genX_pipeline.c revision 01e04c3f
1/*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include "anv_private.h"
25
26#include "genxml/gen_macros.h"
27#include "genxml/genX_pack.h"
28
29#include "common/gen_l3_config.h"
30#include "common/gen_sample_positions.h"
31#include "vk_util.h"
32#include "vk_format_info.h"
33
34static uint32_t
35vertex_element_comp_control(enum isl_format format, unsigned comp)
36{
37   uint8_t bits;
38   switch (comp) {
39   case 0: bits = isl_format_layouts[format].channels.r.bits; break;
40   case 1: bits = isl_format_layouts[format].channels.g.bits; break;
41   case 2: bits = isl_format_layouts[format].channels.b.bits; break;
42   case 3: bits = isl_format_layouts[format].channels.a.bits; break;
43   default: unreachable("Invalid component");
44   }
45
46   /*
47    * Take in account hardware restrictions when dealing with 64-bit floats.
48    *
49    * From Broadwell spec, command reference structures, page 586:
50    *  "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
51    *   64-bit components are stored * in the URB without any conversion. In
52    *   this case, vertex elements must be written as 128 or 256 bits, with
53    *   VFCOMP_STORE_0 being used to pad the output as required. E.g., if
54    *   R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
55    *   Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
56    *   set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
57    *   Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
58    *   a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
59    *   Component 3 to be specified as VFCOMP_STORE_0 in order to output a
60    *   256-bit vertex element."
61    */
62   if (bits) {
63      return VFCOMP_STORE_SRC;
64   } else if (comp >= 2 &&
65              !isl_format_layouts[format].channels.b.bits &&
66              isl_format_layouts[format].channels.r.type == ISL_RAW) {
67      /* When emitting 64-bit attributes, we need to write either 128 or 256
68       * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
69       * VFCOMP_STORE_0 to pad the written chunk */
70      return VFCOMP_NOSTORE;
71   } else if (comp < 3 ||
72              isl_format_layouts[format].channels.r.type == ISL_RAW) {
73      /* Note we need to pad with value 0, not 1, due hardware restrictions
74       * (see comment above) */
75      return VFCOMP_STORE_0;
76   } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
77            isl_format_layouts[format].channels.r.type == ISL_SINT) {
78      assert(comp == 3);
79      return VFCOMP_STORE_1_INT;
80   } else {
81      assert(comp == 3);
82      return VFCOMP_STORE_1_FP;
83   }
84}
85
86static void
87emit_vertex_input(struct anv_pipeline *pipeline,
88                  const VkPipelineVertexInputStateCreateInfo *info)
89{
90   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
91
92   /* Pull inputs_read out of the VS prog data */
93   const uint64_t inputs_read = vs_prog_data->inputs_read;
94   const uint64_t double_inputs_read =
95      vs_prog_data->double_inputs_read & inputs_read;
96   assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
97   const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
98   const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
99   const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
100                                vs_prog_data->uses_instanceid ||
101                                vs_prog_data->uses_firstvertex ||
102                                vs_prog_data->uses_baseinstance;
103
104   uint32_t elem_count = __builtin_popcount(elements) -
105      __builtin_popcount(elements_double) / 2;
106
107   const uint32_t total_elems =
108      elem_count + needs_svgs_elem + vs_prog_data->uses_drawid;
109   if (total_elems == 0)
110      return;
111
112   uint32_t *p;
113
114   const uint32_t num_dwords = 1 + total_elems * 2;
115   p = anv_batch_emitn(&pipeline->batch, num_dwords,
116                       GENX(3DSTATE_VERTEX_ELEMENTS));
117   if (!p)
118      return;
119
120   for (uint32_t i = 0; i < total_elems; i++) {
121      /* The SKL docs for VERTEX_ELEMENT_STATE say:
122       *
123       *    "All elements must be valid from Element[0] to the last valid
124       *    element. (I.e. if Element[2] is valid then Element[1] and
125       *    Element[0] must also be valid)."
126       *
127       * The SKL docs for 3D_Vertex_Component_Control say:
128       *
129       *    "Don't store this component. (Not valid for Component 0, but can
130       *    be used for Component 1-3)."
131       *
132       * So we can't just leave a vertex element blank and hope for the best.
133       * We have to tell the VF hardware to put something in it; so we just
134       * store a bunch of zero.
135       *
136       * TODO: Compact vertex elements so we never end up with holes.
137       */
138      struct GENX(VERTEX_ELEMENT_STATE) element = {
139         .Valid = true,
140         .Component0Control = VFCOMP_STORE_0,
141         .Component1Control = VFCOMP_STORE_0,
142         .Component2Control = VFCOMP_STORE_0,
143         .Component3Control = VFCOMP_STORE_0,
144      };
145      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + i * 2], &element);
146   }
147
148   for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
149      const VkVertexInputAttributeDescription *desc =
150         &info->pVertexAttributeDescriptions[i];
151      enum isl_format format = anv_get_isl_format(&pipeline->device->info,
152                                                  desc->format,
153                                                  VK_IMAGE_ASPECT_COLOR_BIT,
154                                                  VK_IMAGE_TILING_LINEAR);
155
156      assert(desc->binding < MAX_VBS);
157
158      if ((elements & (1 << desc->location)) == 0)
159         continue; /* Binding unused */
160
161      uint32_t slot =
162         __builtin_popcount(elements & ((1 << desc->location) - 1)) -
163         DIV_ROUND_UP(__builtin_popcount(elements_double &
164                                        ((1 << desc->location) -1)), 2);
165
166      struct GENX(VERTEX_ELEMENT_STATE) element = {
167         .VertexBufferIndex = desc->binding,
168         .Valid = true,
169         .SourceElementFormat = format,
170         .EdgeFlagEnable = false,
171         .SourceElementOffset = desc->offset,
172         .Component0Control = vertex_element_comp_control(format, 0),
173         .Component1Control = vertex_element_comp_control(format, 1),
174         .Component2Control = vertex_element_comp_control(format, 2),
175         .Component3Control = vertex_element_comp_control(format, 3),
176      };
177      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
178
179#if GEN_GEN >= 8
180      /* On Broadwell and later, we have a separate VF_INSTANCING packet
181       * that controls instancing.  On Haswell and prior, that's part of
182       * VERTEX_BUFFER_STATE which we emit later.
183       */
184      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
185         vfi.InstancingEnable = pipeline->vb[desc->binding].instanced;
186         vfi.VertexElementIndex = slot;
187         vfi.InstanceDataStepRate =
188            pipeline->vb[desc->binding].instance_divisor;
189      }
190#endif
191   }
192
193   const uint32_t id_slot = elem_count;
194   if (needs_svgs_elem) {
195      /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
196       *    "Within a VERTEX_ELEMENT_STATE structure, if a Component
197       *    Control field is set to something other than VFCOMP_STORE_SRC,
198       *    no higher-numbered Component Control fields may be set to
199       *    VFCOMP_STORE_SRC"
200       *
201       * This means, that if we have BaseInstance, we need BaseVertex as
202       * well.  Just do all or nothing.
203       */
204      uint32_t base_ctrl = (vs_prog_data->uses_firstvertex ||
205                            vs_prog_data->uses_baseinstance) ?
206                           VFCOMP_STORE_SRC : VFCOMP_STORE_0;
207
208      struct GENX(VERTEX_ELEMENT_STATE) element = {
209         .VertexBufferIndex = ANV_SVGS_VB_INDEX,
210         .Valid = true,
211         .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
212         .Component0Control = base_ctrl,
213         .Component1Control = base_ctrl,
214#if GEN_GEN >= 8
215         .Component2Control = VFCOMP_STORE_0,
216         .Component3Control = VFCOMP_STORE_0,
217#else
218         .Component2Control = VFCOMP_STORE_VID,
219         .Component3Control = VFCOMP_STORE_IID,
220#endif
221      };
222      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
223   }
224
225#if GEN_GEN >= 8
226   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) {
227      sgvs.VertexIDEnable              = vs_prog_data->uses_vertexid;
228      sgvs.VertexIDComponentNumber     = 2;
229      sgvs.VertexIDElementOffset       = id_slot;
230      sgvs.InstanceIDEnable            = vs_prog_data->uses_instanceid;
231      sgvs.InstanceIDComponentNumber   = 3;
232      sgvs.InstanceIDElementOffset     = id_slot;
233   }
234#endif
235
236   const uint32_t drawid_slot = elem_count + needs_svgs_elem;
237   if (vs_prog_data->uses_drawid) {
238      struct GENX(VERTEX_ELEMENT_STATE) element = {
239         .VertexBufferIndex = ANV_DRAWID_VB_INDEX,
240         .Valid = true,
241         .SourceElementFormat = ISL_FORMAT_R32_UINT,
242         .Component0Control = VFCOMP_STORE_SRC,
243         .Component1Control = VFCOMP_STORE_0,
244         .Component2Control = VFCOMP_STORE_0,
245         .Component3Control = VFCOMP_STORE_0,
246      };
247      GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
248                                      &p[1 + drawid_slot * 2],
249                                      &element);
250
251#if GEN_GEN >= 8
252      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
253         vfi.VertexElementIndex = drawid_slot;
254      }
255#endif
256   }
257}
258
259void
260genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
261                     const struct gen_l3_config *l3_config,
262                     VkShaderStageFlags active_stages,
263                     const unsigned entry_size[4])
264{
265   const struct gen_device_info *devinfo = &device->info;
266#if GEN_IS_HASWELL
267   const unsigned push_constant_kb = devinfo->gt == 3 ? 32 : 16;
268#else
269   const unsigned push_constant_kb = GEN_GEN >= 8 ? 32 : 16;
270#endif
271
272   const unsigned urb_size_kb = gen_get_l3_config_urb_size(devinfo, l3_config);
273
274   unsigned entries[4];
275   unsigned start[4];
276   gen_get_urb_config(devinfo,
277                      1024 * push_constant_kb, 1024 * urb_size_kb,
278                      active_stages &
279                         VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
280                      active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
281                      entry_size, entries, start);
282
283#if GEN_GEN == 7 && !GEN_IS_HASWELL
284   /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
285    *
286    *    "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
287    *    needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
288    *    3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
289    *    3DSTATE_SAMPLER_STATE_POINTER_VS command.  Only one PIPE_CONTROL
290    *    needs to be sent before any combination of VS associated 3DSTATE."
291    */
292   anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
293      pc.DepthStallEnable  = true;
294      pc.PostSyncOperation = WriteImmediateData;
295      pc.Address           = (struct anv_address) { &device->workaround_bo, 0 };
296   }
297#endif
298
299   for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
300      anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
301         urb._3DCommandSubOpcode      += i;
302         urb.VSURBStartingAddress      = start[i];
303         urb.VSURBEntryAllocationSize  = entry_size[i] - 1;
304         urb.VSNumberofURBEntries      = entries[i];
305      }
306   }
307}
308
309static void
310emit_urb_setup(struct anv_pipeline *pipeline)
311{
312   unsigned entry_size[4];
313   for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
314      const struct brw_vue_prog_data *prog_data =
315         !anv_pipeline_has_stage(pipeline, i) ? NULL :
316         (const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
317
318      entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
319   }
320
321   genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
322                        pipeline->urb.l3_config,
323                        pipeline->active_stages, entry_size);
324}
325
326static void
327emit_3dstate_sbe(struct anv_pipeline *pipeline)
328{
329   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
330
331   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
332      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE), sbe);
333#if GEN_GEN >= 8
334      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ), sbe);
335#endif
336      return;
337   }
338
339   const struct brw_vue_map *fs_input_map =
340      &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
341
342   struct GENX(3DSTATE_SBE) sbe = {
343      GENX(3DSTATE_SBE_header),
344      .AttributeSwizzleEnable = true,
345      .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
346      .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
347      .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
348   };
349
350#if GEN_GEN >= 9
351   for (unsigned i = 0; i < 32; i++)
352      sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
353#endif
354
355#if GEN_GEN >= 8
356   /* On Broadwell, they broke 3DSTATE_SBE into two packets */
357   struct GENX(3DSTATE_SBE_SWIZ) swiz = {
358      GENX(3DSTATE_SBE_SWIZ_header),
359   };
360#else
361#  define swiz sbe
362#endif
363
364   /* Skip the VUE header and position slots by default */
365   unsigned urb_entry_read_offset = 1;
366   int max_source_attr = 0;
367   for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
368      int input_index = wm_prog_data->urb_setup[attr];
369
370      if (input_index < 0)
371         continue;
372
373      /* gl_Layer is stored in the VUE header */
374      if (attr == VARYING_SLOT_LAYER) {
375         urb_entry_read_offset = 0;
376         continue;
377      }
378
379      if (attr == VARYING_SLOT_PNTC) {
380         sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
381         continue;
382      }
383
384      const int slot = fs_input_map->varying_to_slot[attr];
385
386      if (input_index >= 16)
387         continue;
388
389      if (slot == -1) {
390         /* This attribute does not exist in the VUE--that means that the
391          * vertex shader did not write to it.  It could be that it's a
392          * regular varying read by the fragment shader but not written by
393          * the vertex shader or it's gl_PrimitiveID. In the first case the
394          * value is undefined, in the second it needs to be
395          * gl_PrimitiveID.
396          */
397         swiz.Attribute[input_index].ConstantSource = PRIM_ID;
398         swiz.Attribute[input_index].ComponentOverrideX = true;
399         swiz.Attribute[input_index].ComponentOverrideY = true;
400         swiz.Attribute[input_index].ComponentOverrideZ = true;
401         swiz.Attribute[input_index].ComponentOverrideW = true;
402      } else {
403         /* We have to subtract two slots to accout for the URB entry output
404          * read offset in the VS and GS stages.
405          */
406         const int source_attr = slot - 2 * urb_entry_read_offset;
407         assert(source_attr >= 0 && source_attr < 32);
408         max_source_attr = MAX2(max_source_attr, source_attr);
409         swiz.Attribute[input_index].SourceAttribute = source_attr;
410      }
411   }
412
413   sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
414   sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
415#if GEN_GEN >= 8
416   sbe.ForceVertexURBEntryReadOffset = true;
417   sbe.ForceVertexURBEntryReadLength = true;
418#endif
419
420   uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
421                                        GENX(3DSTATE_SBE_length));
422   if (!dw)
423      return;
424   GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe);
425
426#if GEN_GEN >= 8
427   dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length));
428   if (!dw)
429      return;
430   GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
431#endif
432}
433
434static const uint32_t vk_to_gen_cullmode[] = {
435   [VK_CULL_MODE_NONE]                       = CULLMODE_NONE,
436   [VK_CULL_MODE_FRONT_BIT]                  = CULLMODE_FRONT,
437   [VK_CULL_MODE_BACK_BIT]                   = CULLMODE_BACK,
438   [VK_CULL_MODE_FRONT_AND_BACK]             = CULLMODE_BOTH
439};
440
441static const uint32_t vk_to_gen_fillmode[] = {
442   [VK_POLYGON_MODE_FILL]                    = FILL_MODE_SOLID,
443   [VK_POLYGON_MODE_LINE]                    = FILL_MODE_WIREFRAME,
444   [VK_POLYGON_MODE_POINT]                   = FILL_MODE_POINT,
445};
446
447static const uint32_t vk_to_gen_front_face[] = {
448   [VK_FRONT_FACE_COUNTER_CLOCKWISE]         = 1,
449   [VK_FRONT_FACE_CLOCKWISE]                 = 0
450};
451
452static void
453emit_rs_state(struct anv_pipeline *pipeline,
454              const VkPipelineRasterizationStateCreateInfo *rs_info,
455              const VkPipelineMultisampleStateCreateInfo *ms_info,
456              const struct anv_render_pass *pass,
457              const struct anv_subpass *subpass)
458{
459   struct GENX(3DSTATE_SF) sf = {
460      GENX(3DSTATE_SF_header),
461   };
462
463   sf.ViewportTransformEnable = true;
464   sf.StatisticsEnable = true;
465   sf.TriangleStripListProvokingVertexSelect = 0;
466   sf.LineStripListProvokingVertexSelect = 0;
467   sf.TriangleFanProvokingVertexSelect = 1;
468
469   const struct brw_vue_prog_data *last_vue_prog_data =
470      anv_pipeline_get_last_vue_prog_data(pipeline);
471
472   if (last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
473      sf.PointWidthSource = Vertex;
474   } else {
475      sf.PointWidthSource = State;
476      sf.PointWidth = 1.0;
477   }
478
479#if GEN_GEN >= 8
480   struct GENX(3DSTATE_RASTER) raster = {
481      GENX(3DSTATE_RASTER_header),
482   };
483#else
484#  define raster sf
485#endif
486
487   /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
488    * "Multisample Modes State".
489    */
490#if GEN_GEN >= 8
491   raster.DXMultisampleRasterizationEnable = true;
492   /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
493    * computations.  If we ever set this bit to a different value, they will
494    * need to be updated accordingly.
495    */
496   raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
497   raster.ForceMultisampling = false;
498#else
499   raster.MultisampleRasterizationMode =
500      (ms_info && ms_info->rasterizationSamples > 1) ?
501      MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
502#endif
503
504   raster.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
505   raster.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
506   raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
507   raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
508   raster.ScissorRectangleEnable = true;
509
510#if GEN_GEN >= 9
511   /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
512   raster.ViewportZFarClipTestEnable = !pipeline->depth_clamp_enable;
513   raster.ViewportZNearClipTestEnable = !pipeline->depth_clamp_enable;
514#elif GEN_GEN >= 8
515   raster.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
516#endif
517
518   raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
519   raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
520   raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;
521
522#if GEN_GEN == 7
523   /* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
524    * can get the depth offsets correct.
525    */
526   if (subpass->depth_stencil_attachment) {
527      VkFormat vk_format =
528         pass->attachments[subpass->depth_stencil_attachment->attachment].format;
529      assert(vk_format_is_depth_or_stencil(vk_format));
530      if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
531         enum isl_format isl_format =
532            anv_get_isl_format(&pipeline->device->info, vk_format,
533                               VK_IMAGE_ASPECT_DEPTH_BIT,
534                               VK_IMAGE_TILING_OPTIMAL);
535         sf.DepthBufferSurfaceFormat =
536            isl_format_get_depth_format(isl_format, false);
537      }
538   }
539#endif
540
541#if GEN_GEN >= 8
542   GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
543   GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
544#else
545#  undef raster
546   GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
547#endif
548}
549
550static void
551emit_ms_state(struct anv_pipeline *pipeline,
552              const VkPipelineMultisampleStateCreateInfo *info)
553{
554   uint32_t samples = 1;
555   uint32_t log2_samples = 0;
556
557   /* From the Vulkan 1.0 spec:
558    *    If pSampleMask is NULL, it is treated as if the mask has all bits
559    *    enabled, i.e. no coverage is removed from fragments.
560    *
561    * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
562    */
563#if GEN_GEN >= 8
564   uint32_t sample_mask = 0xffff;
565#else
566   uint32_t sample_mask = 0xff;
567#endif
568
569   if (info) {
570      samples = info->rasterizationSamples;
571      log2_samples = __builtin_ffs(samples) - 1;
572   }
573
574   if (info && info->pSampleMask)
575      sample_mask &= info->pSampleMask[0];
576
577   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
578      ms.NumberofMultisamples       = log2_samples;
579
580      ms.PixelLocation              = CENTER;
581#if GEN_GEN >= 8
582      /* The PRM says that this bit is valid only for DX9:
583       *
584       *    SW can choose to set this bit only for DX9 API. DX10/OGL API's
585       *    should not have any effect by setting or not setting this bit.
586       */
587      ms.PixelPositionOffsetEnable  = false;
588#else
589
590      switch (samples) {
591      case 1:
592         GEN_SAMPLE_POS_1X(ms.Sample);
593         break;
594      case 2:
595         GEN_SAMPLE_POS_2X(ms.Sample);
596         break;
597      case 4:
598         GEN_SAMPLE_POS_4X(ms.Sample);
599         break;
600      case 8:
601         GEN_SAMPLE_POS_8X(ms.Sample);
602         break;
603      default:
604         break;
605      }
606#endif
607   }
608
609   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
610      sm.SampleMask = sample_mask;
611   }
612}
613
614static const uint32_t vk_to_gen_logic_op[] = {
615   [VK_LOGIC_OP_COPY]                        = LOGICOP_COPY,
616   [VK_LOGIC_OP_CLEAR]                       = LOGICOP_CLEAR,
617   [VK_LOGIC_OP_AND]                         = LOGICOP_AND,
618   [VK_LOGIC_OP_AND_REVERSE]                 = LOGICOP_AND_REVERSE,
619   [VK_LOGIC_OP_AND_INVERTED]                = LOGICOP_AND_INVERTED,
620   [VK_LOGIC_OP_NO_OP]                       = LOGICOP_NOOP,
621   [VK_LOGIC_OP_XOR]                         = LOGICOP_XOR,
622   [VK_LOGIC_OP_OR]                          = LOGICOP_OR,
623   [VK_LOGIC_OP_NOR]                         = LOGICOP_NOR,
624   [VK_LOGIC_OP_EQUIVALENT]                  = LOGICOP_EQUIV,
625   [VK_LOGIC_OP_INVERT]                      = LOGICOP_INVERT,
626   [VK_LOGIC_OP_OR_REVERSE]                  = LOGICOP_OR_REVERSE,
627   [VK_LOGIC_OP_COPY_INVERTED]               = LOGICOP_COPY_INVERTED,
628   [VK_LOGIC_OP_OR_INVERTED]                 = LOGICOP_OR_INVERTED,
629   [VK_LOGIC_OP_NAND]                        = LOGICOP_NAND,
630   [VK_LOGIC_OP_SET]                         = LOGICOP_SET,
631};
632
633static const uint32_t vk_to_gen_blend[] = {
634   [VK_BLEND_FACTOR_ZERO]                    = BLENDFACTOR_ZERO,
635   [VK_BLEND_FACTOR_ONE]                     = BLENDFACTOR_ONE,
636   [VK_BLEND_FACTOR_SRC_COLOR]               = BLENDFACTOR_SRC_COLOR,
637   [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR]     = BLENDFACTOR_INV_SRC_COLOR,
638   [VK_BLEND_FACTOR_DST_COLOR]               = BLENDFACTOR_DST_COLOR,
639   [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR]     = BLENDFACTOR_INV_DST_COLOR,
640   [VK_BLEND_FACTOR_SRC_ALPHA]               = BLENDFACTOR_SRC_ALPHA,
641   [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA]     = BLENDFACTOR_INV_SRC_ALPHA,
642   [VK_BLEND_FACTOR_DST_ALPHA]               = BLENDFACTOR_DST_ALPHA,
643   [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA]     = BLENDFACTOR_INV_DST_ALPHA,
644   [VK_BLEND_FACTOR_CONSTANT_COLOR]          = BLENDFACTOR_CONST_COLOR,
645   [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
646   [VK_BLEND_FACTOR_CONSTANT_ALPHA]          = BLENDFACTOR_CONST_ALPHA,
647   [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
648   [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE]      = BLENDFACTOR_SRC_ALPHA_SATURATE,
649   [VK_BLEND_FACTOR_SRC1_COLOR]              = BLENDFACTOR_SRC1_COLOR,
650   [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR]    = BLENDFACTOR_INV_SRC1_COLOR,
651   [VK_BLEND_FACTOR_SRC1_ALPHA]              = BLENDFACTOR_SRC1_ALPHA,
652   [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA]    = BLENDFACTOR_INV_SRC1_ALPHA,
653};
654
655static const uint32_t vk_to_gen_blend_op[] = {
656   [VK_BLEND_OP_ADD]                         = BLENDFUNCTION_ADD,
657   [VK_BLEND_OP_SUBTRACT]                    = BLENDFUNCTION_SUBTRACT,
658   [VK_BLEND_OP_REVERSE_SUBTRACT]            = BLENDFUNCTION_REVERSE_SUBTRACT,
659   [VK_BLEND_OP_MIN]                         = BLENDFUNCTION_MIN,
660   [VK_BLEND_OP_MAX]                         = BLENDFUNCTION_MAX,
661};
662
663static const uint32_t vk_to_gen_compare_op[] = {
664   [VK_COMPARE_OP_NEVER]                        = PREFILTEROPNEVER,
665   [VK_COMPARE_OP_LESS]                         = PREFILTEROPLESS,
666   [VK_COMPARE_OP_EQUAL]                        = PREFILTEROPEQUAL,
667   [VK_COMPARE_OP_LESS_OR_EQUAL]                = PREFILTEROPLEQUAL,
668   [VK_COMPARE_OP_GREATER]                      = PREFILTEROPGREATER,
669   [VK_COMPARE_OP_NOT_EQUAL]                    = PREFILTEROPNOTEQUAL,
670   [VK_COMPARE_OP_GREATER_OR_EQUAL]             = PREFILTEROPGEQUAL,
671   [VK_COMPARE_OP_ALWAYS]                       = PREFILTEROPALWAYS,
672};
673
674static const uint32_t vk_to_gen_stencil_op[] = {
675   [VK_STENCIL_OP_KEEP]                         = STENCILOP_KEEP,
676   [VK_STENCIL_OP_ZERO]                         = STENCILOP_ZERO,
677   [VK_STENCIL_OP_REPLACE]                      = STENCILOP_REPLACE,
678   [VK_STENCIL_OP_INCREMENT_AND_CLAMP]          = STENCILOP_INCRSAT,
679   [VK_STENCIL_OP_DECREMENT_AND_CLAMP]          = STENCILOP_DECRSAT,
680   [VK_STENCIL_OP_INVERT]                       = STENCILOP_INVERT,
681   [VK_STENCIL_OP_INCREMENT_AND_WRAP]           = STENCILOP_INCR,
682   [VK_STENCIL_OP_DECREMENT_AND_WRAP]           = STENCILOP_DECR,
683};
684
685/* This function sanitizes the VkStencilOpState by looking at the compare ops
686 * and trying to determine whether or not a given stencil op can ever actually
687 * occur.  Stencil ops which can never occur are set to VK_STENCIL_OP_KEEP.
688 * This function returns true if, after sanitation, any of the stencil ops are
689 * set to something other than VK_STENCIL_OP_KEEP.
690 */
691static bool
692sanitize_stencil_face(VkStencilOpState *face,
693                      VkCompareOp depthCompareOp)
694{
695   /* If compareOp is ALWAYS then the stencil test will never fail and failOp
696    * will never happen.  Set failOp to KEEP in this case.
697    */
698   if (face->compareOp == VK_COMPARE_OP_ALWAYS)
699      face->failOp = VK_STENCIL_OP_KEEP;
700
701   /* If compareOp is NEVER or depthCompareOp is NEVER then one of the depth
702    * or stencil tests will fail and passOp will never happen.
703    */
704   if (face->compareOp == VK_COMPARE_OP_NEVER ||
705       depthCompareOp == VK_COMPARE_OP_NEVER)
706      face->passOp = VK_STENCIL_OP_KEEP;
707
708   /* If compareOp is NEVER or depthCompareOp is ALWAYS then either the
709    * stencil test will fail or the depth test will pass.  In either case,
710    * depthFailOp will never happen.
711    */
712   if (face->compareOp == VK_COMPARE_OP_NEVER ||
713       depthCompareOp == VK_COMPARE_OP_ALWAYS)
714      face->depthFailOp = VK_STENCIL_OP_KEEP;
715
716   return face->failOp != VK_STENCIL_OP_KEEP ||
717          face->depthFailOp != VK_STENCIL_OP_KEEP ||
718          face->passOp != VK_STENCIL_OP_KEEP;
719}
720
721/* Intel hardware is fairly sensitive to whether or not depth/stencil writes
722 * are enabled.  In the presence of discards, it's fairly easy to get into the
723 * non-promoted case which means a fairly big performance hit.  From the Iron
724 * Lake PRM, Vol 2, pt. 1, section 8.4.3.2, "Early Depth Test Cases":
725 *
726 *    "Non-promoted depth (N) is active whenever the depth test can be done
727 *    early but it cannot determine whether or not to write source depth to
728 *    the depth buffer, therefore the depth write must be performed post pixel
729 *    shader. This includes cases where the pixel shader can kill pixels,
730 *    including via sampler chroma key, as well as cases where the alpha test
731 *    function is enabled, which kills pixels based on a programmable alpha
732 *    test. In this case, even if the depth test fails, the pixel cannot be
733 *    killed if a stencil write is indicated. Whether or not the stencil write
734 *    happens depends on whether or not the pixel is killed later. In these
735 *    cases if stencil test fails and stencil writes are off, the pixels can
736 *    also be killed early. If stencil writes are enabled, the pixels must be
737 *    treated as Computed depth (described above)."
738 *
739 * The same thing as mentioned in the stencil case can happen in the depth
740 * case as well if it thinks it writes depth but, thanks to the depth test
741 * being GL_EQUAL, the write doesn't actually matter.  A little extra work
742 * up-front to try and disable depth and stencil writes can make a big
743 * difference.
744 *
745 * Unfortunately, the way depth and stencil testing is specified, there are
746 * many case where, regardless of depth/stencil writes being enabled, nothing
747 * actually gets written due to some other bit of state being set.  This
748 * function attempts to "sanitize" the depth stencil state and disable writes
749 * and sometimes even testing whenever possible.
750 */
751static void
752sanitize_ds_state(VkPipelineDepthStencilStateCreateInfo *state,
753                  bool *stencilWriteEnable,
754                  VkImageAspectFlags ds_aspects)
755{
756   *stencilWriteEnable = state->stencilTestEnable;
757
758   /* If the depth test is disabled, we won't be writing anything. Make sure we
759    * treat the test as always passing later on as well.
760    *
761    * Also, the Vulkan spec requires that if either depth or stencil is not
762    * present, the pipeline is to act as if the test silently passes. In that
763    * case we won't write either.
764    */
765   if (!state->depthTestEnable || !(ds_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
766      state->depthWriteEnable = false;
767      state->depthCompareOp = VK_COMPARE_OP_ALWAYS;
768   }
769
770   if (!(ds_aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
771      *stencilWriteEnable = false;
772      state->front.compareOp = VK_COMPARE_OP_ALWAYS;
773      state->back.compareOp = VK_COMPARE_OP_ALWAYS;
774   }
775
776   /* If the stencil test is enabled and always fails, then we will never get
777    * to the depth test so we can just disable the depth test entirely.
778    */
779   if (state->stencilTestEnable &&
780       state->front.compareOp == VK_COMPARE_OP_NEVER &&
781       state->back.compareOp == VK_COMPARE_OP_NEVER) {
782      state->depthTestEnable = false;
783      state->depthWriteEnable = false;
784   }
785
786   /* If depthCompareOp is EQUAL then the value we would be writing to the
787    * depth buffer is the same as the value that's already there so there's no
788    * point in writing it.
789    */
790   if (state->depthCompareOp == VK_COMPARE_OP_EQUAL)
791      state->depthWriteEnable = false;
792
793   /* If the stencil ops are such that we don't actually ever modify the
794    * stencil buffer, we should disable writes.
795    */
796   if (!sanitize_stencil_face(&state->front, state->depthCompareOp) &&
797       !sanitize_stencil_face(&state->back, state->depthCompareOp))
798      *stencilWriteEnable = false;
799
800   /* If the depth test always passes and we never write out depth, that's the
801    * same as if the depth test is disabled entirely.
802    */
803   if (state->depthCompareOp == VK_COMPARE_OP_ALWAYS &&
804       !state->depthWriteEnable)
805      state->depthTestEnable = false;
806
807   /* If the stencil test always passes and we never write out stencil, that's
808    * the same as if the stencil test is disabled entirely.
809    */
810   if (state->front.compareOp == VK_COMPARE_OP_ALWAYS &&
811       state->back.compareOp == VK_COMPARE_OP_ALWAYS &&
812       !*stencilWriteEnable)
813      state->stencilTestEnable = false;
814}
815
816static void
817emit_ds_state(struct anv_pipeline *pipeline,
818              const VkPipelineDepthStencilStateCreateInfo *pCreateInfo,
819              const struct anv_render_pass *pass,
820              const struct anv_subpass *subpass)
821{
822#if GEN_GEN == 7
823#  define depth_stencil_dw pipeline->gen7.depth_stencil_state
824#elif GEN_GEN == 8
825#  define depth_stencil_dw pipeline->gen8.wm_depth_stencil
826#else
827#  define depth_stencil_dw pipeline->gen9.wm_depth_stencil
828#endif
829
830   if (pCreateInfo == NULL) {
831      /* We're going to OR this together with the dynamic state.  We need
832       * to make sure it's initialized to something useful.
833       */
834      pipeline->writes_stencil = false;
835      pipeline->stencil_test_enable = false;
836      pipeline->writes_depth = false;
837      pipeline->depth_test_enable = false;
838      memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
839      return;
840   }
841
842   VkImageAspectFlags ds_aspects = 0;
843   if (subpass->depth_stencil_attachment) {
844      VkFormat depth_stencil_format =
845         pass->attachments[subpass->depth_stencil_attachment->attachment].format;
846      ds_aspects = vk_format_aspects(depth_stencil_format);
847   }
848
849   VkPipelineDepthStencilStateCreateInfo info = *pCreateInfo;
850   sanitize_ds_state(&info, &pipeline->writes_stencil, ds_aspects);
851   pipeline->stencil_test_enable = info.stencilTestEnable;
852   pipeline->writes_depth = info.depthWriteEnable;
853   pipeline->depth_test_enable = info.depthTestEnable;
854
855   /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
856
857#if GEN_GEN <= 7
858   struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
859#else
860   struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
861#endif
862      .DepthTestEnable = info.depthTestEnable,
863      .DepthBufferWriteEnable = info.depthWriteEnable,
864      .DepthTestFunction = vk_to_gen_compare_op[info.depthCompareOp],
865      .DoubleSidedStencilEnable = true,
866
867      .StencilTestEnable = info.stencilTestEnable,
868      .StencilFailOp = vk_to_gen_stencil_op[info.front.failOp],
869      .StencilPassDepthPassOp = vk_to_gen_stencil_op[info.front.passOp],
870      .StencilPassDepthFailOp = vk_to_gen_stencil_op[info.front.depthFailOp],
871      .StencilTestFunction = vk_to_gen_compare_op[info.front.compareOp],
872      .BackfaceStencilFailOp = vk_to_gen_stencil_op[info.back.failOp],
873      .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info.back.passOp],
874      .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info.back.depthFailOp],
875      .BackfaceStencilTestFunction = vk_to_gen_compare_op[info.back.compareOp],
876   };
877
878#if GEN_GEN <= 7
879   GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
880#else
881   GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
882#endif
883}
884
885MAYBE_UNUSED static bool
886is_dual_src_blend_factor(VkBlendFactor factor)
887{
888   return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
889          factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
890          factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
891          factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
892}
893
894static void
895emit_cb_state(struct anv_pipeline *pipeline,
896              const VkPipelineColorBlendStateCreateInfo *info,
897              const VkPipelineMultisampleStateCreateInfo *ms_info)
898{
899   struct anv_device *device = pipeline->device;
900   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
901
902   struct GENX(BLEND_STATE) blend_state = {
903#if GEN_GEN >= 8
904      .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
905      .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
906#endif
907   };
908
909   uint32_t surface_count = 0;
910   struct anv_pipeline_bind_map *map;
911   if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
912      map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
913      surface_count = map->surface_count;
914   }
915
916   const uint32_t num_dwords = GENX(BLEND_STATE_length) +
917      GENX(BLEND_STATE_ENTRY_length) * surface_count;
918   pipeline->blend_state =
919      anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
920
921   bool has_writeable_rt = false;
922   uint32_t *state_pos = pipeline->blend_state.map;
923   state_pos += GENX(BLEND_STATE_length);
924#if GEN_GEN >= 8
925   struct GENX(BLEND_STATE_ENTRY) bs0 = { 0 };
926#endif
927   for (unsigned i = 0; i < surface_count; i++) {
928      struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
929
930      /* All color attachments are at the beginning of the binding table */
931      if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
932         break;
933
934      /* We can have at most 8 attachments */
935      assert(i < 8);
936
937      if (info == NULL || binding->index >= info->attachmentCount) {
938         /* Default everything to disabled */
939         struct GENX(BLEND_STATE_ENTRY) entry = {
940            .WriteDisableAlpha = true,
941            .WriteDisableRed = true,
942            .WriteDisableGreen = true,
943            .WriteDisableBlue = true,
944         };
945         GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
946         state_pos += GENX(BLEND_STATE_ENTRY_length);
947         continue;
948      }
949
950      assert(binding->binding == 0);
951      const VkPipelineColorBlendAttachmentState *a =
952         &info->pAttachments[binding->index];
953
954      struct GENX(BLEND_STATE_ENTRY) entry = {
955#if GEN_GEN < 8
956         .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
957         .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
958#endif
959         .LogicOpEnable = info->logicOpEnable,
960         .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
961         .ColorBufferBlendEnable = a->blendEnable,
962         .ColorClampRange = COLORCLAMP_RTFORMAT,
963         .PreBlendColorClampEnable = true,
964         .PostBlendColorClampEnable = true,
965         .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
966         .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
967         .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
968         .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
969         .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
970         .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
971         .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
972         .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
973         .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
974         .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
975      };
976
977      if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
978          a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
979          a->colorBlendOp != a->alphaBlendOp) {
980#if GEN_GEN >= 8
981         blend_state.IndependentAlphaBlendEnable = true;
982#else
983         entry.IndependentAlphaBlendEnable = true;
984#endif
985      }
986
987      /* The Dual Source Blending documentation says:
988       *
989       * "If SRC1 is included in a src/dst blend factor and
990       * a DualSource RT Write message is not used, results
991       * are UNDEFINED. (This reflects the same restriction in DX APIs,
992       * where undefined results are produced if “o1” is not written
993       * by a PS – there are no default values defined)."
994       *
995       * There is no way to gracefully fix this undefined situation
996       * so we just disable the blending to prevent possible issues.
997       */
998      if (!wm_prog_data->dual_src_blend &&
999          (is_dual_src_blend_factor(a->srcColorBlendFactor) ||
1000           is_dual_src_blend_factor(a->dstColorBlendFactor) ||
1001           is_dual_src_blend_factor(a->srcAlphaBlendFactor) ||
1002           is_dual_src_blend_factor(a->dstAlphaBlendFactor))) {
1003         vk_debug_report(&device->instance->debug_report_callbacks,
1004                         VK_DEBUG_REPORT_WARNING_BIT_EXT,
1005                         VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
1006                         (uint64_t)(uintptr_t)device,
1007                         0, 0, "anv",
1008                         "Enabled dual-src blend factors without writing both targets "
1009                         "in the shader.  Disabling blending to avoid GPU hangs.");
1010         entry.ColorBufferBlendEnable = false;
1011      }
1012
1013      if (a->colorWriteMask != 0)
1014         has_writeable_rt = true;
1015
1016      /* Our hardware applies the blend factor prior to the blend function
1017       * regardless of what function is used.  Technically, this means the
1018       * hardware can do MORE than GL or Vulkan specify.  However, it also
1019       * means that, for MIN and MAX, we have to stomp the blend factor to
1020       * ONE to make it a no-op.
1021       */
1022      if (a->colorBlendOp == VK_BLEND_OP_MIN ||
1023          a->colorBlendOp == VK_BLEND_OP_MAX) {
1024         entry.SourceBlendFactor = BLENDFACTOR_ONE;
1025         entry.DestinationBlendFactor = BLENDFACTOR_ONE;
1026      }
1027      if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
1028          a->alphaBlendOp == VK_BLEND_OP_MAX) {
1029         entry.SourceAlphaBlendFactor = BLENDFACTOR_ONE;
1030         entry.DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
1031      }
1032      GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
1033      state_pos += GENX(BLEND_STATE_ENTRY_length);
1034#if GEN_GEN >= 8
1035      if (i == 0)
1036         bs0 = entry;
1037#endif
1038   }
1039
1040#if GEN_GEN >= 8
1041   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
1042      blend.AlphaToCoverageEnable         = blend_state.AlphaToCoverageEnable;
1043      blend.HasWriteableRT                = has_writeable_rt;
1044      blend.ColorBufferBlendEnable        = bs0.ColorBufferBlendEnable;
1045      blend.SourceAlphaBlendFactor        = bs0.SourceAlphaBlendFactor;
1046      blend.DestinationAlphaBlendFactor   = bs0.DestinationAlphaBlendFactor;
1047      blend.SourceBlendFactor             = bs0.SourceBlendFactor;
1048      blend.DestinationBlendFactor        = bs0.DestinationBlendFactor;
1049      blend.AlphaTestEnable               = false;
1050      blend.IndependentAlphaBlendEnable   =
1051         blend_state.IndependentAlphaBlendEnable;
1052   }
1053#else
1054   (void)has_writeable_rt;
1055#endif
1056
1057   GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
1058   anv_state_flush(device, pipeline->blend_state);
1059
1060   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
1061      bsp.BlendStatePointer      = pipeline->blend_state.offset;
1062#if GEN_GEN >= 8
1063      bsp.BlendStatePointerValid = true;
1064#endif
1065   }
1066}
1067
1068static void
1069emit_3dstate_clip(struct anv_pipeline *pipeline,
1070                  const VkPipelineViewportStateCreateInfo *vp_info,
1071                  const VkPipelineRasterizationStateCreateInfo *rs_info)
1072{
1073   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1074   (void) wm_prog_data;
1075   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
1076      clip.ClipEnable               = true;
1077      clip.StatisticsEnable         = true;
1078      clip.EarlyCullEnable          = true;
1079      clip.APIMode                  = APIMODE_D3D,
1080      clip.ViewportXYClipTestEnable = true;
1081
1082      clip.ClipMode = CLIPMODE_NORMAL;
1083
1084      clip.TriangleStripListProvokingVertexSelect = 0;
1085      clip.LineStripListProvokingVertexSelect     = 0;
1086      clip.TriangleFanProvokingVertexSelect       = 1;
1087
1088      clip.MinimumPointWidth = 0.125;
1089      clip.MaximumPointWidth = 255.875;
1090
1091      const struct brw_vue_prog_data *last =
1092         anv_pipeline_get_last_vue_prog_data(pipeline);
1093
1094      /* From the Vulkan 1.0.45 spec:
1095       *
1096       *    "If the last active vertex processing stage shader entry point's
1097       *    interface does not include a variable decorated with
1098       *    ViewportIndex, then the first viewport is used."
1099       */
1100      if (vp_info && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
1101         clip.MaximumVPIndex = vp_info->viewportCount - 1;
1102      } else {
1103         clip.MaximumVPIndex = 0;
1104      }
1105
1106      /* From the Vulkan 1.0.45 spec:
1107       *
1108       *    "If the last active vertex processing stage shader entry point's
1109       *    interface does not include a variable decorated with Layer, then
1110       *    the first layer is used."
1111       */
1112      clip.ForceZeroRTAIndexEnable =
1113         !(last->vue_map.slots_valid & VARYING_BIT_LAYER);
1114
1115#if GEN_GEN == 7
1116      clip.FrontWinding            = vk_to_gen_front_face[rs_info->frontFace];
1117      clip.CullMode                = vk_to_gen_cullmode[rs_info->cullMode];
1118      clip.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
1119      if (last) {
1120         clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
1121         clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
1122      }
1123#else
1124      clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
1125         (wm_prog_data->barycentric_interp_modes &
1126          BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0 : 0;
1127#endif
1128   }
1129}
1130
1131static void
1132emit_3dstate_streamout(struct anv_pipeline *pipeline,
1133                       const VkPipelineRasterizationStateCreateInfo *rs_info)
1134{
1135   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), so) {
1136      so.RenderingDisable = rs_info->rasterizerDiscardEnable;
1137   }
1138}
1139
1140static uint32_t
1141get_sampler_count(const struct anv_shader_bin *bin)
1142{
1143   uint32_t count_by_4 = DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
1144
1145   /* We can potentially have way more than 32 samplers and that's ok.
1146    * However, the 3DSTATE_XS packets only have 3 bits to specify how
1147    * many to pre-fetch and all values above 4 are marked reserved.
1148    */
1149   return MIN2(count_by_4, 4);
1150}
1151
1152static uint32_t
1153get_binding_table_entry_count(const struct anv_shader_bin *bin)
1154{
1155   return DIV_ROUND_UP(bin->bind_map.surface_count, 32);
1156}
1157
1158static struct anv_address
1159get_scratch_address(struct anv_pipeline *pipeline,
1160                    gl_shader_stage stage,
1161                    const struct anv_shader_bin *bin)
1162{
1163   return (struct anv_address) {
1164      .bo = anv_scratch_pool_alloc(pipeline->device,
1165                                   &pipeline->device->scratch_pool,
1166                                   stage, bin->prog_data->total_scratch),
1167      .offset = 0,
1168   };
1169}
1170
1171static uint32_t
1172get_scratch_space(const struct anv_shader_bin *bin)
1173{
1174   return ffs(bin->prog_data->total_scratch / 2048);
1175}
1176
1177static void
1178emit_3dstate_vs(struct anv_pipeline *pipeline)
1179{
1180   const struct gen_device_info *devinfo = &pipeline->device->info;
1181   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1182   const struct anv_shader_bin *vs_bin =
1183      pipeline->shaders[MESA_SHADER_VERTEX];
1184
1185   assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
1186
1187   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
1188      vs.Enable               = true;
1189      vs.StatisticsEnable     = true;
1190      vs.KernelStartPointer   = vs_bin->kernel.offset;
1191#if GEN_GEN >= 8
1192      vs.SIMD8DispatchEnable  =
1193         vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
1194#endif
1195
1196      assert(!vs_prog_data->base.base.use_alt_mode);
1197#if GEN_GEN < 11
1198      vs.SingleVertexDispatch       = false;
1199#endif
1200      vs.VectorMaskEnable           = false;
1201      vs.SamplerCount               = get_sampler_count(vs_bin);
1202     /* Gen 11 workarounds table #2056 WABTPPrefetchDisable suggests to
1203      * disable prefetching of binding tables on A0 and B0 steppings.
1204      * TODO: Revisit this WA on newer steppings.
1205      */
1206      vs.BindingTableEntryCount     = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(vs_bin);
1207      vs.FloatingPointMode          = IEEE754;
1208      vs.IllegalOpcodeExceptionEnable = false;
1209      vs.SoftwareExceptionEnable    = false;
1210      vs.MaximumNumberofThreads     = devinfo->max_vs_threads - 1;
1211
1212      if (GEN_GEN == 9 && devinfo->gt == 4 &&
1213          anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1214         /* On Sky Lake GT4, we have experienced some hangs related to the VS
1215          * cache and tessellation.  It is unknown exactly what is happening
1216          * but the Haswell docs for the "VS Reference Count Full Force Miss
1217          * Enable" field of the "Thread Mode" register refer to a HSW bug in
1218          * which the VUE handle reference count would overflow resulting in
1219          * internal reference counting bugs.  My (Jason's) best guess is that
1220          * this bug cropped back up on SKL GT4 when we suddenly had more
1221          * threads in play than any previous gen9 hardware.
1222          *
1223          * What we do know for sure is that setting this bit when
1224          * tessellation shaders are in use fixes a GPU hang in Batman: Arkham
1225          * City when playing with DXVK (https://bugs.freedesktop.org/107280).
1226          * Disabling the vertex cache with tessellation shaders should only
1227          * have a minor performance impact as the tessellation shaders are
1228          * likely generating and processing far more geometry than the vertex
1229          * stage.
1230          */
1231         vs.VertexCacheDisable = true;
1232      }
1233
1234      vs.VertexURBEntryReadLength      = vs_prog_data->base.urb_read_length;
1235      vs.VertexURBEntryReadOffset      = 0;
1236      vs.DispatchGRFStartRegisterForURBData =
1237         vs_prog_data->base.base.dispatch_grf_start_reg;
1238
1239#if GEN_GEN >= 8
1240      vs.UserClipDistanceClipTestEnableBitmask =
1241         vs_prog_data->base.clip_distance_mask;
1242      vs.UserClipDistanceCullTestEnableBitmask =
1243         vs_prog_data->base.cull_distance_mask;
1244#endif
1245
1246      vs.PerThreadScratchSpace   = get_scratch_space(vs_bin);
1247      vs.ScratchSpaceBasePointer =
1248         get_scratch_address(pipeline, MESA_SHADER_VERTEX, vs_bin);
1249   }
1250}
1251
1252static void
1253emit_3dstate_hs_te_ds(struct anv_pipeline *pipeline,
1254                      const VkPipelineTessellationStateCreateInfo *tess_info)
1255{
1256   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1257      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs);
1258      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te);
1259      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds);
1260      return;
1261   }
1262
1263   const struct gen_device_info *devinfo = &pipeline->device->info;
1264   const struct anv_shader_bin *tcs_bin =
1265      pipeline->shaders[MESA_SHADER_TESS_CTRL];
1266   const struct anv_shader_bin *tes_bin =
1267      pipeline->shaders[MESA_SHADER_TESS_EVAL];
1268
1269   const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
1270   const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
1271
1272   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs) {
1273      hs.Enable = true;
1274      hs.StatisticsEnable = true;
1275      hs.KernelStartPointer = tcs_bin->kernel.offset;
1276
1277      hs.SamplerCount = get_sampler_count(tcs_bin);
1278      /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1279      hs.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(tcs_bin);
1280      hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
1281      hs.IncludeVertexHandles = true;
1282      hs.InstanceCount = tcs_prog_data->instances - 1;
1283
1284      hs.VertexURBEntryReadLength = 0;
1285      hs.VertexURBEntryReadOffset = 0;
1286      hs.DispatchGRFStartRegisterForURBData =
1287         tcs_prog_data->base.base.dispatch_grf_start_reg;
1288
1289      hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
1290      hs.ScratchSpaceBasePointer =
1291         get_scratch_address(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
1292   }
1293
1294   const VkPipelineTessellationDomainOriginStateCreateInfoKHR *domain_origin_state =
1295      tess_info ? vk_find_struct_const(tess_info, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO_KHR) : NULL;
1296
1297   VkTessellationDomainOriginKHR uv_origin =
1298      domain_origin_state ? domain_origin_state->domainOrigin :
1299                            VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT_KHR;
1300
1301   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te) {
1302      te.Partitioning = tes_prog_data->partitioning;
1303
1304      if (uv_origin == VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT_KHR) {
1305         te.OutputTopology = tes_prog_data->output_topology;
1306      } else {
1307         /* When the origin is upper-left, we have to flip the winding order */
1308         if (tes_prog_data->output_topology == OUTPUT_TRI_CCW) {
1309            te.OutputTopology = OUTPUT_TRI_CW;
1310         } else if (tes_prog_data->output_topology == OUTPUT_TRI_CW) {
1311            te.OutputTopology = OUTPUT_TRI_CCW;
1312         } else {
1313            te.OutputTopology = tes_prog_data->output_topology;
1314         }
1315      }
1316
1317      te.TEDomain = tes_prog_data->domain;
1318      te.TEEnable = true;
1319      te.MaximumTessellationFactorOdd = 63.0;
1320      te.MaximumTessellationFactorNotOdd = 64.0;
1321   }
1322
1323   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds) {
1324      ds.Enable = true;
1325      ds.StatisticsEnable = true;
1326      ds.KernelStartPointer = tes_bin->kernel.offset;
1327
1328      ds.SamplerCount = get_sampler_count(tes_bin);
1329      /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1330      ds.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(tes_bin);
1331      ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
1332
1333      ds.ComputeWCoordinateEnable =
1334         tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
1335
1336      ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
1337      ds.PatchURBEntryReadOffset = 0;
1338      ds.DispatchGRFStartRegisterForURBData =
1339         tes_prog_data->base.base.dispatch_grf_start_reg;
1340
1341#if GEN_GEN >= 8
1342#if GEN_GEN < 11
1343      ds.DispatchMode =
1344         tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
1345            DISPATCH_MODE_SIMD8_SINGLE_PATCH :
1346            DISPATCH_MODE_SIMD4X2;
1347#else
1348      assert(tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8);
1349      ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
1350#endif
1351
1352      ds.UserClipDistanceClipTestEnableBitmask =
1353         tes_prog_data->base.clip_distance_mask;
1354      ds.UserClipDistanceCullTestEnableBitmask =
1355         tes_prog_data->base.cull_distance_mask;
1356#endif
1357
1358      ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
1359      ds.ScratchSpaceBasePointer =
1360         get_scratch_address(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
1361   }
1362}
1363
1364static void
1365emit_3dstate_gs(struct anv_pipeline *pipeline)
1366{
1367   const struct gen_device_info *devinfo = &pipeline->device->info;
1368   const struct anv_shader_bin *gs_bin =
1369      pipeline->shaders[MESA_SHADER_GEOMETRY];
1370
1371   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
1372      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
1373      return;
1374   }
1375
1376   const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
1377
1378   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
1379      gs.Enable                  = true;
1380      gs.StatisticsEnable        = true;
1381      gs.KernelStartPointer      = gs_bin->kernel.offset;
1382      gs.DispatchMode            = gs_prog_data->base.dispatch_mode;
1383
1384      gs.SingleProgramFlow       = false;
1385      gs.VectorMaskEnable        = false;
1386      gs.SamplerCount            = get_sampler_count(gs_bin);
1387      /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1388      gs.BindingTableEntryCount  = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(gs_bin);
1389      gs.IncludeVertexHandles    = gs_prog_data->base.include_vue_handles;
1390      gs.IncludePrimitiveID      = gs_prog_data->include_primitive_id;
1391
1392      if (GEN_GEN == 8) {
1393         /* Broadwell is weird.  It needs us to divide by 2. */
1394         gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
1395      } else {
1396         gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
1397      }
1398
1399      gs.OutputVertexSize        = gs_prog_data->output_vertex_size_hwords * 2 - 1;
1400      gs.OutputTopology          = gs_prog_data->output_topology;
1401      gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1402      gs.ControlDataFormat       = gs_prog_data->control_data_format;
1403      gs.ControlDataHeaderSize   = gs_prog_data->control_data_header_size_hwords;
1404      gs.InstanceControl         = MAX2(gs_prog_data->invocations, 1) - 1;
1405      gs.ReorderMode             = TRAILING;
1406
1407#if GEN_GEN >= 8
1408      gs.ExpectedVertexCount     = gs_prog_data->vertices_in;
1409      gs.StaticOutput            = gs_prog_data->static_vertex_count >= 0;
1410      gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
1411                                   gs_prog_data->static_vertex_count : 0;
1412#endif
1413
1414      gs.VertexURBEntryReadOffset = 0;
1415      gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1416      gs.DispatchGRFStartRegisterForURBData =
1417         gs_prog_data->base.base.dispatch_grf_start_reg;
1418
1419#if GEN_GEN >= 8
1420      gs.UserClipDistanceClipTestEnableBitmask =
1421         gs_prog_data->base.clip_distance_mask;
1422      gs.UserClipDistanceCullTestEnableBitmask =
1423         gs_prog_data->base.cull_distance_mask;
1424#endif
1425
1426      gs.PerThreadScratchSpace   = get_scratch_space(gs_bin);
1427      gs.ScratchSpaceBasePointer =
1428         get_scratch_address(pipeline, MESA_SHADER_GEOMETRY, gs_bin);
1429   }
1430}
1431
1432static bool
1433has_color_buffer_write_enabled(const struct anv_pipeline *pipeline,
1434                               const VkPipelineColorBlendStateCreateInfo *blend)
1435{
1436   const struct anv_shader_bin *shader_bin =
1437      pipeline->shaders[MESA_SHADER_FRAGMENT];
1438   if (!shader_bin)
1439      return false;
1440
1441   const struct anv_pipeline_bind_map *bind_map = &shader_bin->bind_map;
1442   for (int i = 0; i < bind_map->surface_count; i++) {
1443      struct anv_pipeline_binding *binding = &bind_map->surface_to_descriptor[i];
1444
1445      if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1446         continue;
1447
1448      if (binding->index == UINT32_MAX)
1449         continue;
1450
1451      if (blend && blend->pAttachments[binding->index].colorWriteMask != 0)
1452         return true;
1453   }
1454
1455   return false;
1456}
1457
1458static void
1459emit_3dstate_wm(struct anv_pipeline *pipeline, struct anv_subpass *subpass,
1460                const VkPipelineColorBlendStateCreateInfo *blend,
1461                const VkPipelineMultisampleStateCreateInfo *multisample)
1462{
1463   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1464
1465   MAYBE_UNUSED uint32_t samples =
1466      multisample ? multisample->rasterizationSamples : 1;
1467
1468   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
1469      wm.StatisticsEnable                    = true;
1470      wm.LineEndCapAntialiasingRegionWidth   = _05pixels;
1471      wm.LineAntialiasingRegionWidth         = _10pixels;
1472      wm.PointRasterizationRule              = RASTRULE_UPPER_RIGHT;
1473
1474      if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1475         if (wm_prog_data->early_fragment_tests) {
1476            wm.EarlyDepthStencilControl         = EDSC_PREPS;
1477         } else if (wm_prog_data->has_side_effects) {
1478            wm.EarlyDepthStencilControl         = EDSC_PSEXEC;
1479         } else {
1480            wm.EarlyDepthStencilControl         = EDSC_NORMAL;
1481         }
1482
1483#if GEN_GEN >= 8
1484         /* Gen8 hardware tries to compute ThreadDispatchEnable for us but
1485          * doesn't take into account KillPixels when no depth or stencil
1486          * writes are enabled.  In order for occlusion queries to work
1487          * correctly with no attachments, we need to force-enable PS thread
1488          * dispatch.
1489          *
1490          * The BDW docs are pretty clear that that this bit isn't validated
1491          * and probably shouldn't be used in production:
1492          *
1493          *    "This must always be set to Normal. This field should not be
1494          *    tested for functional validation."
1495          *
1496          * Unfortunately, however, the other mechanism we have for doing this
1497          * is 3DSTATE_PS_EXTRA::PixelShaderHasUAV which causes hangs on BDW.
1498          * Given two bad options, we choose the one which works.
1499          */
1500         if ((wm_prog_data->has_side_effects || wm_prog_data->uses_kill) &&
1501             !has_color_buffer_write_enabled(pipeline, blend))
1502            wm.ForceThreadDispatchEnable = ForceON;
1503#endif
1504
1505         wm.BarycentricInterpolationMode =
1506            wm_prog_data->barycentric_interp_modes;
1507
1508#if GEN_GEN < 8
1509         wm.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
1510         wm.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
1511         wm.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;
1512         wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1513
1514         /* If the subpass has a depth or stencil self-dependency, then we
1515          * need to force the hardware to do the depth/stencil write *after*
1516          * fragment shader execution.  Otherwise, the writes may hit memory
1517          * before we get around to fetching from the input attachment and we
1518          * may get the depth or stencil value from the current draw rather
1519          * than the previous one.
1520          */
1521         wm.PixelShaderKillsPixel         = subpass->has_ds_self_dep ||
1522                                            wm_prog_data->uses_kill;
1523
1524         if (wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
1525             wm_prog_data->has_side_effects ||
1526             wm.PixelShaderKillsPixel ||
1527             has_color_buffer_write_enabled(pipeline, blend))
1528            wm.ThreadDispatchEnable = true;
1529
1530         if (samples > 1) {
1531            wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1532            if (wm_prog_data->persample_dispatch) {
1533               wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1534            } else {
1535               wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1536            }
1537         } else {
1538            wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1539            wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1540         }
1541#endif
1542      }
1543   }
1544}
1545
1546static void
1547emit_3dstate_ps(struct anv_pipeline *pipeline,
1548                const VkPipelineColorBlendStateCreateInfo *blend,
1549                const VkPipelineMultisampleStateCreateInfo *multisample)
1550{
1551   MAYBE_UNUSED const struct gen_device_info *devinfo = &pipeline->device->info;
1552   const struct anv_shader_bin *fs_bin =
1553      pipeline->shaders[MESA_SHADER_FRAGMENT];
1554
1555   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1556      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1557#if GEN_GEN == 7
1558         /* Even if no fragments are ever dispatched, gen7 hardware hangs if
1559          * we don't at least set the maximum number of threads.
1560          */
1561         ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1562#endif
1563      }
1564      return;
1565   }
1566
1567   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1568
1569#if GEN_GEN < 8
1570   /* The hardware wedges if you have this bit set but don't turn on any dual
1571    * source blend factors.
1572    */
1573   bool dual_src_blend = false;
1574   if (wm_prog_data->dual_src_blend && blend) {
1575      for (uint32_t i = 0; i < blend->attachmentCount; i++) {
1576         const VkPipelineColorBlendAttachmentState *bstate =
1577            &blend->pAttachments[i];
1578
1579         if (bstate->blendEnable &&
1580             (is_dual_src_blend_factor(bstate->srcColorBlendFactor) ||
1581              is_dual_src_blend_factor(bstate->dstColorBlendFactor) ||
1582              is_dual_src_blend_factor(bstate->srcAlphaBlendFactor) ||
1583              is_dual_src_blend_factor(bstate->dstAlphaBlendFactor))) {
1584            dual_src_blend = true;
1585            break;
1586         }
1587      }
1588   }
1589#endif
1590
1591   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1592      ps._8PixelDispatchEnable      = wm_prog_data->dispatch_8;
1593      ps._16PixelDispatchEnable     = wm_prog_data->dispatch_16;
1594      ps._32PixelDispatchEnable     = wm_prog_data->dispatch_32;
1595
1596      /* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
1597       *
1598       *    "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
1599       *    Dispatch must not be enabled for PER_PIXEL dispatch mode."
1600       *
1601       * Since 16x MSAA is first introduced on SKL, we don't need to apply
1602       * the workaround on any older hardware.
1603       */
1604      if (GEN_GEN >= 9 && !wm_prog_data->persample_dispatch &&
1605          multisample && multisample->rasterizationSamples == 16) {
1606         assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
1607         ps._32PixelDispatchEnable = false;
1608      }
1609
1610      ps.KernelStartPointer0 = fs_bin->kernel.offset +
1611                               brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
1612      ps.KernelStartPointer1 = fs_bin->kernel.offset +
1613                               brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
1614      ps.KernelStartPointer2 = fs_bin->kernel.offset +
1615                               brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
1616
1617      ps.SingleProgramFlow          = false;
1618      ps.VectorMaskEnable           = true;
1619      ps.SamplerCount               = get_sampler_count(fs_bin);
1620      /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1621      ps.BindingTableEntryCount     = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(fs_bin);
1622      ps.PushConstantEnable         = wm_prog_data->base.nr_params > 0 ||
1623                                      wm_prog_data->base.ubo_ranges[0].length;
1624      ps.PositionXYOffsetSelect     = wm_prog_data->uses_pos_offset ?
1625                                      POSOFFSET_SAMPLE: POSOFFSET_NONE;
1626#if GEN_GEN < 8
1627      ps.AttributeEnable            = wm_prog_data->num_varying_inputs > 0;
1628      ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1629      ps.DualSourceBlendEnable      = dual_src_blend;
1630#endif
1631
1632#if GEN_IS_HASWELL
1633      /* Haswell requires the sample mask to be set in this packet as well
1634       * as in 3DSTATE_SAMPLE_MASK; the values should match.
1635       */
1636      ps.SampleMask                 = 0xff;
1637#endif
1638
1639#if GEN_GEN >= 9
1640      ps.MaximumNumberofThreadsPerPSD  = 64 - 1;
1641#elif GEN_GEN >= 8
1642      ps.MaximumNumberofThreadsPerPSD  = 64 - 2;
1643#else
1644      ps.MaximumNumberofThreads        = devinfo->max_wm_threads - 1;
1645#endif
1646
1647      ps.DispatchGRFStartRegisterForConstantSetupData0 =
1648         brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
1649      ps.DispatchGRFStartRegisterForConstantSetupData1 =
1650         brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
1651      ps.DispatchGRFStartRegisterForConstantSetupData2 =
1652         brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
1653
1654      ps.PerThreadScratchSpace   = get_scratch_space(fs_bin);
1655      ps.ScratchSpaceBasePointer =
1656         get_scratch_address(pipeline, MESA_SHADER_FRAGMENT, fs_bin);
1657   }
1658}
1659
1660#if GEN_GEN >= 8
1661static void
1662emit_3dstate_ps_extra(struct anv_pipeline *pipeline,
1663                      struct anv_subpass *subpass,
1664                      const VkPipelineColorBlendStateCreateInfo *blend)
1665{
1666   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1667
1668   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1669      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps);
1670      return;
1671   }
1672
1673   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
1674      ps.PixelShaderValid              = true;
1675      ps.AttributeEnable               = wm_prog_data->num_varying_inputs > 0;
1676      ps.oMaskPresenttoRenderTarget    = wm_prog_data->uses_omask;
1677      ps.PixelShaderIsPerSample        = wm_prog_data->persample_dispatch;
1678      ps.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
1679      ps.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
1680      ps.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;
1681
1682      /* If the subpass has a depth or stencil self-dependency, then we need
1683       * to force the hardware to do the depth/stencil write *after* fragment
1684       * shader execution.  Otherwise, the writes may hit memory before we get
1685       * around to fetching from the input attachment and we may get the depth
1686       * or stencil value from the current draw rather than the previous one.
1687       */
1688      ps.PixelShaderKillsPixel         = subpass->has_ds_self_dep ||
1689                                         wm_prog_data->uses_kill;
1690
1691#if GEN_GEN >= 9
1692      ps.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
1693      ps.PixelShaderPullsBary    = wm_prog_data->pulls_bary;
1694
1695      ps.InputCoverageMaskState  = ICMS_NONE;
1696      if (wm_prog_data->uses_sample_mask) {
1697         if (wm_prog_data->post_depth_coverage)
1698            ps.InputCoverageMaskState  = ICMS_DEPTH_COVERAGE;
1699         else
1700            ps.InputCoverageMaskState  = ICMS_INNER_CONSERVATIVE;
1701      }
1702#else
1703      ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1704#endif
1705   }
1706}
1707
1708static void
1709emit_3dstate_vf_topology(struct anv_pipeline *pipeline)
1710{
1711   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
1712      vft.PrimitiveTopologyType = pipeline->topology;
1713   }
1714}
1715#endif
1716
1717static void
1718emit_3dstate_vf_statistics(struct anv_pipeline *pipeline)
1719{
1720   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
1721      vfs.StatisticsEnable = true;
1722   }
1723}
1724
1725static void
1726compute_kill_pixel(struct anv_pipeline *pipeline,
1727                   const VkPipelineMultisampleStateCreateInfo *ms_info,
1728                   const struct anv_subpass *subpass)
1729{
1730   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1731      pipeline->kill_pixel = false;
1732      return;
1733   }
1734
1735   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1736
1737   /* This computes the KillPixel portion of the computation for whether or
1738    * not we want to enable the PMA fix on gen8 or gen9.  It's given by this
1739    * chunk of the giant formula:
1740    *
1741    *    (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1742    *     3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1743    *     3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1744    *     3DSTATE_PS_BLEND::AlphaTestEnable ||
1745    *     3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1746    *
1747    * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
1748    * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
1749    * of an alpha test.
1750    */
1751   pipeline->kill_pixel =
1752      subpass->has_ds_self_dep || wm_prog_data->uses_kill ||
1753      wm_prog_data->uses_omask ||
1754      (ms_info && ms_info->alphaToCoverageEnable);
1755}
1756
1757static VkResult
1758genX(graphics_pipeline_create)(
1759    VkDevice                                    _device,
1760    struct anv_pipeline_cache *                 cache,
1761    const VkGraphicsPipelineCreateInfo*         pCreateInfo,
1762    const VkAllocationCallbacks*                pAllocator,
1763    VkPipeline*                                 pPipeline)
1764{
1765   ANV_FROM_HANDLE(anv_device, device, _device);
1766   ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
1767   struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1768   struct anv_pipeline *pipeline;
1769   VkResult result;
1770
1771   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1772
1773   /* Use the default pipeline cache if none is specified */
1774   if (cache == NULL && device->instance->pipeline_cache_enabled)
1775      cache = &device->default_pipeline_cache;
1776
1777   pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1778                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1779   if (pipeline == NULL)
1780      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1781
1782   result = anv_pipeline_init(pipeline, device, cache,
1783                              pCreateInfo, pAllocator);
1784   if (result != VK_SUCCESS) {
1785      vk_free2(&device->alloc, pAllocator, pipeline);
1786      return result;
1787   }
1788
1789   assert(pCreateInfo->pVertexInputState);
1790   emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
1791   assert(pCreateInfo->pRasterizationState);
1792   emit_rs_state(pipeline, pCreateInfo->pRasterizationState,
1793                 pCreateInfo->pMultisampleState, pass, subpass);
1794   emit_ms_state(pipeline, pCreateInfo->pMultisampleState);
1795   emit_ds_state(pipeline, pCreateInfo->pDepthStencilState, pass, subpass);
1796   emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
1797                           pCreateInfo->pMultisampleState);
1798   compute_kill_pixel(pipeline, pCreateInfo->pMultisampleState, subpass);
1799
1800   emit_urb_setup(pipeline);
1801
1802   emit_3dstate_clip(pipeline, pCreateInfo->pViewportState,
1803                     pCreateInfo->pRasterizationState);
1804   emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);
1805
1806#if 0
1807   /* From gen7_vs_state.c */
1808
1809   /**
1810    * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
1811    * Geometry > Geometry Shader > State:
1812    *
1813    *     "Note: Because of corruption in IVB:GT2, software needs to flush the
1814    *     whole fixed function pipeline when the GS enable changes value in
1815    *     the 3DSTATE_GS."
1816    *
1817    * The hardware architects have clarified that in this context "flush the
1818    * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
1819    * Stall" bit set.
1820    */
1821   if (!device->info.is_haswell && !device->info.is_baytrail)
1822      gen7_emit_vs_workaround_flush(brw);
1823#endif
1824
1825   emit_3dstate_vs(pipeline);
1826   emit_3dstate_hs_te_ds(pipeline, pCreateInfo->pTessellationState);
1827   emit_3dstate_gs(pipeline);
1828   emit_3dstate_sbe(pipeline);
1829   emit_3dstate_wm(pipeline, subpass, pCreateInfo->pColorBlendState,
1830                   pCreateInfo->pMultisampleState);
1831   emit_3dstate_ps(pipeline, pCreateInfo->pColorBlendState,
1832                   pCreateInfo->pMultisampleState);
1833#if GEN_GEN >= 8
1834   emit_3dstate_ps_extra(pipeline, subpass, pCreateInfo->pColorBlendState);
1835   emit_3dstate_vf_topology(pipeline);
1836#endif
1837   emit_3dstate_vf_statistics(pipeline);
1838
1839   *pPipeline = anv_pipeline_to_handle(pipeline);
1840
1841   return pipeline->batch.status;
1842}
1843
1844static VkResult
1845compute_pipeline_create(
1846    VkDevice                                    _device,
1847    struct anv_pipeline_cache *                 cache,
1848    const VkComputePipelineCreateInfo*          pCreateInfo,
1849    const VkAllocationCallbacks*                pAllocator,
1850    VkPipeline*                                 pPipeline)
1851{
1852   ANV_FROM_HANDLE(anv_device, device, _device);
1853   const struct anv_physical_device *physical_device =
1854      &device->instance->physicalDevice;
1855   const struct gen_device_info *devinfo = &physical_device->info;
1856   struct anv_pipeline *pipeline;
1857   VkResult result;
1858
1859   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
1860
1861   /* Use the default pipeline cache if none is specified */
1862   if (cache == NULL && device->instance->pipeline_cache_enabled)
1863      cache = &device->default_pipeline_cache;
1864
1865   pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1866                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1867   if (pipeline == NULL)
1868      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1869
1870   pipeline->device = device;
1871
1872   pipeline->blend_state.map = NULL;
1873
1874   result = anv_reloc_list_init(&pipeline->batch_relocs,
1875                                pAllocator ? pAllocator : &device->alloc);
1876   if (result != VK_SUCCESS) {
1877      vk_free2(&device->alloc, pAllocator, pipeline);
1878      return result;
1879   }
1880   pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
1881   pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
1882   pipeline->batch.relocs = &pipeline->batch_relocs;
1883   pipeline->batch.status = VK_SUCCESS;
1884
1885   /* When we free the pipeline, we detect stages based on the NULL status
1886    * of various prog_data pointers.  Make them NULL by default.
1887    */
1888   memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
1889
1890   pipeline->needs_data_cache = false;
1891
1892   assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
1893   pipeline->active_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
1894   ANV_FROM_HANDLE(anv_shader_module, module,  pCreateInfo->stage.module);
1895   result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
1896                                    pCreateInfo->stage.pName,
1897                                    pCreateInfo->stage.pSpecializationInfo);
1898   if (result != VK_SUCCESS) {
1899      vk_free2(&device->alloc, pAllocator, pipeline);
1900      return result;
1901   }
1902
1903   const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
1904
1905   anv_pipeline_setup_l3_config(pipeline, cs_prog_data->base.total_shared > 0);
1906
1907   uint32_t group_size = cs_prog_data->local_size[0] *
1908      cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
1909   uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
1910
1911   if (remainder > 0)
1912      pipeline->cs_right_mask = ~0u >> (32 - remainder);
1913   else
1914      pipeline->cs_right_mask = ~0u >> (32 - cs_prog_data->simd_size);
1915
1916   const uint32_t vfe_curbe_allocation =
1917      ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
1918            cs_prog_data->push.cross_thread.regs, 2);
1919
1920   const uint32_t subslices = MAX2(physical_device->subslice_total, 1);
1921
1922   const struct anv_shader_bin *cs_bin =
1923      pipeline->shaders[MESA_SHADER_COMPUTE];
1924
1925   anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE), vfe) {
1926#if GEN_GEN > 7
1927      vfe.StackSize              = 0;
1928#else
1929      vfe.GPGPUMode              = true;
1930#endif
1931      vfe.MaximumNumberofThreads =
1932         devinfo->max_cs_threads * subslices - 1;
1933      vfe.NumberofURBEntries     = GEN_GEN <= 7 ? 0 : 2;
1934#if GEN_GEN < 11
1935      vfe.ResetGatewayTimer      = true;
1936#endif
1937#if GEN_GEN <= 8
1938      vfe.BypassGatewayControl   = true;
1939#endif
1940      vfe.URBEntryAllocationSize = GEN_GEN <= 7 ? 0 : 2;
1941      vfe.CURBEAllocationSize    = vfe_curbe_allocation;
1942
1943      vfe.PerThreadScratchSpace = get_scratch_space(cs_bin);
1944      vfe.ScratchSpaceBasePointer =
1945         get_scratch_address(pipeline, MESA_SHADER_COMPUTE, cs_bin);
1946   }
1947
1948   struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
1949      .KernelStartPointer     = cs_bin->kernel.offset,
1950
1951      .SamplerCount           = get_sampler_count(cs_bin),
1952      /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1953      .BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(cs_bin),
1954      .BarrierEnable          = cs_prog_data->uses_barrier,
1955      .SharedLocalMemorySize  =
1956         encode_slm_size(GEN_GEN, cs_prog_data->base.total_shared),
1957
1958#if !GEN_IS_HASWELL
1959      .ConstantURBEntryReadOffset = 0,
1960#endif
1961      .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
1962#if GEN_GEN >= 8 || GEN_IS_HASWELL
1963      .CrossThreadConstantDataReadLength =
1964         cs_prog_data->push.cross_thread.regs,
1965#endif
1966
1967      .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
1968   };
1969   GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
1970                                        pipeline->interface_descriptor_data,
1971                                        &desc);
1972
1973   *pPipeline = anv_pipeline_to_handle(pipeline);
1974
1975   return pipeline->batch.status;
1976}
1977
1978VkResult genX(CreateGraphicsPipelines)(
1979    VkDevice                                    _device,
1980    VkPipelineCache                             pipelineCache,
1981    uint32_t                                    count,
1982    const VkGraphicsPipelineCreateInfo*         pCreateInfos,
1983    const VkAllocationCallbacks*                pAllocator,
1984    VkPipeline*                                 pPipelines)
1985{
1986   ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
1987
1988   VkResult result = VK_SUCCESS;
1989
1990   unsigned i;
1991   for (i = 0; i < count; i++) {
1992      result = genX(graphics_pipeline_create)(_device,
1993                                              pipeline_cache,
1994                                              &pCreateInfos[i],
1995                                              pAllocator, &pPipelines[i]);
1996
1997      /* Bail out on the first error as it is not obvious what error should be
1998       * report upon 2 different failures. */
1999      if (result != VK_SUCCESS)
2000         break;
2001   }
2002
2003   for (; i < count; i++)
2004      pPipelines[i] = VK_NULL_HANDLE;
2005
2006   return result;
2007}
2008
2009VkResult genX(CreateComputePipelines)(
2010    VkDevice                                    _device,
2011    VkPipelineCache                             pipelineCache,
2012    uint32_t                                    count,
2013    const VkComputePipelineCreateInfo*          pCreateInfos,
2014    const VkAllocationCallbacks*                pAllocator,
2015    VkPipeline*                                 pPipelines)
2016{
2017   ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
2018
2019   VkResult result = VK_SUCCESS;
2020
2021   unsigned i;
2022   for (i = 0; i < count; i++) {
2023      result = compute_pipeline_create(_device, pipeline_cache,
2024                                       &pCreateInfos[i],
2025                                       pAllocator, &pPipelines[i]);
2026
2027      /* Bail out on the first error as it is not obvious what error should be
2028       * report upon 2 different failures. */
2029      if (result != VK_SUCCESS)
2030         break;
2031   }
2032
2033   for (; i < count; i++)
2034      pPipelines[i] = VK_NULL_HANDLE;
2035
2036   return result;
2037}
2038