bitset.h revision 7ec681f3
1/* 2 * Mesa 3-D graphics library 3 * 4 * Copyright (C) 2006 Brian Paul All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the "Software"), 8 * to deal in the Software without restriction, including without limitation 9 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 10 * and/or sell copies of the Software, and to permit persons to whom the 11 * Software is furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included 14 * in all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR 22 * OTHER DEALINGS IN THE SOFTWARE. 23 */ 24 25/** 26 * \file bitset.h 27 * \brief Bitset of arbitrary size definitions. 28 * \author Michal Krol 29 */ 30 31#ifndef BITSET_H 32#define BITSET_H 33 34#include "util/bitscan.h" 35#include "util/macros.h" 36 37/**************************************************************************** 38 * generic bitset implementation 39 */ 40 41#define BITSET_WORD unsigned int 42#define BITSET_WORDBITS (sizeof (BITSET_WORD) * 8) 43 44/* bitset declarations 45 */ 46#define BITSET_WORDS(bits) (((bits) + BITSET_WORDBITS - 1) / BITSET_WORDBITS) 47#define BITSET_DECLARE(name, bits) BITSET_WORD name[BITSET_WORDS(bits)] 48 49/* bitset operations 50 */ 51#define BITSET_COPY(x, y) memcpy( (x), (y), sizeof (x) ) 52#define BITSET_EQUAL(x, y) (memcmp( (x), (y), sizeof (x) ) == 0) 53#define BITSET_ZERO(x) memset( (x), 0, sizeof (x) ) 54#define BITSET_ONES(x) memset( (x), 0xff, sizeof (x) ) 55 56#define BITSET_BITWORD(b) ((b) / BITSET_WORDBITS) 57#define BITSET_BIT(b) (1u << ((b) % BITSET_WORDBITS)) 58 59/* single bit operations 60 */ 61#define BITSET_TEST(x, b) (((x)[BITSET_BITWORD(b)] & BITSET_BIT(b)) != 0) 62#define BITSET_SET(x, b) ((x)[BITSET_BITWORD(b)] |= BITSET_BIT(b)) 63#define BITSET_CLEAR(x, b) ((x)[BITSET_BITWORD(b)] &= ~BITSET_BIT(b)) 64 65#define BITSET_MASK(b) (((b) % BITSET_WORDBITS == 0) ? ~0 : BITSET_BIT(b) - 1) 66#define BITSET_RANGE(b, e) ((BITSET_MASK((e) + 1)) & ~(BITSET_BIT(b) - 1)) 67 68/* logic bit operations 69 */ 70static inline void 71__bitset_and(BITSET_WORD *r, const BITSET_WORD *x, const BITSET_WORD *y, unsigned n) 72{ 73 for (unsigned i = 0; i < n; i++) 74 r[i] = x[i] & y[i]; 75} 76 77static inline void 78__bitset_or(BITSET_WORD *r, const BITSET_WORD *x, const BITSET_WORD *y, unsigned n) 79{ 80 for (unsigned i = 0; i < n; i++) 81 r[i] = x[i] | y[i]; 82} 83 84static inline void 85__bitset_not(BITSET_WORD *x, unsigned n) 86{ 87 for (unsigned i = 0; i < n; i++) 88 x[i] = ~x[i]; 89} 90 91#define BITSET_AND(r, x, y) \ 92 do { \ 93 assert(ARRAY_SIZE(r) == ARRAY_SIZE(x)); \ 94 assert(ARRAY_SIZE(r) == ARRAY_SIZE(y)); \ 95 __bitset_and(r, x, y, ARRAY_SIZE(r)); \ 96 } while (0) 97 98#define BITSET_OR(r, x, y) \ 99 do { \ 100 assert(ARRAY_SIZE(r) == ARRAY_SIZE(x)); \ 101 assert(ARRAY_SIZE(r) == ARRAY_SIZE(y)); \ 102 __bitset_or(r, x, y, ARRAY_SIZE(r)); \ 103 } while (0) 104 105#define BITSET_NOT(x) \ 106 __bitset_not(x, ARRAY_SIZE(x)) 107 108static inline void 109__bitset_rotate_right(BITSET_WORD *x, unsigned amount, unsigned n) 110{ 111 assert(amount < BITSET_WORDBITS); 112 113 if (amount == 0) 114 return; 115 116 for (unsigned i = 0; i < n - 1; i++) { 117 x[i] = (x[i] >> amount) | (x[i + 1] << (BITSET_WORDBITS - amount)); 118 } 119 120 x[n - 1] = x[n - 1] >> amount; 121} 122 123static inline void 124__bitset_rotate_left(BITSET_WORD *x, unsigned amount, unsigned n) 125{ 126 assert(amount < BITSET_WORDBITS); 127 128 if (amount == 0) 129 return; 130 131 for (int i = n - 1; i > 0; i--) { 132 x[i] = (x[i] << amount) | (x[i - 1] >> (BITSET_WORDBITS - amount)); 133 } 134 135 x[0] = x[0] << amount; 136} 137 138static inline void 139__bitset_shr(BITSET_WORD *x, unsigned amount, unsigned n) 140{ 141 const unsigned int words = amount / BITSET_WORDBITS; 142 143 if (amount == 0) 144 return; 145 146 if (words) { 147 unsigned i; 148 149 for (i = 0; i < n - words; i++) 150 x[i] = x[i + words]; 151 152 while (i < n) 153 x[i++] = 0; 154 155 amount %= BITSET_WORDBITS; 156 } 157 158 __bitset_rotate_right(x, amount, n); 159} 160 161 162static inline void 163__bitset_shl(BITSET_WORD *x, unsigned amount, unsigned n) 164{ 165 const int words = amount / BITSET_WORDBITS; 166 167 if (amount == 0) 168 return; 169 170 if (words) { 171 int i; 172 173 for (i = n - 1; i >= words; i--) { 174 x[i] = x[i - words]; 175 } 176 177 while (i >= 0) { 178 x[i--] = 0; 179 } 180 181 amount %= BITSET_WORDBITS; 182 } 183 184 __bitset_rotate_left(x, amount, n); 185} 186 187#define BITSET_SHR(x, n) \ 188 __bitset_shr(x, n, ARRAY_SIZE(x)); 189 190#define BITSET_SHL(x, n) \ 191 __bitset_shl(x, n, ARRAY_SIZE(x)); 192 193/* bit range operations 194 */ 195#define BITSET_TEST_RANGE(x, b, e) \ 196 (BITSET_BITWORD(b) == BITSET_BITWORD(e) ? \ 197 (((x)[BITSET_BITWORD(b)] & BITSET_RANGE(b, e)) != 0) : \ 198 (assert (!"BITSET_TEST_RANGE: bit range crosses word boundary"), 0)) 199#define BITSET_SET_RANGE_INSIDE_WORD(x, b, e) \ 200 (BITSET_BITWORD(b) == BITSET_BITWORD(e) ? \ 201 ((x)[BITSET_BITWORD(b)] |= BITSET_RANGE(b, e)) : \ 202 (assert (!"BITSET_SET_RANGE_INSIDE_WORD: bit range crosses word boundary"), 0)) 203#define BITSET_CLEAR_RANGE(x, b, e) \ 204 (BITSET_BITWORD(b) == BITSET_BITWORD(e) ? \ 205 ((x)[BITSET_BITWORD(b)] &= ~BITSET_RANGE(b, e)) : \ 206 (assert (!"BITSET_CLEAR_RANGE: bit range crosses word boundary"), 0)) 207 208static inline void 209__bitset_set_range(BITSET_WORD *r, unsigned start, unsigned end) 210{ 211 const unsigned size = end - start; 212 const unsigned start_mod = start % BITSET_WORDBITS; 213 214 if (start_mod + size <= BITSET_WORDBITS) { 215 BITSET_SET_RANGE_INSIDE_WORD(r, start, end); 216 } else { 217 const unsigned first_size = BITSET_WORDBITS - start_mod; 218 219 __bitset_set_range(r, start, start + first_size - 1); 220 __bitset_set_range(r, start + first_size, end); 221 } 222} 223 224#define BITSET_SET_RANGE(x, b, e) \ 225 __bitset_set_range(x, b, e) 226 227static inline unsigned 228__bitset_prefix_sum(const BITSET_WORD *x, unsigned b, unsigned n) 229{ 230 unsigned prefix = 0; 231 232 for (unsigned i = 0; i < n; i++) { 233 if ((i + 1) * BITSET_WORDBITS <= b) { 234 prefix += util_bitcount(x[i]); 235 } else { 236 prefix += util_bitcount(x[i] & BITFIELD_MASK(b - i * BITSET_WORDBITS)); 237 break; 238 } 239 } 240 return prefix; 241} 242 243/* Count set bits in the bitset (compute the size/cardinality of the bitset). 244 * This is a special case of prefix sum, but this convenience method is more 245 * natural when applicable. 246 */ 247 248static inline unsigned 249__bitset_count(const BITSET_WORD *x, unsigned n) 250{ 251 return __bitset_prefix_sum(x, ~0, n); 252} 253 254#define BITSET_PREFIX_SUM(x, b) \ 255 __bitset_prefix_sum(x, b, ARRAY_SIZE(x)) 256 257#define BITSET_COUNT(x) \ 258 __bitset_count(x, ARRAY_SIZE(x)) 259 260/* Get first bit set in a bitset. 261 */ 262static inline int 263__bitset_ffs(const BITSET_WORD *x, int n) 264{ 265 int i; 266 267 for (i = 0; i < n; i++) { 268 if (x[i]) 269 return ffs(x[i]) + BITSET_WORDBITS * i; 270 } 271 272 return 0; 273} 274 275/* Get the last bit set in a bitset. 276 */ 277static inline int 278__bitset_last_bit(const BITSET_WORD *x, int n) 279{ 280 for (int i = n - 1; i >= 0; i--) { 281 if (x[i]) 282 return util_last_bit(x[i]) + BITSET_WORDBITS * i; 283 } 284 285 return 0; 286} 287 288#define BITSET_FFS(x) __bitset_ffs(x, ARRAY_SIZE(x)) 289#define BITSET_LAST_BIT(x) __bitset_last_bit(x, ARRAY_SIZE(x)) 290#define BITSET_LAST_BIT_SIZED(x, size) __bitset_last_bit(x, size) 291 292static inline unsigned 293__bitset_next_set(unsigned i, BITSET_WORD *tmp, 294 const BITSET_WORD *set, unsigned size) 295{ 296 unsigned bit, word; 297 298 /* NOTE: The initial conditions for this function are very specific. At 299 * the start of the loop, the tmp variable must be set to *set and the 300 * initial i value set to 0. This way, if there is a bit set in the first 301 * word, we ignore the i-value and just grab that bit (so 0 is ok, even 302 * though 0 may be returned). If the first word is 0, then the value of 303 * `word` will be 0 and we will go on to look at the second word. 304 */ 305 word = BITSET_BITWORD(i); 306 while (*tmp == 0) { 307 word++; 308 309 if (word >= BITSET_WORDS(size)) 310 return size; 311 312 *tmp = set[word]; 313 } 314 315 /* Find the next set bit in the non-zero word */ 316 bit = ffs(*tmp) - 1; 317 318 /* Unset the bit */ 319 *tmp &= ~(1ull << bit); 320 321 return word * BITSET_WORDBITS + bit; 322} 323 324/** 325 * Iterates over each set bit in a set 326 * 327 * @param __i iteration variable, bit number 328 * @param __set the bitset to iterate (will not be modified) 329 * @param __size number of bits in the set to consider 330 */ 331#define BITSET_FOREACH_SET(__i, __set, __size) \ 332 for (BITSET_WORD __tmp = (__size) == 0 ? 0 : *(__set), *__foo = &__tmp; __foo != NULL; __foo = NULL) \ 333 for (__i = 0; \ 334 (__i = __bitset_next_set(__i, &__tmp, __set, __size)) < __size;) 335 336static inline void 337__bitset_next_range(unsigned *start, unsigned *end, const BITSET_WORD *set, 338 unsigned size) 339{ 340 /* To find the next start, start searching from end. In the first iteration 341 * it will be at 0, in every subsequent iteration it will be at the first 342 * 0-bit after the range. 343 */ 344 unsigned word = BITSET_BITWORD(*end); 345 if (word >= BITSET_WORDS(size)) { 346 *start = *end = size; 347 return; 348 } 349 BITSET_WORD tmp = set[word] & ~(BITSET_BIT(*end) - 1); 350 while (!tmp) { 351 word++; 352 if (word >= BITSET_WORDS(size)) { 353 *start = *end = size; 354 return; 355 } 356 tmp = set[word]; 357 } 358 359 *start = word * BITSET_WORDBITS + ffs(tmp) - 1; 360 361 /* Now do the opposite to find end. Here we can start at start + 1, because 362 * we know that the bit at start is 1 and we're searching for the first 363 * 0-bit. 364 */ 365 word = BITSET_BITWORD(*start + 1); 366 if (word >= BITSET_WORDS(size)) { 367 *end = size; 368 return; 369 } 370 tmp = set[word] | (BITSET_BIT(*start + 1) - 1); 371 while (~tmp == 0) { 372 word++; 373 if (word >= BITSET_WORDS(size)) { 374 *end = size; 375 return; 376 } 377 tmp = set[word]; 378 } 379 380 /* Cap "end" at "size" in case there are extra bits past "size" set in the 381 * word. This is only necessary for "end" because we terminate the loop if 382 * "start" goes past "size". 383 */ 384 *end = MIN2(word * BITSET_WORDBITS + ffs(~tmp) - 1, size); 385} 386 387/** 388 * Iterates over each contiguous range of set bits in a set 389 * 390 * @param __start the first 1 bit of the current range 391 * @param __end the bit after the last 1 bit of the current range 392 * @param __set the bitset to iterate (will not be modified) 393 * @param __size number of bits in the set to consider 394 */ 395#define BITSET_FOREACH_RANGE(__start, __end, __set, __size) \ 396 for (__start = 0, __end = 0, \ 397 __bitset_next_range(&__start, &__end, __set, __size); \ 398 __start < __size; \ 399 __bitset_next_range(&__start, &__end, __set, __size)) 400 401 402#ifdef __cplusplus 403 404/** 405 * Simple C++ wrapper of a bitset type of static size, with value semantics 406 * and basic bitwise arithmetic operators. The operators defined below are 407 * expected to have the same semantics as the same operator applied to other 408 * fundamental integer types. T is the name of the struct to instantiate 409 * it as, and N is the number of bits in the bitset. 410 */ 411#define DECLARE_BITSET_T(T, N) struct T { \ 412 EXPLICIT_CONVERSION \ 413 operator bool() const \ 414 { \ 415 for (unsigned i = 0; i < BITSET_WORDS(N); i++) \ 416 if (words[i]) \ 417 return true; \ 418 return false; \ 419 } \ 420 \ 421 T & \ 422 operator=(int x) \ 423 { \ 424 const T c = {{ (BITSET_WORD)x }}; \ 425 return *this = c; \ 426 } \ 427 \ 428 friend bool \ 429 operator==(const T &b, const T &c) \ 430 { \ 431 return BITSET_EQUAL(b.words, c.words); \ 432 } \ 433 \ 434 friend bool \ 435 operator!=(const T &b, const T &c) \ 436 { \ 437 return !(b == c); \ 438 } \ 439 \ 440 friend bool \ 441 operator==(const T &b, int x) \ 442 { \ 443 const T c = {{ (BITSET_WORD)x }}; \ 444 return b == c; \ 445 } \ 446 \ 447 friend bool \ 448 operator!=(const T &b, int x) \ 449 { \ 450 return !(b == x); \ 451 } \ 452 \ 453 friend T \ 454 operator~(const T &b) \ 455 { \ 456 T c; \ 457 for (unsigned i = 0; i < BITSET_WORDS(N); i++) \ 458 c.words[i] = ~b.words[i]; \ 459 return c; \ 460 } \ 461 \ 462 T & \ 463 operator|=(const T &b) \ 464 { \ 465 for (unsigned i = 0; i < BITSET_WORDS(N); i++) \ 466 words[i] |= b.words[i]; \ 467 return *this; \ 468 } \ 469 \ 470 friend T \ 471 operator|(const T &b, const T &c) \ 472 { \ 473 T d = b; \ 474 d |= c; \ 475 return d; \ 476 } \ 477 \ 478 T & \ 479 operator&=(const T &b) \ 480 { \ 481 for (unsigned i = 0; i < BITSET_WORDS(N); i++) \ 482 words[i] &= b.words[i]; \ 483 return *this; \ 484 } \ 485 \ 486 friend T \ 487 operator&(const T &b, const T &c) \ 488 { \ 489 T d = b; \ 490 d &= c; \ 491 return d; \ 492 } \ 493 \ 494 bool \ 495 test(unsigned i) const \ 496 { \ 497 return BITSET_TEST(words, i); \ 498 } \ 499 \ 500 T & \ 501 set(unsigned i) \ 502 { \ 503 BITSET_SET(words, i); \ 504 return *this; \ 505 } \ 506 \ 507 T & \ 508 clear(unsigned i) \ 509 { \ 510 BITSET_CLEAR(words, i); \ 511 return *this; \ 512 } \ 513 \ 514 BITSET_WORD words[BITSET_WORDS(N)]; \ 515 } 516 517#endif 518 519#endif 520