t_draw.c revision af69d88d
11.67Skamil/*
21.1Sjtc * Mesa 3-D graphics library
31.1Sjtc *
41.1Sjtc * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
51.1Sjtc *
61.1Sjtc * Permission is hereby granted, free of charge, to any person obtaining a
71.1Sjtc * copy of this software and associated documentation files (the "Software"),
81.1Sjtc * to deal in the Software without restriction, including without limitation
91.1Sjtc * the rights to use, copy, modify, merge, publish, distribute, sublicense,
101.1Sjtc * and/or sell copies of the Software, and to permit persons to whom the
111.1Sjtc * Software is furnished to do so, subject to the following conditions:
121.1Sjtc *
131.1Sjtc * The above copyright notice and this permission notice shall be included
141.1Sjtc * in all copies or substantial portions of the Software.
151.31Sagc *
161.1Sjtc * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
171.1Sjtc * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
181.1Sjtc * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
191.1Sjtc * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
201.1Sjtc * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
211.1Sjtc * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
221.1Sjtc * OTHER DEALINGS IN THE SOFTWARE.
231.1Sjtc *
241.1Sjtc * Authors:
251.1Sjtc *    Keith Whitwell <keithw@vmware.com>
261.1Sjtc */
271.1Sjtc
281.1Sjtc#include "main/glheader.h"
291.1Sjtc#include "main/bufferobj.h"
301.1Sjtc#include "main/condrender.h"
311.1Sjtc#include "main/context.h"
321.1Sjtc#include "main/imports.h"
331.25Senami#include "main/mtypes.h"
341.1Sjtc#include "main/macros.h"
351.10Slukem#include "main/enums.h"
361.10Slukem
371.64Schristos#include "t_context.h"
381.64Schristos#include "tnl.h"
391.42Schristos
401.42Schristos
411.42Schristos
421.42Schristosstatic GLubyte *get_space(struct gl_context *ctx, GLuint bytes)
431.42Schristos{
441.64Schristos   TNLcontext *tnl = TNL_CONTEXT(ctx);
451.64Schristos   GLubyte *space = malloc(bytes);
461.64Schristos
471.64Schristos   tnl->block[tnl->nr_blocks++] = space;
481.64Schristos   return space;
491.64Schristos}
501.64Schristos
511.64Schristos
521.64Schristosstatic void free_space(struct gl_context *ctx)
531.64Schristos{
541.64Schristos   TNLcontext *tnl = TNL_CONTEXT(ctx);
551.1Sjtc   GLuint i;
561.7Scjs   for (i = 0; i < tnl->nr_blocks; i++)
571.25Senami      free(tnl->block[i]);
581.7Scjs   tnl->nr_blocks = 0;
591.38Selad}
601.38Selad
611.38Selad
621.38Selad/* Convert the incoming array to GLfloats.  Understands the
631.1Sjtc * array->Normalized flag and selects the correct conversion method.
641.27Selric */
651.18Sad#define CONVERT( TYPE, MACRO ) do {		\
661.14Schristos   GLuint i, j;					\
671.14Schristos   if (input->Normalized) {			\
681.18Sad      for (i = 0; i < count; i++) {		\
691.64Schristos	 const TYPE *in = (TYPE *)ptr;		\
701.14Schristos	 for (j = 0; j < sz; j++) {		\
711.33Schristos	    *fptr++ = MACRO(*in);		\
721.14Schristos	    in++;				\
731.48Schristos	 }					\
741.19Stron	 ptr += input->StrideB;			\
751.20Swiz      }						\
761.65Smatt   } else {					\
771.29Sscw      for (i = 0; i < count; i++) {		\
781.30Sfvdl	 const TYPE *in = (TYPE *)ptr;		\
791.59Sbouyer	 for (j = 0; j < sz; j++) {		\
801.19Stron	    *fptr++ = (GLfloat)(*in);		\
811.19Stron	    in++;				\
821.63Schristos	 }					\
831.63Schristos	 ptr += input->StrideB;			\
841.60Schristos      }						\
851.62Schristos   }						\
861.50Schristos} while (0)
871.50Schristos
881.50Schristos
891.50Schristos/**
901.19Stron * Convert array of BGRA/GLubyte[4] values to RGBA/float[4]
911.19Stron * \param ptr  input/ubyte array
921.23Schristos * \param fptr  output/float array
931.19Stron */
941.23Schristosstatic void
951.19Stronconvert_bgra_to_float(const struct gl_client_array *input,
961.52Spooka                      const GLubyte *ptr, GLfloat *fptr,
971.53Spooka                      GLuint count )
981.19Stron{
991.50Schristos   GLuint i;
1001.50Schristos   assert(input->Normalized);
1011.50Schristos   assert(input->Size == 4);
1021.50Schristos   for (i = 0; i < count; i++) {
1031.50Schristos      const GLubyte *in = (GLubyte *) ptr;  /* in is in BGRA order */
1041.22Sitojun      *fptr++ = UBYTE_TO_FLOAT(in[2]);  /* red */
1051.19Stron      *fptr++ = UBYTE_TO_FLOAT(in[1]);  /* green */
1061.19Stron      *fptr++ = UBYTE_TO_FLOAT(in[0]);  /* blue */
1071.50Schristos      *fptr++ = UBYTE_TO_FLOAT(in[3]);  /* alpha */
1081.50Schristos      ptr += input->StrideB;
1091.50Schristos   }
1101.32Sthorpej}
1111.50Schristos
1121.50Schristosstatic void
1131.19Stronconvert_half_to_float(const struct gl_client_array *input,
1141.57Sjoerg		      const GLubyte *ptr, GLfloat *fptr,
1151.19Stron		      GLuint count, GLuint sz)
1161.50Schristos{
1171.34Schristos   GLuint i, j;
1181.50Schristos
1191.50Schristos   for (i = 0; i < count; i++) {
1201.19Stron      GLhalfARB *in = (GLhalfARB *)ptr;
1211.19Stron
1221.19Stron      for (j = 0; j < sz; j++) {
1231.21Sad	 *fptr++ = _mesa_half_to_float(in[j]);
1241.19Stron      }
1251.19Stron      ptr += input->StrideB;
1261.47Slukem   }
1271.19Stron}
1281.51Spgoyette
1291.26Schristos/**
1301.33Schristos * \brief Convert fixed-point to floating-point.
1311.33Schristos *
1321.58Schristos * In OpenGL, a fixed-point number is a "signed 2's complement 16.16 scaled
1331.61Schristos * integer" (Table 2.2 of the OpenGL ES 2.0 spec).
1341.48Schristos *
1351.19Stron * If the buffer has the \c normalized flag set, the formula
1361.19Stron *     \code normalize(x) := (2*x + 1) / (2^16 - 1) \endcode
1371.19Stron * is used to map the fixed-point numbers into the range [-1, 1].
1381.19Stron */
1391.27Selricstatic void
1401.35Sthorpejconvert_fixed_to_float(const struct gl_client_array *input,
1411.27Selric                       const GLubyte *ptr, GLfloat *fptr,
1421.41Schristos                       GLuint count)
1431.41Schristos{
1441.41Schristos   GLuint i;
1451.41Schristos   GLint j;
1461.41Schristos   const GLint size = input->Size;
1471.41Schristos
1481.41Schristos   if (input->Normalized) {
1491.46Spooka      for (i = 0; i < count; ++i) {
1501.66Schristos         const GLfixed *in = (GLfixed *) ptr;
1511.66Schristos         for (j = 0; j < size; ++j) {
1521.41Schristos            *fptr++ = (GLfloat) (2 * in[j] + 1) / (GLfloat) ((1 << 16) - 1);
1531.41Schristos         }
1541.41Schristos         ptr += input->StrideB;
1551.67Skamil      }
1561.41Schristos   } else {
1571.41Schristos      for (i = 0; i < count; ++i) {
1581.55Sjoerg         const GLfixed *in = (GLfixed *) ptr;
1591.64Schristos         for (j = 0; j < size; ++j) {
1601.64Schristos            *fptr++ = in[j] / (GLfloat) (1 << 16);
1611.1Sjtc         }
1621.1Sjtc         ptr += input->StrideB;
1631.1Sjtc      }
164   }
165}
166
167/* Adjust pointer to point at first requested element, convert to
168 * floating point, populate VB->AttribPtr[].
169 */
170static void _tnl_import_array( struct gl_context *ctx,
171			       GLuint attrib,
172			       GLuint count,
173			       const struct gl_client_array *input,
174			       const GLubyte *ptr )
175{
176   TNLcontext *tnl = TNL_CONTEXT(ctx);
177   struct vertex_buffer *VB = &tnl->vb;
178   GLuint stride = input->StrideB;
179
180   if (input->Type != GL_FLOAT) {
181      const GLuint sz = input->Size;
182      GLubyte *buf = get_space(ctx, count * sz * sizeof(GLfloat));
183      GLfloat *fptr = (GLfloat *)buf;
184
185      switch (input->Type) {
186      case GL_BYTE:
187	 CONVERT(GLbyte, BYTE_TO_FLOAT);
188	 break;
189      case GL_UNSIGNED_BYTE:
190         if (input->Format == GL_BGRA) {
191            /* See GL_EXT_vertex_array_bgra */
192            convert_bgra_to_float(input, ptr, fptr, count);
193         }
194         else {
195            CONVERT(GLubyte, UBYTE_TO_FLOAT);
196         }
197	 break;
198      case GL_SHORT:
199	 CONVERT(GLshort, SHORT_TO_FLOAT);
200	 break;
201      case GL_UNSIGNED_SHORT:
202	 CONVERT(GLushort, USHORT_TO_FLOAT);
203	 break;
204      case GL_INT:
205	 CONVERT(GLint, INT_TO_FLOAT);
206	 break;
207      case GL_UNSIGNED_INT:
208	 CONVERT(GLuint, UINT_TO_FLOAT);
209	 break;
210      case GL_DOUBLE:
211	 CONVERT(GLdouble, (GLfloat));
212	 break;
213      case GL_HALF_FLOAT:
214	 convert_half_to_float(input, ptr, fptr, count, sz);
215	 break;
216      case GL_FIXED:
217         convert_fixed_to_float(input, ptr, fptr, count);
218         break;
219      default:
220	 assert(0);
221	 break;
222      }
223
224      ptr = buf;
225      stride = sz * sizeof(GLfloat);
226   }
227
228   VB->AttribPtr[attrib] = &tnl->tmp_inputs[attrib];
229   VB->AttribPtr[attrib]->data = (GLfloat (*)[4])ptr;
230   VB->AttribPtr[attrib]->start = (GLfloat *)ptr;
231   VB->AttribPtr[attrib]->count = count;
232   VB->AttribPtr[attrib]->stride = stride;
233   VB->AttribPtr[attrib]->size = input->Size;
234
235   /* This should die, but so should the whole GLvector4f concept:
236    */
237   VB->AttribPtr[attrib]->flags = (((1<<input->Size)-1) |
238				   VEC_NOT_WRITEABLE |
239				   (stride == 4*sizeof(GLfloat) ? 0 : VEC_BAD_STRIDE));
240
241   VB->AttribPtr[attrib]->storage = NULL;
242}
243
244#define CLIPVERTS  ((6 + MAX_CLIP_PLANES) * 2)
245
246
247static GLboolean *_tnl_import_edgeflag( struct gl_context *ctx,
248					const GLvector4f *input,
249					GLuint count)
250{
251   const GLubyte *ptr = (const GLubyte *)input->data;
252   const GLuint stride = input->stride;
253   GLboolean *space = (GLboolean *)get_space(ctx, count + CLIPVERTS);
254   GLboolean *bptr = space;
255   GLuint i;
256
257   for (i = 0; i < count; i++) {
258      *bptr++ = ((GLfloat *)ptr)[0] == 1.0;
259      ptr += stride;
260   }
261
262   return space;
263}
264
265
266static void bind_inputs( struct gl_context *ctx,
267			 const struct gl_client_array *inputs[],
268			 GLint count,
269			 struct gl_buffer_object **bo,
270			 GLuint *nr_bo )
271{
272   TNLcontext *tnl = TNL_CONTEXT(ctx);
273   struct vertex_buffer *VB = &tnl->vb;
274   GLuint i;
275
276   /* Map all the VBOs
277    */
278   for (i = 0; i < VERT_ATTRIB_MAX; i++) {
279      const void *ptr;
280
281      if (inputs[i]->BufferObj->Name) {
282	 if (!inputs[i]->BufferObj->Mappings[MAP_INTERNAL].Pointer) {
283	    bo[*nr_bo] = inputs[i]->BufferObj;
284	    (*nr_bo)++;
285	    ctx->Driver.MapBufferRange(ctx, 0, inputs[i]->BufferObj->Size,
286				       GL_MAP_READ_BIT,
287				       inputs[i]->BufferObj,
288                                       MAP_INTERNAL);
289
290	    assert(inputs[i]->BufferObj->Mappings[MAP_INTERNAL].Pointer);
291	 }
292
293	 ptr = ADD_POINTERS(inputs[i]->BufferObj->Mappings[MAP_INTERNAL].Pointer,
294			    inputs[i]->Ptr);
295      }
296      else
297	 ptr = inputs[i]->Ptr;
298
299      /* Just make sure the array is floating point, otherwise convert to
300       * temporary storage.
301       *
302       * XXX: remove the GLvector4f type at some stage and just use
303       * client arrays.
304       */
305      _tnl_import_array(ctx, i, count, inputs[i], ptr);
306   }
307
308   /* We process only the vertices between min & max index:
309    */
310   VB->Count = count;
311
312   /* These should perhaps be part of _TNL_ATTRIB_* */
313   VB->BackfaceColorPtr = NULL;
314   VB->BackfaceIndexPtr = NULL;
315   VB->BackfaceSecondaryColorPtr = NULL;
316
317   /* Clipping and drawing code still requires this to be a packed
318    * array of ubytes which can be written into.  TODO: Fix and
319    * remove.
320    */
321   if (ctx->Polygon.FrontMode != GL_FILL ||
322       ctx->Polygon.BackMode != GL_FILL)
323   {
324      VB->EdgeFlag = _tnl_import_edgeflag( ctx,
325					   VB->AttribPtr[_TNL_ATTRIB_EDGEFLAG],
326					   VB->Count );
327   }
328   else {
329      /* the data previously pointed to by EdgeFlag may have been freed */
330      VB->EdgeFlag = NULL;
331   }
332}
333
334
335/* Translate indices to GLuints and store in VB->Elts.
336 */
337static void bind_indices( struct gl_context *ctx,
338			  const struct _mesa_index_buffer *ib,
339			  struct gl_buffer_object **bo,
340			  GLuint *nr_bo)
341{
342   TNLcontext *tnl = TNL_CONTEXT(ctx);
343   struct vertex_buffer *VB = &tnl->vb;
344   GLuint i;
345   const void *ptr;
346
347   if (!ib) {
348      VB->Elts = NULL;
349      return;
350   }
351
352   if (_mesa_is_bufferobj(ib->obj) &&
353       !_mesa_bufferobj_mapped(ib->obj, MAP_INTERNAL)) {
354      /* if the buffer object isn't mapped yet, map it now */
355      bo[*nr_bo] = ib->obj;
356      (*nr_bo)++;
357      ptr = ctx->Driver.MapBufferRange(ctx, (GLsizeiptr) ib->ptr,
358                                       ib->count * vbo_sizeof_ib_type(ib->type),
359				       GL_MAP_READ_BIT, ib->obj,
360                                       MAP_INTERNAL);
361      assert(ib->obj->Mappings[MAP_INTERNAL].Pointer);
362   } else {
363      /* user-space elements, or buffer already mapped */
364      ptr = ADD_POINTERS(ib->obj->Mappings[MAP_INTERNAL].Pointer, ib->ptr);
365   }
366
367   if (ib->type == GL_UNSIGNED_INT && VB->Primitive[0].basevertex == 0) {
368      VB->Elts = (GLuint *) ptr;
369   }
370   else {
371      GLuint *elts = (GLuint *)get_space(ctx, ib->count * sizeof(GLuint));
372      VB->Elts = elts;
373
374      if (ib->type == GL_UNSIGNED_INT) {
375	 const GLuint *in = (GLuint *)ptr;
376	 for (i = 0; i < ib->count; i++)
377	    *elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
378      }
379      else if (ib->type == GL_UNSIGNED_SHORT) {
380	 const GLushort *in = (GLushort *)ptr;
381	 for (i = 0; i < ib->count; i++)
382	    *elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
383      }
384      else {
385	 const GLubyte *in = (GLubyte *)ptr;
386	 for (i = 0; i < ib->count; i++)
387	    *elts++ = (GLuint)(*in++) + VB->Primitive[0].basevertex;
388      }
389   }
390}
391
392static void bind_prims( struct gl_context *ctx,
393			const struct _mesa_prim *prim,
394			GLuint nr_prims )
395{
396   TNLcontext *tnl = TNL_CONTEXT(ctx);
397   struct vertex_buffer *VB = &tnl->vb;
398
399   VB->Primitive = prim;
400   VB->PrimitiveCount = nr_prims;
401}
402
403static void unmap_vbos( struct gl_context *ctx,
404			struct gl_buffer_object **bo,
405			GLuint nr_bo )
406{
407   GLuint i;
408   for (i = 0; i < nr_bo; i++) {
409      ctx->Driver.UnmapBuffer(ctx, bo[i], MAP_INTERNAL);
410   }
411}
412
413
414/* This is the main entrypoint into the slimmed-down software tnl
415 * module.  In a regular swtnl driver, this can be plugged straight
416 * into the vbo->Driver.DrawPrims() callback.
417 */
418void _tnl_draw_prims(struct gl_context *ctx,
419			 const struct _mesa_prim *prim,
420			 GLuint nr_prims,
421			 const struct _mesa_index_buffer *ib,
422			 GLboolean index_bounds_valid,
423			 GLuint min_index,
424			 GLuint max_index,
425			 struct gl_transform_feedback_object *tfb_vertcount,
426			 struct gl_buffer_object *indirect)
427{
428   TNLcontext *tnl = TNL_CONTEXT(ctx);
429   const struct gl_client_array **arrays = ctx->Array._DrawArrays;
430   const GLuint TEST_SPLIT = 0;
431   const GLint max = TEST_SPLIT ? 8 : tnl->vb.Size - MAX_CLIPPED_VERTICES;
432   GLint max_basevertex = prim->basevertex;
433   GLuint i;
434
435   if (!index_bounds_valid)
436      vbo_get_minmax_indices(ctx, prim, ib, &min_index, &max_index, nr_prims);
437
438   /* Mesa core state should have been validated already */
439   assert(ctx->NewState == 0x0);
440
441   if (!_mesa_check_conditional_render(ctx))
442      return; /* don't draw */
443
444   for (i = 1; i < nr_prims; i++)
445      max_basevertex = MAX2(max_basevertex, prim[i].basevertex);
446
447   if (0)
448   {
449      printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);
450      for (i = 0; i < nr_prims; i++)
451	 printf("prim %d: %s start %d count %d\n", i,
452		_mesa_lookup_enum_by_nr(prim[i].mode),
453		prim[i].start,
454		prim[i].count);
455   }
456
457   if (min_index) {
458      /* We always translate away calls with min_index != 0.
459       */
460      vbo_rebase_prims( ctx, arrays, prim, nr_prims, ib,
461			min_index, max_index,
462			_tnl_draw_prims );
463      return;
464   }
465   else if ((GLint)max_index + max_basevertex > max) {
466      /* The software TNL pipeline has a fixed amount of storage for
467       * vertices and it is necessary to split incoming drawing commands
468       * if they exceed that limit.
469       */
470      struct split_limits limits;
471      limits.max_verts = max;
472      limits.max_vb_size = ~0;
473      limits.max_indices = ~0;
474
475      /* This will split the buffers one way or another and
476       * recursively call back into this function.
477       */
478      vbo_split_prims( ctx, arrays, prim, nr_prims, ib,
479		       0, max_index + prim->basevertex,
480		       _tnl_draw_prims,
481		       &limits );
482   }
483   else {
484      /* May need to map a vertex buffer object for every attribute plus
485       * one for the index buffer.
486       */
487      struct gl_buffer_object *bo[VERT_ATTRIB_MAX + 1];
488      GLuint nr_bo = 0;
489      GLuint inst;
490
491      for (i = 0; i < nr_prims;) {
492	 GLuint this_nr_prims;
493
494	 /* Our SW TNL pipeline doesn't handle basevertex yet, so bind_indices
495	  * will rebase the elements to the basevertex, and we'll only
496	  * emit strings of prims with the same basevertex in one draw call.
497	  */
498	 for (this_nr_prims = 1; i + this_nr_prims < nr_prims;
499	      this_nr_prims++) {
500	    if (prim[i].basevertex != prim[i + this_nr_prims].basevertex)
501	       break;
502	 }
503
504         assert(prim[i].num_instances > 0);
505
506	 /* Binding inputs may imply mapping some vertex buffer objects.
507	  * They will need to be unmapped below.
508	  */
509         for (inst = 0; inst < prim[i].num_instances; inst++) {
510
511            bind_prims(ctx, &prim[i], this_nr_prims);
512            bind_inputs(ctx, arrays, max_index + prim[i].basevertex + 1,
513                        bo, &nr_bo);
514            bind_indices(ctx, ib, bo, &nr_bo);
515
516            tnl->CurInstance = inst;
517            TNL_CONTEXT(ctx)->Driver.RunPipeline(ctx);
518
519            unmap_vbos(ctx, bo, nr_bo);
520            free_space(ctx);
521         }
522
523	 i += this_nr_prims;
524      }
525   }
526}
527
528