anv_allocator.c revision 7ec681f3
1/*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include <stdlib.h>
25#include <unistd.h>
26#include <limits.h>
27#include <assert.h>
28#include <sys/mman.h>
29
30#include "anv_private.h"
31
32#include "common/intel_aux_map.h"
33#include "util/anon_file.h"
34
35#ifdef HAVE_VALGRIND
36#define VG_NOACCESS_READ(__ptr) ({                       \
37   VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
38   __typeof(*(__ptr)) __val = *(__ptr);                  \
39   VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
40   __val;                                                \
41})
42#define VG_NOACCESS_WRITE(__ptr, __val) ({                  \
43   VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr)));  \
44   *(__ptr) = (__val);                                      \
45   VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));   \
46})
47#else
48#define VG_NOACCESS_READ(__ptr) (*(__ptr))
49#define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
50#endif
51
52#ifndef MAP_POPULATE
53#define MAP_POPULATE 0
54#endif
55
56/* Design goals:
57 *
58 *  - Lock free (except when resizing underlying bos)
59 *
60 *  - Constant time allocation with typically only one atomic
61 *
62 *  - Multiple allocation sizes without fragmentation
63 *
64 *  - Can grow while keeping addresses and offset of contents stable
65 *
66 *  - All allocations within one bo so we can point one of the
67 *    STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo.  Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo.  Growing the range may run out of space in the bo which we then need to
73 * grow.  Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid.  GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary.  We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl.  Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time.  While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map.  It sholdn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators.  The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool.  It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool.  This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API.  We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage).  In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state.  Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up.  These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe.  The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103/* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105#define EMPTY UINT32_MAX
106
107/* On FreeBSD PAGE_SIZE is already defined in
108 * /usr/include/machine/param.h that is indirectly
109 * included here.
110 */
111#ifndef PAGE_SIZE
112#define PAGE_SIZE 4096
113#endif
114
115struct anv_mmap_cleanup {
116   void *map;
117   size_t size;
118};
119
120static inline uint32_t
121ilog2_round_up(uint32_t value)
122{
123   assert(value != 0);
124   return 32 - __builtin_clz(value - 1);
125}
126
127static inline uint32_t
128round_to_power_of_two(uint32_t value)
129{
130   return 1 << ilog2_round_up(value);
131}
132
133struct anv_state_table_cleanup {
134   void *map;
135   size_t size;
136};
137
138#define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
139#define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
140
141static VkResult
142anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
143
144VkResult
145anv_state_table_init(struct anv_state_table *table,
146                    struct anv_device *device,
147                    uint32_t initial_entries)
148{
149   VkResult result;
150
151   table->device = device;
152
153   /* Just make it 2GB up-front.  The Linux kernel won't actually back it
154    * with pages until we either map and fault on one of them or we use
155    * userptr and send a chunk of it off to the GPU.
156    */
157   table->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "state table");
158   if (table->fd == -1)
159      return vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
160
161   if (!u_vector_init(&table->cleanups, 8,
162                      sizeof(struct anv_state_table_cleanup))) {
163      result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
164      goto fail_fd;
165   }
166
167   table->state.next = 0;
168   table->state.end = 0;
169   table->size = 0;
170
171   uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
172   result = anv_state_table_expand_range(table, initial_size);
173   if (result != VK_SUCCESS)
174      goto fail_cleanups;
175
176   return VK_SUCCESS;
177
178 fail_cleanups:
179   u_vector_finish(&table->cleanups);
180 fail_fd:
181   close(table->fd);
182
183   return result;
184}
185
186static VkResult
187anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
188{
189   void *map;
190   struct anv_state_table_cleanup *cleanup;
191
192   /* Assert that we only ever grow the pool */
193   assert(size >= table->state.end);
194
195   /* Make sure that we don't go outside the bounds of the memfd */
196   if (size > BLOCK_POOL_MEMFD_SIZE)
197      return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY);
198
199   cleanup = u_vector_add(&table->cleanups);
200   if (!cleanup)
201      return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY);
202
203   *cleanup = ANV_STATE_TABLE_CLEANUP_INIT;
204
205   /* Just leak the old map until we destroy the pool.  We can't munmap it
206    * without races or imposing locking on the block allocate fast path. On
207    * the whole the leaked maps adds up to less than the size of the
208    * current map.  MAP_POPULATE seems like the right thing to do, but we
209    * should try to get some numbers.
210    */
211   map = mmap(NULL, size, PROT_READ | PROT_WRITE,
212              MAP_SHARED | MAP_POPULATE, table->fd, 0);
213   if (map == MAP_FAILED) {
214      return vk_errorf(table->device, VK_ERROR_OUT_OF_HOST_MEMORY,
215                       "mmap failed: %m");
216   }
217
218   cleanup->map = map;
219   cleanup->size = size;
220
221   table->map = map;
222   table->size = size;
223
224   return VK_SUCCESS;
225}
226
227static VkResult
228anv_state_table_grow(struct anv_state_table *table)
229{
230   VkResult result = VK_SUCCESS;
231
232   uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE,
233                             PAGE_SIZE);
234   uint32_t old_size = table->size;
235
236   /* The block pool is always initialized to a nonzero size and this function
237    * is always called after initialization.
238    */
239   assert(old_size > 0);
240
241   uint32_t required = MAX2(used, old_size);
242   if (used * 2 <= required) {
243      /* If we're in this case then this isn't the firsta allocation and we
244       * already have enough space on both sides to hold double what we
245       * have allocated.  There's nothing for us to do.
246       */
247      goto done;
248   }
249
250   uint32_t size = old_size * 2;
251   while (size < required)
252      size *= 2;
253
254   assert(size > table->size);
255
256   result = anv_state_table_expand_range(table, size);
257
258 done:
259   return result;
260}
261
262void
263anv_state_table_finish(struct anv_state_table *table)
264{
265   struct anv_state_table_cleanup *cleanup;
266
267   u_vector_foreach(cleanup, &table->cleanups) {
268      if (cleanup->map)
269         munmap(cleanup->map, cleanup->size);
270   }
271
272   u_vector_finish(&table->cleanups);
273
274   close(table->fd);
275}
276
277VkResult
278anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
279                    uint32_t count)
280{
281   struct anv_block_state state, old, new;
282   VkResult result;
283
284   assert(idx);
285
286   while(1) {
287      state.u64 = __sync_fetch_and_add(&table->state.u64, count);
288      if (state.next + count <= state.end) {
289         assert(table->map);
290         struct anv_free_entry *entry = &table->map[state.next];
291         for (int i = 0; i < count; i++) {
292            entry[i].state.idx = state.next + i;
293         }
294         *idx = state.next;
295         return VK_SUCCESS;
296      } else if (state.next <= state.end) {
297         /* We allocated the first block outside the pool so we have to grow
298          * the pool.  pool_state->next acts a mutex: threads who try to
299          * allocate now will get block indexes above the current limit and
300          * hit futex_wait below.
301          */
302         new.next = state.next + count;
303         do {
304            result = anv_state_table_grow(table);
305            if (result != VK_SUCCESS)
306               return result;
307            new.end = table->size / ANV_STATE_ENTRY_SIZE;
308         } while (new.end < new.next);
309
310         old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
311         if (old.next != state.next)
312            futex_wake(&table->state.end, INT_MAX);
313      } else {
314         futex_wait(&table->state.end, state.end, NULL);
315         continue;
316      }
317   }
318}
319
320void
321anv_free_list_push(union anv_free_list *list,
322                   struct anv_state_table *table,
323                   uint32_t first, uint32_t count)
324{
325   union anv_free_list current, old, new;
326   uint32_t last = first;
327
328   for (uint32_t i = 1; i < count; i++, last++)
329      table->map[last].next = last + 1;
330
331   old.u64 = list->u64;
332   do {
333      current = old;
334      table->map[last].next = current.offset;
335      new.offset = first;
336      new.count = current.count + 1;
337      old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
338   } while (old.u64 != current.u64);
339}
340
341struct anv_state *
342anv_free_list_pop(union anv_free_list *list,
343                  struct anv_state_table *table)
344{
345   union anv_free_list current, new, old;
346
347   current.u64 = list->u64;
348   while (current.offset != EMPTY) {
349      __sync_synchronize();
350      new.offset = table->map[current.offset].next;
351      new.count = current.count + 1;
352      old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
353      if (old.u64 == current.u64) {
354         struct anv_free_entry *entry = &table->map[current.offset];
355         return &entry->state;
356      }
357      current = old;
358   }
359
360   return NULL;
361}
362
363static VkResult
364anv_block_pool_expand_range(struct anv_block_pool *pool,
365                            uint32_t center_bo_offset, uint32_t size);
366
367VkResult
368anv_block_pool_init(struct anv_block_pool *pool,
369                    struct anv_device *device,
370                    const char *name,
371                    uint64_t start_address,
372                    uint32_t initial_size)
373{
374   VkResult result;
375
376   pool->name = name;
377   pool->device = device;
378   pool->use_softpin = device->physical->use_softpin;
379   pool->nbos = 0;
380   pool->size = 0;
381   pool->center_bo_offset = 0;
382   pool->start_address = intel_canonical_address(start_address);
383   pool->map = NULL;
384
385   if (pool->use_softpin) {
386      pool->bo = NULL;
387      pool->fd = -1;
388   } else {
389      /* Just make it 2GB up-front.  The Linux kernel won't actually back it
390       * with pages until we either map and fault on one of them or we use
391       * userptr and send a chunk of it off to the GPU.
392       */
393      pool->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "block pool");
394      if (pool->fd == -1)
395         return vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
396
397      pool->wrapper_bo = (struct anv_bo) {
398         .refcount = 1,
399         .offset = -1,
400         .is_wrapper = true,
401      };
402      pool->bo = &pool->wrapper_bo;
403   }
404
405   if (!u_vector_init(&pool->mmap_cleanups, 8,
406                      sizeof(struct anv_mmap_cleanup))) {
407      result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
408      goto fail_fd;
409   }
410
411   pool->state.next = 0;
412   pool->state.end = 0;
413   pool->back_state.next = 0;
414   pool->back_state.end = 0;
415
416   result = anv_block_pool_expand_range(pool, 0, initial_size);
417   if (result != VK_SUCCESS)
418      goto fail_mmap_cleanups;
419
420   /* Make the entire pool available in the front of the pool.  If back
421    * allocation needs to use this space, the "ends" will be re-arranged.
422    */
423   pool->state.end = pool->size;
424
425   return VK_SUCCESS;
426
427 fail_mmap_cleanups:
428   u_vector_finish(&pool->mmap_cleanups);
429 fail_fd:
430   if (pool->fd >= 0)
431      close(pool->fd);
432
433   return result;
434}
435
436void
437anv_block_pool_finish(struct anv_block_pool *pool)
438{
439   anv_block_pool_foreach_bo(bo, pool) {
440      if (bo->map)
441         anv_gem_munmap(pool->device, bo->map, bo->size);
442      anv_gem_close(pool->device, bo->gem_handle);
443   }
444
445   struct anv_mmap_cleanup *cleanup;
446   u_vector_foreach(cleanup, &pool->mmap_cleanups)
447      munmap(cleanup->map, cleanup->size);
448   u_vector_finish(&pool->mmap_cleanups);
449
450   if (pool->fd >= 0)
451      close(pool->fd);
452}
453
454static VkResult
455anv_block_pool_expand_range(struct anv_block_pool *pool,
456                            uint32_t center_bo_offset, uint32_t size)
457{
458   /* Assert that we only ever grow the pool */
459   assert(center_bo_offset >= pool->back_state.end);
460   assert(size - center_bo_offset >= pool->state.end);
461
462   /* Assert that we don't go outside the bounds of the memfd */
463   assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
464   assert(pool->use_softpin ||
465          size - center_bo_offset <=
466          BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
467
468   /* For state pool BOs we have to be a bit careful about where we place them
469    * in the GTT.  There are two documented workarounds for state base address
470    * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
471    * which state that those two base addresses do not support 48-bit
472    * addresses and need to be placed in the bottom 32-bit range.
473    * Unfortunately, this is not quite accurate.
474    *
475    * The real problem is that we always set the size of our state pools in
476    * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
477    * likely significantly smaller.  We do this because we do not no at the
478    * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
479    * the pool during command buffer building so we don't actually have a
480    * valid final size.  If the address + size, as seen by STATE_BASE_ADDRESS
481    * overflows 48 bits, the GPU appears to treat all accesses to the buffer
482    * as being out of bounds and returns zero.  For dynamic state, this
483    * usually just leads to rendering corruptions, but shaders that are all
484    * zero hang the GPU immediately.
485    *
486    * The easiest solution to do is exactly what the bogus workarounds say to
487    * do: restrict these buffers to 32-bit addresses.  We could also pin the
488    * BO to some particular location of our choosing, but that's significantly
489    * more work than just not setting a flag.  So, we explicitly DO NOT set
490    * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
491    * hard work for us.  When using softpin, we're in control and the fixed
492    * addresses we choose are fine for base addresses.
493    */
494   enum anv_bo_alloc_flags bo_alloc_flags = ANV_BO_ALLOC_CAPTURE;
495   if (!pool->use_softpin)
496      bo_alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS;
497
498   if (pool->use_softpin) {
499      uint32_t new_bo_size = size - pool->size;
500      struct anv_bo *new_bo;
501      assert(center_bo_offset == 0);
502      VkResult result = anv_device_alloc_bo(pool->device,
503                                            pool->name,
504                                            new_bo_size,
505                                            bo_alloc_flags |
506                                            ANV_BO_ALLOC_LOCAL_MEM |
507                                            ANV_BO_ALLOC_FIXED_ADDRESS |
508                                            ANV_BO_ALLOC_MAPPED |
509                                            ANV_BO_ALLOC_SNOOPED,
510                                            pool->start_address + pool->size,
511                                            &new_bo);
512      if (result != VK_SUCCESS)
513         return result;
514
515      pool->bos[pool->nbos++] = new_bo;
516
517      /* This pointer will always point to the first BO in the list */
518      pool->bo = pool->bos[0];
519   } else {
520      /* Just leak the old map until we destroy the pool.  We can't munmap it
521       * without races or imposing locking on the block allocate fast path. On
522       * the whole the leaked maps adds up to less than the size of the
523       * current map.  MAP_POPULATE seems like the right thing to do, but we
524       * should try to get some numbers.
525       */
526      void *map = mmap(NULL, size, PROT_READ | PROT_WRITE,
527                       MAP_SHARED | MAP_POPULATE, pool->fd,
528                       BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
529      if (map == MAP_FAILED)
530         return vk_errorf(pool->device, VK_ERROR_MEMORY_MAP_FAILED,
531                          "mmap failed: %m");
532
533      struct anv_bo *new_bo;
534      VkResult result = anv_device_import_bo_from_host_ptr(pool->device,
535                                                           map, size,
536                                                           bo_alloc_flags,
537                                                           0 /* client_address */,
538                                                           &new_bo);
539      if (result != VK_SUCCESS) {
540         munmap(map, size);
541         return result;
542      }
543
544      struct anv_mmap_cleanup *cleanup = u_vector_add(&pool->mmap_cleanups);
545      if (!cleanup) {
546         munmap(map, size);
547         anv_device_release_bo(pool->device, new_bo);
548         return vk_error(pool->device, VK_ERROR_OUT_OF_HOST_MEMORY);
549      }
550      cleanup->map = map;
551      cleanup->size = size;
552
553      /* Now that we mapped the new memory, we can write the new
554       * center_bo_offset back into pool and update pool->map. */
555      pool->center_bo_offset = center_bo_offset;
556      pool->map = map + center_bo_offset;
557
558      pool->bos[pool->nbos++] = new_bo;
559      pool->wrapper_bo.map = new_bo;
560   }
561
562   assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS);
563   pool->size = size;
564
565   return VK_SUCCESS;
566}
567
568/** Returns current memory map of the block pool.
569 *
570 * The returned pointer points to the map for the memory at the specified
571 * offset. The offset parameter is relative to the "center" of the block pool
572 * rather than the start of the block pool BO map.
573 */
574void*
575anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t size)
576{
577   if (pool->use_softpin) {
578      struct anv_bo *bo = NULL;
579      int32_t bo_offset = 0;
580      anv_block_pool_foreach_bo(iter_bo, pool) {
581         if (offset < bo_offset + iter_bo->size) {
582            bo = iter_bo;
583            break;
584         }
585         bo_offset += iter_bo->size;
586      }
587      assert(bo != NULL);
588      assert(offset >= bo_offset);
589      assert((offset - bo_offset) + size <= bo->size);
590
591      return bo->map + (offset - bo_offset);
592   } else {
593      return pool->map + offset;
594   }
595}
596
597/** Grows and re-centers the block pool.
598 *
599 * We grow the block pool in one or both directions in such a way that the
600 * following conditions are met:
601 *
602 *  1) The size of the entire pool is always a power of two.
603 *
604 *  2) The pool only grows on both ends.  Neither end can get
605 *     shortened.
606 *
607 *  3) At the end of the allocation, we have about twice as much space
608 *     allocated for each end as we have used.  This way the pool doesn't
609 *     grow too far in one direction or the other.
610 *
611 *  4) If the _alloc_back() has never been called, then the back portion of
612 *     the pool retains a size of zero.  (This makes it easier for users of
613 *     the block pool that only want a one-sided pool.)
614 *
615 *  5) We have enough space allocated for at least one more block in
616 *     whichever side `state` points to.
617 *
618 *  6) The center of the pool is always aligned to both the block_size of
619 *     the pool and a 4K CPU page.
620 */
621static uint32_t
622anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state,
623                    uint32_t contiguous_size)
624{
625   VkResult result = VK_SUCCESS;
626
627   pthread_mutex_lock(&pool->device->mutex);
628
629   assert(state == &pool->state || state == &pool->back_state);
630
631   /* Gather a little usage information on the pool.  Since we may have
632    * threadsd waiting in queue to get some storage while we resize, it's
633    * actually possible that total_used will be larger than old_size.  In
634    * particular, block_pool_alloc() increments state->next prior to
635    * calling block_pool_grow, so this ensures that we get enough space for
636    * which ever side tries to grow the pool.
637    *
638    * We align to a page size because it makes it easier to do our
639    * calculations later in such a way that we state page-aigned.
640    */
641   uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
642   uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
643   uint32_t total_used = front_used + back_used;
644
645   assert(state == &pool->state || back_used > 0);
646
647   uint32_t old_size = pool->size;
648
649   /* The block pool is always initialized to a nonzero size and this function
650    * is always called after initialization.
651    */
652   assert(old_size > 0);
653
654   const uint32_t old_back = pool->center_bo_offset;
655   const uint32_t old_front = old_size - pool->center_bo_offset;
656
657   /* The back_used and front_used may actually be smaller than the actual
658    * requirement because they are based on the next pointers which are
659    * updated prior to calling this function.
660    */
661   uint32_t back_required = MAX2(back_used, old_back);
662   uint32_t front_required = MAX2(front_used, old_front);
663
664   if (pool->use_softpin) {
665      /* With softpin, the pool is made up of a bunch of buffers with separate
666       * maps.  Make sure we have enough contiguous space that we can get a
667       * properly contiguous map for the next chunk.
668       */
669      assert(old_back == 0);
670      front_required = MAX2(front_required, old_front + contiguous_size);
671   }
672
673   if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
674      /* If we're in this case then this isn't the firsta allocation and we
675       * already have enough space on both sides to hold double what we
676       * have allocated.  There's nothing for us to do.
677       */
678      goto done;
679   }
680
681   uint32_t size = old_size * 2;
682   while (size < back_required + front_required)
683      size *= 2;
684
685   assert(size > pool->size);
686
687   /* We compute a new center_bo_offset such that, when we double the size
688    * of the pool, we maintain the ratio of how much is used by each side.
689    * This way things should remain more-or-less balanced.
690    */
691   uint32_t center_bo_offset;
692   if (back_used == 0) {
693      /* If we're in this case then we have never called alloc_back().  In
694       * this case, we want keep the offset at 0 to make things as simple
695       * as possible for users that don't care about back allocations.
696       */
697      center_bo_offset = 0;
698   } else {
699      /* Try to "center" the allocation based on how much is currently in
700       * use on each side of the center line.
701       */
702      center_bo_offset = ((uint64_t)size * back_used) / total_used;
703
704      /* Align down to a multiple of the page size */
705      center_bo_offset &= ~(PAGE_SIZE - 1);
706
707      assert(center_bo_offset >= back_used);
708
709      /* Make sure we don't shrink the back end of the pool */
710      if (center_bo_offset < back_required)
711         center_bo_offset = back_required;
712
713      /* Make sure that we don't shrink the front end of the pool */
714      if (size - center_bo_offset < front_required)
715         center_bo_offset = size - front_required;
716   }
717
718   assert(center_bo_offset % PAGE_SIZE == 0);
719
720   result = anv_block_pool_expand_range(pool, center_bo_offset, size);
721
722done:
723   pthread_mutex_unlock(&pool->device->mutex);
724
725   if (result == VK_SUCCESS) {
726      /* Return the appropriate new size.  This function never actually
727       * updates state->next.  Instead, we let the caller do that because it
728       * needs to do so in order to maintain its concurrency model.
729       */
730      if (state == &pool->state) {
731         return pool->size - pool->center_bo_offset;
732      } else {
733         assert(pool->center_bo_offset > 0);
734         return pool->center_bo_offset;
735      }
736   } else {
737      return 0;
738   }
739}
740
741static uint32_t
742anv_block_pool_alloc_new(struct anv_block_pool *pool,
743                         struct anv_block_state *pool_state,
744                         uint32_t block_size, uint32_t *padding)
745{
746   struct anv_block_state state, old, new;
747
748   /* Most allocations won't generate any padding */
749   if (padding)
750      *padding = 0;
751
752   while (1) {
753      state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
754      if (state.next + block_size <= state.end) {
755         return state.next;
756      } else if (state.next <= state.end) {
757         if (pool->use_softpin && state.next < state.end) {
758            /* We need to grow the block pool, but still have some leftover
759             * space that can't be used by that particular allocation. So we
760             * add that as a "padding", and return it.
761             */
762            uint32_t leftover = state.end - state.next;
763
764            /* If there is some leftover space in the pool, the caller must
765             * deal with it.
766             */
767            assert(leftover == 0 || padding);
768            if (padding)
769               *padding = leftover;
770            state.next += leftover;
771         }
772
773         /* We allocated the first block outside the pool so we have to grow
774          * the pool.  pool_state->next acts a mutex: threads who try to
775          * allocate now will get block indexes above the current limit and
776          * hit futex_wait below.
777          */
778         new.next = state.next + block_size;
779         do {
780            new.end = anv_block_pool_grow(pool, pool_state, block_size);
781         } while (new.end < new.next);
782
783         old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
784         if (old.next != state.next)
785            futex_wake(&pool_state->end, INT_MAX);
786         return state.next;
787      } else {
788         futex_wait(&pool_state->end, state.end, NULL);
789         continue;
790      }
791   }
792}
793
794int32_t
795anv_block_pool_alloc(struct anv_block_pool *pool,
796                     uint32_t block_size, uint32_t *padding)
797{
798   uint32_t offset;
799
800   offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding);
801
802   return offset;
803}
804
805/* Allocates a block out of the back of the block pool.
806 *
807 * This will allocated a block earlier than the "start" of the block pool.
808 * The offsets returned from this function will be negative but will still
809 * be correct relative to the block pool's map pointer.
810 *
811 * If you ever use anv_block_pool_alloc_back, then you will have to do
812 * gymnastics with the block pool's BO when doing relocations.
813 */
814int32_t
815anv_block_pool_alloc_back(struct anv_block_pool *pool,
816                          uint32_t block_size)
817{
818   int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
819                                             block_size, NULL);
820
821   /* The offset we get out of anv_block_pool_alloc_new() is actually the
822    * number of bytes downwards from the middle to the end of the block.
823    * We need to turn it into a (negative) offset from the middle to the
824    * start of the block.
825    */
826   assert(offset >= 0);
827   return -(offset + block_size);
828}
829
830VkResult
831anv_state_pool_init(struct anv_state_pool *pool,
832                    struct anv_device *device,
833                    const char *name,
834                    uint64_t base_address,
835                    int32_t start_offset,
836                    uint32_t block_size)
837{
838   /* We don't want to ever see signed overflow */
839   assert(start_offset < INT32_MAX - (int32_t)BLOCK_POOL_MEMFD_SIZE);
840
841   VkResult result = anv_block_pool_init(&pool->block_pool, device, name,
842                                         base_address + start_offset,
843                                         block_size * 16);
844   if (result != VK_SUCCESS)
845      return result;
846
847   pool->start_offset = start_offset;
848
849   result = anv_state_table_init(&pool->table, device, 64);
850   if (result != VK_SUCCESS) {
851      anv_block_pool_finish(&pool->block_pool);
852      return result;
853   }
854
855   assert(util_is_power_of_two_or_zero(block_size));
856   pool->block_size = block_size;
857   pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
858   for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
859      pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
860      pool->buckets[i].block.next = 0;
861      pool->buckets[i].block.end = 0;
862   }
863   VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
864
865   return VK_SUCCESS;
866}
867
868void
869anv_state_pool_finish(struct anv_state_pool *pool)
870{
871   VG(VALGRIND_DESTROY_MEMPOOL(pool));
872   anv_state_table_finish(&pool->table);
873   anv_block_pool_finish(&pool->block_pool);
874}
875
876static uint32_t
877anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
878                                    struct anv_block_pool *block_pool,
879                                    uint32_t state_size,
880                                    uint32_t block_size,
881                                    uint32_t *padding)
882{
883   struct anv_block_state block, old, new;
884   uint32_t offset;
885
886   /* We don't always use anv_block_pool_alloc(), which would set *padding to
887    * zero for us. So if we have a pointer to padding, we must zero it out
888    * ourselves here, to make sure we always return some sensible value.
889    */
890   if (padding)
891      *padding = 0;
892
893   /* If our state is large, we don't need any sub-allocation from a block.
894    * Instead, we just grab whole (potentially large) blocks.
895    */
896   if (state_size >= block_size)
897      return anv_block_pool_alloc(block_pool, state_size, padding);
898
899 restart:
900   block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
901
902   if (block.next < block.end) {
903      return block.next;
904   } else if (block.next == block.end) {
905      offset = anv_block_pool_alloc(block_pool, block_size, padding);
906      new.next = offset + state_size;
907      new.end = offset + block_size;
908      old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
909      if (old.next != block.next)
910         futex_wake(&pool->block.end, INT_MAX);
911      return offset;
912   } else {
913      futex_wait(&pool->block.end, block.end, NULL);
914      goto restart;
915   }
916}
917
918static uint32_t
919anv_state_pool_get_bucket(uint32_t size)
920{
921   unsigned size_log2 = ilog2_round_up(size);
922   assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
923   if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
924      size_log2 = ANV_MIN_STATE_SIZE_LOG2;
925   return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
926}
927
928static uint32_t
929anv_state_pool_get_bucket_size(uint32_t bucket)
930{
931   uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
932   return 1 << size_log2;
933}
934
935/** Helper to push a chunk into the state table.
936 *
937 * It creates 'count' entries into the state table and update their sizes,
938 * offsets and maps, also pushing them as "free" states.
939 */
940static void
941anv_state_pool_return_blocks(struct anv_state_pool *pool,
942                             uint32_t chunk_offset, uint32_t count,
943                             uint32_t block_size)
944{
945   /* Disallow returning 0 chunks */
946   assert(count != 0);
947
948   /* Make sure we always return chunks aligned to the block_size */
949   assert(chunk_offset % block_size == 0);
950
951   uint32_t st_idx;
952   UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
953   assert(result == VK_SUCCESS);
954   for (int i = 0; i < count; i++) {
955      /* update states that were added back to the state table */
956      struct anv_state *state_i = anv_state_table_get(&pool->table,
957                                                      st_idx + i);
958      state_i->alloc_size = block_size;
959      state_i->offset = pool->start_offset + chunk_offset + block_size * i;
960      state_i->map = anv_block_pool_map(&pool->block_pool,
961                                        state_i->offset,
962                                        state_i->alloc_size);
963   }
964
965   uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
966   anv_free_list_push(&pool->buckets[block_bucket].free_list,
967                      &pool->table, st_idx, count);
968}
969
970/** Returns a chunk of memory back to the state pool.
971 *
972 * Do a two-level split. If chunk_size is bigger than divisor
973 * (pool->block_size), we return as many divisor sized blocks as we can, from
974 * the end of the chunk.
975 *
976 * The remaining is then split into smaller blocks (starting at small_size if
977 * it is non-zero), with larger blocks always being taken from the end of the
978 * chunk.
979 */
980static void
981anv_state_pool_return_chunk(struct anv_state_pool *pool,
982                            uint32_t chunk_offset, uint32_t chunk_size,
983                            uint32_t small_size)
984{
985   uint32_t divisor = pool->block_size;
986   uint32_t nblocks = chunk_size / divisor;
987   uint32_t rest = chunk_size - nblocks * divisor;
988
989   if (nblocks > 0) {
990      /* First return divisor aligned and sized chunks. We start returning
991       * larger blocks from the end fo the chunk, since they should already be
992       * aligned to divisor. Also anv_state_pool_return_blocks() only accepts
993       * aligned chunks.
994       */
995      uint32_t offset = chunk_offset + rest;
996      anv_state_pool_return_blocks(pool, offset, nblocks, divisor);
997   }
998
999   chunk_size = rest;
1000   divisor /= 2;
1001
1002   if (small_size > 0 && small_size < divisor)
1003      divisor = small_size;
1004
1005   uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2;
1006
1007   /* Just as before, return larger divisor aligned blocks from the end of the
1008    * chunk first.
1009    */
1010   while (chunk_size > 0 && divisor >= min_size) {
1011      nblocks = chunk_size / divisor;
1012      rest = chunk_size - nblocks * divisor;
1013      if (nblocks > 0) {
1014         anv_state_pool_return_blocks(pool, chunk_offset + rest,
1015                                      nblocks, divisor);
1016         chunk_size = rest;
1017      }
1018      divisor /= 2;
1019   }
1020}
1021
1022static struct anv_state
1023anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
1024                           uint32_t size, uint32_t align)
1025{
1026   uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
1027
1028   struct anv_state *state;
1029   uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
1030   int32_t offset;
1031
1032   /* Try free list first. */
1033   state = anv_free_list_pop(&pool->buckets[bucket].free_list,
1034                             &pool->table);
1035   if (state) {
1036      assert(state->offset >= pool->start_offset);
1037      goto done;
1038   }
1039
1040   /* Try to grab a chunk from some larger bucket and split it up */
1041   for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
1042      state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
1043      if (state) {
1044         unsigned chunk_size = anv_state_pool_get_bucket_size(b);
1045         int32_t chunk_offset = state->offset;
1046
1047         /* First lets update the state we got to its new size. offset and map
1048          * remain the same.
1049          */
1050         state->alloc_size = alloc_size;
1051
1052         /* Now return the unused part of the chunk back to the pool as free
1053          * blocks
1054          *
1055          * There are a couple of options as to what we do with it:
1056          *
1057          *    1) We could fully split the chunk into state.alloc_size sized
1058          *       pieces.  However, this would mean that allocating a 16B
1059          *       state could potentially split a 2MB chunk into 512K smaller
1060          *       chunks.  This would lead to unnecessary fragmentation.
1061          *
1062          *    2) The classic "buddy allocator" method would have us split the
1063          *       chunk in half and return one half.  Then we would split the
1064          *       remaining half in half and return one half, and repeat as
1065          *       needed until we get down to the size we want.  However, if
1066          *       you are allocating a bunch of the same size state (which is
1067          *       the common case), this means that every other allocation has
1068          *       to go up a level and every fourth goes up two levels, etc.
1069          *       This is not nearly as efficient as it could be if we did a
1070          *       little more work up-front.
1071          *
1072          *    3) Split the difference between (1) and (2) by doing a
1073          *       two-level split.  If it's bigger than some fixed block_size,
1074          *       we split it into block_size sized chunks and return all but
1075          *       one of them.  Then we split what remains into
1076          *       state.alloc_size sized chunks and return them.
1077          *
1078          * We choose something close to option (3), which is implemented with
1079          * anv_state_pool_return_chunk(). That is done by returning the
1080          * remaining of the chunk, with alloc_size as a hint of the size that
1081          * we want the smaller chunk split into.
1082          */
1083         anv_state_pool_return_chunk(pool, chunk_offset + alloc_size,
1084                                     chunk_size - alloc_size, alloc_size);
1085         goto done;
1086      }
1087   }
1088
1089   uint32_t padding;
1090   offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
1091                                                &pool->block_pool,
1092                                                alloc_size,
1093                                                pool->block_size,
1094                                                &padding);
1095   /* Everytime we allocate a new state, add it to the state pool */
1096   uint32_t idx;
1097   UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1098   assert(result == VK_SUCCESS);
1099
1100   state = anv_state_table_get(&pool->table, idx);
1101   state->offset = pool->start_offset + offset;
1102   state->alloc_size = alloc_size;
1103   state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size);
1104
1105   if (padding > 0) {
1106      uint32_t return_offset = offset - padding;
1107      anv_state_pool_return_chunk(pool, return_offset, padding, 0);
1108   }
1109
1110done:
1111   return *state;
1112}
1113
1114struct anv_state
1115anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
1116{
1117   if (size == 0)
1118      return ANV_STATE_NULL;
1119
1120   struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
1121   VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
1122   return state;
1123}
1124
1125struct anv_state
1126anv_state_pool_alloc_back(struct anv_state_pool *pool)
1127{
1128   struct anv_state *state;
1129   uint32_t alloc_size = pool->block_size;
1130
1131   /* This function is only used with pools where start_offset == 0 */
1132   assert(pool->start_offset == 0);
1133
1134   state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table);
1135   if (state) {
1136      assert(state->offset < pool->start_offset);
1137      goto done;
1138   }
1139
1140   int32_t offset;
1141   offset = anv_block_pool_alloc_back(&pool->block_pool,
1142                                      pool->block_size);
1143   uint32_t idx;
1144   UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1145   assert(result == VK_SUCCESS);
1146
1147   state = anv_state_table_get(&pool->table, idx);
1148   state->offset = pool->start_offset + offset;
1149   state->alloc_size = alloc_size;
1150   state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size);
1151
1152done:
1153   VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size));
1154   return *state;
1155}
1156
1157static void
1158anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
1159{
1160   assert(util_is_power_of_two_or_zero(state.alloc_size));
1161   unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
1162
1163   if (state.offset < pool->start_offset) {
1164      assert(state.alloc_size == pool->block_size);
1165      anv_free_list_push(&pool->back_alloc_free_list,
1166                         &pool->table, state.idx, 1);
1167   } else {
1168      anv_free_list_push(&pool->buckets[bucket].free_list,
1169                         &pool->table, state.idx, 1);
1170   }
1171}
1172
1173void
1174anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
1175{
1176   if (state.alloc_size == 0)
1177      return;
1178
1179   VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
1180   anv_state_pool_free_no_vg(pool, state);
1181}
1182
1183struct anv_state_stream_block {
1184   struct anv_state block;
1185
1186   /* The next block */
1187   struct anv_state_stream_block *next;
1188
1189#ifdef HAVE_VALGRIND
1190   /* A pointer to the first user-allocated thing in this block.  This is
1191    * what valgrind sees as the start of the block.
1192    */
1193   void *_vg_ptr;
1194#endif
1195};
1196
1197/* The state stream allocator is a one-shot, single threaded allocator for
1198 * variable sized blocks.  We use it for allocating dynamic state.
1199 */
1200void
1201anv_state_stream_init(struct anv_state_stream *stream,
1202                      struct anv_state_pool *state_pool,
1203                      uint32_t block_size)
1204{
1205   stream->state_pool = state_pool;
1206   stream->block_size = block_size;
1207
1208   stream->block = ANV_STATE_NULL;
1209
1210   /* Ensure that next + whatever > block_size.  This way the first call to
1211    * state_stream_alloc fetches a new block.
1212    */
1213   stream->next = block_size;
1214
1215   util_dynarray_init(&stream->all_blocks, NULL);
1216
1217   VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
1218}
1219
1220void
1221anv_state_stream_finish(struct anv_state_stream *stream)
1222{
1223   util_dynarray_foreach(&stream->all_blocks, struct anv_state, block) {
1224      VG(VALGRIND_MEMPOOL_FREE(stream, block->map));
1225      VG(VALGRIND_MAKE_MEM_NOACCESS(block->map, block->alloc_size));
1226      anv_state_pool_free_no_vg(stream->state_pool, *block);
1227   }
1228   util_dynarray_fini(&stream->all_blocks);
1229
1230   VG(VALGRIND_DESTROY_MEMPOOL(stream));
1231}
1232
1233struct anv_state
1234anv_state_stream_alloc(struct anv_state_stream *stream,
1235                       uint32_t size, uint32_t alignment)
1236{
1237   if (size == 0)
1238      return ANV_STATE_NULL;
1239
1240   assert(alignment <= PAGE_SIZE);
1241
1242   uint32_t offset = align_u32(stream->next, alignment);
1243   if (offset + size > stream->block.alloc_size) {
1244      uint32_t block_size = stream->block_size;
1245      if (block_size < size)
1246         block_size = round_to_power_of_two(size);
1247
1248      stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
1249                                                 block_size, PAGE_SIZE);
1250      util_dynarray_append(&stream->all_blocks,
1251                           struct anv_state, stream->block);
1252      VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, block_size));
1253
1254      /* Reset back to the start */
1255      stream->next = offset = 0;
1256      assert(offset + size <= stream->block.alloc_size);
1257   }
1258   const bool new_block = stream->next == 0;
1259
1260   struct anv_state state = stream->block;
1261   state.offset += offset;
1262   state.alloc_size = size;
1263   state.map += offset;
1264
1265   stream->next = offset + size;
1266
1267   if (new_block) {
1268      assert(state.map == stream->block.map);
1269      VG(VALGRIND_MEMPOOL_ALLOC(stream, state.map, size));
1270   } else {
1271      /* This only updates the mempool.  The newly allocated chunk is still
1272       * marked as NOACCESS. */
1273      VG(VALGRIND_MEMPOOL_CHANGE(stream, stream->block.map, stream->block.map,
1274                                 stream->next));
1275      /* Mark the newly allocated chunk as undefined */
1276      VG(VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size));
1277   }
1278
1279   return state;
1280}
1281
1282void
1283anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
1284                             struct anv_state_pool *parent,
1285                             uint32_t count, uint32_t size, uint32_t alignment)
1286{
1287   pool->pool = parent;
1288   pool->reserved_blocks = ANV_FREE_LIST_EMPTY;
1289   pool->count = count;
1290
1291   for (unsigned i = 0; i < count; i++) {
1292      struct anv_state state = anv_state_pool_alloc(pool->pool, size, alignment);
1293      anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1);
1294   }
1295}
1296
1297void
1298anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool)
1299{
1300   struct anv_state *state;
1301
1302   while ((state = anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table))) {
1303      anv_state_pool_free(pool->pool, *state);
1304      pool->count--;
1305   }
1306   assert(pool->count == 0);
1307}
1308
1309struct anv_state
1310anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool)
1311{
1312   return *anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table);
1313}
1314
1315void
1316anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
1317                             struct anv_state state)
1318{
1319   anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1);
1320}
1321
1322void
1323anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
1324                 const char *name)
1325{
1326   pool->name = name;
1327   pool->device = device;
1328   for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1329      util_sparse_array_free_list_init(&pool->free_list[i],
1330                                       &device->bo_cache.bo_map, 0,
1331                                       offsetof(struct anv_bo, free_index));
1332   }
1333
1334   VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
1335}
1336
1337void
1338anv_bo_pool_finish(struct anv_bo_pool *pool)
1339{
1340   for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1341      while (1) {
1342         struct anv_bo *bo =
1343            util_sparse_array_free_list_pop_elem(&pool->free_list[i]);
1344         if (bo == NULL)
1345            break;
1346
1347         /* anv_device_release_bo is going to "free" it */
1348         VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, bo->size, 0, 1));
1349         anv_device_release_bo(pool->device, bo);
1350      }
1351   }
1352
1353   VG(VALGRIND_DESTROY_MEMPOOL(pool));
1354}
1355
1356VkResult
1357anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1358                  struct anv_bo **bo_out)
1359{
1360   const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1361   const unsigned pow2_size = 1 << size_log2;
1362   const unsigned bucket = size_log2 - 12;
1363   assert(bucket < ARRAY_SIZE(pool->free_list));
1364
1365   struct anv_bo *bo =
1366      util_sparse_array_free_list_pop_elem(&pool->free_list[bucket]);
1367   if (bo != NULL) {
1368      VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1369      *bo_out = bo;
1370      return VK_SUCCESS;
1371   }
1372
1373   VkResult result = anv_device_alloc_bo(pool->device,
1374                                         pool->name,
1375                                         pow2_size,
1376                                         ANV_BO_ALLOC_LOCAL_MEM |
1377                                         ANV_BO_ALLOC_MAPPED |
1378                                         ANV_BO_ALLOC_SNOOPED |
1379                                         ANV_BO_ALLOC_CAPTURE,
1380                                         0 /* explicit_address */,
1381                                         &bo);
1382   if (result != VK_SUCCESS)
1383      return result;
1384
1385   /* We want it to look like it came from this pool */
1386   VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0));
1387   VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1388
1389   *bo_out = bo;
1390
1391   return VK_SUCCESS;
1392}
1393
1394void
1395anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo)
1396{
1397   VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
1398
1399   assert(util_is_power_of_two_or_zero(bo->size));
1400   const unsigned size_log2 = ilog2_round_up(bo->size);
1401   const unsigned bucket = size_log2 - 12;
1402   assert(bucket < ARRAY_SIZE(pool->free_list));
1403
1404   assert(util_sparse_array_get(&pool->device->bo_cache.bo_map,
1405                                bo->gem_handle) == bo);
1406   util_sparse_array_free_list_push(&pool->free_list[bucket],
1407                                    &bo->gem_handle, 1);
1408}
1409
1410// Scratch pool
1411
1412void
1413anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1414{
1415   memset(pool, 0, sizeof(*pool));
1416}
1417
1418void
1419anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1420{
1421   for (unsigned s = 0; s < ARRAY_SIZE(pool->bos[0]); s++) {
1422      for (unsigned i = 0; i < 16; i++) {
1423         if (pool->bos[i][s] != NULL)
1424            anv_device_release_bo(device, pool->bos[i][s]);
1425      }
1426   }
1427
1428   for (unsigned i = 0; i < 16; i++) {
1429      if (pool->surf_states[i].map != NULL) {
1430         anv_state_pool_free(&device->surface_state_pool,
1431                             pool->surf_states[i]);
1432      }
1433   }
1434}
1435
1436struct anv_bo *
1437anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1438                       gl_shader_stage stage, unsigned per_thread_scratch)
1439{
1440   if (per_thread_scratch == 0)
1441      return NULL;
1442
1443   unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1444   assert(scratch_size_log2 < 16);
1445
1446   assert(stage < ARRAY_SIZE(pool->bos));
1447
1448   const struct intel_device_info *devinfo = &device->info;
1449
1450   /* On GFX version 12.5, scratch access changed to a surface-based model.
1451    * Instead of each shader type having its own layout based on IDs passed
1452    * from the relevant fixed-function unit, all scratch access is based on
1453    * thread IDs like it always has been for compute.
1454    */
1455   if (devinfo->verx10 >= 125)
1456      stage = MESA_SHADER_COMPUTE;
1457
1458   struct anv_bo *bo = p_atomic_read(&pool->bos[scratch_size_log2][stage]);
1459
1460   if (bo != NULL)
1461      return bo;
1462
1463   assert(stage < ARRAY_SIZE(devinfo->max_scratch_ids));
1464   uint32_t size = per_thread_scratch * devinfo->max_scratch_ids[stage];
1465
1466   /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1467    * are still relative to the general state base address.  When we emit
1468    * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1469    * to the maximum (1 page under 4GB).  This allows us to just place the
1470    * scratch buffers anywhere we wish in the bottom 32 bits of address space
1471    * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1472    * However, in order to do so, we need to ensure that the kernel does not
1473    * place the scratch BO above the 32-bit boundary.
1474    *
1475    * NOTE: Technically, it can't go "anywhere" because the top page is off
1476    * limits.  However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1477    * kernel allocates space using
1478    *
1479    *    end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1480    *
1481    * so nothing will ever touch the top page.
1482    */
1483   VkResult result = anv_device_alloc_bo(device, "scratch", size,
1484                                         ANV_BO_ALLOC_32BIT_ADDRESS |
1485                                         ANV_BO_ALLOC_LOCAL_MEM,
1486                                         0 /* explicit_address */,
1487                                         &bo);
1488   if (result != VK_SUCCESS)
1489      return NULL; /* TODO */
1490
1491   struct anv_bo *current_bo =
1492      p_atomic_cmpxchg(&pool->bos[scratch_size_log2][stage], NULL, bo);
1493   if (current_bo) {
1494      anv_device_release_bo(device, bo);
1495      return current_bo;
1496   } else {
1497      return bo;
1498   }
1499}
1500
1501uint32_t
1502anv_scratch_pool_get_surf(struct anv_device *device,
1503                          struct anv_scratch_pool *pool,
1504                          unsigned per_thread_scratch)
1505{
1506   if (per_thread_scratch == 0)
1507      return 0;
1508
1509   unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1510   assert(scratch_size_log2 < 16);
1511
1512   uint32_t surf = p_atomic_read(&pool->surfs[scratch_size_log2]);
1513   if (surf > 0)
1514      return surf;
1515
1516   struct anv_bo *bo =
1517      anv_scratch_pool_alloc(device, pool, MESA_SHADER_COMPUTE,
1518                             per_thread_scratch);
1519   struct anv_address addr = { .bo = bo };
1520
1521   struct anv_state state =
1522      anv_state_pool_alloc(&device->surface_state_pool,
1523                           device->isl_dev.ss.size, 64);
1524
1525   isl_buffer_fill_state(&device->isl_dev, state.map,
1526                         .address = anv_address_physical(addr),
1527                         .size_B = bo->size,
1528                         .mocs = anv_mocs(device, bo, 0),
1529                         .format = ISL_FORMAT_RAW,
1530                         .swizzle = ISL_SWIZZLE_IDENTITY,
1531                         .stride_B = per_thread_scratch,
1532                         .is_scratch = true);
1533
1534   uint32_t current = p_atomic_cmpxchg(&pool->surfs[scratch_size_log2],
1535                                       0, state.offset);
1536   if (current) {
1537      anv_state_pool_free(&device->surface_state_pool, state);
1538      return current;
1539   } else {
1540      pool->surf_states[scratch_size_log2] = state;
1541      return state.offset;
1542   }
1543}
1544
1545VkResult
1546anv_bo_cache_init(struct anv_bo_cache *cache, struct anv_device *device)
1547{
1548   util_sparse_array_init(&cache->bo_map, sizeof(struct anv_bo), 1024);
1549
1550   if (pthread_mutex_init(&cache->mutex, NULL)) {
1551      util_sparse_array_finish(&cache->bo_map);
1552      return vk_errorf(device, VK_ERROR_OUT_OF_HOST_MEMORY,
1553                       "pthread_mutex_init failed: %m");
1554   }
1555
1556   return VK_SUCCESS;
1557}
1558
1559void
1560anv_bo_cache_finish(struct anv_bo_cache *cache)
1561{
1562   util_sparse_array_finish(&cache->bo_map);
1563   pthread_mutex_destroy(&cache->mutex);
1564}
1565
1566#define ANV_BO_CACHE_SUPPORTED_FLAGS \
1567   (EXEC_OBJECT_WRITE | \
1568    EXEC_OBJECT_ASYNC | \
1569    EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
1570    EXEC_OBJECT_PINNED | \
1571    EXEC_OBJECT_CAPTURE)
1572
1573static uint32_t
1574anv_bo_alloc_flags_to_bo_flags(struct anv_device *device,
1575                               enum anv_bo_alloc_flags alloc_flags)
1576{
1577   struct anv_physical_device *pdevice = device->physical;
1578
1579   uint64_t bo_flags = 0;
1580   if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS) &&
1581       pdevice->supports_48bit_addresses)
1582      bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1583
1584   if ((alloc_flags & ANV_BO_ALLOC_CAPTURE) && pdevice->has_exec_capture)
1585      bo_flags |= EXEC_OBJECT_CAPTURE;
1586
1587   if (alloc_flags & ANV_BO_ALLOC_IMPLICIT_WRITE) {
1588      assert(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC);
1589      bo_flags |= EXEC_OBJECT_WRITE;
1590   }
1591
1592   if (!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC) && pdevice->has_exec_async)
1593      bo_flags |= EXEC_OBJECT_ASYNC;
1594
1595   if (pdevice->use_softpin)
1596      bo_flags |= EXEC_OBJECT_PINNED;
1597
1598   return bo_flags;
1599}
1600
1601static uint32_t
1602anv_device_get_bo_align(struct anv_device *device,
1603                        enum anv_bo_alloc_flags alloc_flags)
1604{
1605   /* Gfx12 CCS surface addresses need to be 64K aligned. */
1606   if (device->info.ver >= 12 && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS))
1607      return 64 * 1024;
1608
1609   return 4096;
1610}
1611
1612VkResult
1613anv_device_alloc_bo(struct anv_device *device,
1614                    const char *name,
1615                    uint64_t size,
1616                    enum anv_bo_alloc_flags alloc_flags,
1617                    uint64_t explicit_address,
1618                    struct anv_bo **bo_out)
1619{
1620   if (!(alloc_flags & ANV_BO_ALLOC_LOCAL_MEM))
1621      anv_perf_warn(VK_LOG_NO_OBJS(&device->physical->instance->vk.base),
1622                                   "system memory used");
1623
1624   if (!device->physical->has_implicit_ccs)
1625      assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS));
1626
1627   const uint32_t bo_flags =
1628      anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1629   assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1630
1631   /* The kernel is going to give us whole pages anyway */
1632   size = align_u64(size, 4096);
1633
1634   const uint32_t align = anv_device_get_bo_align(device, alloc_flags);
1635
1636   uint64_t ccs_size = 0;
1637   if (device->info.has_aux_map && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS)) {
1638      /* Align the size up to the next multiple of 64K so we don't have any
1639       * AUX-TT entries pointing from a 64K page to itself.
1640       */
1641      size = align_u64(size, 64 * 1024);
1642
1643      /* See anv_bo::_ccs_size */
1644      ccs_size = align_u64(DIV_ROUND_UP(size, INTEL_AUX_MAP_GFX12_CCS_SCALE), 4096);
1645   }
1646
1647   uint32_t gem_handle;
1648
1649   /* If we have vram size, we have multiple memory regions and should choose
1650    * one of them.
1651    */
1652   if (device->physical->vram.size > 0) {
1653      struct drm_i915_gem_memory_class_instance regions[2];
1654      uint32_t nregions = 0;
1655
1656      if (alloc_flags & ANV_BO_ALLOC_LOCAL_MEM) {
1657         /* For vram allocation, still use system memory as a fallback. */
1658         regions[nregions++] = device->physical->vram.region;
1659         regions[nregions++] = device->physical->sys.region;
1660      } else {
1661         regions[nregions++] = device->physical->sys.region;
1662      }
1663
1664      gem_handle = anv_gem_create_regions(device, size + ccs_size,
1665                                          nregions, regions);
1666   } else {
1667      gem_handle = anv_gem_create(device, size + ccs_size);
1668   }
1669
1670   if (gem_handle == 0)
1671      return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
1672
1673   struct anv_bo new_bo = {
1674      .name = name,
1675      .gem_handle = gem_handle,
1676      .refcount = 1,
1677      .offset = -1,
1678      .size = size,
1679      ._ccs_size = ccs_size,
1680      .flags = bo_flags,
1681      .is_external = (alloc_flags & ANV_BO_ALLOC_EXTERNAL),
1682      .has_client_visible_address =
1683         (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1684      .has_implicit_ccs = ccs_size > 0,
1685   };
1686
1687   if (alloc_flags & ANV_BO_ALLOC_MAPPED) {
1688      new_bo.map = anv_gem_mmap(device, new_bo.gem_handle, 0, size, 0);
1689      if (new_bo.map == MAP_FAILED) {
1690         anv_gem_close(device, new_bo.gem_handle);
1691         return vk_errorf(device, VK_ERROR_OUT_OF_HOST_MEMORY,
1692                          "mmap failed: %m");
1693      }
1694   }
1695
1696   if (alloc_flags & ANV_BO_ALLOC_SNOOPED) {
1697      assert(alloc_flags & ANV_BO_ALLOC_MAPPED);
1698      /* We don't want to change these defaults if it's going to be shared
1699       * with another process.
1700       */
1701      assert(!(alloc_flags & ANV_BO_ALLOC_EXTERNAL));
1702
1703      /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
1704       * I915_CACHING_NONE on non-LLC platforms.  For many internal state
1705       * objects, we'd rather take the snooping overhead than risk forgetting
1706       * a CLFLUSH somewhere.  Userptr objects are always created as
1707       * I915_CACHING_CACHED, which on non-LLC means snooped so there's no
1708       * need to do this there.
1709       */
1710      if (!device->info.has_llc) {
1711         anv_gem_set_caching(device, new_bo.gem_handle,
1712                             I915_CACHING_CACHED);
1713      }
1714   }
1715
1716   if (alloc_flags & ANV_BO_ALLOC_FIXED_ADDRESS) {
1717      new_bo.has_fixed_address = true;
1718      new_bo.offset = explicit_address;
1719   } else if (new_bo.flags & EXEC_OBJECT_PINNED) {
1720      new_bo.offset = anv_vma_alloc(device, new_bo.size + new_bo._ccs_size,
1721                                    align, alloc_flags, explicit_address);
1722      if (new_bo.offset == 0) {
1723         if (new_bo.map)
1724            anv_gem_munmap(device, new_bo.map, size);
1725         anv_gem_close(device, new_bo.gem_handle);
1726         return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
1727                          "failed to allocate virtual address for BO");
1728      }
1729   } else {
1730      assert(!new_bo.has_client_visible_address);
1731   }
1732
1733   if (new_bo._ccs_size > 0) {
1734      assert(device->info.has_aux_map);
1735      intel_aux_map_add_mapping(device->aux_map_ctx,
1736                                intel_canonical_address(new_bo.offset),
1737                                intel_canonical_address(new_bo.offset + new_bo.size),
1738                                new_bo.size, 0 /* format_bits */);
1739   }
1740
1741   assert(new_bo.gem_handle);
1742
1743   /* If we just got this gem_handle from anv_bo_init_new then we know no one
1744    * else is touching this BO at the moment so we don't need to lock here.
1745    */
1746   struct anv_bo *bo = anv_device_lookup_bo(device, new_bo.gem_handle);
1747   *bo = new_bo;
1748
1749   *bo_out = bo;
1750
1751   return VK_SUCCESS;
1752}
1753
1754VkResult
1755anv_device_import_bo_from_host_ptr(struct anv_device *device,
1756                                   void *host_ptr, uint32_t size,
1757                                   enum anv_bo_alloc_flags alloc_flags,
1758                                   uint64_t client_address,
1759                                   struct anv_bo **bo_out)
1760{
1761   assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1762                           ANV_BO_ALLOC_SNOOPED |
1763                           ANV_BO_ALLOC_FIXED_ADDRESS)));
1764
1765   /* We can't do implicit CCS with an aux table on shared memory */
1766   if (!device->physical->has_implicit_ccs || device->info.has_aux_map)
1767       assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS));
1768
1769   struct anv_bo_cache *cache = &device->bo_cache;
1770   const uint32_t bo_flags =
1771      anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1772   assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1773
1774   uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size);
1775   if (!gem_handle)
1776      return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
1777
1778   pthread_mutex_lock(&cache->mutex);
1779
1780   struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1781   if (bo->refcount > 0) {
1782      /* VK_EXT_external_memory_host doesn't require handling importing the
1783       * same pointer twice at the same time, but we don't get in the way.  If
1784       * kernel gives us the same gem_handle, only succeed if the flags match.
1785       */
1786      assert(bo->gem_handle == gem_handle);
1787      if (bo_flags != bo->flags) {
1788         pthread_mutex_unlock(&cache->mutex);
1789         return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1790                          "same host pointer imported two different ways");
1791      }
1792
1793      if (bo->has_client_visible_address !=
1794          ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1795         pthread_mutex_unlock(&cache->mutex);
1796         return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1797                          "The same BO was imported with and without buffer "
1798                          "device address");
1799      }
1800
1801      if (client_address && client_address != intel_48b_address(bo->offset)) {
1802         pthread_mutex_unlock(&cache->mutex);
1803         return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1804                          "The same BO was imported at two different "
1805                          "addresses");
1806      }
1807
1808      __sync_fetch_and_add(&bo->refcount, 1);
1809   } else {
1810      struct anv_bo new_bo = {
1811         .name = "host-ptr",
1812         .gem_handle = gem_handle,
1813         .refcount = 1,
1814         .offset = -1,
1815         .size = size,
1816         .map = host_ptr,
1817         .flags = bo_flags,
1818         .is_external = true,
1819         .from_host_ptr = true,
1820         .has_client_visible_address =
1821            (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1822      };
1823
1824      assert(client_address == intel_48b_address(client_address));
1825      if (new_bo.flags & EXEC_OBJECT_PINNED) {
1826         assert(new_bo._ccs_size == 0);
1827         new_bo.offset = anv_vma_alloc(device, new_bo.size,
1828                                       anv_device_get_bo_align(device,
1829                                                               alloc_flags),
1830                                       alloc_flags, client_address);
1831         if (new_bo.offset == 0) {
1832            anv_gem_close(device, new_bo.gem_handle);
1833            pthread_mutex_unlock(&cache->mutex);
1834            return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
1835                             "failed to allocate virtual address for BO");
1836         }
1837      } else {
1838         assert(!new_bo.has_client_visible_address);
1839      }
1840
1841      *bo = new_bo;
1842   }
1843
1844   pthread_mutex_unlock(&cache->mutex);
1845   *bo_out = bo;
1846
1847   return VK_SUCCESS;
1848}
1849
1850VkResult
1851anv_device_import_bo(struct anv_device *device,
1852                     int fd,
1853                     enum anv_bo_alloc_flags alloc_flags,
1854                     uint64_t client_address,
1855                     struct anv_bo **bo_out)
1856{
1857   assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1858                           ANV_BO_ALLOC_SNOOPED |
1859                           ANV_BO_ALLOC_FIXED_ADDRESS)));
1860
1861   /* We can't do implicit CCS with an aux table on shared memory */
1862   if (!device->physical->has_implicit_ccs || device->info.has_aux_map)
1863       assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS));
1864
1865   struct anv_bo_cache *cache = &device->bo_cache;
1866   const uint32_t bo_flags =
1867      anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1868   assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1869
1870   pthread_mutex_lock(&cache->mutex);
1871
1872   uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1873   if (!gem_handle) {
1874      pthread_mutex_unlock(&cache->mutex);
1875      return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
1876   }
1877
1878   struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1879   if (bo->refcount > 0) {
1880      /* We have to be careful how we combine flags so that it makes sense.
1881       * Really, though, if we get to this case and it actually matters, the
1882       * client has imported a BO twice in different ways and they get what
1883       * they have coming.
1884       */
1885      uint64_t new_flags = 0;
1886      new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_WRITE;
1887      new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_ASYNC;
1888      new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1889      new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_PINNED;
1890      new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_CAPTURE;
1891
1892      /* It's theoretically possible for a BO to get imported such that it's
1893       * both pinned and not pinned.  The only way this can happen is if it
1894       * gets imported as both a semaphore and a memory object and that would
1895       * be an application error.  Just fail out in that case.
1896       */
1897      if ((bo->flags & EXEC_OBJECT_PINNED) !=
1898          (bo_flags & EXEC_OBJECT_PINNED)) {
1899         pthread_mutex_unlock(&cache->mutex);
1900         return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1901                          "The same BO was imported two different ways");
1902      }
1903
1904      /* It's also theoretically possible that someone could export a BO from
1905       * one heap and import it into another or to import the same BO into two
1906       * different heaps.  If this happens, we could potentially end up both
1907       * allowing and disallowing 48-bit addresses.  There's not much we can
1908       * do about it if we're pinning so we just throw an error and hope no
1909       * app is actually that stupid.
1910       */
1911      if ((new_flags & EXEC_OBJECT_PINNED) &&
1912          (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
1913          (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
1914         pthread_mutex_unlock(&cache->mutex);
1915         return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1916                          "The same BO was imported on two different heaps");
1917      }
1918
1919      if (bo->has_client_visible_address !=
1920          ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1921         pthread_mutex_unlock(&cache->mutex);
1922         return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1923                          "The same BO was imported with and without buffer "
1924                          "device address");
1925      }
1926
1927      if (client_address && client_address != intel_48b_address(bo->offset)) {
1928         pthread_mutex_unlock(&cache->mutex);
1929         return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1930                          "The same BO was imported at two different "
1931                          "addresses");
1932      }
1933
1934      bo->flags = new_flags;
1935
1936      __sync_fetch_and_add(&bo->refcount, 1);
1937   } else {
1938      off_t size = lseek(fd, 0, SEEK_END);
1939      if (size == (off_t)-1) {
1940         anv_gem_close(device, gem_handle);
1941         pthread_mutex_unlock(&cache->mutex);
1942         return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
1943      }
1944
1945      struct anv_bo new_bo = {
1946         .name = "imported",
1947         .gem_handle = gem_handle,
1948         .refcount = 1,
1949         .offset = -1,
1950         .size = size,
1951         .flags = bo_flags,
1952         .is_external = true,
1953         .has_client_visible_address =
1954            (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1955      };
1956
1957      assert(client_address == intel_48b_address(client_address));
1958      if (new_bo.flags & EXEC_OBJECT_PINNED) {
1959         assert(new_bo._ccs_size == 0);
1960         new_bo.offset = anv_vma_alloc(device, new_bo.size,
1961                                       anv_device_get_bo_align(device,
1962                                                               alloc_flags),
1963                                       alloc_flags, client_address);
1964         if (new_bo.offset == 0) {
1965            anv_gem_close(device, new_bo.gem_handle);
1966            pthread_mutex_unlock(&cache->mutex);
1967            return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
1968                             "failed to allocate virtual address for BO");
1969         }
1970      } else {
1971         assert(!new_bo.has_client_visible_address);
1972      }
1973
1974      *bo = new_bo;
1975   }
1976
1977   pthread_mutex_unlock(&cache->mutex);
1978   *bo_out = bo;
1979
1980   return VK_SUCCESS;
1981}
1982
1983VkResult
1984anv_device_export_bo(struct anv_device *device,
1985                     struct anv_bo *bo, int *fd_out)
1986{
1987   assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
1988
1989   /* This BO must have been flagged external in order for us to be able
1990    * to export it.  This is done based on external options passed into
1991    * anv_AllocateMemory.
1992    */
1993   assert(bo->is_external);
1994
1995   int fd = anv_gem_handle_to_fd(device, bo->gem_handle);
1996   if (fd < 0)
1997      return vk_error(device, VK_ERROR_TOO_MANY_OBJECTS);
1998
1999   *fd_out = fd;
2000
2001   return VK_SUCCESS;
2002}
2003
2004static bool
2005atomic_dec_not_one(uint32_t *counter)
2006{
2007   uint32_t old, val;
2008
2009   val = *counter;
2010   while (1) {
2011      if (val == 1)
2012         return false;
2013
2014      old = __sync_val_compare_and_swap(counter, val, val - 1);
2015      if (old == val)
2016         return true;
2017
2018      val = old;
2019   }
2020}
2021
2022void
2023anv_device_release_bo(struct anv_device *device,
2024                      struct anv_bo *bo)
2025{
2026   struct anv_bo_cache *cache = &device->bo_cache;
2027   assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
2028
2029   /* Try to decrement the counter but don't go below one.  If this succeeds
2030    * then the refcount has been decremented and we are not the last
2031    * reference.
2032    */
2033   if (atomic_dec_not_one(&bo->refcount))
2034      return;
2035
2036   pthread_mutex_lock(&cache->mutex);
2037
2038   /* We are probably the last reference since our attempt to decrement above
2039    * failed.  However, we can't actually know until we are inside the mutex.
2040    * Otherwise, someone could import the BO between the decrement and our
2041    * taking the mutex.
2042    */
2043   if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
2044      /* Turns out we're not the last reference.  Unlock and bail. */
2045      pthread_mutex_unlock(&cache->mutex);
2046      return;
2047   }
2048   assert(bo->refcount == 0);
2049
2050   if (bo->map && !bo->from_host_ptr)
2051      anv_gem_munmap(device, bo->map, bo->size);
2052
2053   if (bo->_ccs_size > 0) {
2054      assert(device->physical->has_implicit_ccs);
2055      assert(device->info.has_aux_map);
2056      assert(bo->has_implicit_ccs);
2057      intel_aux_map_unmap_range(device->aux_map_ctx,
2058                                intel_canonical_address(bo->offset),
2059                                bo->size);
2060   }
2061
2062   if ((bo->flags & EXEC_OBJECT_PINNED) && !bo->has_fixed_address)
2063      anv_vma_free(device, bo->offset, bo->size + bo->_ccs_size);
2064
2065   uint32_t gem_handle = bo->gem_handle;
2066
2067   /* Memset the BO just in case.  The refcount being zero should be enough to
2068    * prevent someone from assuming the data is valid but it's safer to just
2069    * stomp to zero just in case.  We explicitly do this *before* we close the
2070    * GEM handle to ensure that if anyone allocates something and gets the
2071    * same GEM handle, the memset has already happen and won't stomp all over
2072    * any data they may write in this BO.
2073    */
2074   memset(bo, 0, sizeof(*bo));
2075
2076   anv_gem_close(device, gem_handle);
2077
2078   /* Don't unlock until we've actually closed the BO.  The whole point of
2079    * the BO cache is to ensure that we correctly handle races with creating
2080    * and releasing GEM handles and we don't want to let someone import the BO
2081    * again between mutex unlock and closing the GEM handle.
2082    */
2083   pthread_mutex_unlock(&cache->mutex);
2084}
2085