ffvertex_prog.c revision cdc920a0
1/**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28/**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36#include "main/glheader.h"
37#include "main/mtypes.h"
38#include "main/macros.h"
39#include "main/enums.h"
40#include "main/ffvertex_prog.h"
41#include "shader/program.h"
42#include "shader/prog_cache.h"
43#include "shader/prog_instruction.h"
44#include "shader/prog_parameter.h"
45#include "shader/prog_print.h"
46#include "shader/prog_statevars.h"
47
48
49/** Max of number of lights and texture coord units */
50#define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
51
52struct state_key {
53   unsigned light_color_material_mask:12;
54   unsigned light_global_enabled:1;
55   unsigned light_local_viewer:1;
56   unsigned light_twoside:1;
57   unsigned material_shininess_is_zero:1;
58   unsigned need_eye_coords:1;
59   unsigned normalize:1;
60   unsigned rescale_normals:1;
61
62   unsigned fog_source_is_depth:1;
63   unsigned separate_specular:1;
64   unsigned point_attenuated:1;
65   unsigned point_array:1;
66   unsigned texture_enabled_global:1;
67   unsigned fragprog_inputs_read:12;
68
69   unsigned varying_vp_inputs;
70
71   struct {
72      unsigned light_enabled:1;
73      unsigned light_eyepos3_is_zero:1;
74      unsigned light_spotcutoff_is_180:1;
75      unsigned light_attenuated:1;
76      unsigned texunit_really_enabled:1;
77      unsigned texmat_enabled:1;
78      unsigned texgen_enabled:4;
79      unsigned texgen_mode0:4;
80      unsigned texgen_mode1:4;
81      unsigned texgen_mode2:4;
82      unsigned texgen_mode3:4;
83   } unit[NUM_UNITS];
84};
85
86
87#define TXG_NONE           0
88#define TXG_OBJ_LINEAR     1
89#define TXG_EYE_LINEAR     2
90#define TXG_SPHERE_MAP     3
91#define TXG_REFLECTION_MAP 4
92#define TXG_NORMAL_MAP     5
93
94static GLuint translate_texgen( GLboolean enabled, GLenum mode )
95{
96   if (!enabled)
97      return TXG_NONE;
98
99   switch (mode) {
100   case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
101   case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
102   case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
103   case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
104   case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
105   default: return TXG_NONE;
106   }
107}
108
109
110
111static GLboolean check_active_shininess( GLcontext *ctx,
112                                         const struct state_key *key,
113                                         GLuint side )
114{
115   GLuint bit = 1 << (MAT_ATTRIB_FRONT_SHININESS + side);
116
117   if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
118       (key->light_color_material_mask & bit))
119      return GL_TRUE;
120
121   if (key->varying_vp_inputs & (bit << 16))
122      return GL_TRUE;
123
124   if (ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS + side][0] != 0.0F)
125      return GL_TRUE;
126
127   return GL_FALSE;
128}
129
130
131static void make_state_key( GLcontext *ctx, struct state_key *key )
132{
133   const struct gl_fragment_program *fp;
134   GLuint i;
135
136   memset(key, 0, sizeof(struct state_key));
137   fp = ctx->FragmentProgram._Current;
138
139   /* This now relies on texenvprogram.c being active:
140    */
141   assert(fp);
142
143   key->need_eye_coords = ctx->_NeedEyeCoords;
144
145   key->fragprog_inputs_read = fp->Base.InputsRead;
146   key->varying_vp_inputs = ctx->varying_vp_inputs;
147
148   if (ctx->RenderMode == GL_FEEDBACK) {
149      /* make sure the vertprog emits color and tex0 */
150      key->fragprog_inputs_read |= (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
151   }
152
153   key->separate_specular = (ctx->Light.Model.ColorControl ==
154			     GL_SEPARATE_SPECULAR_COLOR);
155
156   if (ctx->Light.Enabled) {
157      key->light_global_enabled = 1;
158
159      if (ctx->Light.Model.LocalViewer)
160	 key->light_local_viewer = 1;
161
162      if (ctx->Light.Model.TwoSide)
163	 key->light_twoside = 1;
164
165      if (ctx->Light.ColorMaterialEnabled) {
166	 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
167      }
168
169      for (i = 0; i < MAX_LIGHTS; i++) {
170	 struct gl_light *light = &ctx->Light.Light[i];
171
172	 if (light->Enabled) {
173	    key->unit[i].light_enabled = 1;
174
175	    if (light->EyePosition[3] == 0.0)
176	       key->unit[i].light_eyepos3_is_zero = 1;
177
178	    if (light->SpotCutoff == 180.0)
179	       key->unit[i].light_spotcutoff_is_180 = 1;
180
181	    if (light->ConstantAttenuation != 1.0 ||
182		light->LinearAttenuation != 0.0 ||
183		light->QuadraticAttenuation != 0.0)
184	       key->unit[i].light_attenuated = 1;
185	 }
186      }
187
188      if (check_active_shininess(ctx, key, 0)) {
189         key->material_shininess_is_zero = 0;
190      }
191      else if (key->light_twoside &&
192               check_active_shininess(ctx, key, 1)) {
193         key->material_shininess_is_zero = 0;
194      }
195      else {
196         key->material_shininess_is_zero = 1;
197      }
198   }
199
200   if (ctx->Transform.Normalize)
201      key->normalize = 1;
202
203   if (ctx->Transform.RescaleNormals)
204      key->rescale_normals = 1;
205
206   if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
207      key->fog_source_is_depth = 1;
208
209   if (ctx->Point._Attenuated)
210      key->point_attenuated = 1;
211
212#if FEATURE_point_size_array
213   if (ctx->Array.ArrayObj->PointSize.Enabled)
214      key->point_array = 1;
215#endif
216
217   if (ctx->Texture._TexGenEnabled ||
218       ctx->Texture._TexMatEnabled ||
219       ctx->Texture._EnabledUnits)
220      key->texture_enabled_global = 1;
221
222   for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
223      struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
224
225      if (texUnit->_ReallyEnabled)
226	 key->unit[i].texunit_really_enabled = 1;
227
228      if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
229	 key->unit[i].texmat_enabled = 1;
230
231      if (texUnit->TexGenEnabled) {
232	 key->unit[i].texgen_enabled = 1;
233
234	 key->unit[i].texgen_mode0 =
235	    translate_texgen( texUnit->TexGenEnabled & (1<<0),
236			      texUnit->GenS.Mode );
237	 key->unit[i].texgen_mode1 =
238	    translate_texgen( texUnit->TexGenEnabled & (1<<1),
239			      texUnit->GenT.Mode );
240	 key->unit[i].texgen_mode2 =
241	    translate_texgen( texUnit->TexGenEnabled & (1<<2),
242			      texUnit->GenR.Mode );
243	 key->unit[i].texgen_mode3 =
244	    translate_texgen( texUnit->TexGenEnabled & (1<<3),
245			      texUnit->GenQ.Mode );
246      }
247   }
248}
249
250
251
252/* Very useful debugging tool - produces annotated listing of
253 * generated program with line/function references for each
254 * instruction back into this file:
255 */
256#define DISASSEM 0
257
258
259/* Use uregs to represent registers internally, translate to Mesa's
260 * expected formats on emit.
261 *
262 * NOTE: These are passed by value extensively in this file rather
263 * than as usual by pointer reference.  If this disturbs you, try
264 * remembering they are just 32bits in size.
265 *
266 * GCC is smart enough to deal with these dword-sized structures in
267 * much the same way as if I had defined them as dwords and was using
268 * macros to access and set the fields.  This is much nicer and easier
269 * to evolve.
270 */
271struct ureg {
272   GLuint file:4;
273   GLint idx:9;      /* relative addressing may be negative */
274                     /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
275   GLuint negate:1;
276   GLuint swz:12;
277   GLuint pad:6;
278};
279
280
281struct tnl_program {
282   const struct state_key *state;
283   struct gl_vertex_program *program;
284   GLint max_inst;  /** number of instructions allocated for program */
285   GLboolean mvp_with_dp4;
286
287   GLuint temp_in_use;
288   GLuint temp_reserved;
289
290   struct ureg eye_position;
291   struct ureg eye_position_z;
292   struct ureg eye_position_normalized;
293   struct ureg transformed_normal;
294   struct ureg identity;
295
296   GLuint materials;
297   GLuint color_materials;
298};
299
300
301static const struct ureg undef = {
302   PROGRAM_UNDEFINED,
303   0,
304   0,
305   0,
306   0
307};
308
309/* Local shorthand:
310 */
311#define X    SWIZZLE_X
312#define Y    SWIZZLE_Y
313#define Z    SWIZZLE_Z
314#define W    SWIZZLE_W
315
316
317/* Construct a ureg:
318 */
319static struct ureg make_ureg(GLuint file, GLint idx)
320{
321   struct ureg reg;
322   reg.file = file;
323   reg.idx = idx;
324   reg.negate = 0;
325   reg.swz = SWIZZLE_NOOP;
326   reg.pad = 0;
327   return reg;
328}
329
330
331
332static struct ureg negate( struct ureg reg )
333{
334   reg.negate ^= 1;
335   return reg;
336}
337
338
339static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
340{
341   reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
342			   GET_SWZ(reg.swz, y),
343			   GET_SWZ(reg.swz, z),
344			   GET_SWZ(reg.swz, w));
345   return reg;
346}
347
348
349static struct ureg swizzle1( struct ureg reg, int x )
350{
351   return swizzle(reg, x, x, x, x);
352}
353
354
355static struct ureg get_temp( struct tnl_program *p )
356{
357   int bit = _mesa_ffs( ~p->temp_in_use );
358   if (!bit) {
359      _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
360      exit(1);
361   }
362
363   if ((GLuint) bit > p->program->Base.NumTemporaries)
364      p->program->Base.NumTemporaries = bit;
365
366   p->temp_in_use |= 1<<(bit-1);
367   return make_ureg(PROGRAM_TEMPORARY, bit-1);
368}
369
370
371static struct ureg reserve_temp( struct tnl_program *p )
372{
373   struct ureg temp = get_temp( p );
374   p->temp_reserved |= 1<<temp.idx;
375   return temp;
376}
377
378
379static void release_temp( struct tnl_program *p, struct ureg reg )
380{
381   if (reg.file == PROGRAM_TEMPORARY) {
382      p->temp_in_use &= ~(1<<reg.idx);
383      p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
384   }
385}
386
387static void release_temps( struct tnl_program *p )
388{
389   p->temp_in_use = p->temp_reserved;
390}
391
392
393static struct ureg register_param5(struct tnl_program *p,
394				   GLint s0,
395				   GLint s1,
396				   GLint s2,
397				   GLint s3,
398                                   GLint s4)
399{
400   gl_state_index tokens[STATE_LENGTH];
401   GLint idx;
402   tokens[0] = s0;
403   tokens[1] = s1;
404   tokens[2] = s2;
405   tokens[3] = s3;
406   tokens[4] = s4;
407   idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
408   return make_ureg(PROGRAM_STATE_VAR, idx);
409}
410
411
412#define register_param1(p,s0)          register_param5(p,s0,0,0,0,0)
413#define register_param2(p,s0,s1)       register_param5(p,s0,s1,0,0,0)
414#define register_param3(p,s0,s1,s2)    register_param5(p,s0,s1,s2,0,0)
415#define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
416
417
418
419/**
420 * \param input  one of VERT_ATTRIB_x tokens.
421 */
422static struct ureg register_input( struct tnl_program *p, GLuint input )
423{
424   assert(input < 32);
425
426   if (p->state->varying_vp_inputs & (1<<input)) {
427      p->program->Base.InputsRead |= (1<<input);
428      return make_ureg(PROGRAM_INPUT, input);
429   }
430   else {
431      return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
432   }
433}
434
435
436/**
437 * \param input  one of VERT_RESULT_x tokens.
438 */
439static struct ureg register_output( struct tnl_program *p, GLuint output )
440{
441   p->program->Base.OutputsWritten |= BITFIELD64_BIT(output);
442   return make_ureg(PROGRAM_OUTPUT, output);
443}
444
445
446static struct ureg register_const4f( struct tnl_program *p,
447			      GLfloat s0,
448			      GLfloat s1,
449			      GLfloat s2,
450			      GLfloat s3)
451{
452   GLfloat values[4];
453   GLint idx;
454   GLuint swizzle;
455   values[0] = s0;
456   values[1] = s1;
457   values[2] = s2;
458   values[3] = s3;
459   idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
460                                     &swizzle );
461   ASSERT(swizzle == SWIZZLE_NOOP);
462   return make_ureg(PROGRAM_CONSTANT, idx);
463}
464
465#define register_const1f(p, s0)         register_const4f(p, s0, 0, 0, 1)
466#define register_scalar_const(p, s0)    register_const4f(p, s0, s0, s0, s0)
467#define register_const2f(p, s0, s1)     register_const4f(p, s0, s1, 0, 1)
468#define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
469
470static GLboolean is_undef( struct ureg reg )
471{
472   return reg.file == PROGRAM_UNDEFINED;
473}
474
475
476static struct ureg get_identity_param( struct tnl_program *p )
477{
478   if (is_undef(p->identity))
479      p->identity = register_const4f(p, 0,0,0,1);
480
481   return p->identity;
482}
483
484static void register_matrix_param5( struct tnl_program *p,
485				    GLint s0, /* modelview, projection, etc */
486				    GLint s1, /* texture matrix number */
487				    GLint s2, /* first row */
488				    GLint s3, /* last row */
489				    GLint s4, /* inverse, transpose, etc */
490				    struct ureg *matrix )
491{
492   GLint i;
493
494   /* This is a bit sad as the support is there to pull the whole
495    * matrix out in one go:
496    */
497   for (i = 0; i <= s3 - s2; i++)
498      matrix[i] = register_param5( p, s0, s1, i, i, s4 );
499}
500
501
502static void emit_arg( struct prog_src_register *src,
503		      struct ureg reg )
504{
505   src->File = reg.file;
506   src->Index = reg.idx;
507   src->Swizzle = reg.swz;
508   src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
509   src->Abs = 0;
510   src->RelAddr = 0;
511   /* Check that bitfield sizes aren't exceeded */
512   ASSERT(src->Index == reg.idx);
513}
514
515
516static void emit_dst( struct prog_dst_register *dst,
517		      struct ureg reg, GLuint mask )
518{
519   dst->File = reg.file;
520   dst->Index = reg.idx;
521   /* allow zero as a shorthand for xyzw */
522   dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
523   dst->CondMask = COND_TR;  /* always pass cond test */
524   dst->CondSwizzle = SWIZZLE_NOOP;
525   dst->CondSrc = 0;
526   /* Check that bitfield sizes aren't exceeded */
527   ASSERT(dst->Index == reg.idx);
528}
529
530
531static void debug_insn( struct prog_instruction *inst, const char *fn,
532			GLuint line )
533{
534   if (DISASSEM) {
535      static const char *last_fn;
536
537      if (fn != last_fn) {
538	 last_fn = fn;
539	 printf("%s:\n", fn);
540      }
541
542      printf("%d:\t", line);
543      _mesa_print_instruction(inst);
544   }
545}
546
547
548static void emit_op3fn(struct tnl_program *p,
549                       enum prog_opcode op,
550		       struct ureg dest,
551		       GLuint mask,
552		       struct ureg src0,
553		       struct ureg src1,
554		       struct ureg src2,
555		       const char *fn,
556		       GLuint line)
557{
558   GLuint nr;
559   struct prog_instruction *inst;
560
561   assert((GLint) p->program->Base.NumInstructions <= p->max_inst);
562
563   if (p->program->Base.NumInstructions == p->max_inst) {
564      /* need to extend the program's instruction array */
565      struct prog_instruction *newInst;
566
567      /* double the size */
568      p->max_inst *= 2;
569
570      newInst = _mesa_alloc_instructions(p->max_inst);
571      if (!newInst) {
572         _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
573         return;
574      }
575
576      _mesa_copy_instructions(newInst,
577                              p->program->Base.Instructions,
578                              p->program->Base.NumInstructions);
579
580      _mesa_free_instructions(p->program->Base.Instructions,
581                              p->program->Base.NumInstructions);
582
583      p->program->Base.Instructions = newInst;
584   }
585
586   nr = p->program->Base.NumInstructions++;
587
588   inst = &p->program->Base.Instructions[nr];
589   inst->Opcode = (enum prog_opcode) op;
590   inst->Data = 0;
591
592   emit_arg( &inst->SrcReg[0], src0 );
593   emit_arg( &inst->SrcReg[1], src1 );
594   emit_arg( &inst->SrcReg[2], src2 );
595
596   emit_dst( &inst->DstReg, dest, mask );
597
598   debug_insn(inst, fn, line);
599}
600
601
602#define emit_op3(p, op, dst, mask, src0, src1, src2) \
603   emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
604
605#define emit_op2(p, op, dst, mask, src0, src1) \
606    emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
607
608#define emit_op1(p, op, dst, mask, src0) \
609    emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
610
611
612static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
613{
614   if (reg.file == PROGRAM_TEMPORARY &&
615       !(p->temp_reserved & (1<<reg.idx)))
616      return reg;
617   else {
618      struct ureg temp = get_temp(p);
619      emit_op1(p, OPCODE_MOV, temp, 0, reg);
620      return temp;
621   }
622}
623
624
625/* Currently no tracking performed of input/output/register size or
626 * active elements.  Could be used to reduce these operations, as
627 * could the matrix type.
628 */
629static void emit_matrix_transform_vec4( struct tnl_program *p,
630					struct ureg dest,
631					const struct ureg *mat,
632					struct ureg src)
633{
634   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
635   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
636   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
637   emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
638}
639
640
641/* This version is much easier to implement if writemasks are not
642 * supported natively on the target or (like SSE), the target doesn't
643 * have a clean/obvious dotproduct implementation.
644 */
645static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
646						  struct ureg dest,
647						  const struct ureg *mat,
648						  struct ureg src)
649{
650   struct ureg tmp;
651
652   if (dest.file != PROGRAM_TEMPORARY)
653      tmp = get_temp(p);
654   else
655      tmp = dest;
656
657   emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
658   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
659   emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
660   emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
661
662   if (dest.file != PROGRAM_TEMPORARY)
663      release_temp(p, tmp);
664}
665
666
667static void emit_matrix_transform_vec3( struct tnl_program *p,
668					struct ureg dest,
669					const struct ureg *mat,
670					struct ureg src)
671{
672   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
673   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
674   emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
675}
676
677
678static void emit_normalize_vec3( struct tnl_program *p,
679				 struct ureg dest,
680				 struct ureg src )
681{
682#if 0
683   /* XXX use this when drivers are ready for NRM3 */
684   emit_op1(p, OPCODE_NRM3, dest, WRITEMASK_XYZ, src);
685#else
686   struct ureg tmp = get_temp(p);
687   emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
688   emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
689   emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
690   release_temp(p, tmp);
691#endif
692}
693
694
695static void emit_passthrough( struct tnl_program *p,
696			      GLuint input,
697			      GLuint output )
698{
699   struct ureg out = register_output(p, output);
700   emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
701}
702
703
704static struct ureg get_eye_position( struct tnl_program *p )
705{
706   if (is_undef(p->eye_position)) {
707      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
708      struct ureg modelview[4];
709
710      p->eye_position = reserve_temp(p);
711
712      if (p->mvp_with_dp4) {
713	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
714                                 0, modelview );
715
716	 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
717      }
718      else {
719	 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
720				 STATE_MATRIX_TRANSPOSE, modelview );
721
722	 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
723      }
724   }
725
726   return p->eye_position;
727}
728
729
730static struct ureg get_eye_position_z( struct tnl_program *p )
731{
732   if (!is_undef(p->eye_position))
733      return swizzle1(p->eye_position, Z);
734
735   if (is_undef(p->eye_position_z)) {
736      struct ureg pos = register_input( p, VERT_ATTRIB_POS );
737      struct ureg modelview[4];
738
739      p->eye_position_z = reserve_temp(p);
740
741      register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
742                              0, modelview );
743
744      emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
745   }
746
747   return p->eye_position_z;
748}
749
750
751static struct ureg get_eye_position_normalized( struct tnl_program *p )
752{
753   if (is_undef(p->eye_position_normalized)) {
754      struct ureg eye = get_eye_position(p);
755      p->eye_position_normalized = reserve_temp(p);
756      emit_normalize_vec3(p, p->eye_position_normalized, eye);
757   }
758
759   return p->eye_position_normalized;
760}
761
762
763static struct ureg get_transformed_normal( struct tnl_program *p )
764{
765   if (is_undef(p->transformed_normal) &&
766       !p->state->need_eye_coords &&
767       !p->state->normalize &&
768       !(p->state->need_eye_coords == p->state->rescale_normals))
769   {
770      p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
771   }
772   else if (is_undef(p->transformed_normal))
773   {
774      struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
775      struct ureg mvinv[3];
776      struct ureg transformed_normal = reserve_temp(p);
777
778      if (p->state->need_eye_coords) {
779         register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
780                                 STATE_MATRIX_INVTRANS, mvinv );
781
782         /* Transform to eye space:
783          */
784         emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
785         normal = transformed_normal;
786      }
787
788      /* Normalize/Rescale:
789       */
790      if (p->state->normalize) {
791	 emit_normalize_vec3( p, transformed_normal, normal );
792         normal = transformed_normal;
793      }
794      else if (p->state->need_eye_coords == p->state->rescale_normals) {
795         /* This is already adjusted for eye/non-eye rendering:
796          */
797	 struct ureg rescale = register_param2(p, STATE_INTERNAL,
798                                               STATE_NORMAL_SCALE);
799
800	 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
801         normal = transformed_normal;
802      }
803
804      assert(normal.file == PROGRAM_TEMPORARY);
805      p->transformed_normal = normal;
806   }
807
808   return p->transformed_normal;
809}
810
811
812static void build_hpos( struct tnl_program *p )
813{
814   struct ureg pos = register_input( p, VERT_ATTRIB_POS );
815   struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
816   struct ureg mvp[4];
817
818   if (p->mvp_with_dp4) {
819      register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
820			      0, mvp );
821      emit_matrix_transform_vec4( p, hpos, mvp, pos );
822   }
823   else {
824      register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
825			      STATE_MATRIX_TRANSPOSE, mvp );
826      emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
827   }
828}
829
830
831static GLuint material_attrib( GLuint side, GLuint property )
832{
833   return (property - STATE_AMBIENT) * 2 + side;
834}
835
836
837/**
838 * Get a bitmask of which material values vary on a per-vertex basis.
839 */
840static void set_material_flags( struct tnl_program *p )
841{
842   p->color_materials = 0;
843   p->materials = 0;
844
845   if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
846      p->materials =
847	 p->color_materials = p->state->light_color_material_mask;
848   }
849
850   p->materials |= (p->state->varying_vp_inputs >> 16);
851}
852
853
854static struct ureg get_material( struct tnl_program *p, GLuint side,
855				 GLuint property )
856{
857   GLuint attrib = material_attrib(side, property);
858
859   if (p->color_materials & (1<<attrib))
860      return register_input(p, VERT_ATTRIB_COLOR0);
861   else if (p->materials & (1<<attrib)) {
862      /* Put material values in the GENERIC slots -- they are not used
863       * for anything in fixed function mode.
864       */
865      return register_input( p, attrib + VERT_ATTRIB_GENERIC0 );
866   }
867   else
868      return register_param3( p, STATE_MATERIAL, side, property );
869}
870
871#define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
872				   MAT_BIT_FRONT_AMBIENT | \
873				   MAT_BIT_FRONT_DIFFUSE) << (side))
874
875
876/**
877 * Either return a precalculated constant value or emit code to
878 * calculate these values dynamically in the case where material calls
879 * are present between begin/end pairs.
880 *
881 * Probably want to shift this to the program compilation phase - if
882 * we always emitted the calculation here, a smart compiler could
883 * detect that it was constant (given a certain set of inputs), and
884 * lift it out of the main loop.  That way the programs created here
885 * would be independent of the vertex_buffer details.
886 */
887static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
888{
889   if (p->materials & SCENE_COLOR_BITS(side)) {
890      struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
891      struct ureg material_emission = get_material(p, side, STATE_EMISSION);
892      struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
893      struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
894      struct ureg tmp = make_temp(p, material_diffuse);
895      emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
896	       material_ambient, material_emission);
897      return tmp;
898   }
899   else
900      return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
901}
902
903
904static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
905				  GLuint side, GLuint property )
906{
907   GLuint attrib = material_attrib(side, property);
908   if (p->materials & (1<<attrib)) {
909      struct ureg light_value =
910	 register_param3(p, STATE_LIGHT, light, property);
911      struct ureg material_value = get_material(p, side, property);
912      struct ureg tmp = get_temp(p);
913      emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
914      return tmp;
915   }
916   else
917      return register_param4(p, STATE_LIGHTPROD, light, side, property);
918}
919
920
921static struct ureg calculate_light_attenuation( struct tnl_program *p,
922						GLuint i,
923						struct ureg VPpli,
924						struct ureg dist )
925{
926   struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
927					     STATE_ATTENUATION);
928   struct ureg att = get_temp(p);
929
930   /* Calculate spot attenuation:
931    */
932   if (!p->state->unit[i].light_spotcutoff_is_180) {
933      struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
934						  STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
935      struct ureg spot = get_temp(p);
936      struct ureg slt = get_temp(p);
937
938      emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
939      emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
940      emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
941      emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
942
943      release_temp(p, spot);
944      release_temp(p, slt);
945   }
946
947   /* Calculate distance attenuation:
948    */
949   if (p->state->unit[i].light_attenuated) {
950      /* 1/d,d,d,1/d */
951      emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
952      /* 1,d,d*d,1/d */
953      emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
954      /* 1/dist-atten */
955      emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
956
957      if (!p->state->unit[i].light_spotcutoff_is_180) {
958	 /* dist-atten */
959	 emit_op1(p, OPCODE_RCP, dist, 0, dist);
960	 /* spot-atten * dist-atten */
961	 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
962      }
963      else {
964	 /* dist-atten */
965	 emit_op1(p, OPCODE_RCP, att, 0, dist);
966      }
967   }
968
969   return att;
970}
971
972
973/**
974 * Compute:
975 *   lit.y = MAX(0, dots.x)
976 *   lit.z = SLT(0, dots.x)
977 */
978static void emit_degenerate_lit( struct tnl_program *p,
979                                 struct ureg lit,
980                                 struct ureg dots )
981{
982   struct ureg id = get_identity_param(p);  /* id = {0,0,0,1} */
983
984   /* Note that lit.x & lit.w will not be examined.  Note also that
985    * dots.xyzw == dots.xxxx.
986    */
987
988   /* MAX lit, id, dots;
989    */
990   emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
991
992   /* result[2] = (in > 0 ? 1 : 0)
993    * SLT lit.z, id.z, dots;   # lit.z = (0 < dots.z) ? 1 : 0
994    */
995   emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
996}
997
998
999/* Need to add some addtional parameters to allow lighting in object
1000 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1001 * space lighting.
1002 */
1003static void build_lighting( struct tnl_program *p )
1004{
1005   const GLboolean twoside = p->state->light_twoside;
1006   const GLboolean separate = p->state->separate_specular;
1007   GLuint nr_lights = 0, count = 0;
1008   struct ureg normal = get_transformed_normal(p);
1009   struct ureg lit = get_temp(p);
1010   struct ureg dots = get_temp(p);
1011   struct ureg _col0 = undef, _col1 = undef;
1012   struct ureg _bfc0 = undef, _bfc1 = undef;
1013   GLuint i;
1014
1015   /*
1016    * NOTE:
1017    * dots.x = dot(normal, VPpli)
1018    * dots.y = dot(normal, halfAngle)
1019    * dots.z = back.shininess
1020    * dots.w = front.shininess
1021    */
1022
1023   for (i = 0; i < MAX_LIGHTS; i++)
1024      if (p->state->unit[i].light_enabled)
1025	 nr_lights++;
1026
1027   set_material_flags(p);
1028
1029   {
1030      if (!p->state->material_shininess_is_zero) {
1031         struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1032         emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1033         release_temp(p, shininess);
1034      }
1035
1036      _col0 = make_temp(p, get_scenecolor(p, 0));
1037      if (separate)
1038	 _col1 = make_temp(p, get_identity_param(p));
1039      else
1040	 _col1 = _col0;
1041   }
1042
1043   if (twoside) {
1044      if (!p->state->material_shininess_is_zero) {
1045         /* Note that we negate the back-face specular exponent here.
1046          * The negation will be un-done later in the back-face code below.
1047          */
1048         struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1049         emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1050                  negate(swizzle1(shininess,X)));
1051         release_temp(p, shininess);
1052      }
1053
1054      _bfc0 = make_temp(p, get_scenecolor(p, 1));
1055      if (separate)
1056	 _bfc1 = make_temp(p, get_identity_param(p));
1057      else
1058	 _bfc1 = _bfc0;
1059   }
1060
1061   /* If no lights, still need to emit the scenecolor.
1062    */
1063   {
1064      struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
1065      emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1066   }
1067
1068   if (separate) {
1069      struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
1070      emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1071   }
1072
1073   if (twoside) {
1074      struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
1075      emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1076   }
1077
1078   if (twoside && separate) {
1079      struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
1080      emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1081   }
1082
1083   if (nr_lights == 0) {
1084      release_temps(p);
1085      return;
1086   }
1087
1088   for (i = 0; i < MAX_LIGHTS; i++) {
1089      if (p->state->unit[i].light_enabled) {
1090	 struct ureg half = undef;
1091	 struct ureg att = undef, VPpli = undef;
1092
1093	 count++;
1094
1095	 if (p->state->unit[i].light_eyepos3_is_zero) {
1096	    /* Can used precomputed constants in this case.
1097	     * Attenuation never applies to infinite lights.
1098	     */
1099	    VPpli = register_param3(p, STATE_INTERNAL,
1100				    STATE_LIGHT_POSITION_NORMALIZED, i);
1101
1102            if (!p->state->material_shininess_is_zero) {
1103               if (p->state->light_local_viewer) {
1104                  struct ureg eye_hat = get_eye_position_normalized(p);
1105                  half = get_temp(p);
1106                  emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1107                  emit_normalize_vec3(p, half, half);
1108               }
1109               else {
1110                  half = register_param3(p, STATE_INTERNAL,
1111                                         STATE_LIGHT_HALF_VECTOR, i);
1112               }
1113            }
1114	 }
1115	 else {
1116	    struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1117					       STATE_LIGHT_POSITION, i);
1118	    struct ureg V = get_eye_position(p);
1119	    struct ureg dist = get_temp(p);
1120
1121	    VPpli = get_temp(p);
1122
1123	    /* Calculate VPpli vector
1124	     */
1125	    emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1126
1127	    /* Normalize VPpli.  The dist value also used in
1128	     * attenuation below.
1129	     */
1130	    emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1131	    emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1132	    emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1133
1134	    /* Calculate attenuation:
1135	     */
1136	    if (!p->state->unit[i].light_spotcutoff_is_180 ||
1137		p->state->unit[i].light_attenuated) {
1138	       att = calculate_light_attenuation(p, i, VPpli, dist);
1139	    }
1140
1141	    /* Calculate viewer direction, or use infinite viewer:
1142	     */
1143            if (!p->state->material_shininess_is_zero) {
1144               half = get_temp(p);
1145
1146               if (p->state->light_local_viewer) {
1147                  struct ureg eye_hat = get_eye_position_normalized(p);
1148                  emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1149               }
1150               else {
1151                  struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1152                  emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1153               }
1154
1155               emit_normalize_vec3(p, half, half);
1156            }
1157
1158	    release_temp(p, dist);
1159	 }
1160
1161	 /* Calculate dot products:
1162	  */
1163         if (p->state->material_shininess_is_zero) {
1164            emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1165         }
1166         else {
1167            emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1168            emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1169         }
1170
1171	 /* Front face lighting:
1172	  */
1173	 {
1174	    struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1175	    struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1176	    struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1177	    struct ureg res0, res1;
1178	    GLuint mask0, mask1;
1179
1180	    if (count == nr_lights) {
1181	       if (separate) {
1182		  mask0 = WRITEMASK_XYZ;
1183		  mask1 = WRITEMASK_XYZ;
1184		  res0 = register_output( p, VERT_RESULT_COL0 );
1185		  res1 = register_output( p, VERT_RESULT_COL1 );
1186	       }
1187	       else {
1188		  mask0 = 0;
1189		  mask1 = WRITEMASK_XYZ;
1190		  res0 = _col0;
1191		  res1 = register_output( p, VERT_RESULT_COL0 );
1192	       }
1193	    }
1194            else {
1195	       mask0 = 0;
1196	       mask1 = 0;
1197	       res0 = _col0;
1198	       res1 = _col1;
1199	    }
1200
1201	    if (!is_undef(att)) {
1202               /* light is attenuated by distance */
1203               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1204               emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1205               emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1206            }
1207            else if (!p->state->material_shininess_is_zero) {
1208               /* there's a non-zero specular term */
1209               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1210               emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1211            }
1212            else {
1213               /* no attenutation, no specular */
1214               emit_degenerate_lit(p, lit, dots);
1215               emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1216            }
1217
1218	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1219	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1220
1221	    release_temp(p, ambient);
1222	    release_temp(p, diffuse);
1223	    release_temp(p, specular);
1224	 }
1225
1226	 /* Back face lighting:
1227	  */
1228	 if (twoside) {
1229	    struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1230	    struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1231	    struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1232	    struct ureg res0, res1;
1233	    GLuint mask0, mask1;
1234
1235	    if (count == nr_lights) {
1236	       if (separate) {
1237		  mask0 = WRITEMASK_XYZ;
1238		  mask1 = WRITEMASK_XYZ;
1239		  res0 = register_output( p, VERT_RESULT_BFC0 );
1240		  res1 = register_output( p, VERT_RESULT_BFC1 );
1241	       }
1242	       else {
1243		  mask0 = 0;
1244		  mask1 = WRITEMASK_XYZ;
1245		  res0 = _bfc0;
1246		  res1 = register_output( p, VERT_RESULT_BFC0 );
1247	       }
1248	    }
1249            else {
1250	       res0 = _bfc0;
1251	       res1 = _bfc1;
1252	       mask0 = 0;
1253	       mask1 = 0;
1254	    }
1255
1256            /* For the back face we need to negate the X and Y component
1257             * dot products.  dots.Z has the negated back-face specular
1258             * exponent.  We swizzle that into the W position.  This
1259             * negation makes the back-face specular term positive again.
1260             */
1261            dots = negate(swizzle(dots,X,Y,W,Z));
1262
1263	    if (!is_undef(att)) {
1264               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1265	       emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1266               emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1267            }
1268            else if (!p->state->material_shininess_is_zero) {
1269               emit_op1(p, OPCODE_LIT, lit, 0, dots);
1270               emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1271            }
1272            else {
1273               emit_degenerate_lit(p, lit, dots);
1274               emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1275            }
1276
1277	    emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1278	    emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1279            /* restore dots to its original state for subsequent lights
1280             * by negating and swizzling again.
1281             */
1282            dots = negate(swizzle(dots,X,Y,W,Z));
1283
1284	    release_temp(p, ambient);
1285	    release_temp(p, diffuse);
1286	    release_temp(p, specular);
1287	 }
1288
1289	 release_temp(p, half);
1290	 release_temp(p, VPpli);
1291	 release_temp(p, att);
1292      }
1293   }
1294
1295   release_temps( p );
1296}
1297
1298
1299static void build_fog( struct tnl_program *p )
1300{
1301   struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1302   struct ureg input;
1303
1304   if (p->state->fog_source_is_depth) {
1305      input = get_eye_position_z(p);
1306   }
1307   else {
1308      input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1309   }
1310
1311   /* result.fog = {abs(f),0,0,1}; */
1312   emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1313   emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
1314}
1315
1316
1317static void build_reflect_texgen( struct tnl_program *p,
1318				  struct ureg dest,
1319				  GLuint writemask )
1320{
1321   struct ureg normal = get_transformed_normal(p);
1322   struct ureg eye_hat = get_eye_position_normalized(p);
1323   struct ureg tmp = get_temp(p);
1324
1325   /* n.u */
1326   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1327   /* 2n.u */
1328   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1329   /* (-2n.u)n + u */
1330   emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1331
1332   release_temp(p, tmp);
1333}
1334
1335
1336static void build_sphere_texgen( struct tnl_program *p,
1337				 struct ureg dest,
1338				 GLuint writemask )
1339{
1340   struct ureg normal = get_transformed_normal(p);
1341   struct ureg eye_hat = get_eye_position_normalized(p);
1342   struct ureg tmp = get_temp(p);
1343   struct ureg half = register_scalar_const(p, .5);
1344   struct ureg r = get_temp(p);
1345   struct ureg inv_m = get_temp(p);
1346   struct ureg id = get_identity_param(p);
1347
1348   /* Could share the above calculations, but it would be
1349    * a fairly odd state for someone to set (both sphere and
1350    * reflection active for different texture coordinate
1351    * components.  Of course - if two texture units enable
1352    * reflect and/or sphere, things start to tilt in favour
1353    * of seperating this out:
1354    */
1355
1356   /* n.u */
1357   emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1358   /* 2n.u */
1359   emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1360   /* (-2n.u)n + u */
1361   emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1362   /* r + 0,0,1 */
1363   emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1364   /* rx^2 + ry^2 + (rz+1)^2 */
1365   emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1366   /* 2/m */
1367   emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1368   /* 1/m */
1369   emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1370   /* r/m + 1/2 */
1371   emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1372
1373   release_temp(p, tmp);
1374   release_temp(p, r);
1375   release_temp(p, inv_m);
1376}
1377
1378
1379static void build_texture_transform( struct tnl_program *p )
1380{
1381   GLuint i, j;
1382
1383   for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1384
1385      if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1386	 continue;
1387
1388      if (p->state->unit[i].texgen_enabled ||
1389	  p->state->unit[i].texmat_enabled) {
1390
1391	 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1392	 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1393	 struct ureg out_texgen = undef;
1394
1395	 if (p->state->unit[i].texgen_enabled) {
1396	    GLuint copy_mask = 0;
1397	    GLuint sphere_mask = 0;
1398	    GLuint reflect_mask = 0;
1399	    GLuint normal_mask = 0;
1400	    GLuint modes[4];
1401
1402	    if (texmat_enabled)
1403	       out_texgen = get_temp(p);
1404	    else
1405	       out_texgen = out;
1406
1407	    modes[0] = p->state->unit[i].texgen_mode0;
1408	    modes[1] = p->state->unit[i].texgen_mode1;
1409	    modes[2] = p->state->unit[i].texgen_mode2;
1410	    modes[3] = p->state->unit[i].texgen_mode3;
1411
1412	    for (j = 0; j < 4; j++) {
1413	       switch (modes[j]) {
1414	       case TXG_OBJ_LINEAR: {
1415		  struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1416		  struct ureg plane =
1417		     register_param3(p, STATE_TEXGEN, i,
1418				     STATE_TEXGEN_OBJECT_S + j);
1419
1420		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1421			   obj, plane );
1422		  break;
1423	       }
1424	       case TXG_EYE_LINEAR: {
1425		  struct ureg eye = get_eye_position(p);
1426		  struct ureg plane =
1427		     register_param3(p, STATE_TEXGEN, i,
1428				     STATE_TEXGEN_EYE_S + j);
1429
1430		  emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1431			   eye, plane );
1432		  break;
1433	       }
1434	       case TXG_SPHERE_MAP:
1435		  sphere_mask |= WRITEMASK_X << j;
1436		  break;
1437	       case TXG_REFLECTION_MAP:
1438		  reflect_mask |= WRITEMASK_X << j;
1439		  break;
1440	       case TXG_NORMAL_MAP:
1441		  normal_mask |= WRITEMASK_X << j;
1442		  break;
1443	       case TXG_NONE:
1444		  copy_mask |= WRITEMASK_X << j;
1445	       }
1446	    }
1447
1448	    if (sphere_mask) {
1449	       build_sphere_texgen(p, out_texgen, sphere_mask);
1450	    }
1451
1452	    if (reflect_mask) {
1453	       build_reflect_texgen(p, out_texgen, reflect_mask);
1454	    }
1455
1456	    if (normal_mask) {
1457	       struct ureg normal = get_transformed_normal(p);
1458	       emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1459	    }
1460
1461	    if (copy_mask) {
1462	       struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1463	       emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1464	    }
1465	 }
1466
1467	 if (texmat_enabled) {
1468	    struct ureg texmat[4];
1469	    struct ureg in = (!is_undef(out_texgen) ?
1470			      out_texgen :
1471			      register_input(p, VERT_ATTRIB_TEX0+i));
1472	    if (p->mvp_with_dp4) {
1473	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1474				       0, texmat );
1475	       emit_matrix_transform_vec4( p, out, texmat, in );
1476	    }
1477	    else {
1478	       register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1479				       STATE_MATRIX_TRANSPOSE, texmat );
1480	       emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1481	    }
1482	 }
1483
1484	 release_temps(p);
1485      }
1486      else {
1487	 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1488      }
1489   }
1490}
1491
1492
1493/**
1494 * Point size attenuation computation.
1495 */
1496static void build_atten_pointsize( struct tnl_program *p )
1497{
1498   struct ureg eye = get_eye_position_z(p);
1499   struct ureg state_size = register_param2(p, STATE_INTERNAL, STATE_POINT_SIZE_CLAMPED);
1500   struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1501   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1502   struct ureg ut = get_temp(p);
1503
1504   /* dist = |eyez| */
1505   emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1506   /* p1 + dist * (p2 + dist * p3); */
1507   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1508		swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1509   emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1510		ut, swizzle1(state_attenuation, X));
1511
1512   /* 1 / sqrt(factor) */
1513   emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1514
1515#if 0
1516   /* out = pointSize / sqrt(factor) */
1517   emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1518#else
1519   /* this is a good place to clamp the point size since there's likely
1520    * no hardware registers to clamp point size at rasterization time.
1521    */
1522   emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1523   emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1524   emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1525#endif
1526
1527   release_temp(p, ut);
1528}
1529
1530
1531/**
1532 * Pass-though per-vertex point size, from user's point size array.
1533 */
1534static void build_array_pointsize( struct tnl_program *p )
1535{
1536   struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1537   struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1538   emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1539}
1540
1541
1542static void build_tnl_program( struct tnl_program *p )
1543{
1544   /* Emit the program, starting with modelviewproject:
1545    */
1546   build_hpos(p);
1547
1548   /* Lighting calculations:
1549    */
1550   if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1551      if (p->state->light_global_enabled)
1552	 build_lighting(p);
1553      else {
1554	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1555	    emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1556
1557	 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1558	    emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1559      }
1560   }
1561
1562   if (p->state->fragprog_inputs_read & FRAG_BIT_FOGC)
1563      build_fog(p);
1564
1565   if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1566      build_texture_transform(p);
1567
1568   if (p->state->point_attenuated)
1569      build_atten_pointsize(p);
1570   else if (p->state->point_array)
1571      build_array_pointsize(p);
1572
1573   /* Finish up:
1574    */
1575   emit_op1(p, OPCODE_END, undef, 0, undef);
1576
1577   /* Disassemble:
1578    */
1579   if (DISASSEM) {
1580      printf ("\n");
1581   }
1582}
1583
1584
1585static void
1586create_new_program( const struct state_key *key,
1587                    struct gl_vertex_program *program,
1588                    GLboolean mvp_with_dp4,
1589                    GLuint max_temps)
1590{
1591   struct tnl_program p;
1592
1593   memset(&p, 0, sizeof(p));
1594   p.state = key;
1595   p.program = program;
1596   p.eye_position = undef;
1597   p.eye_position_z = undef;
1598   p.eye_position_normalized = undef;
1599   p.transformed_normal = undef;
1600   p.identity = undef;
1601   p.temp_in_use = 0;
1602   p.mvp_with_dp4 = mvp_with_dp4;
1603
1604   if (max_temps >= sizeof(int) * 8)
1605      p.temp_reserved = 0;
1606   else
1607      p.temp_reserved = ~((1<<max_temps)-1);
1608
1609   /* Start by allocating 32 instructions.
1610    * If we need more, we'll grow the instruction array as needed.
1611    */
1612   p.max_inst = 32;
1613   p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
1614   p.program->Base.String = NULL;
1615   p.program->Base.NumInstructions =
1616   p.program->Base.NumTemporaries =
1617   p.program->Base.NumParameters =
1618   p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1619   p.program->Base.Parameters = _mesa_new_parameter_list();
1620   p.program->Base.InputsRead = 0;
1621   p.program->Base.OutputsWritten = 0;
1622
1623   build_tnl_program( &p );
1624}
1625
1626
1627/**
1628 * Return a vertex program which implements the current fixed-function
1629 * transform/lighting/texgen operations.
1630 * XXX move this into core mesa (main/)
1631 */
1632struct gl_vertex_program *
1633_mesa_get_fixed_func_vertex_program(GLcontext *ctx)
1634{
1635   struct gl_vertex_program *prog;
1636   struct state_key key;
1637
1638   /* Grab all the relevent state and put it in a single structure:
1639    */
1640   make_state_key(ctx, &key);
1641
1642   /* Look for an already-prepared program for this state:
1643    */
1644   prog = (struct gl_vertex_program *)
1645      _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key));
1646
1647   if (!prog) {
1648      /* OK, we'll have to build a new one */
1649      if (0)
1650         printf("Build new TNL program\n");
1651
1652      prog = (struct gl_vertex_program *)
1653         ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1654      if (!prog)
1655         return NULL;
1656
1657      create_new_program( &key, prog,
1658                          ctx->mvp_with_dp4,
1659                          ctx->Const.VertexProgram.MaxTemps );
1660
1661#if 0
1662      if (ctx->Driver.ProgramStringNotify)
1663         ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1664                                          &prog->Base );
1665#endif
1666      _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1667                                 &key, sizeof(key), &prog->Base);
1668   }
1669
1670   return prog;
1671}
1672