 1066 * completes the scoreboard clear must have a non-zero execution mask. This 1067 * means, if any kind of predication can change the execution mask or channel 1068 * enable of the last instruction, the optimization must be avoided. This is 1069 * to avoid instructions being shot down the pipeline when no writes are 1070 * required. 1071 * 1072 * math: 1073 * Dependency control does not work well over math instructions. 1074 * NB: Discovered empirically 1075 */ 1076 return (inst->mlen || inst->predicate || inst->is_math()); 1077} 1078 1079/** 1080 * Sets the dependency control fields on instructions after register 1081 * allocation and before the generator is run. 1082 * 1083 * When you have a sequence of instructions like: 1084 * 1085 * DP4 temp.x vertex uniform[0] 1086 * DP4 temp.y vertex uniform[0] 1087 * DP4 temp.z vertex uniform[0] 1088 * DP4 temp.w vertex uniform[0] 1089 * 1090 * The hardware doesn't know that it can actually run the later instructions 1091 * while the previous ones are in flight, producing stalls. However, we have 1092 * manual fields we can set in the instructions that let it do so. 1093 */ 1094void 1095vec4_visitor::opt_set_dependency_control() 1096{ 1097 vec4_instruction *last_grf_write[BRW_MAX_GRF]; 1098 uint8_t grf_channels_written[BRW_MAX_GRF]; 1099 vec4_instruction *last_mrf_write[BRW_MAX_GRF]; 1100 uint8_t mrf_channels_written[BRW_MAX_GRF]; 1101 1102 assert(prog_data->total_grf || 1103 !"Must be called after register allocation"); 1104 1105 foreach_block (block, cfg) { 1106 memset(last_grf_write, 0, sizeof(last_grf_write)); 1107 memset(last_mrf_write, 0, sizeof(last_mrf_write)); 1108 1109 foreach_inst_in_block (vec4_instruction, inst, block) { 1110 /* If we read from a register that we were doing dependency control 1111 * on, don't do dependency control across the read. 1112 */ 1113 for (int i = 0; i < 3; i++) { 1114 int reg = inst->src[i].nr + inst->src[i].offset / REG_SIZE; 1115 if (inst->src[i].file == VGRF) { 1116 last_grf_write[reg] = NULL; 1117 } else if (inst->src[i].file == FIXED_GRF) { 1118 memset(last_grf_write, 0, sizeof(last_grf_write)); 1119 break; 1120 } 1121 assert(inst->src[i].file != MRF); 1122 } 1123 1124 if (is_dep_ctrl_unsafe(inst)) { 1125 memset(last_grf_write, 0, sizeof(last_grf_write)); 1126 memset(last_mrf_write, 0, sizeof(last_mrf_write)); 1127 continue; 1128 } 1129 1130 /* Now, see if we can do dependency control for this instruction 1131 * against a previous one writing to its destination. 1132 */ 1133 int reg = inst->dst.nr + inst->dst.offset / REG_SIZE; 1134 if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) { 1135 if (last_grf_write[reg] && 1136 last_grf_write[reg]->dst.offset == inst->dst.offset && 1137 !(inst->dst.writemask & grf_channels_written[reg])) { 1138 last_grf_write[reg]->no_dd_clear = true; 1139 inst->no_dd_check = true; 1140 } else { 1141 grf_channels_written[reg] = 0; 1142 } 1143 1144 last_grf_write[reg] = inst; 1145 grf_channels_written[reg] |= inst->dst.writemask; 1146 } else if (inst->dst.file == MRF) { 1147 if (last_mrf_write[reg] && 1148 last_mrf_write[reg]->dst.offset == inst->dst.offset && 1149 !(inst->dst.writemask & mrf_channels_written[reg])) { 1150 last_mrf_write[reg]->no_dd_clear = true; 1151 inst->no_dd_check = true; 1152 } else { 1153 mrf_channels_written[reg] = 0; 1154 } 1155 1156 last_mrf_write[reg] = inst; 1157 mrf_channels_written[reg] |= inst->dst.writemask; 1158 } 1159 } 1160 } 1161} 1162 1163bool 1164vec4_instruction::can_reswizzle(const struct gen_device_info *devinfo, 1165 int dst_writemask, 1166 int swizzle, 1167 int swizzle_mask) 1168{ 1169 /* Gen6 MATH instructions can not execute in align16 mode, so swizzles 1170 * are not allowed. 1171 */ 1172 if (devinfo->gen == 6 && is_math() && swizzle != BRW_SWIZZLE_XYZW) 1173 return false; 1174 1175 /* We can't swizzle implicit accumulator access. We'd have to 1176 * reswizzle the producer of the accumulator value in addition 1177 * to the consumer (i.e. both MUL and MACH). Just skip this. 1178 */ 1179 if (reads_accumulator_implicitly()) 1180 return false; 1181 1182 if (!can_do_writemask(devinfo) && dst_writemask != WRITEMASK_XYZW) 1183 return false; 1184 1185 /* If this instruction sets anything not referenced by swizzle, then we'd 1186 * totally break it when we reswizzle. 1187 */ 1188 if (dst.writemask & ~swizzle_mask) 1189 return false; 1190 1191 if (mlen > 0) 1192 return false; 1193 1194 for (int i = 0; i < 3; i++) { 1195 if (src[i].is_accumulator()) 1196 return false; 1197 } 1198 1199 return true; 1200} 1201 1202/** 1203 * For any channels in the swizzle's source that were populated by this 1204 * instruction, rewrite the instruction to put the appropriate result directly 1205 * in those channels. 1206 * 1207 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x 1208 */ 1209void 1210vec4_instruction::reswizzle(int dst_writemask, int swizzle) 1211{ 1212 /* Destination write mask doesn't correspond to source swizzle for the dot 1213 * product and pack_bytes instructions. 1214 */ 1215 if (opcode != BRW_OPCODE_DP4 && opcode != BRW_OPCODE_DPH && 1216 opcode != BRW_OPCODE_DP3 && opcode != BRW_OPCODE_DP2 && 1217 opcode != VEC4_OPCODE_PACK_BYTES) { 1218 for (int i = 0; i < 3; i++) { 1219 if (src[i].file == BAD_FILE || src[i].file == IMM) 1220 continue; 1221 1222 src[i].swizzle = brw_compose_swizzle(swizzle, src[i].swizzle); 1223 } 1224 } 1225 1226 /* Apply the specified swizzle and writemask to the original mask of 1227 * written components. 1228 */ 1229 dst.writemask = dst_writemask & 1230 brw_apply_swizzle_to_mask(swizzle, dst.writemask); 1231} 1232 1233/* 1234 * Tries to reduce extra MOV instructions by taking temporary GRFs that get 1235 * just written and then MOVed into another reg and making the original write 1236 * of the GRF write directly to the final destination instead. 1237 */ 1238bool 1239vec4_visitor::opt_register_coalesce() 1240{ 1241 bool progress = false; 1242 int next_ip = 0; 1243 1244 calculate_live_intervals(); 1245 1246 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) { 1247 int ip = next_ip; 1248 next_ip++; 1249 1250 if (inst->opcode != BRW_OPCODE_MOV || 1251 (inst->dst.file != VGRF && inst->dst.file != MRF) || 1252 inst->predicate || 1253 inst->src[0].file != VGRF || 1254 inst->dst.type != inst->src[0].type || 1255 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr) 1256 continue; 1257 1258 /* Remove no-op MOVs */ 1259 if (inst->dst.file == inst->src[0].file && 1260 inst->dst.nr == inst->src[0].nr && 1261 inst->dst.offset == inst->src[0].offset) { 1262 bool is_nop_mov = true; 1263 1264 for (unsigned c = 0; c < 4; c++) { 1265 if ((inst->dst.writemask & (1 << c)) == 0) 1266 continue; 1267 1268 if (BRW_GET_SWZ(inst->src[0].swizzle, c) != c) { 1269 is_nop_mov = false; 1270 break; 1271 } 1272 } 1273 1274 if (is_nop_mov) { 1275 inst->remove(block); 1276 progress = true; 1277 continue; 1278 } 1279 } 1280 1281 bool to_mrf = (inst->dst.file == MRF); 1282 1283 /* Can't coalesce this GRF if someone else was going to 1284 * read it later. 1285 */ 1286 if (var_range_end(var_from_reg(alloc, dst_reg(inst->src[0])), 8) > ip) 1287 continue; 1288 1289 /* We need to check interference with the final destination between this 1290 * instruction and the earliest instruction involved in writing the GRF 1291 * we're eliminating. To do that, keep track of which of our source 1292 * channels we've seen initialized. 1293 */ 1294 const unsigned chans_needed = 1295 brw_apply_inv_swizzle_to_mask(inst->src[0].swizzle, 1296 inst->dst.writemask); 1297 unsigned chans_remaining = chans_needed; 1298 1299 /* Now walk up the instruction stream trying to see if we can rewrite 1300 * everything writing to the temporary to write into the destination 1301 * instead. 1302 */ 1303 vec4_instruction *_scan_inst = (vec4_instruction *)inst->prev; 1304 foreach_inst_in_block_reverse_starting_from(vec4_instruction, scan_inst, 1305 inst) { 1306 _scan_inst = scan_inst; 1307 1308 if (regions_overlap(inst->src[0], inst->size_read(0), 1309 scan_inst->dst, scan_inst->size_written)) { 1310 /* Found something writing to the reg we want to coalesce away. */ 1311 if (to_mrf) { 1312 /* SEND instructions can't have MRF as a destination. */ 1313 if (scan_inst->mlen) 1314 break; 1315 1316 if (devinfo->gen == 6) { 1317 /* gen6 math instructions must have the destination be 1318 * VGRF, so no compute-to-MRF for them. 1319 */ 1320 if (scan_inst->is_math()) { 1321 break; 1322 } 1323 } 1324 } 1325 1326 /* VS_OPCODE_UNPACK_FLAGS_SIMD4X2 generates a bunch of mov(1) 1327 * instructions, and this optimization pass is not capable of 1328 * handling that. Bail on these instructions and hope that some 1329 * later optimization pass can do the right thing after they are 1330 * expanded. 1331 */ 1332 if (scan_inst->opcode == VS_OPCODE_UNPACK_FLAGS_SIMD4X2) 1333 break; 1334 1335 /* This doesn't handle saturation on the instruction we 1336 * want to coalesce away if the register types do not match. 1337 * But if scan_inst is a non type-converting 'mov', we can fix 1338 * the types later. 1339 */ 1340 if (inst->saturate && 1341 inst->dst.type != scan_inst->dst.type && 1342 !(scan_inst->opcode == BRW_OPCODE_MOV && 1343 scan_inst->dst.type == scan_inst->src[0].type)) 1344 break; 1345 1346 /* Only allow coalescing between registers of the same type size. 1347 * Otherwise we would need to make the pass aware of the fact that 1348 * channel sizes are different for single and double precision. 1349 */ 1350 if (type_sz(inst->src[0].type) != type_sz(scan_inst->src[0].type)) 1351 break; 1352 1353 /* Check that scan_inst writes the same amount of data as the 1354 * instruction, otherwise coalescing would lead to writing a 1355 * different (larger or smaller) region of the destination 1356 */ 1357 if (scan_inst->size_written != inst->size_written) 1358 break; 1359 1360 /* If we can't handle the swizzle, bail. */ 1361 if (!scan_inst->can_reswizzle(devinfo, inst->dst.writemask, 1362 inst->src[0].swizzle, 1363 chans_needed)) { 1364 break; 1365 } 1366 1367 /* This only handles coalescing writes of 8 channels (1 register 1368 * for single-precision and 2 registers for double-precision) 1369 * starting at the source offset of the copy instruction. 1370 */ 1371 if (DIV_ROUND_UP(scan_inst->size_written, 1372 type_sz(scan_inst->dst.type)) > 8 || 1373 scan_inst->dst.offset != inst->src[0].offset) 1374 break; 1375 1376 /* Mark which channels we found unconditional writes for. */ 1377 if (!scan_inst->predicate) 1378 chans_remaining &= ~scan_inst->dst.writemask; 1379 1380 if (chans_remaining == 0) 1381 break; 1382 } 1383 1384 /* You can't read from an MRF, so if someone else reads our MRF's 1385 * source GRF that we wanted to rewrite, that stops us. If it's a 1386 * GRF we're trying to coalesce to, we don't actually handle 1387 * rewriting sources so bail in that case as well. 1388 */ 1389 bool interfered = false; 1390 for (int i = 0; i < 3; i++) { 1391 if (regions_overlap(inst->src[0], inst->size_read(0), 1392 scan_inst->src[i], scan_inst->size_read(i))) 1393 interfered = true; 1394 } 1395 if (interfered) 1396 break; 1397 1398 /* If somebody else writes the same channels of our destination here, 1399 * we can't coalesce before that. 1400 */ 1401 if (regions_overlap(inst->dst, inst->size_written, 1402 scan_inst->dst, scan_inst->size_written) && 1403 (inst->dst.writemask & scan_inst->dst.writemask) != 0) { 1404 break; 1405 } 1406 1407 /* Check for reads of the register we're trying to coalesce into. We 1408 * can't go rewriting instructions above that to put some other value 1409 * in the register instead. 1410 */ 1411 if (to_mrf && scan_inst->mlen > 0) { 1412 if (inst->dst.nr >= scan_inst->base_mrf && 1413 inst->dst.nr < scan_inst->base_mrf + scan_inst->mlen) { 1414 break; 1415 } 1416 } else { 1417 for (int i = 0; i < 3; i++) { 1418 if (regions_overlap(inst->dst, inst->size_written, 1419 scan_inst->src[i], scan_inst->size_read(i))) 1420 interfered = true; 1421 } 1422 if (interfered) 1423 break; 1424 } 1425 } 1426 1427 if (chans_remaining == 0) { 1428 /* If we've made it here, we have an MOV we want to coalesce out, and 1429 * a scan_inst pointing to the earliest instruction involved in 1430 * computing the value. Now go rewrite the instruction stream 1431 * between the two. 1432 */ 1433 vec4_instruction *scan_inst = _scan_inst; 1434 while (scan_inst != inst) { 1435 if (scan_inst->dst.file == VGRF && 1436 scan_inst->dst.nr == inst->src[0].nr && 1437 scan_inst->dst.offset == inst->src[0].offset) { 1438 scan_inst->reswizzle(inst->dst.writemask, 1439 inst->src[0].swizzle); 1440 scan_inst->dst.file = inst->dst.file; 1441 scan_inst->dst.nr = inst->dst.nr; 1442 scan_inst->dst.offset = inst->dst.offset; 1443 if (inst->saturate && 1444 inst->dst.type != scan_inst->dst.type) { 1445 /* If we have reached this point, scan_inst is a non 1446 * type-converting 'mov' and we can modify its register types 1447 * to match the ones in inst. Otherwise, we could have an 1448 * incorrect saturation result. 1449 */ 1450 scan_inst->dst.type = inst->dst.type; 1451 scan_inst->src[0].type = inst->src[0].type; 1452 } 1453 scan_inst->saturate |= inst->saturate; 1454 } 1455 scan_inst = (vec4_instruction *)scan_inst->next; 1456 } 1457 inst->remove(block); 1458 progress = true; 1459 } 1460 } 1461 1462 if (progress) 1463 invalidate_live_intervals(); 1464 1465 return progress; 1466} 1467 1468/** 1469 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control 1470 * flow. We could probably do better here with some form of divergence 1471 * analysis. 1472 */ 1473bool 1474vec4_visitor::eliminate_find_live_channel() 1475{ 1476 bool progress = false; 1477 unsigned depth = 0; 1478 1479 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) { 1480 /* The optimization below assumes that channel zero is live on thread 1481 * dispatch, which may not be the case if the fixed function dispatches 1482 * threads sparsely. 1483 */ 1484 return false; 1485 } 1486 1487 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 1488 switch (inst->opcode) { 1489 case BRW_OPCODE_IF: 1490 case BRW_OPCODE_DO: 1491 depth++; 1492 break; 1493 1494 case BRW_OPCODE_ENDIF: 1495 case BRW_OPCODE_WHILE: 1496 depth--; 1497 break; 1498 1499 case SHADER_OPCODE_FIND_LIVE_CHANNEL: 1500 if (depth == 0) { 1501 inst->opcode = BRW_OPCODE_MOV; 1502 inst->src[0] = brw_imm_d(0); 1503 inst->force_writemask_all = true; 1504 progress = true; 1505 } 1506 break; 1507 1508 default: 1509 break; 1510 } 1511 } 1512 1513 return progress; 1514} 1515 1516/** 1517 * Splits virtual GRFs requesting more than one contiguous physical register. 1518 * 1519 * We initially create large virtual GRFs for temporary structures, arrays, 1520 * and matrices, so that the visitor functions can add offsets to work their 1521 * way down to the actual member being accessed. But when it comes to 1522 * optimization, we'd like to treat each register as individual storage if 1523 * possible. 1524 * 1525 * So far, the only thing that might prevent splitting is a send message from 1526 * a GRF on IVB. 1527 */ 1528void 1529vec4_visitor::split_virtual_grfs() 1530{ 1531 int num_vars = this->alloc.count; 1532 int new_virtual_grf[num_vars]; 1533 bool split_grf[num_vars]; 1534 1535 memset(new_virtual_grf, 0, sizeof(new_virtual_grf)); 1536 1537 /* Try to split anything > 0 sized. */ 1538 for (int i = 0; i < num_vars; i++) { 1539 split_grf[i] = this->alloc.sizes[i] != 1; 1540 } 1541 1542 /* Check that the instructions are compatible with the registers we're trying 1543 * to split. 1544 */ 1545 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 1546 if (inst->dst.file == VGRF && regs_written(inst) > 1) 1547 split_grf[inst->dst.nr] = false; 1548 1549 for (int i = 0; i < 3; i++) { 1550 if (inst->src[i].file == VGRF && regs_read(inst, i) > 1) 1551 split_grf[inst->src[i].nr] = false; 1552 } 1553 } 1554 1555 /* Allocate new space for split regs. Note that the virtual 1556 * numbers will be contiguous. 1557 */ 1558 for (int i = 0; i < num_vars; i++) { 1559 if (!split_grf[i]) 1560 continue; 1561 1562 new_virtual_grf[i] = alloc.allocate(1); 1563 for (unsigned j = 2; j < this->alloc.sizes[i]; j++) { 1564 unsigned reg = alloc.allocate(1); 1565 assert(reg == new_virtual_grf[i] + j - 1); 1566 (void) reg; 1567 } 1568 this->alloc.sizes[i] = 1; 1569 } 1570 1571 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 1572 if (inst->dst.file == VGRF && split_grf[inst->dst.nr] && 1573 inst->dst.offset / REG_SIZE != 0) { 1574 inst->dst.nr = (new_virtual_grf[inst->dst.nr] + 1575 inst->dst.offset / REG_SIZE - 1); 1576 inst->dst.offset %= REG_SIZE; 1577 } 1578 for (int i = 0; i < 3; i++) { 1579 if (inst->src[i].file == VGRF && split_grf[inst->src[i].nr] && 1580 inst->src[i].offset / REG_SIZE != 0) { 1581 inst->src[i].nr = (new_virtual_grf[inst->src[i].nr] + 1582 inst->src[i].offset / REG_SIZE - 1); 1583 inst->src[i].offset %= REG_SIZE; 1584 } 1585 } 1586 } 1587 invalidate_live_intervals(); 1588} 1589 1590void 1591vec4_visitor::dump_instruction(backend_instruction *be_inst) 1592{ 1593 dump_instruction(be_inst, stderr); 1594} 1595 1596void 1597vec4_visitor::dump_instruction(backend_instruction *be_inst, FILE *file) 1598{ 1599 vec4_instruction *inst = (vec4_instruction *)be_inst; 1600 1601 if (inst->predicate) { 1602 fprintf(file, "(%cf%d.%d%s) ", 1603 inst->predicate_inverse ? '-' : '+', 1604 inst->flag_subreg / 2, 1605 inst->flag_subreg % 2, 1606 pred_ctrl_align16[inst->predicate]); 1607 } 1608 1609 fprintf(file, "%s(%d)", brw_instruction_name(devinfo, inst->opcode), 1610 inst->exec_size); 1611 if (inst->saturate) 1612 fprintf(file, ".sat"); 1613 if (inst->conditional_mod) { 1614 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]); 1615 if (!inst->predicate && 1616 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL && 1617 inst->opcode != BRW_OPCODE_CSEL && 1618 inst->opcode != BRW_OPCODE_IF && 1619 inst->opcode != BRW_OPCODE_WHILE))) { 1620 fprintf(file, ".f%d.%d", inst->flag_subreg / 2, inst->flag_subreg % 2); 1621 } 1622 } 1623 fprintf(file, " "); 1624 1625 switch (inst->dst.file) { 1626 case VGRF: 1627 fprintf(file, "vgrf%d", inst->dst.nr); 1628 break; 1629 case FIXED_GRF: 1630 fprintf(file, "g%d", inst->dst.nr); 1631 break; 1632 case MRF: 1633 fprintf(file, "m%d", inst->dst.nr); 1634 break; 1635 case ARF: 1636 switch (inst->dst.nr) { 1637 case BRW_ARF_NULL: 1638 fprintf(file, "null"); 1639 break; 1640 case BRW_ARF_ADDRESS: 1641 fprintf(file, "a0.%d", inst->dst.subnr); 1642 break; 1643 case BRW_ARF_ACCUMULATOR: 1644 fprintf(file, "acc%d", inst->dst.subnr); 1645 break; 1646 case BRW_ARF_FLAG: 1647 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); 1648 break; 1649 default: 1650 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr); 1651 break; 1652 } 1653 break; 1654 case BAD_FILE: 1655 fprintf(file, "(null)"); 1656 break; 1657 case IMM: 1658 case ATTR: 1659 case UNIFORM: 1660 unreachable("not reached"); 1661 } 1662 if (inst->dst.offset || 1663 (inst->dst.file == VGRF && 1664 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) { 1665 const unsigned reg_size = (inst->dst.file == UNIFORM ? 16 : REG_SIZE); 1666 fprintf(file, "+%d.%d", inst->dst.offset / reg_size, 1667 inst->dst.offset % reg_size); 1668 } 1669 if (inst->dst.writemask != WRITEMASK_XYZW) { 1670 fprintf(file, "."); 1671 if (inst->dst.writemask & 1) 1672 fprintf(file, "x"); 1673 if (inst->dst.writemask & 2) 1674 fprintf(file, "y"); 1675 if (inst->dst.writemask & 4) 1676 fprintf(file, "z"); 1677 if (inst->dst.writemask & 8) 1678 fprintf(file, "w"); 1679 } 1680 fprintf(file, ":%s", brw_reg_type_to_letters(inst->dst.type)); 1681 1682 if (inst->src[0].file != BAD_FILE) 1683 fprintf(file, ", "); 1684 1685 for (int i = 0; i < 3 && inst->src[i].file != BAD_FILE; i++) { 1686 if (inst->src[i].negate) 1687 fprintf(file, "-"); 1688 if (inst->src[i].abs) 1689 fprintf(file, "|"); 1690 switch (inst->src[i].file) { 1691 case VGRF: 1692 fprintf(file, "vgrf%d", inst->src[i].nr); 1693 break; 1694 case FIXED_GRF: 1695 fprintf(file, "g%d.%d", inst->src[i].nr, inst->src[i].subnr); 1696 break; 1697 case ATTR: 1698 fprintf(file, "attr%d", inst->src[i].nr); 1699 break; 1700 case UNIFORM: 1701 fprintf(file, "u%d", inst->src[i].nr); 1702 break; 1703 case IMM: 1704 switch (inst->src[i].type) { 1705 case BRW_REGISTER_TYPE_F: 1706 fprintf(file, "%fF", inst->src[i].f); 1707 break; 1708 case BRW_REGISTER_TYPE_DF: 1709 fprintf(file, "%fDF", inst->src[i].df); 1710 break; 1711 case BRW_REGISTER_TYPE_D: 1712 fprintf(file, "%dD", inst->src[i].d); 1713 break; 1714 case BRW_REGISTER_TYPE_UD: 1715 fprintf(file, "%uU", inst->src[i].ud); 1716 break; 1717 case BRW_REGISTER_TYPE_VF: 1718 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]", 1719 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff), 1720 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff), 1721 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff), 1722 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff)); 1723 break; 1724 default: 1725 fprintf(file, "???"); 1726 break; 1727 } 1728 break; 1729 case ARF: 1730 switch (inst->src[i].nr) { 1731 case BRW_ARF_NULL: 1732 fprintf(file, "null"); 1733 break; 1734 case BRW_ARF_ADDRESS: 1735 fprintf(file, "a0.%d", inst->src[i].subnr); 1736 break; 1737 case BRW_ARF_ACCUMULATOR: 1738 fprintf(file, "acc%d", inst->src[i].subnr); 1739 break; 1740 case BRW_ARF_FLAG: 1741 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); 1742 break; 1743 default: 1744 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr); 1745 break; 1746 } 1747 break; 1748 case BAD_FILE: 1749 fprintf(file, "(null)"); 1750 break; 1751 case MRF: 1752 unreachable("not reached"); 1753 } 1754 1755 if (inst->src[i].offset || 1756 (inst->src[i].file == VGRF && 1757 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) { 1758 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 16 : REG_SIZE); 1759 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size, 1760 inst->src[i].offset % reg_size); 1761 } 1762 1763 if (inst->src[i].file != IMM) { 1764 static const char *chans[4] = {"x", "y", "z", "w"}; 1765 fprintf(file, "."); 1766 for (int c = 0; c < 4; c++) { 1767 fprintf(file, "%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]); 1768 } 1769 } 1770 1771 if (inst->src[i].abs) 1772 fprintf(file, "|"); 1773 1774 if (inst->src[i].file != IMM) { 1775 fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type)); 1776 } 1777 1778 if (i < 2 && inst->src[i + 1].file != BAD_FILE) 1779 fprintf(file, ", "); 1780 } 1781 1782 if (inst->force_writemask_all) 1783 fprintf(file, " NoMask"); 1784 1785 if (inst->exec_size != 8) 1786 fprintf(file, " group%d", inst->group); 1787 1788 fprintf(file, "\n"); 1789} 1790 1791 1792int 1793vec4_vs_visitor::setup_attributes(int payload_reg) 1794{ 1795 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 1796 for (int i = 0; i < 3; i++) { 1797 if (inst->src[i].file == ATTR) { 1798 assert(inst->src[i].offset % REG_SIZE == 0); 1799 int grf = payload_reg + inst->src[i].nr + 1800 inst->src[i].offset / REG_SIZE; 1801 1802 struct brw_reg reg = brw_vec8_grf(grf, 0); 1803 reg.swizzle = inst->src[i].swizzle; 1804 reg.type = inst->src[i].type; 1805 reg.abs = inst->src[i].abs; 1806 reg.negate = inst->src[i].negate; 1807 inst->src[i] = reg; 1808 } 1809 } 1810 } 1811 1812 return payload_reg + vs_prog_data->nr_attribute_slots; 1813} 1814 1815int 1816vec4_visitor::setup_uniforms(int reg) 1817{ 1818 prog_data->base.dispatch_grf_start_reg = reg; 1819 1820 /* The pre-gen6 VS requires that some push constants get loaded no 1821 * matter what, or the GPU would hang. 1822 */ 1823 if (devinfo->gen < 6 && this->uniforms == 0) { 1824 brw_stage_prog_data_add_params(stage_prog_data, 4); 1825 for (unsigned int i = 0; i < 4; i++) { 1826 unsigned int slot = this->uniforms * 4 + i; 1827 stage_prog_data->param[slot] = BRW_PARAM_BUILTIN_ZERO; 1828 } 1829 1830 this->uniforms++; 1831 reg++; 1832 } else { 1833 reg += ALIGN(uniforms, 2) / 2; 1834 } 1835 1836 for (int i = 0; i < 4; i++) 1837 reg += stage_prog_data->ubo_ranges[i].length; 1838 1839 stage_prog_data->nr_params = this->uniforms * 4; 1840 1841 prog_data->base.curb_read_length = 1842 reg - prog_data->base.dispatch_grf_start_reg; 1843 1844 return reg; 1845} 1846 1847void 1848vec4_vs_visitor::setup_payload(void) 1849{ 1850 int reg = 0; 1851 1852 /* The payload always contains important data in g0, which contains 1853 * the URB handles that are passed on to the URB write at the end 1854 * of the thread. So, we always start push constants at g1. 1855 */ 1856 reg++; 1857 1858 reg = setup_uniforms(reg); 1859 1860 reg = setup_attributes(reg); 1861 1862 this->first_non_payload_grf = reg; 1863} 1864 1865bool 1866vec4_visitor::lower_minmax() 1867{ 1868 assert(devinfo->gen < 6); 1869 1870 bool progress = false; 1871 1872 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 1873 const vec4_builder ibld(this, block, inst); 1874 1875 if (inst->opcode == BRW_OPCODE_SEL && 1876 inst->predicate == BRW_PREDICATE_NONE) { 1877 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of 1878 * the original SEL.L/GE instruction 1879 */ 1880 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1], 1881 inst->conditional_mod); 1882 inst->predicate = BRW_PREDICATE_NORMAL; 1883 inst->conditional_mod = BRW_CONDITIONAL_NONE; 1884 1885 progress = true; 1886 } 1887 } 1888 1889 if (progress) 1890 invalidate_live_intervals(); 1891 1892 return progress; 1893} 1894 1895src_reg 1896vec4_visitor::get_timestamp() 1897{ 1898 assert(devinfo->gen >= 7); 1899 1900 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE, 1901 BRW_ARF_TIMESTAMP, 1902 0, 1903 0, 1904 0, 1905 BRW_REGISTER_TYPE_UD, 1906 BRW_VERTICAL_STRIDE_0, 1907 BRW_WIDTH_4, 1908 BRW_HORIZONTAL_STRIDE_4, 1909 BRW_SWIZZLE_XYZW, 1910 WRITEMASK_XYZW)); 1911 1912 dst_reg dst = dst_reg(this, glsl_type::uvec4_type); 1913 1914 vec4_instruction *mov = emit(MOV(dst, ts)); 1915 /* We want to read the 3 fields we care about (mostly field 0, but also 2) 1916 * even if it's not enabled in the dispatch. 1917 */ 1918 mov->force_writemask_all = true; 1919 1920 return src_reg(dst); 1921} 1922 1923void 1924vec4_visitor::emit_shader_time_begin() 1925{ 1926 current_annotation = "shader time start"; 1927 shader_start_time = get_timestamp(); 1928} 1929 1930void 1931vec4_visitor::emit_shader_time_end() 1932{ 1933 current_annotation = "shader time end"; 1934 src_reg shader_end_time = get_timestamp(); 1935 1936 1937 /* Check that there weren't any timestamp reset events (assuming these 1938 * were the only two timestamp reads that happened). 1939 */ 1940 src_reg reset_end = shader_end_time; 1941 reset_end.swizzle = BRW_SWIZZLE_ZZZZ; 1942 vec4_instruction *test = emit(AND(dst_null_ud(), reset_end, brw_imm_ud(1u))); 1943 test->conditional_mod = BRW_CONDITIONAL_Z; 1944 1945 emit(IF(BRW_PREDICATE_NORMAL)); 1946 1947 /* Take the current timestamp and get the delta. */ 1948 shader_start_time.negate = true; 1949 dst_reg diff = dst_reg(this, glsl_type::uint_type); 1950 emit(ADD(diff, shader_start_time, shader_end_time)); 1951 1952 /* If there were no instructions between the two timestamp gets, the diff 1953 * is 2 cycles. Remove that overhead, so I can forget about that when 1954 * trying to determine the time taken for single instructions. 1955 */ 1956 emit(ADD(diff, src_reg(diff), brw_imm_ud(-2u))); 1957 1958 emit_shader_time_write(0, src_reg(diff)); 1959 emit_shader_time_write(1, brw_imm_ud(1u)); 1960 emit(BRW_OPCODE_ELSE); 1961 emit_shader_time_write(2, brw_imm_ud(1u)); 1962 emit(BRW_OPCODE_ENDIF); 1963} 1964 1965void 1966vec4_visitor::emit_shader_time_write(int shader_time_subindex, src_reg value) 1967{ 1968 dst_reg dst = 1969 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2)); 1970 1971 dst_reg offset = dst; 1972 dst_reg time = dst; 1973 time.offset += REG_SIZE; 1974 1975 offset.type = BRW_REGISTER_TYPE_UD; 1976 int index = shader_time_index * 3 + shader_time_subindex; 1977 emit(MOV(offset, brw_imm_d(index * BRW_SHADER_TIME_STRIDE))); 1978 1979 time.type = BRW_REGISTER_TYPE_UD; 1980 emit(MOV(time, value)); 1981 1982 vec4_instruction *inst = 1983 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst)); 1984 inst->mlen = 2; 1985} 1986 1987static bool 1988is_align1_df(vec4_instruction *inst) 1989{ 1990 switch (inst->opcode) { 1991 case VEC4_OPCODE_DOUBLE_TO_F32: 1992 case VEC4_OPCODE_DOUBLE_TO_D32: 1993 case VEC4_OPCODE_DOUBLE_TO_U32: 1994 case VEC4_OPCODE_TO_DOUBLE: 1995 case VEC4_OPCODE_PICK_LOW_32BIT: 1996 case VEC4_OPCODE_PICK_HIGH_32BIT: 1997 case VEC4_OPCODE_SET_LOW_32BIT: 1998 case VEC4_OPCODE_SET_HIGH_32BIT: 1999 return true; 2000 default: 2001 return false; 2002 } 2003} 2004 2005/** 2006 * Three source instruction must have a GRF/MRF destination register. 2007 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF. 2008 */ 2009void 2010vec4_visitor::fixup_3src_null_dest() 2011{ 2012 bool progress = false; 2013 2014 foreach_block_and_inst_safe (block, vec4_instruction, inst, cfg) { 2015 if (inst->is_3src(devinfo) && inst->dst.is_null()) { 2016 const unsigned size_written = type_sz(inst->dst.type); 2017 const unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE); 2018 2019 inst->dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)), 2020 inst->dst.type); 2021 progress = true; 2022 } 2023 } 2024 2025 if (progress) 2026 invalidate_live_intervals(); 2027} 2028 2029void 2030vec4_visitor::convert_to_hw_regs() 2031{ 2032 foreach_block_and_inst(block, vec4_instruction, inst, cfg) { 2033 for (int i = 0; i < 3; i++) { 2034 class src_reg &src = inst->src[i]; 2035 struct brw_reg reg; 2036 switch (src.file) { 2037 case VGRF: { 2038 reg = byte_offset(brw_vecn_grf(4, src.nr, 0), src.offset); 2039 reg.type = src.type; 2040 reg.abs = src.abs; 2041 reg.negate = src.negate; 2042 break; 2043 } 2044 2045 case UNIFORM: { 2046 reg = stride(byte_offset(brw_vec4_grf( 2047 prog_data->base.dispatch_grf_start_reg + 2048 src.nr / 2, src.nr % 2 * 4), 2049 src.offset), 2050 0, 4, 1); 2051 reg.type = src.type; 2052 reg.abs = src.abs; 2053 reg.negate = src.negate; 2054 2055 /* This should have been moved to pull constants. */ 2056 assert(!src.reladdr); 2057 break; 2058 } 2059 2060 case FIXED_GRF: 2061 if (type_sz(src.type) == 8) { 2062 reg = src.as_brw_reg(); 2063 break; 2064 } 2065 /* fallthrough */ 2066 case ARF: 2067 case IMM: 2068 continue; 2069 2070 case BAD_FILE: 2071 /* Probably unused. */ 2072 reg = brw_null_reg(); 2073 reg = retype(reg, src.type); 2074 break; 2075 2076 case MRF: 2077 case ATTR: 2078 unreachable("not reached"); 2079 } 2080 2081 apply_logical_swizzle(®, inst, i); 2082 src = reg; 2083 2084 /* From IVB PRM, vol4, part3, "General Restrictions on Regioning 2085 * Parameters": 2086 * 2087 * "If ExecSize = Width and HorzStride ≠ 0, VertStride must be set 2088 * to Width * HorzStride." 2089 * 2090 * We can break this rule with DF sources on DF align1 2091 * instructions, because the exec_size would be 4 and width is 4. 2092 * As we know we are not accessing to next GRF, it is safe to 2093 * set vstride to the formula given by the rule itself. 2094 */ 2095 if (is_align1_df(inst) && (cvt(inst->exec_size) - 1) == src.width) 2096 src.vstride = src.width + src.hstride; 2097 } 2098 2099 if (inst->is_3src(devinfo)) { 2100 /* 3-src instructions with scalar sources support arbitrary subnr, 2101 * but don't actually use swizzles. Convert swizzle into subnr. 2102 * Skip this for double-precision instructions: RepCtrl=1 is not 2103 * allowed for them and needs special handling. 2104 */ 2105 for (int i = 0; i < 3; i++) { 2106 if (inst->src[i].vstride == BRW_VERTICAL_STRIDE_0 && 2107 type_sz(inst->src[i].type) < 8) { 2108 assert(brw_is_single_value_swizzle(inst->src[i].swizzle)); 2109 inst->src[i].subnr += 4 * BRW_GET_SWZ(inst->src[i].swizzle, 0); 2110 } 2111 } 2112 } 2113 2114 dst_reg &dst = inst->dst; 2115 struct brw_reg reg; 2116 2117 switch (inst->dst.file) { 2118 case VGRF: 2119 reg = byte_offset(brw_vec8_grf(dst.nr, 0), dst.offset); 2120 reg.type = dst.type; 2121 reg.writemask = dst.writemask; 2122 break; 2123 2124 case MRF: 2125 reg = byte_offset(brw_message_reg(dst.nr), dst.offset); 2126 assert((reg.nr & ~BRW_MRF_COMPR4) < BRW_MAX_MRF(devinfo->gen)); 2127 reg.type = dst.type; 2128 reg.writemask = dst.writemask; 2129 break; 2130 2131 case ARF: 2132 case FIXED_GRF: 2133 reg = dst.as_brw_reg(); 2134 break; 2135 2136 case BAD_FILE: 2137 reg = brw_null_reg(); 2138 reg = retype(reg, dst.type); 2139 break; 2140 2141 case IMM: 2142 case ATTR: 2143 case UNIFORM: 2144 unreachable("not reached"); 2145 } 2146 2147 dst = reg; 2148 } 2149} 2150 2151static bool 2152stage_uses_interleaved_attributes(unsigned stage, 2153 enum shader_dispatch_mode dispatch_mode) 2154{ 2155 switch (stage) { 2156 case MESA_SHADER_TESS_EVAL: 2157 return true; 2158 case MESA_SHADER_GEOMETRY: 2159 return dispatch_mode != DISPATCH_MODE_4X2_DUAL_OBJECT; 2160 default: 2161 return false; 2162 } 2163} 2164 2165/** 2166 * Get the closest native SIMD width supported by the hardware for instruction 2167 * \p inst. The instruction will be left untouched by 2168 * vec4_visitor::lower_simd_width() if the returned value matches the 2169 * instruction's original execution size. 2170 */ 2171static unsigned 2172get_lowered_simd_width(const struct gen_device_info *devinfo, 2173 enum shader_dispatch_mode dispatch_mode, 2174 unsigned stage, const vec4_instruction *inst) 2175{ 2176 /* Do not split some instructions that require special handling */ 2177 switch (inst->opcode) { 2178 case SHADER_OPCODE_GEN4_SCRATCH_READ: 2179 case SHADER_OPCODE_GEN4_SCRATCH_WRITE: 2180 return inst->exec_size; 2181 default: 2182 break; 2183 } 2184 2185 unsigned lowered_width = MIN2(16, inst->exec_size); 2186 2187 /* We need to split some cases of double-precision instructions that write 2188 * 2 registers. We only need to care about this in gen7 because that is the 2189 * only hardware that implements fp64 in Align16. 2190 */ 2191 if (devinfo->gen == 7 && inst->size_written > REG_SIZE) { 2192 /* Align16 8-wide double-precision SEL does not work well. Verified 2193 * empirically. 2194 */ 2195 if (inst->opcode == BRW_OPCODE_SEL && type_sz(inst->dst.type) == 8) 2196 lowered_width = MIN2(lowered_width, 4); 2197 2198 /* HSW PRM, 3D Media GPGPU Engine, Region Alignment Rules for Direct 2199 * Register Addressing: 2200 * 2201 * "When destination spans two registers, the source MUST span two 2202 * registers." 2203 */ 2204 for (unsigned i = 0; i < 3; i++) { 2205 if (inst->src[i].file == BAD_FILE) 2206 continue; 2207 if (inst->size_read(i) <= REG_SIZE) 2208 lowered_width = MIN2(lowered_width, 4); 2209 2210 /* Interleaved attribute setups use a vertical stride of 0, which 2211 * makes them hit the associated instruction decompression bug in gen7. 2212 * Split them to prevent this. 2213 */ 2214 if (inst->src[i].file == ATTR && 2215 stage_uses_interleaved_attributes(stage, dispatch_mode)) 2216 lowered_width = MIN2(lowered_width, 4); 2217 } 2218 } 2219 2220 /* IvyBridge can manage a maximum of 4 DFs per SIMD4x2 instruction, since 2221 * it doesn't support compression in Align16 mode, no matter if it has 2222 * force_writemask_all enabled or disabled (the latter is affected by the 2223 * compressed instruction bug in gen7, which is another reason to enforce 2224 * this limit). 2225 */ 2226 if (devinfo->gen == 7 && !devinfo->is_haswell && 2227 (get_exec_type_size(inst) == 8 || type_sz(inst->dst.type) == 8)) 2228 lowered_width = MIN2(lowered_width, 4); 2229 2230 return lowered_width; 2231} 2232 2233static bool 2234dst_src_regions_overlap(vec4_instruction *inst) 2235{ 2236 if (inst->size_written == 0) 2237 return false; 2238 2239 unsigned dst_start = inst->dst.offset; 2240 unsigned dst_end = dst_start + inst->size_written - 1; 2241 for (int i = 0; i < 3; i++) { 2242 if (inst->src[i].file == BAD_FILE) 2243 continue; 2244 2245 if (inst->dst.file != inst->src[i].file || 2246 inst->dst.nr != inst->src[i].nr) 2247 continue; 2248 2249 unsigned src_start = inst->src[i].offset; 2250 unsigned src_end = src_start + inst->size_read(i) - 1; 2251 2252 if ((dst_start >= src_start && dst_start <= src_end) || 2253 (dst_end >= src_start && dst_end <= src_end) || 2254 (dst_start <= src_start && dst_end >= src_end)) { 2255 return true; 2256 } 2257 } 2258 2259 return false; 2260} 2261 2262bool 2263vec4_visitor::lower_simd_width() 2264{ 2265 bool progress = false; 2266 2267 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 2268 const unsigned lowered_width = 2269 get_lowered_simd_width(devinfo, prog_data->dispatch_mode, stage, inst); 2270 assert(lowered_width <= inst->exec_size); 2271 if (lowered_width == inst->exec_size) 2272 continue; 2273 2274 /* We need to deal with source / destination overlaps when splitting. 2275 * The hardware supports reading from and writing to the same register 2276 * in the same instruction, but we need to be careful that each split 2277 * instruction we produce does not corrupt the source of the next. 2278 * 2279 * The easiest way to handle this is to make the split instructions write 2280 * to temporaries if there is an src/dst overlap and then move from the 2281 * temporaries to the original destination. We also need to consider 2282 * instructions that do partial writes via align1 opcodes, in which case 2283 * we need to make sure that the we initialize the temporary with the 2284 * value of the instruction's dst. 2285 */ 2286 bool needs_temp = dst_src_regions_overlap(inst); 2287 for (unsigned n = 0; n < inst->exec_size / lowered_width; n++) { 2288 unsigned channel_offset = lowered_width * n; 2289 2290 unsigned size_written = lowered_width * type_sz(inst->dst.type); 2291 2292 /* Create the split instruction from the original so that we copy all 2293 * relevant instruction fields, then set the width and calculate the 2294 * new dst/src regions. 2295 */ 2296 vec4_instruction *linst = new(mem_ctx) vec4_instruction(*inst); 2297 linst->exec_size = lowered_width; 2298 linst->group = channel_offset; 2299 linst->size_written = size_written; 2300 2301 /* Compute split dst region */ 2302 dst_reg dst; 2303 if (needs_temp) { 2304 unsigned num_regs = DIV_ROUND_UP(size_written, REG_SIZE); 2305 dst = retype(dst_reg(VGRF, alloc.allocate(num_regs)), 2306 inst->dst.type); 2307 if (inst->is_align1_partial_write()) { 2308 vec4_instruction *copy = MOV(dst, src_reg(inst->dst)); 2309 copy->exec_size = lowered_width; 2310 copy->group = channel_offset; 2311 copy->size_written = size_written; 2312 inst->insert_before(block, copy); 2313 } 2314 } else { 2315 dst = horiz_offset(inst->dst, channel_offset); 2316 } 2317 linst->dst = dst; 2318 2319 /* Compute split source regions */ 2320 for (int i = 0; i < 3; i++) { 2321 if (linst->src[i].file == BAD_FILE) 2322 continue; 2323 2324 bool is_interleaved_attr = 2325 linst->src[i].file == ATTR && 2326 stage_uses_interleaved_attributes(stage, 2327 prog_data->dispatch_mode); 2328 2329 if (!is_uniform(linst->src[i]) && !is_interleaved_attr) 2330 linst->src[i] = horiz_offset(linst->src[i], channel_offset); 2331 } 2332 2333 inst->insert_before(block, linst); 2334 2335 /* If we used a temporary to store the result of the split 2336 * instruction, copy the result to the original destination 2337 */ 2338 if (needs_temp) { 2339 vec4_instruction *mov = 2340 MOV(offset(inst->dst, lowered_width, n), src_reg(dst)); 2341 mov->exec_size = lowered_width; 2342 mov->group = channel_offset; 2343 mov->size_written = size_written; 2344 mov->predicate = inst->predicate; 2345 inst->insert_before(block, mov); 2346 } 2347 } 2348 2349 inst->remove(block); 2350 progress = true; 2351 } 2352 2353 if (progress) 2354 invalidate_live_intervals(); 2355 2356 return progress; 2357} 2358 2359static brw_predicate 2360scalarize_predicate(brw_predicate predicate, unsigned writemask) 2361{ 2362 if (predicate != BRW_PREDICATE_NORMAL) 2363 return predicate; 2364 2365 switch (writemask) { 2366 case WRITEMASK_X: 2367 return BRW_PREDICATE_ALIGN16_REPLICATE_X; 2368 case WRITEMASK_Y: 2369 return BRW_PREDICATE_ALIGN16_REPLICATE_Y; 2370 case WRITEMASK_Z: 2371 return BRW_PREDICATE_ALIGN16_REPLICATE_Z; 2372 case WRITEMASK_W: 2373 return BRW_PREDICATE_ALIGN16_REPLICATE_W; 2374 default: 2375 unreachable("invalid writemask"); 2376 } 2377} 2378 2379/* Gen7 has a hardware decompression bug that we can exploit to represent 2380 * handful of additional swizzles natively. 2381 */ 2382static bool 2383is_gen7_supported_64bit_swizzle(vec4_instruction *inst, unsigned arg) 2384{ 2385 switch (inst->src[arg].swizzle) { 2386 case BRW_SWIZZLE_XXXX: 2387 case BRW_SWIZZLE_YYYY: 2388 case BRW_SWIZZLE_ZZZZ: 2389 case BRW_SWIZZLE_WWWW: 2390 case BRW_SWIZZLE_XYXY: 2391 case BRW_SWIZZLE_YXYX: 2392 case BRW_SWIZZLE_ZWZW: 2393 case BRW_SWIZZLE_WZWZ: 2394 return true; 2395 default: 2396 return false; 2397 } 2398} 2399 2400/* 64-bit sources use regions with a width of 2. These 2 elements in each row 2401 * can be addressed using 32-bit swizzles (which is what the hardware supports) 2402 * but it also means that the swizzle we apply on the first two components of a 2403 * dvec4 is coupled with the swizzle we use for the last 2. In other words, 2404 * only some specific swizzle combinations can be natively supported. 2405 * 2406 * FIXME: we can go an step further and implement even more swizzle 2407 * variations using only partial scalarization. 2408 * 2409 * For more details see: 2410 * https://bugs.freedesktop.org/show_bug.cgi?id=92760#c82 2411 */ 2412bool 2413vec4_visitor::is_supported_64bit_region(vec4_instruction *inst, unsigned arg) 2414{ 2415 const src_reg &src = inst->src[arg]; 2416 assert(type_sz(src.type) == 8); 2417 2418 /* Uniform regions have a vstride=0. Because we use 2-wide rows with 2419 * 64-bit regions it means that we cannot access components Z/W, so 2420 * return false for any such case. Interleaved attributes will also be 2421 * mapped to GRF registers with a vstride of 0, so apply the same 2422 * treatment. 2423 */ 2424 if ((is_uniform(src) || 2425 (stage_uses_interleaved_attributes(stage, prog_data->dispatch_mode) && 2426 src.file == ATTR)) && 2427 (brw_mask_for_swizzle(src.swizzle) & 12)) 2428 return false; 2429 2430 switch (src.swizzle) { 2431 case BRW_SWIZZLE_XYZW: 2432 case BRW_SWIZZLE_XXZZ: 2433 case BRW_SWIZZLE_YYWW: 2434 case BRW_SWIZZLE_YXWZ: 2435 return true; 2436 default: 2437 return devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg); 2438 } 2439} 2440 2441bool 2442vec4_visitor::scalarize_df() 2443{ 2444 bool progress = false; 2445 2446 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 2447 /* Skip DF instructions that operate in Align1 mode */ 2448 if (is_align1_df(inst)) 2449 continue; 2450 2451 /* Check if this is a double-precision instruction */ 2452 bool is_double = type_sz(inst->dst.type) == 8; 2453 for (int arg = 0; !is_double && arg < 3; arg++) { 2454 is_double = inst->src[arg].file != BAD_FILE && 2455 type_sz(inst->src[arg].type) == 8; 2456 } 2457 2458 if (!is_double) 2459 continue; 2460 2461 /* Skip the lowering for specific regioning scenarios that we can 2462 * support natively. 2463 */ 2464 bool skip_lowering = true; 2465 2466 /* XY and ZW writemasks operate in 32-bit, which means that they don't 2467 * have a native 64-bit representation and they should always be split. 2468 */ 2469 if (inst->dst.writemask == WRITEMASK_XY || 2470 inst->dst.writemask == WRITEMASK_ZW) { 2471 skip_lowering = false; 2472 } else { 2473 for (unsigned i = 0; i < 3; i++) { 2474 if (inst->src[i].file == BAD_FILE || type_sz(inst->src[i].type) < 8) 2475 continue; 2476 skip_lowering = skip_lowering && is_supported_64bit_region(inst, i); 2477 } 2478 } 2479 2480 if (skip_lowering) 2481 continue; 2482 2483 /* Generate scalar instructions for each enabled channel */ 2484 for (unsigned chan = 0; chan < 4; chan++) { 2485 unsigned chan_mask = 1 << chan; 2486 if (!(inst->dst.writemask & chan_mask)) 2487 continue; 2488 2489 vec4_instruction *scalar_inst = new(mem_ctx) vec4_instruction(*inst); 2490 2491 for (unsigned i = 0; i < 3; i++) { 2492 unsigned swz = BRW_GET_SWZ(inst->src[i].swizzle, chan); 2493 scalar_inst->src[i].swizzle = BRW_SWIZZLE4(swz, swz, swz, swz); 2494 } 2495 2496 scalar_inst->dst.writemask = chan_mask; 2497 2498 if (inst->predicate != BRW_PREDICATE_NONE) { 2499 scalar_inst->predicate = 2500 scalarize_predicate(inst->predicate, chan_mask); 2501 } 2502 2503 inst->insert_before(block, scalar_inst); 2504 } 2505 2506 inst->remove(block); 2507 progress = true; 2508 } 2509 2510 if (progress) 2511 invalidate_live_intervals(); 2512 2513 return progress; 2514} 2515 2516bool 2517vec4_visitor::lower_64bit_mad_to_mul_add() 2518{ 2519 bool progress = false; 2520 2521 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) { 2522 if (inst->opcode != BRW_OPCODE_MAD) 2523 continue; 2524 2525 if (type_sz(inst->dst.type) != 8) 2526 continue; 2527 2528 dst_reg mul_dst = dst_reg(this, glsl_type::dvec4_type); 2529 2530 /* Use the copy constructor so we copy all relevant instruction fields 2531 * from the original mad into the add and mul instructions 2532 */ 2533 vec4_instruction *mul = new(mem_ctx) vec4_instruction(*inst); 2534 mul->opcode = BRW_OPCODE_MUL; 2535 mul->dst = mul_dst; 2536 mul->src[0] = inst->src[1]; 2537 mul->src[1] = inst->src[2]; 2538 mul->src[2].file = BAD_FILE; 2539 2540 vec4_instruction *add = new(mem_ctx) vec4_instruction(*inst); 2541 add->opcode = BRW_OPCODE_ADD; 2542 add->src[0] = src_reg(mul_dst); 2543 add->src[1] = inst->src[0]; 2544 add->src[2].file = BAD_FILE; 2545 2546 inst->insert_before(block, mul); 2547 inst->insert_before(block, add); 2548 inst->remove(block); 2549 2550 progress = true; 2551 } 2552 2553 if (progress) 2554 invalidate_live_intervals(); 2555 2556 return progress; 2557} 2558 2559/* The align16 hardware can only do 32-bit swizzle channels, so we need to 2560 * translate the logical 64-bit swizzle channels that we use in the Vec4 IR 2561 * to 32-bit swizzle channels in hardware registers. 2562 * 2563 * @inst and @arg identify the original vec4 IR source operand we need to 2564 * translate the swizzle for and @hw_reg is the hardware register where we 2565 * will write the hardware swizzle to use. 2566 * 2567 * This pass assumes that Align16/DF instructions have been fully scalarized 2568 * previously so there is just one 64-bit swizzle channel to deal with for any 2569 * given Vec4 IR source. 2570 */ 2571void 2572vec4_visitor::apply_logical_swizzle(struct brw_reg *hw_reg, 2573 vec4_instruction *inst, int arg) 2574{ 2575 src_reg reg = inst->src[arg]; 2576 2577 if (reg.file == BAD_FILE || reg.file == BRW_IMMEDIATE_VALUE) 2578 return; 2579 2580 /* If this is not a 64-bit operand or this is a scalar instruction we don't 2581 * need to do anything about the swizzles. 2582 */ 2583 if(type_sz(reg.type) < 8 || is_align1_df(inst)) { 2584 hw_reg->swizzle = reg.swizzle; 2585 return; 2586 } 2587 2588 /* Take the 64-bit logical swizzle channel and translate it to 32-bit */ 2589 assert(brw_is_single_value_swizzle(reg.swizzle) || 2590 is_supported_64bit_region(inst, arg)); 2591 2592 /* Apply the region <2, 2, 1> for GRF or <0, 2, 1> for uniforms, as align16 2593 * HW can only do 32-bit swizzle channels. 2594 */ 2595 hw_reg->width = BRW_WIDTH_2; 2596 2597 if (is_supported_64bit_region(inst, arg) && 2598 !is_gen7_supported_64bit_swizzle(inst, arg)) { 2599 /* Supported 64-bit swizzles are those such that their first two 2600 * components, when expanded to 32-bit swizzles, match the semantics 2601 * of the original 64-bit swizzle with 2-wide row regioning. 2602 */ 2603 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0); 2604 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1); 2605 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1, 2606 swizzle1 * 2, swizzle1 * 2 + 1); 2607 } else { 2608 /* If we got here then we have one of the following: 2609 * 2610 * 1. An unsupported swizzle, which should be single-value thanks to the 2611 * scalarization pass. 2612 * 2613 * 2. A gen7 supported swizzle. These can be single-value or double-value 2614 * swizzles. If the latter, they are never cross-dvec2 channels. For 2615 * these we always need to activate the gen7 vstride=0 exploit. 2616 */ 2617 unsigned swizzle0 = BRW_GET_SWZ(reg.swizzle, 0); 2618 unsigned swizzle1 = BRW_GET_SWZ(reg.swizzle, 1); 2619 assert((swizzle0 < 2) == (swizzle1 < 2)); 2620 2621 /* To gain access to Z/W components we need to select the second half 2622 * of the register and then use a X/Y swizzle to select Z/W respectively. 2623 */ 2624 if (swizzle0 >= 2) { 2625 *hw_reg = suboffset(*hw_reg, 2); 2626 swizzle0 -= 2; 2627 swizzle1 -= 2; 2628 } 2629 2630 /* All gen7-specific supported swizzles require the vstride=0 exploit */ 2631 if (devinfo->gen == 7 && is_gen7_supported_64bit_swizzle(inst, arg)) 2632 hw_reg->vstride = BRW_VERTICAL_STRIDE_0; 2633 2634 /* Any 64-bit source with an offset at 16B is intended to address the 2635 * second half of a register and needs a vertical stride of 0 so we: 2636 * 2637 * 1. Don't violate register region restrictions. 2638 * 2. Activate the gen7 instruction decompresion bug exploit when 2639 * execsize > 4 2640 */ 2641 if (hw_reg->subnr % REG_SIZE == 16) { 2642 assert(devinfo->gen == 7); 2643 hw_reg->vstride = BRW_VERTICAL_STRIDE_0; 2644 } 2645 2646 hw_reg->swizzle = BRW_SWIZZLE4(swizzle0 * 2, swizzle0 * 2 + 1, 2647 swizzle1 * 2, swizzle1 * 2 + 1); 2648 } 2649} 2650 2651bool 2652vec4_visitor::run() 2653{ 2654 if (shader_time_index >= 0) 2655 emit_shader_time_begin(); 2656 2657 emit_prolog(); 2658 2659 emit_nir_code(); 2660 if (failed) 2661 return false; 2662 base_ir = NULL; 2663 2664 emit_thread_end(); 2665 2666 calculate_cfg(); 2667 2668 /* Before any optimization, push array accesses out to scratch 2669 * space where we need them to be. This pass may allocate new 2670 * virtual GRFs, so we want to do it early. It also makes sure 2671 * that we have reladdr computations available for CSE, since we'll 2672 * often do repeated subexpressions for those. 2673 */ 2674 move_grf_array_access_to_scratch(); 2675 move_uniform_array_access_to_pull_constants(); 2676 2677 pack_uniform_registers(); 2678 move_push_constants_to_pull_constants(); 2679 split_virtual_grfs(); 2680 2681#define OPT(pass, args...) ({ \ 2682 pass_num++; \ 2683 bool this_progress = pass(args); \ 2684 \ 2685 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \ 2686 char filename[64]; \ 2687 snprintf(filename, 64, "%s-%s-%02d-%02d-" #pass, \ 2688 stage_abbrev, nir->info.name, iteration, pass_num); \ 2689 \ 2690 backend_shader::dump_instructions(filename); \ 2691 } \ 2692 \ 2693 progress = progress || this_progress; \ 2694 this_progress; \ 2695 }) 2696 2697 2698 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) { 2699 char filename[64]; 2700 snprintf(filename, 64, "%s-%s-00-00-start", 2701 stage_abbrev, nir->info.name); 2702 2703 backend_shader::dump_instructions(filename); 2704 } 2705 2706 bool progress; 2707 int iteration = 0; 2708 int pass_num = 0; 2709 do { 2710 progress = false; 2711 pass_num = 0; 2712 iteration++; 2713 2714 OPT(opt_predicated_break, this); 2715 OPT(opt_reduce_swizzle); 2716 OPT(dead_code_eliminate); 2717 OPT(dead_control_flow_eliminate, this); 2718 OPT(opt_copy_propagation); 2719 OPT(opt_cmod_propagation); 2720 OPT(opt_cse); 2721 OPT(opt_algebraic); 2722 OPT(opt_register_coalesce); 2723 OPT(eliminate_find_live_channel); 2724 } while (progress); 2725 2726 pass_num = 0; 2727 2728 if (OPT(opt_vector_float)) { 2729 OPT(opt_cse); 2730 OPT(opt_copy_propagation, false); 2731 OPT(opt_copy_propagation, true); 2732 OPT(dead_code_eliminate); 2733 } 2734 2735 if (devinfo->gen <= 5 && OPT(lower_minmax)) { 2736 OPT(opt_cmod_propagation); 2737 OPT(opt_cse); 2738 OPT(opt_copy_propagation); 2739 OPT(dead_code_eliminate); 2740 } 2741 2742 if (OPT(lower_simd_width)) { 2743 OPT(opt_copy_propagation); 2744 OPT(dead_code_eliminate); 2745 } 2746 2747 if (failed) 2748 return false; 2749 2750 OPT(lower_64bit_mad_to_mul_add); 2751 2752 /* Run this before payload setup because tesselation shaders 2753 * rely on it to prevent cross dvec2 regioning on DF attributes 2754 * that are setup so that XY are on the second half of register and 2755 * ZW are in the first half of the next. 2756 */ 2757 OPT(scalarize_df); 2758 2759 setup_payload(); 2760 2761 if (unlikely(INTEL_DEBUG & DEBUG_SPILL_VEC4)) { 2762 /* Debug of register spilling: Go spill everything. */ 2763 const int grf_count = alloc.count; 2764 float spill_costs[alloc.count]; 2765 bool no_spill[alloc.count]; 2766 evaluate_spill_costs(spill_costs, no_spill); 2767 for (int i = 0; i < grf_count; i++) { 2768 if (no_spill[i]) 2769 continue; 2770 spill_reg(i); 2771 } 2772 2773 /* We want to run this after spilling because 64-bit (un)spills need to 2774 * emit code to shuffle 64-bit data for the 32-bit scratch read/write 2775 * messages that can produce unsupported 64-bit swizzle regions. 2776 */ 2777 OPT(scalarize_df); 2778 } 2779 2780 fixup_3src_null_dest(); 2781 2782 bool allocated_without_spills = reg_allocate(); 2783 2784 if (!allocated_without_spills) { 2785 compiler->shader_perf_log(log_data, 2786 "%s shader triggered register spilling. " 2787 "Try reducing the number of live vec4 values " 2788 "to improve performance.\n", 2789 stage_name); 2790 2791 while (!reg_allocate()) { 2792 if (failed) 2793 return false; 2794 } 2795 2796 /* We want to run this after spilling because 64-bit (un)spills need to 2797 * emit code to shuffle 64-bit data for the 32-bit scratch read/write 2798 * messages that can produce unsupported 64-bit swizzle regions. 2799 */ 2800 OPT(scalarize_df); 2801 } 2802 2803 opt_schedule_instructions(); 2804 2805 opt_set_dependency_control(); 2806 2807 convert_to_hw_regs(); 2808 2809 if (last_scratch > 0) { 2810 prog_data->base.total_scratch = 2811 brw_get_scratch_size(last_scratch * REG_SIZE); 2812 } 2813 2814 return !failed; 2815} 2816 2817} /* namespace brw */ 2818 2819extern "C" { 2820 2821/** 2822 * Compile a vertex shader. 2823 * 2824 * Returns the final assembly and the program's size. 2825 */ 2826const unsigned * 2827brw_compile_vs(const struct brw_compiler *compiler, void *log_data, 2828 void *mem_ctx, 2829 const struct brw_vs_prog_key *key, 2830 struct brw_vs_prog_data *prog_data, 2831 const nir_shader *src_shader, 2832 int shader_time_index, 2833 char **error_str) 2834{ 2835 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_VERTEX]; 2836 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader); 2837 shader = brw_nir_apply_sampler_key(shader, compiler, &key->tex, is_scalar); 2838 2839 const unsigned *assembly = NULL; 2840 2841 if (prog_data->base.vue_map.varying_to_slot[VARYING_SLOT_EDGE] != -1) { 2842 /* If the output VUE map contains VARYING_SLOT_EDGE then we need to copy 2843 * the edge flag from VERT_ATTRIB_EDGEFLAG. This will be done 2844 * automatically by brw_vec4_visitor::emit_urb_slot but we need to 2845 * ensure that prog_data->inputs_read is accurate. 2846 * 2847 * In order to make late NIR passes aware of the change, we actually 2848 * whack shader->info.inputs_read instead. This is safe because we just 2849 * made a copy of the shader. 2850 */ 2851 assert(!is_scalar); 2852 assert(key->copy_edgeflag); 2853 shader->info.inputs_read |= VERT_BIT_EDGEFLAG; 2854 } 2855 2856 prog_data->inputs_read = shader->info.inputs_read; 2857 prog_data->double_inputs_read = shader->info.vs.double_inputs; 2858 2859 brw_nir_lower_vs_inputs(shader, key->gl_attrib_wa_flags); 2860 brw_nir_lower_vue_outputs(shader); 2861 shader = brw_postprocess_nir(shader, compiler, is_scalar); 2862 2863 prog_data->base.clip_distance_mask = 2864 ((1 << shader->info.clip_distance_array_size) - 1); 2865 prog_data->base.cull_distance_mask = 2866 ((1 << shader->info.cull_distance_array_size) - 1) << 2867 shader->info.clip_distance_array_size; 2868 2869 unsigned nr_attribute_slots = util_bitcount64(prog_data->inputs_read); 2870 2871 /* gl_VertexID and gl_InstanceID are system values, but arrive via an 2872 * incoming vertex attribute. So, add an extra slot. 2873 */ 2874 if (shader->info.system_values_read & 2875 (BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX) | 2876 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) | 2877 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) | 2878 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID))) { 2879 nr_attribute_slots++; 2880 } 2881 2882 /* gl_DrawID and IsIndexedDraw share its very own vec4 */ 2883 if (shader->info.system_values_read & 2884 (BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID) | 2885 BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW))) { 2886 nr_attribute_slots++; 2887 } 2888 2889 if (shader->info.system_values_read & 2890 BITFIELD64_BIT(SYSTEM_VALUE_IS_INDEXED_DRAW)) 2891 prog_data->uses_is_indexed_draw = true; 2892 2893 if (shader->info.system_values_read & 2894 BITFIELD64_BIT(SYSTEM_VALUE_FIRST_VERTEX)) 2895 prog_data->uses_firstvertex = true; 2896 2897 if (shader->info.system_values_read & 2898 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE)) 2899 prog_data->uses_baseinstance = true; 2900 2901 if (shader->info.system_values_read & 2902 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE)) 2903 prog_data->uses_vertexid = true; 2904 2905 if (shader->info.system_values_read & 2906 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID)) 2907 prog_data->uses_instanceid = true; 2908 2909 if (shader->info.system_values_read & 2910 BITFIELD64_BIT(SYSTEM_VALUE_DRAW_ID)) 2911 prog_data->uses_drawid = true; 2912 2913 /* The 3DSTATE_VS documentation lists the lower bound on "Vertex URB Entry 2914 * Read Length" as 1 in vec4 mode, and 0 in SIMD8 mode. Empirically, in 2915 * vec4 mode, the hardware appears to wedge unless we read something. 2916 */ 2917 if (is_scalar) 2918 prog_data->base.urb_read_length = 2919 DIV_ROUND_UP(nr_attribute_slots, 2); 2920 else 2921 prog_data->base.urb_read_length = 2922 DIV_ROUND_UP(MAX2(nr_attribute_slots, 1), 2); 2923 2924 prog_data->nr_attribute_slots = nr_attribute_slots; 2925 2926 /* Since vertex shaders reuse the same VUE entry for inputs and outputs 2927 * (overwriting the original contents), we need to make sure the size is 2928 * the larger of the two. 2929 */ 2930 const unsigned vue_entries = 2931 MAX2(nr_attribute_slots, (unsigned)prog_data->base.vue_map.num_slots); 2932 2933 if (compiler->devinfo->gen == 6) { 2934 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 8); 2935 } else { 2936 prog_data->base.urb_entry_size = DIV_ROUND_UP(vue_entries, 4); 2937 /* On Cannonlake software shall not program an allocation size that 2938 * specifies a size that is a multiple of 3 64B (512-bit) cachelines. 2939 */ 2940 if (compiler->devinfo->gen == 10 && 2941 prog_data->base.urb_entry_size % 3 == 0) 2942 prog_data->base.urb_entry_size++; 2943 } 2944 2945 if (INTEL_DEBUG & DEBUG_VS) { 2946 fprintf(stderr, "VS Output "); 2947 brw_print_vue_map(stderr, &prog_data->base.vue_map); 2948 } 2949 2950 if (is_scalar) { 2951 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8; 2952 2953 fs_visitor v(compiler, log_data, mem_ctx, key, &prog_data->base.base, 2954 NULL, /* prog; Only used for TEXTURE_RECTANGLE on gen < 8 */ 2955 shader, 8, shader_time_index); 2956 if (!v.run_vs()) { 2957 if (error_str) 2958 *error_str = ralloc_strdup(mem_ctx, v.fail_msg); 2959 2960 return NULL; 2961 } 2962 2963 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs; 2964 2965 fs_generator g(compiler, log_data, mem_ctx, 2966 &prog_data->base.base, v.promoted_constants, 2967 v.runtime_check_aads_emit, MESA_SHADER_VERTEX); 2968 if (INTEL_DEBUG & DEBUG_VS) { 2969 const char *debug_name = 2970 ralloc_asprintf(mem_ctx, "%s vertex shader %s", 2971 shader->info.label ? shader->info.label : 2972 "unnamed", 2973 shader->info.name); 2974 2975 g.enable_debug(debug_name); 2976 } 2977 g.generate_code(v.cfg, 8); 2978 assembly = g.get_assembly(); 2979 } 2980 2981 if (!assembly) { 2982 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT; 2983 2984 vec4_vs_visitor v(compiler, log_data, key, prog_data, 2985 shader, mem_ctx, shader_time_index); 2986 if (!v.run()) { 2987 if (error_str) 2988 *error_str = ralloc_strdup(mem_ctx, v.fail_msg); 2989 2990 return NULL; 2991 } 2992 2993 assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, 2994 shader, &prog_data->base, v.cfg); 2995 } 2996 2997 return assembly; 2998} 2999 3000} /* extern "C" */ 3001