s_linetemp.h revision c1f859d4
1/*
2 * Mesa 3-D graphics library
3 * Version:  7.0
4 *
5 * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26/*
27 * Line Rasterizer Template
28 *
29 * This file is #include'd to generate custom line rasterizers.
30 *
31 * The following macros may be defined to indicate what auxillary information
32 * must be interplated along the line:
33 *    INTERP_Z        - if defined, interpolate Z values
34 *    INTERP_RGBA     - if defined, interpolate RGBA values
35 *    INTERP_INDEX    - if defined, interpolate color index values
36 *    INTERP_ATTRIBS  - if defined, interpolate attribs (texcoords, varying, etc)
37 *
38 * When one can directly address pixels in the color buffer the following
39 * macros can be defined and used to directly compute pixel addresses during
40 * rasterization (see pixelPtr):
41 *    PIXEL_TYPE          - the datatype of a pixel (GLubyte, GLushort, GLuint)
42 *    BYTES_PER_ROW       - number of bytes per row in the color buffer
43 *    PIXEL_ADDRESS(X,Y)  - returns the address of pixel at (X,Y) where
44 *                          Y==0 at bottom of screen and increases upward.
45 *
46 * Similarly, for direct depth buffer access, this type is used for depth
47 * buffer addressing:
48 *    DEPTH_TYPE          - either GLushort or GLuint
49 *
50 * Optionally, one may provide one-time setup code
51 *    SETUP_CODE    - code which is to be executed once per line
52 *
53 * To actually "plot" each pixel the PLOT macro must be defined...
54 *    PLOT(X,Y) - code to plot a pixel.  Example:
55 *                if (Z < *zPtr) {
56 *                   *zPtr = Z;
57 *                   color = pack_rgb( FixedToInt(r0), FixedToInt(g0),
58 *                                     FixedToInt(b0) );
59 *                   put_pixel( X, Y, color );
60 *                }
61 *
62 * This code was designed for the origin to be in the lower-left corner.
63 *
64 */
65
66
67static void
68NAME( GLcontext *ctx, const SWvertex *vert0, const SWvertex *vert1 )
69{
70   const SWcontext *swrast = SWRAST_CONTEXT(ctx);
71   SWspan span;
72   GLuint interpFlags = 0;
73   GLint x0 = (GLint) vert0->attrib[FRAG_ATTRIB_WPOS][0];
74   GLint x1 = (GLint) vert1->attrib[FRAG_ATTRIB_WPOS][0];
75   GLint y0 = (GLint) vert0->attrib[FRAG_ATTRIB_WPOS][1];
76   GLint y1 = (GLint) vert1->attrib[FRAG_ATTRIB_WPOS][1];
77   GLint dx, dy;
78   GLint numPixels;
79   GLint xstep, ystep;
80#if defined(DEPTH_TYPE)
81   const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;
82   const GLint fixedToDepthShift = depthBits <= 16 ? FIXED_SHIFT : 0;
83   struct gl_renderbuffer *zrb = ctx->DrawBuffer->Attachment[BUFFER_DEPTH].Renderbuffer;
84#define FixedToDepth(F)  ((F) >> fixedToDepthShift)
85   GLint zPtrXstep, zPtrYstep;
86   DEPTH_TYPE *zPtr;
87#elif defined(INTERP_Z)
88   const GLint depthBits = ctx->DrawBuffer->Visual.depthBits;
89/*ctx->Visual.depthBits;*/
90#endif
91#ifdef PIXEL_ADDRESS
92   PIXEL_TYPE *pixelPtr;
93   GLint pixelXstep, pixelYstep;
94#endif
95
96#ifdef SETUP_CODE
97   SETUP_CODE
98#endif
99
100   (void) swrast;
101
102   /* Cull primitives with malformed coordinates.
103    */
104   {
105      GLfloat tmp = vert0->attrib[FRAG_ATTRIB_WPOS][0] + vert0->attrib[FRAG_ATTRIB_WPOS][1]
106                  + vert1->attrib[FRAG_ATTRIB_WPOS][0] + vert1->attrib[FRAG_ATTRIB_WPOS][1];
107      if (IS_INF_OR_NAN(tmp))
108	 return;
109   }
110
111   /*
112   printf("%s():\n", __FUNCTION__);
113   printf(" (%f, %f, %f) -> (%f, %f, %f)\n",
114          vert0->attrib[FRAG_ATTRIB_WPOS][0],
115          vert0->attrib[FRAG_ATTRIB_WPOS][1],
116          vert0->attrib[FRAG_ATTRIB_WPOS][2],
117          vert1->attrib[FRAG_ATTRIB_WPOS][0],
118          vert1->attrib[FRAG_ATTRIB_WPOS][1],
119          vert1->attrib[FRAG_ATTRIB_WPOS][2]);
120   printf(" (%d, %d, %d) -> (%d, %d, %d)\n",
121          vert0->color[0], vert0->color[1], vert0->color[2],
122          vert1->color[0], vert1->color[1], vert1->color[2]);
123   printf(" (%d, %d, %d) -> (%d, %d, %d)\n",
124          vert0->specular[0], vert0->specular[1], vert0->specular[2],
125          vert1->specular[0], vert1->specular[1], vert1->specular[2]);
126   */
127
128/*
129 * Despite being clipped to the view volume, the line's window coordinates
130 * may just lie outside the window bounds.  That is, if the legal window
131 * coordinates are [0,W-1][0,H-1], it's possible for x==W and/or y==H.
132 * This quick and dirty code nudges the endpoints inside the window if
133 * necessary.
134 */
135#ifdef CLIP_HACK
136   {
137      GLint w = ctx->DrawBuffer->Width;
138      GLint h = ctx->DrawBuffer->Height;
139      if ((x0==w) | (x1==w)) {
140         if ((x0==w) & (x1==w))
141           return;
142         x0 -= x0==w;
143         x1 -= x1==w;
144      }
145      if ((y0==h) | (y1==h)) {
146         if ((y0==h) & (y1==h))
147           return;
148         y0 -= y0==h;
149         y1 -= y1==h;
150      }
151   }
152#endif
153
154   dx = x1 - x0;
155   dy = y1 - y0;
156   if (dx == 0 && dy == 0)
157      return;
158
159   /*
160   printf("%s %d,%d  %g %g %g %g  %g %g %g %g\n", __FUNCTION__, dx, dy,
161          vert0->attrib[FRAG_ATTRIB_COL1][0],
162          vert0->attrib[FRAG_ATTRIB_COL1][1],
163          vert0->attrib[FRAG_ATTRIB_COL1][2],
164          vert0->attrib[FRAG_ATTRIB_COL1][3],
165          vert1->attrib[FRAG_ATTRIB_COL1][0],
166          vert1->attrib[FRAG_ATTRIB_COL1][1],
167          vert1->attrib[FRAG_ATTRIB_COL1][2],
168          vert1->attrib[FRAG_ATTRIB_COL1][3]);
169   */
170
171#ifdef DEPTH_TYPE
172   zPtr = (DEPTH_TYPE *) zrb->GetPointer(ctx, zrb, x0, y0);
173#endif
174#ifdef PIXEL_ADDRESS
175   pixelPtr = (PIXEL_TYPE *) PIXEL_ADDRESS(x0,y0);
176#endif
177
178   if (dx<0) {
179      dx = -dx;   /* make positive */
180      xstep = -1;
181#ifdef DEPTH_TYPE
182      zPtrXstep = -((GLint)sizeof(DEPTH_TYPE));
183#endif
184#ifdef PIXEL_ADDRESS
185      pixelXstep = -((GLint)sizeof(PIXEL_TYPE));
186#endif
187   }
188   else {
189      xstep = 1;
190#ifdef DEPTH_TYPE
191      zPtrXstep = ((GLint)sizeof(DEPTH_TYPE));
192#endif
193#ifdef PIXEL_ADDRESS
194      pixelXstep = ((GLint)sizeof(PIXEL_TYPE));
195#endif
196   }
197
198   if (dy<0) {
199      dy = -dy;   /* make positive */
200      ystep = -1;
201#ifdef DEPTH_TYPE
202      zPtrYstep = -((GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE)));
203#endif
204#ifdef PIXEL_ADDRESS
205      pixelYstep = BYTES_PER_ROW;
206#endif
207   }
208   else {
209      ystep = 1;
210#ifdef DEPTH_TYPE
211      zPtrYstep = (GLint) (ctx->DrawBuffer->Width * sizeof(DEPTH_TYPE));
212#endif
213#ifdef PIXEL_ADDRESS
214      pixelYstep = -(BYTES_PER_ROW);
215#endif
216   }
217
218   ASSERT(dx >= 0);
219   ASSERT(dy >= 0);
220
221   numPixels = MAX2(dx, dy);
222
223   /*
224    * Span setup: compute start and step values for all interpolated values.
225    */
226#ifdef INTERP_RGBA
227   interpFlags |= SPAN_RGBA;
228   if (ctx->Light.ShadeModel == GL_SMOOTH) {
229      span.red   = ChanToFixed(vert0->color[0]);
230      span.green = ChanToFixed(vert0->color[1]);
231      span.blue  = ChanToFixed(vert0->color[2]);
232      span.alpha = ChanToFixed(vert0->color[3]);
233      span.redStep   = (ChanToFixed(vert1->color[0]) - span.red  ) / numPixels;
234      span.greenStep = (ChanToFixed(vert1->color[1]) - span.green) / numPixels;
235      span.blueStep  = (ChanToFixed(vert1->color[2]) - span.blue ) / numPixels;
236      span.alphaStep = (ChanToFixed(vert1->color[3]) - span.alpha) / numPixels;
237   }
238   else {
239      span.red   = ChanToFixed(vert1->color[0]);
240      span.green = ChanToFixed(vert1->color[1]);
241      span.blue  = ChanToFixed(vert1->color[2]);
242      span.alpha = ChanToFixed(vert1->color[3]);
243      span.redStep   = 0;
244      span.greenStep = 0;
245      span.blueStep  = 0;
246      span.alphaStep = 0;
247   }
248#endif
249#ifdef INTERP_INDEX
250   interpFlags |= SPAN_INDEX;
251   if (ctx->Light.ShadeModel == GL_SMOOTH) {
252      span.index = FloatToFixed(vert0->attrib[FRAG_ATTRIB_CI][0]);
253      span.indexStep = FloatToFixed(  vert1->attrib[FRAG_ATTRIB_CI][0]
254                                    - vert0->attrib[FRAG_ATTRIB_CI][0]) / numPixels;
255   }
256   else {
257      span.index = FloatToFixed(vert1->attrib[FRAG_ATTRIB_CI][0]);
258      span.indexStep = 0;
259   }
260#endif
261#if defined(INTERP_Z) || defined(DEPTH_TYPE)
262   interpFlags |= SPAN_Z;
263   {
264      if (depthBits <= 16) {
265         span.z = FloatToFixed(vert0->attrib[FRAG_ATTRIB_WPOS][2]) + FIXED_HALF;
266         span.zStep = FloatToFixed(  vert1->attrib[FRAG_ATTRIB_WPOS][2]
267                                   - vert0->attrib[FRAG_ATTRIB_WPOS][2]) / numPixels;
268      }
269      else {
270         /* don't use fixed point */
271         span.z = (GLuint) vert0->attrib[FRAG_ATTRIB_WPOS][2];
272         span.zStep = (GLint) ((  vert1->attrib[FRAG_ATTRIB_WPOS][2]
273                                - vert0->attrib[FRAG_ATTRIB_WPOS][2]) / numPixels);
274      }
275   }
276#endif
277#if defined(INTERP_ATTRIBS)
278   {
279      const GLfloat invLen = 1.0F / numPixels;
280      const GLfloat invw0 = vert0->attrib[FRAG_ATTRIB_WPOS][3];
281      const GLfloat invw1 = vert1->attrib[FRAG_ATTRIB_WPOS][3];
282
283      span.attrStart[FRAG_ATTRIB_WPOS][3] = invw0;
284      span.attrStepX[FRAG_ATTRIB_WPOS][3] = (invw1 - invw0) * invLen;
285      span.attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
286
287      ATTRIB_LOOP_BEGIN
288         if (swrast->_InterpMode[attr] == GL_FLAT) {
289            COPY_4V(span.attrStart[attr], vert1->attrib[attr]);
290            ASSIGN_4V(span.attrStepX[attr], 0.0, 0.0, 0.0, 0.0);
291         }
292         else {
293            GLuint c;
294            for (c = 0; c < 4; c++) {
295               float da;
296               span.attrStart[attr][c] = invw0 * vert0->attrib[attr][c];
297               da = (invw1 * vert1->attrib[attr][c]) - span.attrStart[attr][c];
298               span.attrStepX[attr][c] = da * invLen;
299            }
300         }
301         ASSIGN_4V(span.attrStepY[attr], 0.0, 0.0, 0.0, 0.0);
302      ATTRIB_LOOP_END
303   }
304#endif
305
306   INIT_SPAN(span, GL_LINE);
307   span.end = numPixels;
308   span.interpMask = interpFlags;
309   span.arrayMask = SPAN_XY;
310
311   span.facing = swrast->PointLineFacing;
312
313
314   /*
315    * Draw
316    */
317
318   if (dx > dy) {
319      /*** X-major line ***/
320      GLint i;
321      GLint errorInc = dy+dy;
322      GLint error = errorInc-dx;
323      GLint errorDec = error-dx;
324
325      for (i = 0; i < dx; i++) {
326#ifdef DEPTH_TYPE
327         GLuint Z = FixedToDepth(span.z);
328#endif
329#ifdef PLOT
330         PLOT( x0, y0 );
331#else
332         span.array->x[i] = x0;
333         span.array->y[i] = y0;
334#endif
335         x0 += xstep;
336#ifdef DEPTH_TYPE
337         zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep);
338         span.z += span.zStep;
339#endif
340#ifdef PIXEL_ADDRESS
341         pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep);
342#endif
343         if (error < 0) {
344            error += errorInc;
345         }
346         else {
347            error += errorDec;
348            y0 += ystep;
349#ifdef DEPTH_TYPE
350            zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep);
351#endif
352#ifdef PIXEL_ADDRESS
353            pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep);
354#endif
355         }
356      }
357   }
358   else {
359      /*** Y-major line ***/
360      GLint i;
361      GLint errorInc = dx+dx;
362      GLint error = errorInc-dy;
363      GLint errorDec = error-dy;
364
365      for (i=0;i<dy;i++) {
366#ifdef DEPTH_TYPE
367         GLuint Z = FixedToDepth(span.z);
368#endif
369#ifdef PLOT
370         PLOT( x0, y0 );
371#else
372         span.array->x[i] = x0;
373         span.array->y[i] = y0;
374#endif
375         y0 += ystep;
376#ifdef DEPTH_TYPE
377         zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrYstep);
378         span.z += span.zStep;
379#endif
380#ifdef PIXEL_ADDRESS
381         pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelYstep);
382#endif
383         if (error<0) {
384            error += errorInc;
385         }
386         else {
387            error += errorDec;
388            x0 += xstep;
389#ifdef DEPTH_TYPE
390            zPtr = (DEPTH_TYPE *) ((GLubyte*) zPtr + zPtrXstep);
391#endif
392#ifdef PIXEL_ADDRESS
393            pixelPtr = (PIXEL_TYPE*) ((GLubyte*) pixelPtr + pixelXstep);
394#endif
395         }
396      }
397   }
398
399#ifdef RENDER_SPAN
400   RENDER_SPAN( span );
401#endif
402
403   (void)span;
404
405}
406
407
408#undef NAME
409#undef INTERP_Z
410#undef INTERP_RGBA
411#undef INTERP_ATTRIBS
412#undef INTERP_INDEX
413#undef PIXEL_ADDRESS
414#undef PIXEL_TYPE
415#undef DEPTH_TYPE
416#undef BYTES_PER_ROW
417#undef SETUP_CODE
418#undef PLOT
419#undef CLIP_HACK
420#undef FixedToDepth
421#undef RENDER_SPAN
422