anv_allocator.c revision 7ec681f3
1/* 2 * Copyright © 2015 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24#include <stdlib.h> 25#include <unistd.h> 26#include <limits.h> 27#include <assert.h> 28#include <sys/mman.h> 29 30#include "anv_private.h" 31 32#include "common/intel_aux_map.h" 33#include "util/anon_file.h" 34 35#ifdef HAVE_VALGRIND 36#define VG_NOACCESS_READ(__ptr) ({ \ 37 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \ 38 __typeof(*(__ptr)) __val = *(__ptr); \ 39 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\ 40 __val; \ 41}) 42#define VG_NOACCESS_WRITE(__ptr, __val) ({ \ 43 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \ 44 *(__ptr) = (__val); \ 45 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \ 46}) 47#else 48#define VG_NOACCESS_READ(__ptr) (*(__ptr)) 49#define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val)) 50#endif 51 52#ifndef MAP_POPULATE 53#define MAP_POPULATE 0 54#endif 55 56/* Design goals: 57 * 58 * - Lock free (except when resizing underlying bos) 59 * 60 * - Constant time allocation with typically only one atomic 61 * 62 * - Multiple allocation sizes without fragmentation 63 * 64 * - Can grow while keeping addresses and offset of contents stable 65 * 66 * - All allocations within one bo so we can point one of the 67 * STATE_BASE_ADDRESS pointers at it. 68 * 69 * The overall design is a two-level allocator: top level is a fixed size, big 70 * block (8k) allocator, which operates out of a bo. Allocation is done by 71 * either pulling a block from the free list or growing the used range of the 72 * bo. Growing the range may run out of space in the bo which we then need to 73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment: 74 * we need to keep all pointers and contents in the old map valid. GEM bos in 75 * general can't grow, but we use a trick: we create a memfd and use ftruncate 76 * to grow it as necessary. We mmap the new size and then create a gem bo for 77 * it using the new gem userptr ioctl. Without heavy-handed locking around 78 * our allocation fast-path, there isn't really a way to munmap the old mmap, 79 * so we just keep it around until garbage collection time. While the block 80 * allocator is lockless for normal operations, we block other threads trying 81 * to allocate while we're growing the map. It sholdn't happen often, and 82 * growing is fast anyway. 83 * 84 * At the next level we can use various sub-allocators. The state pool is a 85 * pool of smaller, fixed size objects, which operates much like the block 86 * pool. It uses a free list for freeing objects, but when it runs out of 87 * space it just allocates a new block from the block pool. This allocator is 88 * intended for longer lived state objects such as SURFACE_STATE and most 89 * other persistent state objects in the API. We may need to track more info 90 * with these object and a pointer back to the CPU object (eg VkImage). In 91 * those cases we just allocate a slightly bigger object and put the extra 92 * state after the GPU state object. 93 * 94 * The state stream allocator works similar to how the i965 DRI driver streams 95 * all its state. Even with Vulkan, we need to emit transient state (whether 96 * surface state base or dynamic state base), and for that we can just get a 97 * block and fill it up. These cases are local to a command buffer and the 98 * sub-allocator need not be thread safe. The streaming allocator gets a new 99 * block when it runs out of space and chains them together so they can be 100 * easily freed. 101 */ 102 103/* Allocations are always at least 64 byte aligned, so 1 is an invalid value. 104 * We use it to indicate the free list is empty. */ 105#define EMPTY UINT32_MAX 106 107/* On FreeBSD PAGE_SIZE is already defined in 108 * /usr/include/machine/param.h that is indirectly 109 * included here. 110 */ 111#ifndef PAGE_SIZE 112#define PAGE_SIZE 4096 113#endif 114 115struct anv_mmap_cleanup { 116 void *map; 117 size_t size; 118}; 119 120static inline uint32_t 121ilog2_round_up(uint32_t value) 122{ 123 assert(value != 0); 124 return 32 - __builtin_clz(value - 1); 125} 126 127static inline uint32_t 128round_to_power_of_two(uint32_t value) 129{ 130 return 1 << ilog2_round_up(value); 131} 132 133struct anv_state_table_cleanup { 134 void *map; 135 size_t size; 136}; 137 138#define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0}) 139#define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry)) 140 141static VkResult 142anv_state_table_expand_range(struct anv_state_table *table, uint32_t size); 143 144VkResult 145anv_state_table_init(struct anv_state_table *table, 146 struct anv_device *device, 147 uint32_t initial_entries) 148{ 149 VkResult result; 150 151 table->device = device; 152 153 /* Just make it 2GB up-front. The Linux kernel won't actually back it 154 * with pages until we either map and fault on one of them or we use 155 * userptr and send a chunk of it off to the GPU. 156 */ 157 table->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "state table"); 158 if (table->fd == -1) 159 return vk_error(device, VK_ERROR_INITIALIZATION_FAILED); 160 161 if (!u_vector_init(&table->cleanups, 8, 162 sizeof(struct anv_state_table_cleanup))) { 163 result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED); 164 goto fail_fd; 165 } 166 167 table->state.next = 0; 168 table->state.end = 0; 169 table->size = 0; 170 171 uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE; 172 result = anv_state_table_expand_range(table, initial_size); 173 if (result != VK_SUCCESS) 174 goto fail_cleanups; 175 176 return VK_SUCCESS; 177 178 fail_cleanups: 179 u_vector_finish(&table->cleanups); 180 fail_fd: 181 close(table->fd); 182 183 return result; 184} 185 186static VkResult 187anv_state_table_expand_range(struct anv_state_table *table, uint32_t size) 188{ 189 void *map; 190 struct anv_state_table_cleanup *cleanup; 191 192 /* Assert that we only ever grow the pool */ 193 assert(size >= table->state.end); 194 195 /* Make sure that we don't go outside the bounds of the memfd */ 196 if (size > BLOCK_POOL_MEMFD_SIZE) 197 return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY); 198 199 cleanup = u_vector_add(&table->cleanups); 200 if (!cleanup) 201 return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY); 202 203 *cleanup = ANV_STATE_TABLE_CLEANUP_INIT; 204 205 /* Just leak the old map until we destroy the pool. We can't munmap it 206 * without races or imposing locking on the block allocate fast path. On 207 * the whole the leaked maps adds up to less than the size of the 208 * current map. MAP_POPULATE seems like the right thing to do, but we 209 * should try to get some numbers. 210 */ 211 map = mmap(NULL, size, PROT_READ | PROT_WRITE, 212 MAP_SHARED | MAP_POPULATE, table->fd, 0); 213 if (map == MAP_FAILED) { 214 return vk_errorf(table->device, VK_ERROR_OUT_OF_HOST_MEMORY, 215 "mmap failed: %m"); 216 } 217 218 cleanup->map = map; 219 cleanup->size = size; 220 221 table->map = map; 222 table->size = size; 223 224 return VK_SUCCESS; 225} 226 227static VkResult 228anv_state_table_grow(struct anv_state_table *table) 229{ 230 VkResult result = VK_SUCCESS; 231 232 uint32_t used = align_u32(table->state.next * ANV_STATE_ENTRY_SIZE, 233 PAGE_SIZE); 234 uint32_t old_size = table->size; 235 236 /* The block pool is always initialized to a nonzero size and this function 237 * is always called after initialization. 238 */ 239 assert(old_size > 0); 240 241 uint32_t required = MAX2(used, old_size); 242 if (used * 2 <= required) { 243 /* If we're in this case then this isn't the firsta allocation and we 244 * already have enough space on both sides to hold double what we 245 * have allocated. There's nothing for us to do. 246 */ 247 goto done; 248 } 249 250 uint32_t size = old_size * 2; 251 while (size < required) 252 size *= 2; 253 254 assert(size > table->size); 255 256 result = anv_state_table_expand_range(table, size); 257 258 done: 259 return result; 260} 261 262void 263anv_state_table_finish(struct anv_state_table *table) 264{ 265 struct anv_state_table_cleanup *cleanup; 266 267 u_vector_foreach(cleanup, &table->cleanups) { 268 if (cleanup->map) 269 munmap(cleanup->map, cleanup->size); 270 } 271 272 u_vector_finish(&table->cleanups); 273 274 close(table->fd); 275} 276 277VkResult 278anv_state_table_add(struct anv_state_table *table, uint32_t *idx, 279 uint32_t count) 280{ 281 struct anv_block_state state, old, new; 282 VkResult result; 283 284 assert(idx); 285 286 while(1) { 287 state.u64 = __sync_fetch_and_add(&table->state.u64, count); 288 if (state.next + count <= state.end) { 289 assert(table->map); 290 struct anv_free_entry *entry = &table->map[state.next]; 291 for (int i = 0; i < count; i++) { 292 entry[i].state.idx = state.next + i; 293 } 294 *idx = state.next; 295 return VK_SUCCESS; 296 } else if (state.next <= state.end) { 297 /* We allocated the first block outside the pool so we have to grow 298 * the pool. pool_state->next acts a mutex: threads who try to 299 * allocate now will get block indexes above the current limit and 300 * hit futex_wait below. 301 */ 302 new.next = state.next + count; 303 do { 304 result = anv_state_table_grow(table); 305 if (result != VK_SUCCESS) 306 return result; 307 new.end = table->size / ANV_STATE_ENTRY_SIZE; 308 } while (new.end < new.next); 309 310 old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64); 311 if (old.next != state.next) 312 futex_wake(&table->state.end, INT_MAX); 313 } else { 314 futex_wait(&table->state.end, state.end, NULL); 315 continue; 316 } 317 } 318} 319 320void 321anv_free_list_push(union anv_free_list *list, 322 struct anv_state_table *table, 323 uint32_t first, uint32_t count) 324{ 325 union anv_free_list current, old, new; 326 uint32_t last = first; 327 328 for (uint32_t i = 1; i < count; i++, last++) 329 table->map[last].next = last + 1; 330 331 old.u64 = list->u64; 332 do { 333 current = old; 334 table->map[last].next = current.offset; 335 new.offset = first; 336 new.count = current.count + 1; 337 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64); 338 } while (old.u64 != current.u64); 339} 340 341struct anv_state * 342anv_free_list_pop(union anv_free_list *list, 343 struct anv_state_table *table) 344{ 345 union anv_free_list current, new, old; 346 347 current.u64 = list->u64; 348 while (current.offset != EMPTY) { 349 __sync_synchronize(); 350 new.offset = table->map[current.offset].next; 351 new.count = current.count + 1; 352 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64); 353 if (old.u64 == current.u64) { 354 struct anv_free_entry *entry = &table->map[current.offset]; 355 return &entry->state; 356 } 357 current = old; 358 } 359 360 return NULL; 361} 362 363static VkResult 364anv_block_pool_expand_range(struct anv_block_pool *pool, 365 uint32_t center_bo_offset, uint32_t size); 366 367VkResult 368anv_block_pool_init(struct anv_block_pool *pool, 369 struct anv_device *device, 370 const char *name, 371 uint64_t start_address, 372 uint32_t initial_size) 373{ 374 VkResult result; 375 376 pool->name = name; 377 pool->device = device; 378 pool->use_softpin = device->physical->use_softpin; 379 pool->nbos = 0; 380 pool->size = 0; 381 pool->center_bo_offset = 0; 382 pool->start_address = intel_canonical_address(start_address); 383 pool->map = NULL; 384 385 if (pool->use_softpin) { 386 pool->bo = NULL; 387 pool->fd = -1; 388 } else { 389 /* Just make it 2GB up-front. The Linux kernel won't actually back it 390 * with pages until we either map and fault on one of them or we use 391 * userptr and send a chunk of it off to the GPU. 392 */ 393 pool->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "block pool"); 394 if (pool->fd == -1) 395 return vk_error(device, VK_ERROR_INITIALIZATION_FAILED); 396 397 pool->wrapper_bo = (struct anv_bo) { 398 .refcount = 1, 399 .offset = -1, 400 .is_wrapper = true, 401 }; 402 pool->bo = &pool->wrapper_bo; 403 } 404 405 if (!u_vector_init(&pool->mmap_cleanups, 8, 406 sizeof(struct anv_mmap_cleanup))) { 407 result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED); 408 goto fail_fd; 409 } 410 411 pool->state.next = 0; 412 pool->state.end = 0; 413 pool->back_state.next = 0; 414 pool->back_state.end = 0; 415 416 result = anv_block_pool_expand_range(pool, 0, initial_size); 417 if (result != VK_SUCCESS) 418 goto fail_mmap_cleanups; 419 420 /* Make the entire pool available in the front of the pool. If back 421 * allocation needs to use this space, the "ends" will be re-arranged. 422 */ 423 pool->state.end = pool->size; 424 425 return VK_SUCCESS; 426 427 fail_mmap_cleanups: 428 u_vector_finish(&pool->mmap_cleanups); 429 fail_fd: 430 if (pool->fd >= 0) 431 close(pool->fd); 432 433 return result; 434} 435 436void 437anv_block_pool_finish(struct anv_block_pool *pool) 438{ 439 anv_block_pool_foreach_bo(bo, pool) { 440 if (bo->map) 441 anv_gem_munmap(pool->device, bo->map, bo->size); 442 anv_gem_close(pool->device, bo->gem_handle); 443 } 444 445 struct anv_mmap_cleanup *cleanup; 446 u_vector_foreach(cleanup, &pool->mmap_cleanups) 447 munmap(cleanup->map, cleanup->size); 448 u_vector_finish(&pool->mmap_cleanups); 449 450 if (pool->fd >= 0) 451 close(pool->fd); 452} 453 454static VkResult 455anv_block_pool_expand_range(struct anv_block_pool *pool, 456 uint32_t center_bo_offset, uint32_t size) 457{ 458 /* Assert that we only ever grow the pool */ 459 assert(center_bo_offset >= pool->back_state.end); 460 assert(size - center_bo_offset >= pool->state.end); 461 462 /* Assert that we don't go outside the bounds of the memfd */ 463 assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER); 464 assert(pool->use_softpin || 465 size - center_bo_offset <= 466 BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER); 467 468 /* For state pool BOs we have to be a bit careful about where we place them 469 * in the GTT. There are two documented workarounds for state base address 470 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset 471 * which state that those two base addresses do not support 48-bit 472 * addresses and need to be placed in the bottom 32-bit range. 473 * Unfortunately, this is not quite accurate. 474 * 475 * The real problem is that we always set the size of our state pools in 476 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most 477 * likely significantly smaller. We do this because we do not no at the 478 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand 479 * the pool during command buffer building so we don't actually have a 480 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS 481 * overflows 48 bits, the GPU appears to treat all accesses to the buffer 482 * as being out of bounds and returns zero. For dynamic state, this 483 * usually just leads to rendering corruptions, but shaders that are all 484 * zero hang the GPU immediately. 485 * 486 * The easiest solution to do is exactly what the bogus workarounds say to 487 * do: restrict these buffers to 32-bit addresses. We could also pin the 488 * BO to some particular location of our choosing, but that's significantly 489 * more work than just not setting a flag. So, we explicitly DO NOT set 490 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the 491 * hard work for us. When using softpin, we're in control and the fixed 492 * addresses we choose are fine for base addresses. 493 */ 494 enum anv_bo_alloc_flags bo_alloc_flags = ANV_BO_ALLOC_CAPTURE; 495 if (!pool->use_softpin) 496 bo_alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS; 497 498 if (pool->use_softpin) { 499 uint32_t new_bo_size = size - pool->size; 500 struct anv_bo *new_bo; 501 assert(center_bo_offset == 0); 502 VkResult result = anv_device_alloc_bo(pool->device, 503 pool->name, 504 new_bo_size, 505 bo_alloc_flags | 506 ANV_BO_ALLOC_LOCAL_MEM | 507 ANV_BO_ALLOC_FIXED_ADDRESS | 508 ANV_BO_ALLOC_MAPPED | 509 ANV_BO_ALLOC_SNOOPED, 510 pool->start_address + pool->size, 511 &new_bo); 512 if (result != VK_SUCCESS) 513 return result; 514 515 pool->bos[pool->nbos++] = new_bo; 516 517 /* This pointer will always point to the first BO in the list */ 518 pool->bo = pool->bos[0]; 519 } else { 520 /* Just leak the old map until we destroy the pool. We can't munmap it 521 * without races or imposing locking on the block allocate fast path. On 522 * the whole the leaked maps adds up to less than the size of the 523 * current map. MAP_POPULATE seems like the right thing to do, but we 524 * should try to get some numbers. 525 */ 526 void *map = mmap(NULL, size, PROT_READ | PROT_WRITE, 527 MAP_SHARED | MAP_POPULATE, pool->fd, 528 BLOCK_POOL_MEMFD_CENTER - center_bo_offset); 529 if (map == MAP_FAILED) 530 return vk_errorf(pool->device, VK_ERROR_MEMORY_MAP_FAILED, 531 "mmap failed: %m"); 532 533 struct anv_bo *new_bo; 534 VkResult result = anv_device_import_bo_from_host_ptr(pool->device, 535 map, size, 536 bo_alloc_flags, 537 0 /* client_address */, 538 &new_bo); 539 if (result != VK_SUCCESS) { 540 munmap(map, size); 541 return result; 542 } 543 544 struct anv_mmap_cleanup *cleanup = u_vector_add(&pool->mmap_cleanups); 545 if (!cleanup) { 546 munmap(map, size); 547 anv_device_release_bo(pool->device, new_bo); 548 return vk_error(pool->device, VK_ERROR_OUT_OF_HOST_MEMORY); 549 } 550 cleanup->map = map; 551 cleanup->size = size; 552 553 /* Now that we mapped the new memory, we can write the new 554 * center_bo_offset back into pool and update pool->map. */ 555 pool->center_bo_offset = center_bo_offset; 556 pool->map = map + center_bo_offset; 557 558 pool->bos[pool->nbos++] = new_bo; 559 pool->wrapper_bo.map = new_bo; 560 } 561 562 assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS); 563 pool->size = size; 564 565 return VK_SUCCESS; 566} 567 568/** Returns current memory map of the block pool. 569 * 570 * The returned pointer points to the map for the memory at the specified 571 * offset. The offset parameter is relative to the "center" of the block pool 572 * rather than the start of the block pool BO map. 573 */ 574void* 575anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t size) 576{ 577 if (pool->use_softpin) { 578 struct anv_bo *bo = NULL; 579 int32_t bo_offset = 0; 580 anv_block_pool_foreach_bo(iter_bo, pool) { 581 if (offset < bo_offset + iter_bo->size) { 582 bo = iter_bo; 583 break; 584 } 585 bo_offset += iter_bo->size; 586 } 587 assert(bo != NULL); 588 assert(offset >= bo_offset); 589 assert((offset - bo_offset) + size <= bo->size); 590 591 return bo->map + (offset - bo_offset); 592 } else { 593 return pool->map + offset; 594 } 595} 596 597/** Grows and re-centers the block pool. 598 * 599 * We grow the block pool in one or both directions in such a way that the 600 * following conditions are met: 601 * 602 * 1) The size of the entire pool is always a power of two. 603 * 604 * 2) The pool only grows on both ends. Neither end can get 605 * shortened. 606 * 607 * 3) At the end of the allocation, we have about twice as much space 608 * allocated for each end as we have used. This way the pool doesn't 609 * grow too far in one direction or the other. 610 * 611 * 4) If the _alloc_back() has never been called, then the back portion of 612 * the pool retains a size of zero. (This makes it easier for users of 613 * the block pool that only want a one-sided pool.) 614 * 615 * 5) We have enough space allocated for at least one more block in 616 * whichever side `state` points to. 617 * 618 * 6) The center of the pool is always aligned to both the block_size of 619 * the pool and a 4K CPU page. 620 */ 621static uint32_t 622anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state, 623 uint32_t contiguous_size) 624{ 625 VkResult result = VK_SUCCESS; 626 627 pthread_mutex_lock(&pool->device->mutex); 628 629 assert(state == &pool->state || state == &pool->back_state); 630 631 /* Gather a little usage information on the pool. Since we may have 632 * threadsd waiting in queue to get some storage while we resize, it's 633 * actually possible that total_used will be larger than old_size. In 634 * particular, block_pool_alloc() increments state->next prior to 635 * calling block_pool_grow, so this ensures that we get enough space for 636 * which ever side tries to grow the pool. 637 * 638 * We align to a page size because it makes it easier to do our 639 * calculations later in such a way that we state page-aigned. 640 */ 641 uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE); 642 uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE); 643 uint32_t total_used = front_used + back_used; 644 645 assert(state == &pool->state || back_used > 0); 646 647 uint32_t old_size = pool->size; 648 649 /* The block pool is always initialized to a nonzero size and this function 650 * is always called after initialization. 651 */ 652 assert(old_size > 0); 653 654 const uint32_t old_back = pool->center_bo_offset; 655 const uint32_t old_front = old_size - pool->center_bo_offset; 656 657 /* The back_used and front_used may actually be smaller than the actual 658 * requirement because they are based on the next pointers which are 659 * updated prior to calling this function. 660 */ 661 uint32_t back_required = MAX2(back_used, old_back); 662 uint32_t front_required = MAX2(front_used, old_front); 663 664 if (pool->use_softpin) { 665 /* With softpin, the pool is made up of a bunch of buffers with separate 666 * maps. Make sure we have enough contiguous space that we can get a 667 * properly contiguous map for the next chunk. 668 */ 669 assert(old_back == 0); 670 front_required = MAX2(front_required, old_front + contiguous_size); 671 } 672 673 if (back_used * 2 <= back_required && front_used * 2 <= front_required) { 674 /* If we're in this case then this isn't the firsta allocation and we 675 * already have enough space on both sides to hold double what we 676 * have allocated. There's nothing for us to do. 677 */ 678 goto done; 679 } 680 681 uint32_t size = old_size * 2; 682 while (size < back_required + front_required) 683 size *= 2; 684 685 assert(size > pool->size); 686 687 /* We compute a new center_bo_offset such that, when we double the size 688 * of the pool, we maintain the ratio of how much is used by each side. 689 * This way things should remain more-or-less balanced. 690 */ 691 uint32_t center_bo_offset; 692 if (back_used == 0) { 693 /* If we're in this case then we have never called alloc_back(). In 694 * this case, we want keep the offset at 0 to make things as simple 695 * as possible for users that don't care about back allocations. 696 */ 697 center_bo_offset = 0; 698 } else { 699 /* Try to "center" the allocation based on how much is currently in 700 * use on each side of the center line. 701 */ 702 center_bo_offset = ((uint64_t)size * back_used) / total_used; 703 704 /* Align down to a multiple of the page size */ 705 center_bo_offset &= ~(PAGE_SIZE - 1); 706 707 assert(center_bo_offset >= back_used); 708 709 /* Make sure we don't shrink the back end of the pool */ 710 if (center_bo_offset < back_required) 711 center_bo_offset = back_required; 712 713 /* Make sure that we don't shrink the front end of the pool */ 714 if (size - center_bo_offset < front_required) 715 center_bo_offset = size - front_required; 716 } 717 718 assert(center_bo_offset % PAGE_SIZE == 0); 719 720 result = anv_block_pool_expand_range(pool, center_bo_offset, size); 721 722done: 723 pthread_mutex_unlock(&pool->device->mutex); 724 725 if (result == VK_SUCCESS) { 726 /* Return the appropriate new size. This function never actually 727 * updates state->next. Instead, we let the caller do that because it 728 * needs to do so in order to maintain its concurrency model. 729 */ 730 if (state == &pool->state) { 731 return pool->size - pool->center_bo_offset; 732 } else { 733 assert(pool->center_bo_offset > 0); 734 return pool->center_bo_offset; 735 } 736 } else { 737 return 0; 738 } 739} 740 741static uint32_t 742anv_block_pool_alloc_new(struct anv_block_pool *pool, 743 struct anv_block_state *pool_state, 744 uint32_t block_size, uint32_t *padding) 745{ 746 struct anv_block_state state, old, new; 747 748 /* Most allocations won't generate any padding */ 749 if (padding) 750 *padding = 0; 751 752 while (1) { 753 state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size); 754 if (state.next + block_size <= state.end) { 755 return state.next; 756 } else if (state.next <= state.end) { 757 if (pool->use_softpin && state.next < state.end) { 758 /* We need to grow the block pool, but still have some leftover 759 * space that can't be used by that particular allocation. So we 760 * add that as a "padding", and return it. 761 */ 762 uint32_t leftover = state.end - state.next; 763 764 /* If there is some leftover space in the pool, the caller must 765 * deal with it. 766 */ 767 assert(leftover == 0 || padding); 768 if (padding) 769 *padding = leftover; 770 state.next += leftover; 771 } 772 773 /* We allocated the first block outside the pool so we have to grow 774 * the pool. pool_state->next acts a mutex: threads who try to 775 * allocate now will get block indexes above the current limit and 776 * hit futex_wait below. 777 */ 778 new.next = state.next + block_size; 779 do { 780 new.end = anv_block_pool_grow(pool, pool_state, block_size); 781 } while (new.end < new.next); 782 783 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64); 784 if (old.next != state.next) 785 futex_wake(&pool_state->end, INT_MAX); 786 return state.next; 787 } else { 788 futex_wait(&pool_state->end, state.end, NULL); 789 continue; 790 } 791 } 792} 793 794int32_t 795anv_block_pool_alloc(struct anv_block_pool *pool, 796 uint32_t block_size, uint32_t *padding) 797{ 798 uint32_t offset; 799 800 offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding); 801 802 return offset; 803} 804 805/* Allocates a block out of the back of the block pool. 806 * 807 * This will allocated a block earlier than the "start" of the block pool. 808 * The offsets returned from this function will be negative but will still 809 * be correct relative to the block pool's map pointer. 810 * 811 * If you ever use anv_block_pool_alloc_back, then you will have to do 812 * gymnastics with the block pool's BO when doing relocations. 813 */ 814int32_t 815anv_block_pool_alloc_back(struct anv_block_pool *pool, 816 uint32_t block_size) 817{ 818 int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state, 819 block_size, NULL); 820 821 /* The offset we get out of anv_block_pool_alloc_new() is actually the 822 * number of bytes downwards from the middle to the end of the block. 823 * We need to turn it into a (negative) offset from the middle to the 824 * start of the block. 825 */ 826 assert(offset >= 0); 827 return -(offset + block_size); 828} 829 830VkResult 831anv_state_pool_init(struct anv_state_pool *pool, 832 struct anv_device *device, 833 const char *name, 834 uint64_t base_address, 835 int32_t start_offset, 836 uint32_t block_size) 837{ 838 /* We don't want to ever see signed overflow */ 839 assert(start_offset < INT32_MAX - (int32_t)BLOCK_POOL_MEMFD_SIZE); 840 841 VkResult result = anv_block_pool_init(&pool->block_pool, device, name, 842 base_address + start_offset, 843 block_size * 16); 844 if (result != VK_SUCCESS) 845 return result; 846 847 pool->start_offset = start_offset; 848 849 result = anv_state_table_init(&pool->table, device, 64); 850 if (result != VK_SUCCESS) { 851 anv_block_pool_finish(&pool->block_pool); 852 return result; 853 } 854 855 assert(util_is_power_of_two_or_zero(block_size)); 856 pool->block_size = block_size; 857 pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY; 858 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) { 859 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY; 860 pool->buckets[i].block.next = 0; 861 pool->buckets[i].block.end = 0; 862 } 863 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false)); 864 865 return VK_SUCCESS; 866} 867 868void 869anv_state_pool_finish(struct anv_state_pool *pool) 870{ 871 VG(VALGRIND_DESTROY_MEMPOOL(pool)); 872 anv_state_table_finish(&pool->table); 873 anv_block_pool_finish(&pool->block_pool); 874} 875 876static uint32_t 877anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool, 878 struct anv_block_pool *block_pool, 879 uint32_t state_size, 880 uint32_t block_size, 881 uint32_t *padding) 882{ 883 struct anv_block_state block, old, new; 884 uint32_t offset; 885 886 /* We don't always use anv_block_pool_alloc(), which would set *padding to 887 * zero for us. So if we have a pointer to padding, we must zero it out 888 * ourselves here, to make sure we always return some sensible value. 889 */ 890 if (padding) 891 *padding = 0; 892 893 /* If our state is large, we don't need any sub-allocation from a block. 894 * Instead, we just grab whole (potentially large) blocks. 895 */ 896 if (state_size >= block_size) 897 return anv_block_pool_alloc(block_pool, state_size, padding); 898 899 restart: 900 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size); 901 902 if (block.next < block.end) { 903 return block.next; 904 } else if (block.next == block.end) { 905 offset = anv_block_pool_alloc(block_pool, block_size, padding); 906 new.next = offset + state_size; 907 new.end = offset + block_size; 908 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64); 909 if (old.next != block.next) 910 futex_wake(&pool->block.end, INT_MAX); 911 return offset; 912 } else { 913 futex_wait(&pool->block.end, block.end, NULL); 914 goto restart; 915 } 916} 917 918static uint32_t 919anv_state_pool_get_bucket(uint32_t size) 920{ 921 unsigned size_log2 = ilog2_round_up(size); 922 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2); 923 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2) 924 size_log2 = ANV_MIN_STATE_SIZE_LOG2; 925 return size_log2 - ANV_MIN_STATE_SIZE_LOG2; 926} 927 928static uint32_t 929anv_state_pool_get_bucket_size(uint32_t bucket) 930{ 931 uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2; 932 return 1 << size_log2; 933} 934 935/** Helper to push a chunk into the state table. 936 * 937 * It creates 'count' entries into the state table and update their sizes, 938 * offsets and maps, also pushing them as "free" states. 939 */ 940static void 941anv_state_pool_return_blocks(struct anv_state_pool *pool, 942 uint32_t chunk_offset, uint32_t count, 943 uint32_t block_size) 944{ 945 /* Disallow returning 0 chunks */ 946 assert(count != 0); 947 948 /* Make sure we always return chunks aligned to the block_size */ 949 assert(chunk_offset % block_size == 0); 950 951 uint32_t st_idx; 952 UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count); 953 assert(result == VK_SUCCESS); 954 for (int i = 0; i < count; i++) { 955 /* update states that were added back to the state table */ 956 struct anv_state *state_i = anv_state_table_get(&pool->table, 957 st_idx + i); 958 state_i->alloc_size = block_size; 959 state_i->offset = pool->start_offset + chunk_offset + block_size * i; 960 state_i->map = anv_block_pool_map(&pool->block_pool, 961 state_i->offset, 962 state_i->alloc_size); 963 } 964 965 uint32_t block_bucket = anv_state_pool_get_bucket(block_size); 966 anv_free_list_push(&pool->buckets[block_bucket].free_list, 967 &pool->table, st_idx, count); 968} 969 970/** Returns a chunk of memory back to the state pool. 971 * 972 * Do a two-level split. If chunk_size is bigger than divisor 973 * (pool->block_size), we return as many divisor sized blocks as we can, from 974 * the end of the chunk. 975 * 976 * The remaining is then split into smaller blocks (starting at small_size if 977 * it is non-zero), with larger blocks always being taken from the end of the 978 * chunk. 979 */ 980static void 981anv_state_pool_return_chunk(struct anv_state_pool *pool, 982 uint32_t chunk_offset, uint32_t chunk_size, 983 uint32_t small_size) 984{ 985 uint32_t divisor = pool->block_size; 986 uint32_t nblocks = chunk_size / divisor; 987 uint32_t rest = chunk_size - nblocks * divisor; 988 989 if (nblocks > 0) { 990 /* First return divisor aligned and sized chunks. We start returning 991 * larger blocks from the end fo the chunk, since they should already be 992 * aligned to divisor. Also anv_state_pool_return_blocks() only accepts 993 * aligned chunks. 994 */ 995 uint32_t offset = chunk_offset + rest; 996 anv_state_pool_return_blocks(pool, offset, nblocks, divisor); 997 } 998 999 chunk_size = rest; 1000 divisor /= 2; 1001 1002 if (small_size > 0 && small_size < divisor) 1003 divisor = small_size; 1004 1005 uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2; 1006 1007 /* Just as before, return larger divisor aligned blocks from the end of the 1008 * chunk first. 1009 */ 1010 while (chunk_size > 0 && divisor >= min_size) { 1011 nblocks = chunk_size / divisor; 1012 rest = chunk_size - nblocks * divisor; 1013 if (nblocks > 0) { 1014 anv_state_pool_return_blocks(pool, chunk_offset + rest, 1015 nblocks, divisor); 1016 chunk_size = rest; 1017 } 1018 divisor /= 2; 1019 } 1020} 1021 1022static struct anv_state 1023anv_state_pool_alloc_no_vg(struct anv_state_pool *pool, 1024 uint32_t size, uint32_t align) 1025{ 1026 uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align)); 1027 1028 struct anv_state *state; 1029 uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket); 1030 int32_t offset; 1031 1032 /* Try free list first. */ 1033 state = anv_free_list_pop(&pool->buckets[bucket].free_list, 1034 &pool->table); 1035 if (state) { 1036 assert(state->offset >= pool->start_offset); 1037 goto done; 1038 } 1039 1040 /* Try to grab a chunk from some larger bucket and split it up */ 1041 for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) { 1042 state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table); 1043 if (state) { 1044 unsigned chunk_size = anv_state_pool_get_bucket_size(b); 1045 int32_t chunk_offset = state->offset; 1046 1047 /* First lets update the state we got to its new size. offset and map 1048 * remain the same. 1049 */ 1050 state->alloc_size = alloc_size; 1051 1052 /* Now return the unused part of the chunk back to the pool as free 1053 * blocks 1054 * 1055 * There are a couple of options as to what we do with it: 1056 * 1057 * 1) We could fully split the chunk into state.alloc_size sized 1058 * pieces. However, this would mean that allocating a 16B 1059 * state could potentially split a 2MB chunk into 512K smaller 1060 * chunks. This would lead to unnecessary fragmentation. 1061 * 1062 * 2) The classic "buddy allocator" method would have us split the 1063 * chunk in half and return one half. Then we would split the 1064 * remaining half in half and return one half, and repeat as 1065 * needed until we get down to the size we want. However, if 1066 * you are allocating a bunch of the same size state (which is 1067 * the common case), this means that every other allocation has 1068 * to go up a level and every fourth goes up two levels, etc. 1069 * This is not nearly as efficient as it could be if we did a 1070 * little more work up-front. 1071 * 1072 * 3) Split the difference between (1) and (2) by doing a 1073 * two-level split. If it's bigger than some fixed block_size, 1074 * we split it into block_size sized chunks and return all but 1075 * one of them. Then we split what remains into 1076 * state.alloc_size sized chunks and return them. 1077 * 1078 * We choose something close to option (3), which is implemented with 1079 * anv_state_pool_return_chunk(). That is done by returning the 1080 * remaining of the chunk, with alloc_size as a hint of the size that 1081 * we want the smaller chunk split into. 1082 */ 1083 anv_state_pool_return_chunk(pool, chunk_offset + alloc_size, 1084 chunk_size - alloc_size, alloc_size); 1085 goto done; 1086 } 1087 } 1088 1089 uint32_t padding; 1090 offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket], 1091 &pool->block_pool, 1092 alloc_size, 1093 pool->block_size, 1094 &padding); 1095 /* Everytime we allocate a new state, add it to the state pool */ 1096 uint32_t idx; 1097 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1); 1098 assert(result == VK_SUCCESS); 1099 1100 state = anv_state_table_get(&pool->table, idx); 1101 state->offset = pool->start_offset + offset; 1102 state->alloc_size = alloc_size; 1103 state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size); 1104 1105 if (padding > 0) { 1106 uint32_t return_offset = offset - padding; 1107 anv_state_pool_return_chunk(pool, return_offset, padding, 0); 1108 } 1109 1110done: 1111 return *state; 1112} 1113 1114struct anv_state 1115anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align) 1116{ 1117 if (size == 0) 1118 return ANV_STATE_NULL; 1119 1120 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align); 1121 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size)); 1122 return state; 1123} 1124 1125struct anv_state 1126anv_state_pool_alloc_back(struct anv_state_pool *pool) 1127{ 1128 struct anv_state *state; 1129 uint32_t alloc_size = pool->block_size; 1130 1131 /* This function is only used with pools where start_offset == 0 */ 1132 assert(pool->start_offset == 0); 1133 1134 state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table); 1135 if (state) { 1136 assert(state->offset < pool->start_offset); 1137 goto done; 1138 } 1139 1140 int32_t offset; 1141 offset = anv_block_pool_alloc_back(&pool->block_pool, 1142 pool->block_size); 1143 uint32_t idx; 1144 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1); 1145 assert(result == VK_SUCCESS); 1146 1147 state = anv_state_table_get(&pool->table, idx); 1148 state->offset = pool->start_offset + offset; 1149 state->alloc_size = alloc_size; 1150 state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size); 1151 1152done: 1153 VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size)); 1154 return *state; 1155} 1156 1157static void 1158anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state) 1159{ 1160 assert(util_is_power_of_two_or_zero(state.alloc_size)); 1161 unsigned bucket = anv_state_pool_get_bucket(state.alloc_size); 1162 1163 if (state.offset < pool->start_offset) { 1164 assert(state.alloc_size == pool->block_size); 1165 anv_free_list_push(&pool->back_alloc_free_list, 1166 &pool->table, state.idx, 1); 1167 } else { 1168 anv_free_list_push(&pool->buckets[bucket].free_list, 1169 &pool->table, state.idx, 1); 1170 } 1171} 1172 1173void 1174anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state) 1175{ 1176 if (state.alloc_size == 0) 1177 return; 1178 1179 VG(VALGRIND_MEMPOOL_FREE(pool, state.map)); 1180 anv_state_pool_free_no_vg(pool, state); 1181} 1182 1183struct anv_state_stream_block { 1184 struct anv_state block; 1185 1186 /* The next block */ 1187 struct anv_state_stream_block *next; 1188 1189#ifdef HAVE_VALGRIND 1190 /* A pointer to the first user-allocated thing in this block. This is 1191 * what valgrind sees as the start of the block. 1192 */ 1193 void *_vg_ptr; 1194#endif 1195}; 1196 1197/* The state stream allocator is a one-shot, single threaded allocator for 1198 * variable sized blocks. We use it for allocating dynamic state. 1199 */ 1200void 1201anv_state_stream_init(struct anv_state_stream *stream, 1202 struct anv_state_pool *state_pool, 1203 uint32_t block_size) 1204{ 1205 stream->state_pool = state_pool; 1206 stream->block_size = block_size; 1207 1208 stream->block = ANV_STATE_NULL; 1209 1210 /* Ensure that next + whatever > block_size. This way the first call to 1211 * state_stream_alloc fetches a new block. 1212 */ 1213 stream->next = block_size; 1214 1215 util_dynarray_init(&stream->all_blocks, NULL); 1216 1217 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false)); 1218} 1219 1220void 1221anv_state_stream_finish(struct anv_state_stream *stream) 1222{ 1223 util_dynarray_foreach(&stream->all_blocks, struct anv_state, block) { 1224 VG(VALGRIND_MEMPOOL_FREE(stream, block->map)); 1225 VG(VALGRIND_MAKE_MEM_NOACCESS(block->map, block->alloc_size)); 1226 anv_state_pool_free_no_vg(stream->state_pool, *block); 1227 } 1228 util_dynarray_fini(&stream->all_blocks); 1229 1230 VG(VALGRIND_DESTROY_MEMPOOL(stream)); 1231} 1232 1233struct anv_state 1234anv_state_stream_alloc(struct anv_state_stream *stream, 1235 uint32_t size, uint32_t alignment) 1236{ 1237 if (size == 0) 1238 return ANV_STATE_NULL; 1239 1240 assert(alignment <= PAGE_SIZE); 1241 1242 uint32_t offset = align_u32(stream->next, alignment); 1243 if (offset + size > stream->block.alloc_size) { 1244 uint32_t block_size = stream->block_size; 1245 if (block_size < size) 1246 block_size = round_to_power_of_two(size); 1247 1248 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool, 1249 block_size, PAGE_SIZE); 1250 util_dynarray_append(&stream->all_blocks, 1251 struct anv_state, stream->block); 1252 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, block_size)); 1253 1254 /* Reset back to the start */ 1255 stream->next = offset = 0; 1256 assert(offset + size <= stream->block.alloc_size); 1257 } 1258 const bool new_block = stream->next == 0; 1259 1260 struct anv_state state = stream->block; 1261 state.offset += offset; 1262 state.alloc_size = size; 1263 state.map += offset; 1264 1265 stream->next = offset + size; 1266 1267 if (new_block) { 1268 assert(state.map == stream->block.map); 1269 VG(VALGRIND_MEMPOOL_ALLOC(stream, state.map, size)); 1270 } else { 1271 /* This only updates the mempool. The newly allocated chunk is still 1272 * marked as NOACCESS. */ 1273 VG(VALGRIND_MEMPOOL_CHANGE(stream, stream->block.map, stream->block.map, 1274 stream->next)); 1275 /* Mark the newly allocated chunk as undefined */ 1276 VG(VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size)); 1277 } 1278 1279 return state; 1280} 1281 1282void 1283anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool, 1284 struct anv_state_pool *parent, 1285 uint32_t count, uint32_t size, uint32_t alignment) 1286{ 1287 pool->pool = parent; 1288 pool->reserved_blocks = ANV_FREE_LIST_EMPTY; 1289 pool->count = count; 1290 1291 for (unsigned i = 0; i < count; i++) { 1292 struct anv_state state = anv_state_pool_alloc(pool->pool, size, alignment); 1293 anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1); 1294 } 1295} 1296 1297void 1298anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool) 1299{ 1300 struct anv_state *state; 1301 1302 while ((state = anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table))) { 1303 anv_state_pool_free(pool->pool, *state); 1304 pool->count--; 1305 } 1306 assert(pool->count == 0); 1307} 1308 1309struct anv_state 1310anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool) 1311{ 1312 return *anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table); 1313} 1314 1315void 1316anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool, 1317 struct anv_state state) 1318{ 1319 anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1); 1320} 1321 1322void 1323anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device, 1324 const char *name) 1325{ 1326 pool->name = name; 1327 pool->device = device; 1328 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) { 1329 util_sparse_array_free_list_init(&pool->free_list[i], 1330 &device->bo_cache.bo_map, 0, 1331 offsetof(struct anv_bo, free_index)); 1332 } 1333 1334 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false)); 1335} 1336 1337void 1338anv_bo_pool_finish(struct anv_bo_pool *pool) 1339{ 1340 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) { 1341 while (1) { 1342 struct anv_bo *bo = 1343 util_sparse_array_free_list_pop_elem(&pool->free_list[i]); 1344 if (bo == NULL) 1345 break; 1346 1347 /* anv_device_release_bo is going to "free" it */ 1348 VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, bo->size, 0, 1)); 1349 anv_device_release_bo(pool->device, bo); 1350 } 1351 } 1352 1353 VG(VALGRIND_DESTROY_MEMPOOL(pool)); 1354} 1355 1356VkResult 1357anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size, 1358 struct anv_bo **bo_out) 1359{ 1360 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size); 1361 const unsigned pow2_size = 1 << size_log2; 1362 const unsigned bucket = size_log2 - 12; 1363 assert(bucket < ARRAY_SIZE(pool->free_list)); 1364 1365 struct anv_bo *bo = 1366 util_sparse_array_free_list_pop_elem(&pool->free_list[bucket]); 1367 if (bo != NULL) { 1368 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size)); 1369 *bo_out = bo; 1370 return VK_SUCCESS; 1371 } 1372 1373 VkResult result = anv_device_alloc_bo(pool->device, 1374 pool->name, 1375 pow2_size, 1376 ANV_BO_ALLOC_LOCAL_MEM | 1377 ANV_BO_ALLOC_MAPPED | 1378 ANV_BO_ALLOC_SNOOPED | 1379 ANV_BO_ALLOC_CAPTURE, 1380 0 /* explicit_address */, 1381 &bo); 1382 if (result != VK_SUCCESS) 1383 return result; 1384 1385 /* We want it to look like it came from this pool */ 1386 VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0)); 1387 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size)); 1388 1389 *bo_out = bo; 1390 1391 return VK_SUCCESS; 1392} 1393 1394void 1395anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo) 1396{ 1397 VG(VALGRIND_MEMPOOL_FREE(pool, bo->map)); 1398 1399 assert(util_is_power_of_two_or_zero(bo->size)); 1400 const unsigned size_log2 = ilog2_round_up(bo->size); 1401 const unsigned bucket = size_log2 - 12; 1402 assert(bucket < ARRAY_SIZE(pool->free_list)); 1403 1404 assert(util_sparse_array_get(&pool->device->bo_cache.bo_map, 1405 bo->gem_handle) == bo); 1406 util_sparse_array_free_list_push(&pool->free_list[bucket], 1407 &bo->gem_handle, 1); 1408} 1409 1410// Scratch pool 1411 1412void 1413anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool) 1414{ 1415 memset(pool, 0, sizeof(*pool)); 1416} 1417 1418void 1419anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool) 1420{ 1421 for (unsigned s = 0; s < ARRAY_SIZE(pool->bos[0]); s++) { 1422 for (unsigned i = 0; i < 16; i++) { 1423 if (pool->bos[i][s] != NULL) 1424 anv_device_release_bo(device, pool->bos[i][s]); 1425 } 1426 } 1427 1428 for (unsigned i = 0; i < 16; i++) { 1429 if (pool->surf_states[i].map != NULL) { 1430 anv_state_pool_free(&device->surface_state_pool, 1431 pool->surf_states[i]); 1432 } 1433 } 1434} 1435 1436struct anv_bo * 1437anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool, 1438 gl_shader_stage stage, unsigned per_thread_scratch) 1439{ 1440 if (per_thread_scratch == 0) 1441 return NULL; 1442 1443 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048); 1444 assert(scratch_size_log2 < 16); 1445 1446 assert(stage < ARRAY_SIZE(pool->bos)); 1447 1448 const struct intel_device_info *devinfo = &device->info; 1449 1450 /* On GFX version 12.5, scratch access changed to a surface-based model. 1451 * Instead of each shader type having its own layout based on IDs passed 1452 * from the relevant fixed-function unit, all scratch access is based on 1453 * thread IDs like it always has been for compute. 1454 */ 1455 if (devinfo->verx10 >= 125) 1456 stage = MESA_SHADER_COMPUTE; 1457 1458 struct anv_bo *bo = p_atomic_read(&pool->bos[scratch_size_log2][stage]); 1459 1460 if (bo != NULL) 1461 return bo; 1462 1463 assert(stage < ARRAY_SIZE(devinfo->max_scratch_ids)); 1464 uint32_t size = per_thread_scratch * devinfo->max_scratch_ids[stage]; 1465 1466 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they 1467 * are still relative to the general state base address. When we emit 1468 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size 1469 * to the maximum (1 page under 4GB). This allows us to just place the 1470 * scratch buffers anywhere we wish in the bottom 32 bits of address space 1471 * and just set the scratch base pointer in 3DSTATE_*S using a relocation. 1472 * However, in order to do so, we need to ensure that the kernel does not 1473 * place the scratch BO above the 32-bit boundary. 1474 * 1475 * NOTE: Technically, it can't go "anywhere" because the top page is off 1476 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the 1477 * kernel allocates space using 1478 * 1479 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE); 1480 * 1481 * so nothing will ever touch the top page. 1482 */ 1483 VkResult result = anv_device_alloc_bo(device, "scratch", size, 1484 ANV_BO_ALLOC_32BIT_ADDRESS | 1485 ANV_BO_ALLOC_LOCAL_MEM, 1486 0 /* explicit_address */, 1487 &bo); 1488 if (result != VK_SUCCESS) 1489 return NULL; /* TODO */ 1490 1491 struct anv_bo *current_bo = 1492 p_atomic_cmpxchg(&pool->bos[scratch_size_log2][stage], NULL, bo); 1493 if (current_bo) { 1494 anv_device_release_bo(device, bo); 1495 return current_bo; 1496 } else { 1497 return bo; 1498 } 1499} 1500 1501uint32_t 1502anv_scratch_pool_get_surf(struct anv_device *device, 1503 struct anv_scratch_pool *pool, 1504 unsigned per_thread_scratch) 1505{ 1506 if (per_thread_scratch == 0) 1507 return 0; 1508 1509 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048); 1510 assert(scratch_size_log2 < 16); 1511 1512 uint32_t surf = p_atomic_read(&pool->surfs[scratch_size_log2]); 1513 if (surf > 0) 1514 return surf; 1515 1516 struct anv_bo *bo = 1517 anv_scratch_pool_alloc(device, pool, MESA_SHADER_COMPUTE, 1518 per_thread_scratch); 1519 struct anv_address addr = { .bo = bo }; 1520 1521 struct anv_state state = 1522 anv_state_pool_alloc(&device->surface_state_pool, 1523 device->isl_dev.ss.size, 64); 1524 1525 isl_buffer_fill_state(&device->isl_dev, state.map, 1526 .address = anv_address_physical(addr), 1527 .size_B = bo->size, 1528 .mocs = anv_mocs(device, bo, 0), 1529 .format = ISL_FORMAT_RAW, 1530 .swizzle = ISL_SWIZZLE_IDENTITY, 1531 .stride_B = per_thread_scratch, 1532 .is_scratch = true); 1533 1534 uint32_t current = p_atomic_cmpxchg(&pool->surfs[scratch_size_log2], 1535 0, state.offset); 1536 if (current) { 1537 anv_state_pool_free(&device->surface_state_pool, state); 1538 return current; 1539 } else { 1540 pool->surf_states[scratch_size_log2] = state; 1541 return state.offset; 1542 } 1543} 1544 1545VkResult 1546anv_bo_cache_init(struct anv_bo_cache *cache, struct anv_device *device) 1547{ 1548 util_sparse_array_init(&cache->bo_map, sizeof(struct anv_bo), 1024); 1549 1550 if (pthread_mutex_init(&cache->mutex, NULL)) { 1551 util_sparse_array_finish(&cache->bo_map); 1552 return vk_errorf(device, VK_ERROR_OUT_OF_HOST_MEMORY, 1553 "pthread_mutex_init failed: %m"); 1554 } 1555 1556 return VK_SUCCESS; 1557} 1558 1559void 1560anv_bo_cache_finish(struct anv_bo_cache *cache) 1561{ 1562 util_sparse_array_finish(&cache->bo_map); 1563 pthread_mutex_destroy(&cache->mutex); 1564} 1565 1566#define ANV_BO_CACHE_SUPPORTED_FLAGS \ 1567 (EXEC_OBJECT_WRITE | \ 1568 EXEC_OBJECT_ASYNC | \ 1569 EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \ 1570 EXEC_OBJECT_PINNED | \ 1571 EXEC_OBJECT_CAPTURE) 1572 1573static uint32_t 1574anv_bo_alloc_flags_to_bo_flags(struct anv_device *device, 1575 enum anv_bo_alloc_flags alloc_flags) 1576{ 1577 struct anv_physical_device *pdevice = device->physical; 1578 1579 uint64_t bo_flags = 0; 1580 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS) && 1581 pdevice->supports_48bit_addresses) 1582 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS; 1583 1584 if ((alloc_flags & ANV_BO_ALLOC_CAPTURE) && pdevice->has_exec_capture) 1585 bo_flags |= EXEC_OBJECT_CAPTURE; 1586 1587 if (alloc_flags & ANV_BO_ALLOC_IMPLICIT_WRITE) { 1588 assert(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC); 1589 bo_flags |= EXEC_OBJECT_WRITE; 1590 } 1591 1592 if (!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC) && pdevice->has_exec_async) 1593 bo_flags |= EXEC_OBJECT_ASYNC; 1594 1595 if (pdevice->use_softpin) 1596 bo_flags |= EXEC_OBJECT_PINNED; 1597 1598 return bo_flags; 1599} 1600 1601static uint32_t 1602anv_device_get_bo_align(struct anv_device *device, 1603 enum anv_bo_alloc_flags alloc_flags) 1604{ 1605 /* Gfx12 CCS surface addresses need to be 64K aligned. */ 1606 if (device->info.ver >= 12 && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS)) 1607 return 64 * 1024; 1608 1609 return 4096; 1610} 1611 1612VkResult 1613anv_device_alloc_bo(struct anv_device *device, 1614 const char *name, 1615 uint64_t size, 1616 enum anv_bo_alloc_flags alloc_flags, 1617 uint64_t explicit_address, 1618 struct anv_bo **bo_out) 1619{ 1620 if (!(alloc_flags & ANV_BO_ALLOC_LOCAL_MEM)) 1621 anv_perf_warn(VK_LOG_NO_OBJS(&device->physical->instance->vk.base), 1622 "system memory used"); 1623 1624 if (!device->physical->has_implicit_ccs) 1625 assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS)); 1626 1627 const uint32_t bo_flags = 1628 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags); 1629 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS)); 1630 1631 /* The kernel is going to give us whole pages anyway */ 1632 size = align_u64(size, 4096); 1633 1634 const uint32_t align = anv_device_get_bo_align(device, alloc_flags); 1635 1636 uint64_t ccs_size = 0; 1637 if (device->info.has_aux_map && (alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS)) { 1638 /* Align the size up to the next multiple of 64K so we don't have any 1639 * AUX-TT entries pointing from a 64K page to itself. 1640 */ 1641 size = align_u64(size, 64 * 1024); 1642 1643 /* See anv_bo::_ccs_size */ 1644 ccs_size = align_u64(DIV_ROUND_UP(size, INTEL_AUX_MAP_GFX12_CCS_SCALE), 4096); 1645 } 1646 1647 uint32_t gem_handle; 1648 1649 /* If we have vram size, we have multiple memory regions and should choose 1650 * one of them. 1651 */ 1652 if (device->physical->vram.size > 0) { 1653 struct drm_i915_gem_memory_class_instance regions[2]; 1654 uint32_t nregions = 0; 1655 1656 if (alloc_flags & ANV_BO_ALLOC_LOCAL_MEM) { 1657 /* For vram allocation, still use system memory as a fallback. */ 1658 regions[nregions++] = device->physical->vram.region; 1659 regions[nregions++] = device->physical->sys.region; 1660 } else { 1661 regions[nregions++] = device->physical->sys.region; 1662 } 1663 1664 gem_handle = anv_gem_create_regions(device, size + ccs_size, 1665 nregions, regions); 1666 } else { 1667 gem_handle = anv_gem_create(device, size + ccs_size); 1668 } 1669 1670 if (gem_handle == 0) 1671 return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY); 1672 1673 struct anv_bo new_bo = { 1674 .name = name, 1675 .gem_handle = gem_handle, 1676 .refcount = 1, 1677 .offset = -1, 1678 .size = size, 1679 ._ccs_size = ccs_size, 1680 .flags = bo_flags, 1681 .is_external = (alloc_flags & ANV_BO_ALLOC_EXTERNAL), 1682 .has_client_visible_address = 1683 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0, 1684 .has_implicit_ccs = ccs_size > 0, 1685 }; 1686 1687 if (alloc_flags & ANV_BO_ALLOC_MAPPED) { 1688 new_bo.map = anv_gem_mmap(device, new_bo.gem_handle, 0, size, 0); 1689 if (new_bo.map == MAP_FAILED) { 1690 anv_gem_close(device, new_bo.gem_handle); 1691 return vk_errorf(device, VK_ERROR_OUT_OF_HOST_MEMORY, 1692 "mmap failed: %m"); 1693 } 1694 } 1695 1696 if (alloc_flags & ANV_BO_ALLOC_SNOOPED) { 1697 assert(alloc_flags & ANV_BO_ALLOC_MAPPED); 1698 /* We don't want to change these defaults if it's going to be shared 1699 * with another process. 1700 */ 1701 assert(!(alloc_flags & ANV_BO_ALLOC_EXTERNAL)); 1702 1703 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and 1704 * I915_CACHING_NONE on non-LLC platforms. For many internal state 1705 * objects, we'd rather take the snooping overhead than risk forgetting 1706 * a CLFLUSH somewhere. Userptr objects are always created as 1707 * I915_CACHING_CACHED, which on non-LLC means snooped so there's no 1708 * need to do this there. 1709 */ 1710 if (!device->info.has_llc) { 1711 anv_gem_set_caching(device, new_bo.gem_handle, 1712 I915_CACHING_CACHED); 1713 } 1714 } 1715 1716 if (alloc_flags & ANV_BO_ALLOC_FIXED_ADDRESS) { 1717 new_bo.has_fixed_address = true; 1718 new_bo.offset = explicit_address; 1719 } else if (new_bo.flags & EXEC_OBJECT_PINNED) { 1720 new_bo.offset = anv_vma_alloc(device, new_bo.size + new_bo._ccs_size, 1721 align, alloc_flags, explicit_address); 1722 if (new_bo.offset == 0) { 1723 if (new_bo.map) 1724 anv_gem_munmap(device, new_bo.map, size); 1725 anv_gem_close(device, new_bo.gem_handle); 1726 return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY, 1727 "failed to allocate virtual address for BO"); 1728 } 1729 } else { 1730 assert(!new_bo.has_client_visible_address); 1731 } 1732 1733 if (new_bo._ccs_size > 0) { 1734 assert(device->info.has_aux_map); 1735 intel_aux_map_add_mapping(device->aux_map_ctx, 1736 intel_canonical_address(new_bo.offset), 1737 intel_canonical_address(new_bo.offset + new_bo.size), 1738 new_bo.size, 0 /* format_bits */); 1739 } 1740 1741 assert(new_bo.gem_handle); 1742 1743 /* If we just got this gem_handle from anv_bo_init_new then we know no one 1744 * else is touching this BO at the moment so we don't need to lock here. 1745 */ 1746 struct anv_bo *bo = anv_device_lookup_bo(device, new_bo.gem_handle); 1747 *bo = new_bo; 1748 1749 *bo_out = bo; 1750 1751 return VK_SUCCESS; 1752} 1753 1754VkResult 1755anv_device_import_bo_from_host_ptr(struct anv_device *device, 1756 void *host_ptr, uint32_t size, 1757 enum anv_bo_alloc_flags alloc_flags, 1758 uint64_t client_address, 1759 struct anv_bo **bo_out) 1760{ 1761 assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED | 1762 ANV_BO_ALLOC_SNOOPED | 1763 ANV_BO_ALLOC_FIXED_ADDRESS))); 1764 1765 /* We can't do implicit CCS with an aux table on shared memory */ 1766 if (!device->physical->has_implicit_ccs || device->info.has_aux_map) 1767 assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS)); 1768 1769 struct anv_bo_cache *cache = &device->bo_cache; 1770 const uint32_t bo_flags = 1771 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags); 1772 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS)); 1773 1774 uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size); 1775 if (!gem_handle) 1776 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE); 1777 1778 pthread_mutex_lock(&cache->mutex); 1779 1780 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle); 1781 if (bo->refcount > 0) { 1782 /* VK_EXT_external_memory_host doesn't require handling importing the 1783 * same pointer twice at the same time, but we don't get in the way. If 1784 * kernel gives us the same gem_handle, only succeed if the flags match. 1785 */ 1786 assert(bo->gem_handle == gem_handle); 1787 if (bo_flags != bo->flags) { 1788 pthread_mutex_unlock(&cache->mutex); 1789 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, 1790 "same host pointer imported two different ways"); 1791 } 1792 1793 if (bo->has_client_visible_address != 1794 ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) { 1795 pthread_mutex_unlock(&cache->mutex); 1796 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, 1797 "The same BO was imported with and without buffer " 1798 "device address"); 1799 } 1800 1801 if (client_address && client_address != intel_48b_address(bo->offset)) { 1802 pthread_mutex_unlock(&cache->mutex); 1803 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, 1804 "The same BO was imported at two different " 1805 "addresses"); 1806 } 1807 1808 __sync_fetch_and_add(&bo->refcount, 1); 1809 } else { 1810 struct anv_bo new_bo = { 1811 .name = "host-ptr", 1812 .gem_handle = gem_handle, 1813 .refcount = 1, 1814 .offset = -1, 1815 .size = size, 1816 .map = host_ptr, 1817 .flags = bo_flags, 1818 .is_external = true, 1819 .from_host_ptr = true, 1820 .has_client_visible_address = 1821 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0, 1822 }; 1823 1824 assert(client_address == intel_48b_address(client_address)); 1825 if (new_bo.flags & EXEC_OBJECT_PINNED) { 1826 assert(new_bo._ccs_size == 0); 1827 new_bo.offset = anv_vma_alloc(device, new_bo.size, 1828 anv_device_get_bo_align(device, 1829 alloc_flags), 1830 alloc_flags, client_address); 1831 if (new_bo.offset == 0) { 1832 anv_gem_close(device, new_bo.gem_handle); 1833 pthread_mutex_unlock(&cache->mutex); 1834 return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY, 1835 "failed to allocate virtual address for BO"); 1836 } 1837 } else { 1838 assert(!new_bo.has_client_visible_address); 1839 } 1840 1841 *bo = new_bo; 1842 } 1843 1844 pthread_mutex_unlock(&cache->mutex); 1845 *bo_out = bo; 1846 1847 return VK_SUCCESS; 1848} 1849 1850VkResult 1851anv_device_import_bo(struct anv_device *device, 1852 int fd, 1853 enum anv_bo_alloc_flags alloc_flags, 1854 uint64_t client_address, 1855 struct anv_bo **bo_out) 1856{ 1857 assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED | 1858 ANV_BO_ALLOC_SNOOPED | 1859 ANV_BO_ALLOC_FIXED_ADDRESS))); 1860 1861 /* We can't do implicit CCS with an aux table on shared memory */ 1862 if (!device->physical->has_implicit_ccs || device->info.has_aux_map) 1863 assert(!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_CCS)); 1864 1865 struct anv_bo_cache *cache = &device->bo_cache; 1866 const uint32_t bo_flags = 1867 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags); 1868 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS)); 1869 1870 pthread_mutex_lock(&cache->mutex); 1871 1872 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd); 1873 if (!gem_handle) { 1874 pthread_mutex_unlock(&cache->mutex); 1875 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE); 1876 } 1877 1878 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle); 1879 if (bo->refcount > 0) { 1880 /* We have to be careful how we combine flags so that it makes sense. 1881 * Really, though, if we get to this case and it actually matters, the 1882 * client has imported a BO twice in different ways and they get what 1883 * they have coming. 1884 */ 1885 uint64_t new_flags = 0; 1886 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_WRITE; 1887 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_ASYNC; 1888 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS; 1889 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_PINNED; 1890 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_CAPTURE; 1891 1892 /* It's theoretically possible for a BO to get imported such that it's 1893 * both pinned and not pinned. The only way this can happen is if it 1894 * gets imported as both a semaphore and a memory object and that would 1895 * be an application error. Just fail out in that case. 1896 */ 1897 if ((bo->flags & EXEC_OBJECT_PINNED) != 1898 (bo_flags & EXEC_OBJECT_PINNED)) { 1899 pthread_mutex_unlock(&cache->mutex); 1900 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, 1901 "The same BO was imported two different ways"); 1902 } 1903 1904 /* It's also theoretically possible that someone could export a BO from 1905 * one heap and import it into another or to import the same BO into two 1906 * different heaps. If this happens, we could potentially end up both 1907 * allowing and disallowing 48-bit addresses. There's not much we can 1908 * do about it if we're pinning so we just throw an error and hope no 1909 * app is actually that stupid. 1910 */ 1911 if ((new_flags & EXEC_OBJECT_PINNED) && 1912 (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) != 1913 (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) { 1914 pthread_mutex_unlock(&cache->mutex); 1915 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, 1916 "The same BO was imported on two different heaps"); 1917 } 1918 1919 if (bo->has_client_visible_address != 1920 ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) { 1921 pthread_mutex_unlock(&cache->mutex); 1922 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, 1923 "The same BO was imported with and without buffer " 1924 "device address"); 1925 } 1926 1927 if (client_address && client_address != intel_48b_address(bo->offset)) { 1928 pthread_mutex_unlock(&cache->mutex); 1929 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE, 1930 "The same BO was imported at two different " 1931 "addresses"); 1932 } 1933 1934 bo->flags = new_flags; 1935 1936 __sync_fetch_and_add(&bo->refcount, 1); 1937 } else { 1938 off_t size = lseek(fd, 0, SEEK_END); 1939 if (size == (off_t)-1) { 1940 anv_gem_close(device, gem_handle); 1941 pthread_mutex_unlock(&cache->mutex); 1942 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE); 1943 } 1944 1945 struct anv_bo new_bo = { 1946 .name = "imported", 1947 .gem_handle = gem_handle, 1948 .refcount = 1, 1949 .offset = -1, 1950 .size = size, 1951 .flags = bo_flags, 1952 .is_external = true, 1953 .has_client_visible_address = 1954 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0, 1955 }; 1956 1957 assert(client_address == intel_48b_address(client_address)); 1958 if (new_bo.flags & EXEC_OBJECT_PINNED) { 1959 assert(new_bo._ccs_size == 0); 1960 new_bo.offset = anv_vma_alloc(device, new_bo.size, 1961 anv_device_get_bo_align(device, 1962 alloc_flags), 1963 alloc_flags, client_address); 1964 if (new_bo.offset == 0) { 1965 anv_gem_close(device, new_bo.gem_handle); 1966 pthread_mutex_unlock(&cache->mutex); 1967 return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY, 1968 "failed to allocate virtual address for BO"); 1969 } 1970 } else { 1971 assert(!new_bo.has_client_visible_address); 1972 } 1973 1974 *bo = new_bo; 1975 } 1976 1977 pthread_mutex_unlock(&cache->mutex); 1978 *bo_out = bo; 1979 1980 return VK_SUCCESS; 1981} 1982 1983VkResult 1984anv_device_export_bo(struct anv_device *device, 1985 struct anv_bo *bo, int *fd_out) 1986{ 1987 assert(anv_device_lookup_bo(device, bo->gem_handle) == bo); 1988 1989 /* This BO must have been flagged external in order for us to be able 1990 * to export it. This is done based on external options passed into 1991 * anv_AllocateMemory. 1992 */ 1993 assert(bo->is_external); 1994 1995 int fd = anv_gem_handle_to_fd(device, bo->gem_handle); 1996 if (fd < 0) 1997 return vk_error(device, VK_ERROR_TOO_MANY_OBJECTS); 1998 1999 *fd_out = fd; 2000 2001 return VK_SUCCESS; 2002} 2003 2004static bool 2005atomic_dec_not_one(uint32_t *counter) 2006{ 2007 uint32_t old, val; 2008 2009 val = *counter; 2010 while (1) { 2011 if (val == 1) 2012 return false; 2013 2014 old = __sync_val_compare_and_swap(counter, val, val - 1); 2015 if (old == val) 2016 return true; 2017 2018 val = old; 2019 } 2020} 2021 2022void 2023anv_device_release_bo(struct anv_device *device, 2024 struct anv_bo *bo) 2025{ 2026 struct anv_bo_cache *cache = &device->bo_cache; 2027 assert(anv_device_lookup_bo(device, bo->gem_handle) == bo); 2028 2029 /* Try to decrement the counter but don't go below one. If this succeeds 2030 * then the refcount has been decremented and we are not the last 2031 * reference. 2032 */ 2033 if (atomic_dec_not_one(&bo->refcount)) 2034 return; 2035 2036 pthread_mutex_lock(&cache->mutex); 2037 2038 /* We are probably the last reference since our attempt to decrement above 2039 * failed. However, we can't actually know until we are inside the mutex. 2040 * Otherwise, someone could import the BO between the decrement and our 2041 * taking the mutex. 2042 */ 2043 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) { 2044 /* Turns out we're not the last reference. Unlock and bail. */ 2045 pthread_mutex_unlock(&cache->mutex); 2046 return; 2047 } 2048 assert(bo->refcount == 0); 2049 2050 if (bo->map && !bo->from_host_ptr) 2051 anv_gem_munmap(device, bo->map, bo->size); 2052 2053 if (bo->_ccs_size > 0) { 2054 assert(device->physical->has_implicit_ccs); 2055 assert(device->info.has_aux_map); 2056 assert(bo->has_implicit_ccs); 2057 intel_aux_map_unmap_range(device->aux_map_ctx, 2058 intel_canonical_address(bo->offset), 2059 bo->size); 2060 } 2061 2062 if ((bo->flags & EXEC_OBJECT_PINNED) && !bo->has_fixed_address) 2063 anv_vma_free(device, bo->offset, bo->size + bo->_ccs_size); 2064 2065 uint32_t gem_handle = bo->gem_handle; 2066 2067 /* Memset the BO just in case. The refcount being zero should be enough to 2068 * prevent someone from assuming the data is valid but it's safer to just 2069 * stomp to zero just in case. We explicitly do this *before* we close the 2070 * GEM handle to ensure that if anyone allocates something and gets the 2071 * same GEM handle, the memset has already happen and won't stomp all over 2072 * any data they may write in this BO. 2073 */ 2074 memset(bo, 0, sizeof(*bo)); 2075 2076 anv_gem_close(device, gem_handle); 2077 2078 /* Don't unlock until we've actually closed the BO. The whole point of 2079 * the BO cache is to ensure that we correctly handle races with creating 2080 * and releasing GEM handles and we don't want to let someone import the BO 2081 * again between mutex unlock and closing the GEM handle. 2082 */ 2083 pthread_mutex_unlock(&cache->mutex); 2084} 2085