brw_vec4_tcs.cpp revision 01e04c3f
1/*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24/**
25 * \file brw_vec4_tcs.cpp
26 *
27 * Tessellaton control shader specific code derived from the vec4_visitor class.
28 */
29
30#include "brw_nir.h"
31#include "brw_vec4_tcs.h"
32#include "brw_fs.h"
33#include "common/gen_debug.h"
34
35namespace brw {
36
37vec4_tcs_visitor::vec4_tcs_visitor(const struct brw_compiler *compiler,
38                                   void *log_data,
39                                   const struct brw_tcs_prog_key *key,
40                                   struct brw_tcs_prog_data *prog_data,
41                                   const nir_shader *nir,
42                                   void *mem_ctx,
43                                   int shader_time_index,
44                                   const struct brw_vue_map *input_vue_map)
45   : vec4_visitor(compiler, log_data, &key->tex, &prog_data->base,
46                  nir, mem_ctx, false, shader_time_index),
47     input_vue_map(input_vue_map), key(key)
48{
49}
50
51
52void
53vec4_tcs_visitor::setup_payload()
54{
55   int reg = 0;
56
57   /* The payload always contains important data in r0, which contains
58    * the URB handles that are passed on to the URB write at the end
59    * of the thread.
60    */
61   reg++;
62
63   /* r1.0 - r4.7 may contain the input control point URB handles,
64    * which we use to pull vertex data.
65    */
66   reg += 4;
67
68   /* Push constants may start at r5.0 */
69   reg = setup_uniforms(reg);
70
71   this->first_non_payload_grf = reg;
72}
73
74
75void
76vec4_tcs_visitor::emit_prolog()
77{
78   invocation_id = src_reg(this, glsl_type::uint_type);
79   emit(TCS_OPCODE_GET_INSTANCE_ID, dst_reg(invocation_id));
80
81   /* HS threads are dispatched with the dispatch mask set to 0xFF.
82    * If there are an odd number of output vertices, then the final
83    * HS instance dispatched will only have its bottom half doing real
84    * work, and so we need to disable the upper half:
85    */
86   if (nir->info.tess.tcs_vertices_out % 2) {
87      emit(CMP(dst_null_d(), invocation_id,
88               brw_imm_ud(nir->info.tess.tcs_vertices_out),
89               BRW_CONDITIONAL_L));
90
91      /* Matching ENDIF is in emit_thread_end() */
92      emit(IF(BRW_PREDICATE_NORMAL));
93   }
94}
95
96
97void
98vec4_tcs_visitor::emit_thread_end()
99{
100   vec4_instruction *inst;
101   current_annotation = "thread end";
102
103   if (nir->info.tess.tcs_vertices_out % 2) {
104      emit(BRW_OPCODE_ENDIF);
105   }
106
107   if (devinfo->gen == 7) {
108      struct brw_tcs_prog_data *tcs_prog_data =
109         (struct brw_tcs_prog_data *) prog_data;
110
111      current_annotation = "release input vertices";
112
113      /* Synchronize all threads, so we know that no one is still
114       * using the input URB handles.
115       */
116      if (tcs_prog_data->instances > 1) {
117         dst_reg header = dst_reg(this, glsl_type::uvec4_type);
118         emit(TCS_OPCODE_CREATE_BARRIER_HEADER, header);
119         emit(SHADER_OPCODE_BARRIER, dst_null_ud(), src_reg(header));
120      }
121
122      /* Make thread 0 (invocations <1, 0>) release pairs of ICP handles.
123       * We want to compare the bottom half of invocation_id with 0, but
124       * use that truth value for the top half as well.  Unfortunately,
125       * we don't have stride in the vec4 world, nor UV immediates in
126       * align16, so we need an opcode to get invocation_id<0,4,0>.
127       */
128      set_condmod(BRW_CONDITIONAL_Z,
129                  emit(TCS_OPCODE_SRC0_010_IS_ZERO, dst_null_d(),
130                       invocation_id));
131      emit(IF(BRW_PREDICATE_NORMAL));
132      for (unsigned i = 0; i < key->input_vertices; i += 2) {
133         /* If we have an odd number of input vertices, the last will be
134          * unpaired.  We don't want to use an interleaved URB write in
135          * that case.
136          */
137         const bool is_unpaired = i == key->input_vertices - 1;
138
139         dst_reg header(this, glsl_type::uvec4_type);
140         emit(TCS_OPCODE_RELEASE_INPUT, header, brw_imm_ud(i),
141              brw_imm_ud(is_unpaired));
142      }
143      emit(BRW_OPCODE_ENDIF);
144   }
145
146   if (unlikely(INTEL_DEBUG & DEBUG_SHADER_TIME))
147      emit_shader_time_end();
148
149   inst = emit(TCS_OPCODE_THREAD_END);
150   inst->base_mrf = 14;
151   inst->mlen = 2;
152}
153
154
155void
156vec4_tcs_visitor::emit_input_urb_read(const dst_reg &dst,
157                                      const src_reg &vertex_index,
158                                      unsigned base_offset,
159                                      unsigned first_component,
160                                      const src_reg &indirect_offset)
161{
162   vec4_instruction *inst;
163   dst_reg temp(this, glsl_type::ivec4_type);
164   temp.type = dst.type;
165
166   /* Set up the message header to reference the proper parts of the URB */
167   dst_reg header = dst_reg(this, glsl_type::uvec4_type);
168   inst = emit(TCS_OPCODE_SET_INPUT_URB_OFFSETS, header, vertex_index,
169               indirect_offset);
170   inst->force_writemask_all = true;
171
172   /* Read into a temporary, ignoring writemasking. */
173   inst = emit(VEC4_OPCODE_URB_READ, temp, src_reg(header));
174   inst->offset = base_offset;
175   inst->mlen = 1;
176   inst->base_mrf = -1;
177
178   /* Copy the temporary to the destination to deal with writemasking.
179    *
180    * Also attempt to deal with gl_PointSize being in the .w component.
181    */
182   if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
183      emit(MOV(dst, swizzle(src_reg(temp), BRW_SWIZZLE_WWWW)));
184   } else {
185      src_reg src = src_reg(temp);
186      src.swizzle = BRW_SWZ_COMP_INPUT(first_component);
187      emit(MOV(dst, src));
188   }
189}
190
191void
192vec4_tcs_visitor::emit_output_urb_read(const dst_reg &dst,
193                                       unsigned base_offset,
194                                       unsigned first_component,
195                                       const src_reg &indirect_offset)
196{
197   vec4_instruction *inst;
198
199   /* Set up the message header to reference the proper parts of the URB */
200   dst_reg header = dst_reg(this, glsl_type::uvec4_type);
201   inst = emit(TCS_OPCODE_SET_OUTPUT_URB_OFFSETS, header,
202               brw_imm_ud(dst.writemask << first_component), indirect_offset);
203   inst->force_writemask_all = true;
204
205   vec4_instruction *read = emit(VEC4_OPCODE_URB_READ, dst, src_reg(header));
206   read->offset = base_offset;
207   read->mlen = 1;
208   read->base_mrf = -1;
209
210   if (first_component) {
211      /* Read into a temporary and copy with a swizzle and writemask. */
212      read->dst = retype(dst_reg(this, glsl_type::ivec4_type), dst.type);
213      emit(MOV(dst, swizzle(src_reg(read->dst),
214                            BRW_SWZ_COMP_INPUT(first_component))));
215   }
216}
217
218void
219vec4_tcs_visitor::emit_urb_write(const src_reg &value,
220                                 unsigned writemask,
221                                 unsigned base_offset,
222                                 const src_reg &indirect_offset)
223{
224   if (writemask == 0)
225      return;
226
227   src_reg message(this, glsl_type::uvec4_type, 2);
228   vec4_instruction *inst;
229
230   inst = emit(TCS_OPCODE_SET_OUTPUT_URB_OFFSETS, dst_reg(message),
231               brw_imm_ud(writemask), indirect_offset);
232   inst->force_writemask_all = true;
233   inst = emit(MOV(byte_offset(dst_reg(retype(message, value.type)), REG_SIZE),
234                   value));
235   inst->force_writemask_all = true;
236
237   inst = emit(TCS_OPCODE_URB_WRITE, dst_null_f(), message);
238   inst->offset = base_offset;
239   inst->mlen = 2;
240   inst->base_mrf = -1;
241}
242
243void
244vec4_tcs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
245{
246   switch (instr->intrinsic) {
247   case nir_intrinsic_load_invocation_id:
248      emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD),
249               invocation_id));
250      break;
251   case nir_intrinsic_load_primitive_id:
252      emit(TCS_OPCODE_GET_PRIMITIVE_ID,
253           get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD));
254      break;
255   case nir_intrinsic_load_patch_vertices_in:
256      emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D),
257               brw_imm_d(key->input_vertices)));
258      break;
259   case nir_intrinsic_load_per_vertex_input: {
260      src_reg indirect_offset = get_indirect_offset(instr);
261      unsigned imm_offset = instr->const_index[0];
262
263      nir_const_value *vertex_const = nir_src_as_const_value(instr->src[0]);
264      src_reg vertex_index =
265         vertex_const ? src_reg(brw_imm_ud(vertex_const->u32[0]))
266                      : get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1);
267
268      unsigned first_component = nir_intrinsic_component(instr);
269      if (nir_dest_bit_size(instr->dest) == 64) {
270         /* We need to emit up to two 32-bit URB reads, then shuffle
271          * the result into a temporary, then move to the destination
272          * honoring the writemask
273          *
274          * We don't need to divide first_component by 2 because
275          * emit_input_urb_read takes a 32-bit type.
276          */
277         dst_reg tmp = dst_reg(this, glsl_type::dvec4_type);
278         dst_reg tmp_d = retype(tmp, BRW_REGISTER_TYPE_D);
279         emit_input_urb_read(tmp_d, vertex_index, imm_offset,
280                             first_component, indirect_offset);
281         if (instr->num_components > 2) {
282            emit_input_urb_read(byte_offset(tmp_d, REG_SIZE), vertex_index,
283                                imm_offset + 1, 0, indirect_offset);
284         }
285
286         src_reg tmp_src = retype(src_reg(tmp_d), BRW_REGISTER_TYPE_DF);
287         dst_reg shuffled = dst_reg(this, glsl_type::dvec4_type);
288         shuffle_64bit_data(shuffled, tmp_src, false);
289
290         dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_DF);
291         dst.writemask = brw_writemask_for_size(instr->num_components);
292         emit(MOV(dst, src_reg(shuffled)));
293      } else {
294         dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D);
295         dst.writemask = brw_writemask_for_size(instr->num_components);
296         emit_input_urb_read(dst, vertex_index, imm_offset,
297                             first_component, indirect_offset);
298      }
299      break;
300   }
301   case nir_intrinsic_load_input:
302      unreachable("nir_lower_io should use load_per_vertex_input intrinsics");
303      break;
304   case nir_intrinsic_load_output:
305   case nir_intrinsic_load_per_vertex_output: {
306      src_reg indirect_offset = get_indirect_offset(instr);
307      unsigned imm_offset = instr->const_index[0];
308
309      dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D);
310      dst.writemask = brw_writemask_for_size(instr->num_components);
311
312      emit_output_urb_read(dst, imm_offset, nir_intrinsic_component(instr),
313                           indirect_offset);
314      break;
315   }
316   case nir_intrinsic_store_output:
317   case nir_intrinsic_store_per_vertex_output: {
318      src_reg value = get_nir_src(instr->src[0]);
319      unsigned mask = instr->const_index[1];
320      unsigned swiz = BRW_SWIZZLE_XYZW;
321
322      src_reg indirect_offset = get_indirect_offset(instr);
323      unsigned imm_offset = instr->const_index[0];
324
325      unsigned first_component = nir_intrinsic_component(instr);
326      if (first_component) {
327         if (nir_src_bit_size(instr->src[0]) == 64)
328            first_component /= 2;
329         assert(swiz == BRW_SWIZZLE_XYZW);
330         swiz = BRW_SWZ_COMP_OUTPUT(first_component);
331         mask = mask << first_component;
332      }
333
334      if (nir_src_bit_size(instr->src[0]) == 64) {
335         /* For 64-bit data we need to shuffle the data before we write and
336          * emit two messages. Also, since each channel is twice as large we
337          * need to fix the writemask in each 32-bit message to account for it.
338          */
339         value = swizzle(retype(value, BRW_REGISTER_TYPE_DF), swiz);
340         dst_reg shuffled = dst_reg(this, glsl_type::dvec4_type);
341         shuffle_64bit_data(shuffled, value, true);
342         src_reg shuffled_float = src_reg(retype(shuffled, BRW_REGISTER_TYPE_F));
343
344         for (int n = 0; n < 2; n++) {
345            unsigned fixed_mask = 0;
346            if (mask & WRITEMASK_X)
347               fixed_mask |= WRITEMASK_XY;
348            if (mask & WRITEMASK_Y)
349               fixed_mask |= WRITEMASK_ZW;
350            emit_urb_write(shuffled_float, fixed_mask,
351                           imm_offset, indirect_offset);
352
353            shuffled_float = byte_offset(shuffled_float, REG_SIZE);
354            mask >>= 2;
355            imm_offset++;
356         }
357      } else {
358         emit_urb_write(swizzle(value, swiz), mask,
359                        imm_offset, indirect_offset);
360      }
361      break;
362   }
363
364   case nir_intrinsic_barrier: {
365      dst_reg header = dst_reg(this, glsl_type::uvec4_type);
366      emit(TCS_OPCODE_CREATE_BARRIER_HEADER, header);
367      emit(SHADER_OPCODE_BARRIER, dst_null_ud(), src_reg(header));
368      break;
369   }
370
371   default:
372      vec4_visitor::nir_emit_intrinsic(instr);
373   }
374}
375
376
377extern "C" const unsigned *
378brw_compile_tcs(const struct brw_compiler *compiler,
379                void *log_data,
380                void *mem_ctx,
381                const struct brw_tcs_prog_key *key,
382                struct brw_tcs_prog_data *prog_data,
383                const nir_shader *src_shader,
384                int shader_time_index,
385                char **error_str)
386{
387   const struct gen_device_info *devinfo = compiler->devinfo;
388   struct brw_vue_prog_data *vue_prog_data = &prog_data->base;
389   const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_CTRL];
390   const unsigned *assembly;
391
392   nir_shader *nir = nir_shader_clone(mem_ctx, src_shader);
393   nir->info.outputs_written = key->outputs_written;
394   nir->info.patch_outputs_written = key->patch_outputs_written;
395
396   struct brw_vue_map input_vue_map;
397   brw_compute_vue_map(devinfo, &input_vue_map, nir->info.inputs_read,
398                       nir->info.separate_shader);
399   brw_compute_tess_vue_map(&vue_prog_data->vue_map,
400                            nir->info.outputs_written,
401                            nir->info.patch_outputs_written);
402
403   nir = brw_nir_apply_sampler_key(nir, compiler, &key->tex, is_scalar);
404   brw_nir_lower_vue_inputs(nir, &input_vue_map);
405   brw_nir_lower_tcs_outputs(nir, &vue_prog_data->vue_map,
406                             key->tes_primitive_mode);
407   if (key->quads_workaround)
408      brw_nir_apply_tcs_quads_workaround(nir);
409
410   nir = brw_postprocess_nir(nir, compiler, is_scalar);
411
412   if (is_scalar)
413      prog_data->instances = DIV_ROUND_UP(nir->info.tess.tcs_vertices_out, 8);
414   else
415      prog_data->instances = DIV_ROUND_UP(nir->info.tess.tcs_vertices_out, 2);
416
417   /* Compute URB entry size.  The maximum allowed URB entry size is 32k.
418    * That divides up as follows:
419    *
420    *     32 bytes for the patch header (tessellation factors)
421    *    480 bytes for per-patch varyings (a varying component is 4 bytes and
422    *              gl_MaxTessPatchComponents = 120)
423    *  16384 bytes for per-vertex varyings (a varying component is 4 bytes,
424    *              gl_MaxPatchVertices = 32 and
425    *              gl_MaxTessControlOutputComponents = 128)
426    *
427    *  15808 bytes left for varying packing overhead
428    */
429   const int num_per_patch_slots = vue_prog_data->vue_map.num_per_patch_slots;
430   const int num_per_vertex_slots = vue_prog_data->vue_map.num_per_vertex_slots;
431   unsigned output_size_bytes = 0;
432   /* Note that the patch header is counted in num_per_patch_slots. */
433   output_size_bytes += num_per_patch_slots * 16;
434   output_size_bytes += nir->info.tess.tcs_vertices_out *
435                        num_per_vertex_slots * 16;
436
437   assert(output_size_bytes >= 1);
438   if (output_size_bytes > GEN7_MAX_HS_URB_ENTRY_SIZE_BYTES)
439      return NULL;
440
441   /* URB entry sizes are stored as a multiple of 64 bytes. */
442   vue_prog_data->urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
443
444   /* On Cannonlake software shall not program an allocation size that
445    * specifies a size that is a multiple of 3 64B (512-bit) cachelines.
446    */
447   if (devinfo->gen == 10 &&
448       vue_prog_data->urb_entry_size % 3 == 0)
449      vue_prog_data->urb_entry_size++;
450
451   /* HS does not use the usual payload pushing from URB to GRFs,
452    * because we don't have enough registers for a full-size payload, and
453    * the hardware is broken on Haswell anyway.
454    */
455   vue_prog_data->urb_read_length = 0;
456
457   if (unlikely(INTEL_DEBUG & DEBUG_TCS)) {
458      fprintf(stderr, "TCS Input ");
459      brw_print_vue_map(stderr, &input_vue_map);
460      fprintf(stderr, "TCS Output ");
461      brw_print_vue_map(stderr, &vue_prog_data->vue_map);
462   }
463
464   if (is_scalar) {
465      fs_visitor v(compiler, log_data, mem_ctx, (void *) key,
466                   &prog_data->base.base, NULL, nir, 8,
467                   shader_time_index, &input_vue_map);
468      if (!v.run_tcs_single_patch()) {
469         if (error_str)
470            *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
471         return NULL;
472      }
473
474      prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
475      prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
476
477      fs_generator g(compiler, log_data, mem_ctx,
478                     &prog_data->base.base, v.promoted_constants, false,
479                     MESA_SHADER_TESS_CTRL);
480      if (unlikely(INTEL_DEBUG & DEBUG_TCS)) {
481         g.enable_debug(ralloc_asprintf(mem_ctx,
482                                        "%s tessellation control shader %s",
483                                        nir->info.label ? nir->info.label
484                                                        : "unnamed",
485                                        nir->info.name));
486      }
487
488      g.generate_code(v.cfg, 8);
489
490      assembly = g.get_assembly();
491   } else {
492      vec4_tcs_visitor v(compiler, log_data, key, prog_data,
493                         nir, mem_ctx, shader_time_index, &input_vue_map);
494      if (!v.run()) {
495         if (error_str)
496            *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
497         return NULL;
498      }
499
500      if (unlikely(INTEL_DEBUG & DEBUG_TCS))
501         v.dump_instructions();
502
503
504      assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
505                                            &prog_data->base, v.cfg);
506   }
507
508   return assembly;
509}
510
511
512} /* namespace brw */
513