brw_vec4_tcs.cpp revision 01e04c3f
1/* 2 * Copyright © 2013 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 */ 23 24/** 25 * \file brw_vec4_tcs.cpp 26 * 27 * Tessellaton control shader specific code derived from the vec4_visitor class. 28 */ 29 30#include "brw_nir.h" 31#include "brw_vec4_tcs.h" 32#include "brw_fs.h" 33#include "common/gen_debug.h" 34 35namespace brw { 36 37vec4_tcs_visitor::vec4_tcs_visitor(const struct brw_compiler *compiler, 38 void *log_data, 39 const struct brw_tcs_prog_key *key, 40 struct brw_tcs_prog_data *prog_data, 41 const nir_shader *nir, 42 void *mem_ctx, 43 int shader_time_index, 44 const struct brw_vue_map *input_vue_map) 45 : vec4_visitor(compiler, log_data, &key->tex, &prog_data->base, 46 nir, mem_ctx, false, shader_time_index), 47 input_vue_map(input_vue_map), key(key) 48{ 49} 50 51 52void 53vec4_tcs_visitor::setup_payload() 54{ 55 int reg = 0; 56 57 /* The payload always contains important data in r0, which contains 58 * the URB handles that are passed on to the URB write at the end 59 * of the thread. 60 */ 61 reg++; 62 63 /* r1.0 - r4.7 may contain the input control point URB handles, 64 * which we use to pull vertex data. 65 */ 66 reg += 4; 67 68 /* Push constants may start at r5.0 */ 69 reg = setup_uniforms(reg); 70 71 this->first_non_payload_grf = reg; 72} 73 74 75void 76vec4_tcs_visitor::emit_prolog() 77{ 78 invocation_id = src_reg(this, glsl_type::uint_type); 79 emit(TCS_OPCODE_GET_INSTANCE_ID, dst_reg(invocation_id)); 80 81 /* HS threads are dispatched with the dispatch mask set to 0xFF. 82 * If there are an odd number of output vertices, then the final 83 * HS instance dispatched will only have its bottom half doing real 84 * work, and so we need to disable the upper half: 85 */ 86 if (nir->info.tess.tcs_vertices_out % 2) { 87 emit(CMP(dst_null_d(), invocation_id, 88 brw_imm_ud(nir->info.tess.tcs_vertices_out), 89 BRW_CONDITIONAL_L)); 90 91 /* Matching ENDIF is in emit_thread_end() */ 92 emit(IF(BRW_PREDICATE_NORMAL)); 93 } 94} 95 96 97void 98vec4_tcs_visitor::emit_thread_end() 99{ 100 vec4_instruction *inst; 101 current_annotation = "thread end"; 102 103 if (nir->info.tess.tcs_vertices_out % 2) { 104 emit(BRW_OPCODE_ENDIF); 105 } 106 107 if (devinfo->gen == 7) { 108 struct brw_tcs_prog_data *tcs_prog_data = 109 (struct brw_tcs_prog_data *) prog_data; 110 111 current_annotation = "release input vertices"; 112 113 /* Synchronize all threads, so we know that no one is still 114 * using the input URB handles. 115 */ 116 if (tcs_prog_data->instances > 1) { 117 dst_reg header = dst_reg(this, glsl_type::uvec4_type); 118 emit(TCS_OPCODE_CREATE_BARRIER_HEADER, header); 119 emit(SHADER_OPCODE_BARRIER, dst_null_ud(), src_reg(header)); 120 } 121 122 /* Make thread 0 (invocations <1, 0>) release pairs of ICP handles. 123 * We want to compare the bottom half of invocation_id with 0, but 124 * use that truth value for the top half as well. Unfortunately, 125 * we don't have stride in the vec4 world, nor UV immediates in 126 * align16, so we need an opcode to get invocation_id<0,4,0>. 127 */ 128 set_condmod(BRW_CONDITIONAL_Z, 129 emit(TCS_OPCODE_SRC0_010_IS_ZERO, dst_null_d(), 130 invocation_id)); 131 emit(IF(BRW_PREDICATE_NORMAL)); 132 for (unsigned i = 0; i < key->input_vertices; i += 2) { 133 /* If we have an odd number of input vertices, the last will be 134 * unpaired. We don't want to use an interleaved URB write in 135 * that case. 136 */ 137 const bool is_unpaired = i == key->input_vertices - 1; 138 139 dst_reg header(this, glsl_type::uvec4_type); 140 emit(TCS_OPCODE_RELEASE_INPUT, header, brw_imm_ud(i), 141 brw_imm_ud(is_unpaired)); 142 } 143 emit(BRW_OPCODE_ENDIF); 144 } 145 146 if (unlikely(INTEL_DEBUG & DEBUG_SHADER_TIME)) 147 emit_shader_time_end(); 148 149 inst = emit(TCS_OPCODE_THREAD_END); 150 inst->base_mrf = 14; 151 inst->mlen = 2; 152} 153 154 155void 156vec4_tcs_visitor::emit_input_urb_read(const dst_reg &dst, 157 const src_reg &vertex_index, 158 unsigned base_offset, 159 unsigned first_component, 160 const src_reg &indirect_offset) 161{ 162 vec4_instruction *inst; 163 dst_reg temp(this, glsl_type::ivec4_type); 164 temp.type = dst.type; 165 166 /* Set up the message header to reference the proper parts of the URB */ 167 dst_reg header = dst_reg(this, glsl_type::uvec4_type); 168 inst = emit(TCS_OPCODE_SET_INPUT_URB_OFFSETS, header, vertex_index, 169 indirect_offset); 170 inst->force_writemask_all = true; 171 172 /* Read into a temporary, ignoring writemasking. */ 173 inst = emit(VEC4_OPCODE_URB_READ, temp, src_reg(header)); 174 inst->offset = base_offset; 175 inst->mlen = 1; 176 inst->base_mrf = -1; 177 178 /* Copy the temporary to the destination to deal with writemasking. 179 * 180 * Also attempt to deal with gl_PointSize being in the .w component. 181 */ 182 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) { 183 emit(MOV(dst, swizzle(src_reg(temp), BRW_SWIZZLE_WWWW))); 184 } else { 185 src_reg src = src_reg(temp); 186 src.swizzle = BRW_SWZ_COMP_INPUT(first_component); 187 emit(MOV(dst, src)); 188 } 189} 190 191void 192vec4_tcs_visitor::emit_output_urb_read(const dst_reg &dst, 193 unsigned base_offset, 194 unsigned first_component, 195 const src_reg &indirect_offset) 196{ 197 vec4_instruction *inst; 198 199 /* Set up the message header to reference the proper parts of the URB */ 200 dst_reg header = dst_reg(this, glsl_type::uvec4_type); 201 inst = emit(TCS_OPCODE_SET_OUTPUT_URB_OFFSETS, header, 202 brw_imm_ud(dst.writemask << first_component), indirect_offset); 203 inst->force_writemask_all = true; 204 205 vec4_instruction *read = emit(VEC4_OPCODE_URB_READ, dst, src_reg(header)); 206 read->offset = base_offset; 207 read->mlen = 1; 208 read->base_mrf = -1; 209 210 if (first_component) { 211 /* Read into a temporary and copy with a swizzle and writemask. */ 212 read->dst = retype(dst_reg(this, glsl_type::ivec4_type), dst.type); 213 emit(MOV(dst, swizzle(src_reg(read->dst), 214 BRW_SWZ_COMP_INPUT(first_component)))); 215 } 216} 217 218void 219vec4_tcs_visitor::emit_urb_write(const src_reg &value, 220 unsigned writemask, 221 unsigned base_offset, 222 const src_reg &indirect_offset) 223{ 224 if (writemask == 0) 225 return; 226 227 src_reg message(this, glsl_type::uvec4_type, 2); 228 vec4_instruction *inst; 229 230 inst = emit(TCS_OPCODE_SET_OUTPUT_URB_OFFSETS, dst_reg(message), 231 brw_imm_ud(writemask), indirect_offset); 232 inst->force_writemask_all = true; 233 inst = emit(MOV(byte_offset(dst_reg(retype(message, value.type)), REG_SIZE), 234 value)); 235 inst->force_writemask_all = true; 236 237 inst = emit(TCS_OPCODE_URB_WRITE, dst_null_f(), message); 238 inst->offset = base_offset; 239 inst->mlen = 2; 240 inst->base_mrf = -1; 241} 242 243void 244vec4_tcs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr) 245{ 246 switch (instr->intrinsic) { 247 case nir_intrinsic_load_invocation_id: 248 emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD), 249 invocation_id)); 250 break; 251 case nir_intrinsic_load_primitive_id: 252 emit(TCS_OPCODE_GET_PRIMITIVE_ID, 253 get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD)); 254 break; 255 case nir_intrinsic_load_patch_vertices_in: 256 emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D), 257 brw_imm_d(key->input_vertices))); 258 break; 259 case nir_intrinsic_load_per_vertex_input: { 260 src_reg indirect_offset = get_indirect_offset(instr); 261 unsigned imm_offset = instr->const_index[0]; 262 263 nir_const_value *vertex_const = nir_src_as_const_value(instr->src[0]); 264 src_reg vertex_index = 265 vertex_const ? src_reg(brw_imm_ud(vertex_const->u32[0])) 266 : get_nir_src(instr->src[0], BRW_REGISTER_TYPE_UD, 1); 267 268 unsigned first_component = nir_intrinsic_component(instr); 269 if (nir_dest_bit_size(instr->dest) == 64) { 270 /* We need to emit up to two 32-bit URB reads, then shuffle 271 * the result into a temporary, then move to the destination 272 * honoring the writemask 273 * 274 * We don't need to divide first_component by 2 because 275 * emit_input_urb_read takes a 32-bit type. 276 */ 277 dst_reg tmp = dst_reg(this, glsl_type::dvec4_type); 278 dst_reg tmp_d = retype(tmp, BRW_REGISTER_TYPE_D); 279 emit_input_urb_read(tmp_d, vertex_index, imm_offset, 280 first_component, indirect_offset); 281 if (instr->num_components > 2) { 282 emit_input_urb_read(byte_offset(tmp_d, REG_SIZE), vertex_index, 283 imm_offset + 1, 0, indirect_offset); 284 } 285 286 src_reg tmp_src = retype(src_reg(tmp_d), BRW_REGISTER_TYPE_DF); 287 dst_reg shuffled = dst_reg(this, glsl_type::dvec4_type); 288 shuffle_64bit_data(shuffled, tmp_src, false); 289 290 dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_DF); 291 dst.writemask = brw_writemask_for_size(instr->num_components); 292 emit(MOV(dst, src_reg(shuffled))); 293 } else { 294 dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D); 295 dst.writemask = brw_writemask_for_size(instr->num_components); 296 emit_input_urb_read(dst, vertex_index, imm_offset, 297 first_component, indirect_offset); 298 } 299 break; 300 } 301 case nir_intrinsic_load_input: 302 unreachable("nir_lower_io should use load_per_vertex_input intrinsics"); 303 break; 304 case nir_intrinsic_load_output: 305 case nir_intrinsic_load_per_vertex_output: { 306 src_reg indirect_offset = get_indirect_offset(instr); 307 unsigned imm_offset = instr->const_index[0]; 308 309 dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D); 310 dst.writemask = brw_writemask_for_size(instr->num_components); 311 312 emit_output_urb_read(dst, imm_offset, nir_intrinsic_component(instr), 313 indirect_offset); 314 break; 315 } 316 case nir_intrinsic_store_output: 317 case nir_intrinsic_store_per_vertex_output: { 318 src_reg value = get_nir_src(instr->src[0]); 319 unsigned mask = instr->const_index[1]; 320 unsigned swiz = BRW_SWIZZLE_XYZW; 321 322 src_reg indirect_offset = get_indirect_offset(instr); 323 unsigned imm_offset = instr->const_index[0]; 324 325 unsigned first_component = nir_intrinsic_component(instr); 326 if (first_component) { 327 if (nir_src_bit_size(instr->src[0]) == 64) 328 first_component /= 2; 329 assert(swiz == BRW_SWIZZLE_XYZW); 330 swiz = BRW_SWZ_COMP_OUTPUT(first_component); 331 mask = mask << first_component; 332 } 333 334 if (nir_src_bit_size(instr->src[0]) == 64) { 335 /* For 64-bit data we need to shuffle the data before we write and 336 * emit two messages. Also, since each channel is twice as large we 337 * need to fix the writemask in each 32-bit message to account for it. 338 */ 339 value = swizzle(retype(value, BRW_REGISTER_TYPE_DF), swiz); 340 dst_reg shuffled = dst_reg(this, glsl_type::dvec4_type); 341 shuffle_64bit_data(shuffled, value, true); 342 src_reg shuffled_float = src_reg(retype(shuffled, BRW_REGISTER_TYPE_F)); 343 344 for (int n = 0; n < 2; n++) { 345 unsigned fixed_mask = 0; 346 if (mask & WRITEMASK_X) 347 fixed_mask |= WRITEMASK_XY; 348 if (mask & WRITEMASK_Y) 349 fixed_mask |= WRITEMASK_ZW; 350 emit_urb_write(shuffled_float, fixed_mask, 351 imm_offset, indirect_offset); 352 353 shuffled_float = byte_offset(shuffled_float, REG_SIZE); 354 mask >>= 2; 355 imm_offset++; 356 } 357 } else { 358 emit_urb_write(swizzle(value, swiz), mask, 359 imm_offset, indirect_offset); 360 } 361 break; 362 } 363 364 case nir_intrinsic_barrier: { 365 dst_reg header = dst_reg(this, glsl_type::uvec4_type); 366 emit(TCS_OPCODE_CREATE_BARRIER_HEADER, header); 367 emit(SHADER_OPCODE_BARRIER, dst_null_ud(), src_reg(header)); 368 break; 369 } 370 371 default: 372 vec4_visitor::nir_emit_intrinsic(instr); 373 } 374} 375 376 377extern "C" const unsigned * 378brw_compile_tcs(const struct brw_compiler *compiler, 379 void *log_data, 380 void *mem_ctx, 381 const struct brw_tcs_prog_key *key, 382 struct brw_tcs_prog_data *prog_data, 383 const nir_shader *src_shader, 384 int shader_time_index, 385 char **error_str) 386{ 387 const struct gen_device_info *devinfo = compiler->devinfo; 388 struct brw_vue_prog_data *vue_prog_data = &prog_data->base; 389 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_TESS_CTRL]; 390 const unsigned *assembly; 391 392 nir_shader *nir = nir_shader_clone(mem_ctx, src_shader); 393 nir->info.outputs_written = key->outputs_written; 394 nir->info.patch_outputs_written = key->patch_outputs_written; 395 396 struct brw_vue_map input_vue_map; 397 brw_compute_vue_map(devinfo, &input_vue_map, nir->info.inputs_read, 398 nir->info.separate_shader); 399 brw_compute_tess_vue_map(&vue_prog_data->vue_map, 400 nir->info.outputs_written, 401 nir->info.patch_outputs_written); 402 403 nir = brw_nir_apply_sampler_key(nir, compiler, &key->tex, is_scalar); 404 brw_nir_lower_vue_inputs(nir, &input_vue_map); 405 brw_nir_lower_tcs_outputs(nir, &vue_prog_data->vue_map, 406 key->tes_primitive_mode); 407 if (key->quads_workaround) 408 brw_nir_apply_tcs_quads_workaround(nir); 409 410 nir = brw_postprocess_nir(nir, compiler, is_scalar); 411 412 if (is_scalar) 413 prog_data->instances = DIV_ROUND_UP(nir->info.tess.tcs_vertices_out, 8); 414 else 415 prog_data->instances = DIV_ROUND_UP(nir->info.tess.tcs_vertices_out, 2); 416 417 /* Compute URB entry size. The maximum allowed URB entry size is 32k. 418 * That divides up as follows: 419 * 420 * 32 bytes for the patch header (tessellation factors) 421 * 480 bytes for per-patch varyings (a varying component is 4 bytes and 422 * gl_MaxTessPatchComponents = 120) 423 * 16384 bytes for per-vertex varyings (a varying component is 4 bytes, 424 * gl_MaxPatchVertices = 32 and 425 * gl_MaxTessControlOutputComponents = 128) 426 * 427 * 15808 bytes left for varying packing overhead 428 */ 429 const int num_per_patch_slots = vue_prog_data->vue_map.num_per_patch_slots; 430 const int num_per_vertex_slots = vue_prog_data->vue_map.num_per_vertex_slots; 431 unsigned output_size_bytes = 0; 432 /* Note that the patch header is counted in num_per_patch_slots. */ 433 output_size_bytes += num_per_patch_slots * 16; 434 output_size_bytes += nir->info.tess.tcs_vertices_out * 435 num_per_vertex_slots * 16; 436 437 assert(output_size_bytes >= 1); 438 if (output_size_bytes > GEN7_MAX_HS_URB_ENTRY_SIZE_BYTES) 439 return NULL; 440 441 /* URB entry sizes are stored as a multiple of 64 bytes. */ 442 vue_prog_data->urb_entry_size = ALIGN(output_size_bytes, 64) / 64; 443 444 /* On Cannonlake software shall not program an allocation size that 445 * specifies a size that is a multiple of 3 64B (512-bit) cachelines. 446 */ 447 if (devinfo->gen == 10 && 448 vue_prog_data->urb_entry_size % 3 == 0) 449 vue_prog_data->urb_entry_size++; 450 451 /* HS does not use the usual payload pushing from URB to GRFs, 452 * because we don't have enough registers for a full-size payload, and 453 * the hardware is broken on Haswell anyway. 454 */ 455 vue_prog_data->urb_read_length = 0; 456 457 if (unlikely(INTEL_DEBUG & DEBUG_TCS)) { 458 fprintf(stderr, "TCS Input "); 459 brw_print_vue_map(stderr, &input_vue_map); 460 fprintf(stderr, "TCS Output "); 461 brw_print_vue_map(stderr, &vue_prog_data->vue_map); 462 } 463 464 if (is_scalar) { 465 fs_visitor v(compiler, log_data, mem_ctx, (void *) key, 466 &prog_data->base.base, NULL, nir, 8, 467 shader_time_index, &input_vue_map); 468 if (!v.run_tcs_single_patch()) { 469 if (error_str) 470 *error_str = ralloc_strdup(mem_ctx, v.fail_msg); 471 return NULL; 472 } 473 474 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs; 475 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8; 476 477 fs_generator g(compiler, log_data, mem_ctx, 478 &prog_data->base.base, v.promoted_constants, false, 479 MESA_SHADER_TESS_CTRL); 480 if (unlikely(INTEL_DEBUG & DEBUG_TCS)) { 481 g.enable_debug(ralloc_asprintf(mem_ctx, 482 "%s tessellation control shader %s", 483 nir->info.label ? nir->info.label 484 : "unnamed", 485 nir->info.name)); 486 } 487 488 g.generate_code(v.cfg, 8); 489 490 assembly = g.get_assembly(); 491 } else { 492 vec4_tcs_visitor v(compiler, log_data, key, prog_data, 493 nir, mem_ctx, shader_time_index, &input_vue_map); 494 if (!v.run()) { 495 if (error_str) 496 *error_str = ralloc_strdup(mem_ctx, v.fail_msg); 497 return NULL; 498 } 499 500 if (unlikely(INTEL_DEBUG & DEBUG_TCS)) 501 v.dump_instructions(); 502 503 504 assembly = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir, 505 &prog_data->base, v.cfg); 506 } 507 508 return assembly; 509} 510 511 512} /* namespace brw */ 513