s_linetemp.h revision c1f859d4
1/* 2 * Mesa 3-D graphics library 3 * Version: 7.0 4 * 5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included 15 * in all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN 21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25 26/* 27 * Line Rasterizer Template 28 * 29 * This file is #include'd to generate custom line rasterizers. 30 * 31 * The following macros may be defined to indicate what auxillary information 32 * must be interplated along the line: 33 * INTERP_Z - if defined, interpolate Z values 34 * INTERP_RGBA - if defined, interpolate RGBA values 35 * INTERP_INDEX - if defined, interpolate color index values 36 * INTERP_ATTRIBS - if defined, interpolate attribs (texcoords, varying, etc) 37 * 38 * When one can directly address pixels in the color buffer the following 39 * macros can be defined and used to directly compute pixel addresses during 40 * rasterization (see pixelPtr): 41 * PIXEL_TYPE - the datatype of a pixel (GLubyte, GLushort, GLuint) 42 * BYTES_PER_ROW - number of bytes per row in the color buffer 43 * PIXEL_ADDRESS(X,Y) - returns the address of pixel at (X,Y) where 44 * Y==0 at bottom of screen and increases upward. 45 * 46 * Similarly, for direct depth buffer access, this type is used for depth 47 * buffer addressing: 48 * DEPTH_TYPE - either GLushort or GLuint 49 * 50 * Optionally, one may provide one-time setup code 51 * SETUP_CODE - code which is to be executed once per line 52 * 53 * To actually "plot" each pixel the PLOT macro must be defined... 54 * PLOT(X,Y) - code to plot a pixel. Example: 55 * if (Z < *zPtr) { 56 * *zPtr = Z; 57 * color = pack_rgb( FixedToInt(r0), FixedToInt(g0), 58 * FixedToInt(b0) ); 59 * put_pixel( X, Y, color ); 60 * } 61 * 62 * This code was designed for the origin to be in the lower-left corner. 63 * 64 */ 65 66 67static void 68NAME( GLcontext *ctx, const SWvertex *vert0, const SWvertex *vert1 ) 69{ 70 const SWcontext *swrast = SWRAST_CONTEXT(ctx); 71 SWspan span; 72 GLuint interpFlags = 0; 73 GLint x0 = (GLint) vert0->attrib[FRAG_ATTRIB_WPOS][0]; 74 GLint x1 = (GLint) vert1->attrib[FRAG_ATTRIB_WPOS][0]; 75 GLint y0 = (GLint) vert0->attrib[FRAG_ATTRIB_WPOS][1]; 76 GLint y1 = (GLint) vert1->attrib[FRAG_ATTRIB_WPOS][1]; 77 GLint dx, dy; 78 GLint numPixels; 79 GLint xstep, ystep; 80#if defined(DEPTH_TYPE) 81 const GLint depthBits = ctx->DrawBuffer->Visual.depthBits; 82 const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0; 83 struct gl_renderbuffer *zrb = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer; 84#define FixedToDepth(F) ((F) >> fixedToDepthShift) 85 GLint zPtrXstep, zPtrYstep; 86 DEPTH_TYPE *zPtr; 87#elif defined(INTERP_Z) 88 const GLint depthBits = ctx->DrawBuffer->Visual.depthBits; 89/*ctx->Visual.depthBits;*/ 90#endif 91#ifdef PIXEL_ADDRESS 92 PIXEL_TYPE *pixelPtr; 93 GLint pixelXstep, pixelYstep; 94#endif 95 96#ifdef SETUP_CODE 97 SETUP_CODE 98#endif 99 100 (void) swrast; 101 102 /* Cull primitives with malformed coordinates. 103 */ 104 { 105 GLfloat tmp = vert0->attrib[FRAG_ATTRIB_WPOS][0] + vert0->attrib[FRAG_ATTRIB_WPOS][1] 106 + vert1->attrib[FRAG_ATTRIB_WPOS][0] + vert1->attrib[FRAG_ATTRIB_WPOS][1]; 107 if (IS_INF_OR_NAN(tmp)) 108 return; 109 } 110 111 /* 112 printf("%s():\n", __FUNCTION__); 113 printf(" (%f, %f, %f) -> (%f, %f, %f)\n", 114 vert0->attrib[FRAG_ATTRIB_WPOS][0], 115 vert0->attrib[FRAG_ATTRIB_WPOS][1], 116 vert0->attrib[FRAG_ATTRIB_WPOS][2], 117 vert1->attrib[FRAG_ATTRIB_WPOS][0], 118 vert1->attrib[FRAG_ATTRIB_WPOS][1], 119 vert1->attrib[FRAG_ATTRIB_WPOS][2]); 120 printf(" (%d, %d, %d) -> (%d, %d, %d)\n", 121 vert0->color[0], vert0->color[1], vert0->color[2], 122 vert1->color[0], vert1->color[1], vert1->color[2]); 123 printf(" (%d, %d, %d) -> (%d, %d, %d)\n", 124 vert0->specular[0], vert0->specular[1], vert0->specular[2], 125 vert1->specular[0], vert1->specular[1], vert1->specular[2]); 126 */ 127 128/* 129 * Despite being clipped to the view volume, the line's window coordinates 130 * may just lie outside the window bounds. That is, if the legal window 131 * coordinates are [0,W-1][0,H-1], it's possible for x==W and/or y==H. 132 * This quick and dirty code nudges the endpoints inside the window if 133 * necessary. 134 */ 135#ifdef CLIP_HACK 136 { 137 GLint w = ctx->DrawBuffer->Width; 138 GLint h = ctx->DrawBuffer->Height; 139 if ((x0==w) | (x1==w)) { 140 if ((x0==w) & (x1==w)) 141 return; 142 x0 -= x0==w; 143 x1 -= x1==w; 144 } 145 if ((y0==h) | (y1==h)) { 146 if ((y0==h) & (y1==h)) 147 return; 148 y0 -= y0==h; 149 y1 -= y1==h; 150 } 151 } 152#endif 153 154 dx = x1 - x0; 155 dy = y1 - y0; 156 if (dx == 0 && dy == 0) 157 return; 158 159 /* 160 printf("%s %d,%d %g %g %g %g %g %g %g %g\n", __FUNCTION__, dx, dy, 161 vert0->attrib[FRAG_ATTRIB_COL1][0], 162 vert0->attrib[FRAG_ATTRIB_COL1][1], 163 vert0->attrib[FRAG_ATTRIB_COL1][2], 164 vert0->attrib[FRAG_ATTRIB_COL1][3], 165 vert1->attrib[FRAG_ATTRIB_COL1][0], 166 vert1->attrib[FRAG_ATTRIB_COL1][1], 167 vert1->attrib[FRAG_ATTRIB_COL1][2], 168 vert1->attrib[FRAG_ATTRIB_COL1][3]); 169 */ 170 171#ifdef DEPTH_TYPE 172 zPtr = (DEPTH_TYPE *) zrb->GetPointer(ctx, zrb, x0, y0); 173#endif 174#ifdef PIXEL_ADDRESS 175 pixelPtr = (PIXEL_TYPE *) PIXEL_ADDRESS(x0,y0); 176#endif 177 178 if (dx<0) { 179 dx = -dx; /* make positive */ 180 xstep = -1; 181#ifdef DEPTH_TYPE 182 zPtrXstep = -((GLint)sizeof(DEPTH_TYPE)); 183#endif 184#ifdef PIXEL_ADDRESS 185 pixelXstep = -((GLint)sizeof(PIXEL_TYPE)); 186#endif 187 } 188 else { 189 xstep = 1; 190#ifdef DEPTH_TYPE 191 zPtrXstep = ((GLint)sizeof(DEPTH_TYPE)); 192#endif 193#ifdef PIXEL_ADDRESS 194 pixelXstep = ((GLint)sizeof(PIXEL_TYPE)); 195#endif 196 } 197 198 if (dy<0) { 199 dy = -dy; /* make positive */ 200 ystep = -1; 201#ifdef DEPTH_TYPE 202 zPtrYstep = -((GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE))); 203#endif 204#ifdef PIXEL_ADDRESS 205 pixelYstep = BYTES_PER_ROW; 206#endif 207 } 208 else { 209 ystep = 1; 210#ifdef DEPTH_TYPE 211 zPtrYstep = (GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE)); 212#endif 213#ifdef PIXEL_ADDRESS 214 pixelYstep = -(BYTES_PER_ROW); 215#endif 216 } 217 218 ASSERT(dx >= 0); 219 ASSERT(dy >= 0); 220 221 numPixels = MAX2(dx, dy); 222 223 /* 224 * Span setup: compute start and step values for all interpolated values. 225 */ 226#ifdef INTERP_RGBA 227 interpFlags |= SPAN_RGBA; 228 if (ctx->Light.ShadeModel == GL_SMOOTH) { 229 span.red = ChanToFixed(vert0->color[0]); 230 span.green = ChanToFixed(vert0->color[1]); 231 span.blue = ChanToFixed(vert0->color[2]); 232 span.alpha = ChanToFixed(vert0->color[3]); 233 span.redStep = (ChanToFixed(vert1->color[0]) - span.red ) / numPixels; 234 span.greenStep = (ChanToFixed(vert1->color[1]) - span.green) / numPixels; 235 span.blueStep = (ChanToFixed(vert1->color[2]) - span.blue ) / numPixels; 236 span.alphaStep = (ChanToFixed(vert1->color[3]) - span.alpha) / numPixels; 237 } 238 else { 239 span.red = ChanToFixed(vert1->color[0]); 240 span.green = ChanToFixed(vert1->color[1]); 241 span.blue = ChanToFixed(vert1->color[2]); 242 span.alpha = ChanToFixed(vert1->color[3]); 243 span.redStep = 0; 244 span.greenStep = 0; 245 span.blueStep = 0; 246 span.alphaStep = 0; 247 } 248#endif 249#ifdef INTERP_INDEX 250 interpFlags |= SPAN_INDEX; 251 if (ctx->Light.ShadeModel == GL_SMOOTH) { 252 span.index = FloatToFixed(vert0->attrib[FRAG_ATTRIB_CI][0]); 253 span.indexStep = FloatToFixed( vert1->attrib[FRAG_ATTRIB_CI][0] 254 - vert0->attrib[FRAG_ATTRIB_CI][0]) / numPixels; 255 } 256 else { 257 span.index = FloatToFixed(vert1->attrib[FRAG_ATTRIB_CI][0]); 258 span.indexStep = 0; 259 } 260#endif 261#if defined(INTERP_Z) || defined(DEPTH_TYPE) 262 interpFlags |= SPAN_Z; 263 { 264 if (depthBits <= 16) { 265 span.z = FloatToFixed(vert0->attrib[FRAG_ATTRIB_WPOS][2]) + FIXED_HALF; 266 span.zStep = FloatToFixed( vert1->attrib[FRAG_ATTRIB_WPOS][2] 267 - vert0->attrib[FRAG_ATTRIB_WPOS][2]) / numPixels; 268 } 269 else { 270 /* don't use fixed point */ 271 span.z = (GLuint) vert0->attrib[FRAG_ATTRIB_WPOS][2]; 272 span.zStep = (GLint) (( vert1->attrib[FRAG_ATTRIB_WPOS][2] 273 - vert0->attrib[FRAG_ATTRIB_WPOS][2]) / numPixels); 274 } 275 } 276#endif 277#if defined(INTERP_ATTRIBS) 278 { 279 const GLfloat invLen = 1.0F / numPixels; 280 const GLfloat invw0 = vert0->attrib[FRAG_ATTRIB_WPOS][3]; 281 const GLfloat invw1 = vert1->attrib[FRAG_ATTRIB_WPOS][3]; 282 283 span.attrStart[FRAG_ATTRIB_WPOS][3] = invw0; 284 span.attrStepX[FRAG_ATTRIB_WPOS][3] = (invw1 - invw0) * invLen; 285 span.attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0; 286 287 ATTRIB_LOOP_BEGIN 288 if (swrast->_InterpMode[attr] == GL_FLAT) { 289 COPY_4V(span.attrStart[attr], vert1->attrib[attr]); 290 ASSIGN_4V(span.attrStepX[attr], 0.0, 0.0, 0.0, 0.0); 291 } 292 else { 293 GLuint c; 294 for (c = 0; c < 4; c++) { 295 float da; 296 span.attrStart[attr][c] = invw0 * vert0->attrib[attr][c]; 297 da = (invw1 * vert1->attrib[attr][c]) - span.attrStart[attr][c]; 298 span.attrStepX[attr][c] = da * invLen; 299 } 300 } 301 ASSIGN_4V(span.attrStepY[attr], 0.0, 0.0, 0.0, 0.0); 302 ATTRIB_LOOP_END 303 } 304#endif 305 306 INIT_SPAN(span, GL_LINE); 307 span.end = numPixels; 308 span.interpMask = interpFlags; 309 span.arrayMask = SPAN_XY; 310 311 span.facing = swrast->PointLineFacing; 312 313 314 /* 315 * Draw 316 */ 317 318 if (dx > dy) { 319 /*** X-major line ***/ 320 GLint i; 321 GLint errorInc = dy+dy; 322 GLint error = errorInc-dx; 323 GLint errorDec = error-dx; 324 325 for (i = 0; i < dx; i++) { 326#ifdef DEPTH_TYPE 327 GLuint Z = FixedToDepth(span.z); 328#endif 329#ifdef PLOT 330 PLOT( x0, y0 ); 331#else 332 span.array->x[i] = x0; 333 span.array->y[i] = y0; 334#endif 335 x0 += xstep; 336#ifdef DEPTH_TYPE 337 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep); 338 span.z += span.zStep; 339#endif 340#ifdef PIXEL_ADDRESS 341 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep); 342#endif 343 if (error < 0) { 344 error += errorInc; 345 } 346 else { 347 error += errorDec; 348 y0 += ystep; 349#ifdef DEPTH_TYPE 350 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep); 351#endif 352#ifdef PIXEL_ADDRESS 353 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep); 354#endif 355 } 356 } 357 } 358 else { 359 /*** Y-major line ***/ 360 GLint i; 361 GLint errorInc = dx+dx; 362 GLint error = errorInc-dy; 363 GLint errorDec = error-dy; 364 365 for (i=0;i<dy;i++) { 366#ifdef DEPTH_TYPE 367 GLuint Z = FixedToDepth(span.z); 368#endif 369#ifdef PLOT 370 PLOT( x0, y0 ); 371#else 372 span.array->x[i] = x0; 373 span.array->y[i] = y0; 374#endif 375 y0 += ystep; 376#ifdef DEPTH_TYPE 377 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep); 378 span.z += span.zStep; 379#endif 380#ifdef PIXEL_ADDRESS 381 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep); 382#endif 383 if (error<0) { 384 error += errorInc; 385 } 386 else { 387 error += errorDec; 388 x0 += xstep; 389#ifdef DEPTH_TYPE 390 zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep); 391#endif 392#ifdef PIXEL_ADDRESS 393 pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep); 394#endif 395 } 396 } 397 } 398 399#ifdef RENDER_SPAN 400 RENDER_SPAN( span ); 401#endif 402 403 (void)span; 404 405} 406 407 408#undef NAME 409#undef INTERP_Z 410#undef INTERP_RGBA 411#undef INTERP_ATTRIBS 412#undef INTERP_INDEX 413#undef PIXEL_ADDRESS 414#undef PIXEL_TYPE 415#undef DEPTH_TYPE 416#undef BYTES_PER_ROW 417#undef SETUP_CODE 418#undef PLOT 419#undef CLIP_HACK 420#undef FixedToDepth 421#undef RENDER_SPAN 422