disk_cache.c revision 01e04c3f
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#ifdef ENABLE_SHADER_CACHE
25
26#include <ctype.h>
27#include <ftw.h>
28#include <string.h>
29#include <stdlib.h>
30#include <stdio.h>
31#include <sys/file.h>
32#include <sys/types.h>
33#include <sys/stat.h>
34#include <sys/mman.h>
35#include <unistd.h>
36#include <fcntl.h>
37#include <pwd.h>
38#include <errno.h>
39#include <dirent.h>
40#include "zlib.h"
41
42#include "util/crc32.h"
43#include "util/debug.h"
44#include "util/rand_xor.h"
45#include "util/u_atomic.h"
46#include "util/u_queue.h"
47#include "util/mesa-sha1.h"
48#include "util/ralloc.h"
49#include "main/compiler.h"
50#include "main/errors.h"
51
52#include "disk_cache.h"
53
54/* Number of bits to mask off from a cache key to get an index. */
55#define CACHE_INDEX_KEY_BITS 16
56
57/* Mask for computing an index from a key. */
58#define CACHE_INDEX_KEY_MASK ((1 << CACHE_INDEX_KEY_BITS) - 1)
59
60/* The number of keys that can be stored in the index. */
61#define CACHE_INDEX_MAX_KEYS (1 << CACHE_INDEX_KEY_BITS)
62
63/* The cache version should be bumped whenever a change is made to the
64 * structure of cache entries or the index. This will give any 3rd party
65 * applications reading the cache entries a chance to adjust to the changes.
66 *
67 * - The cache version is checked internally when reading a cache entry. If we
68 *   ever have a mismatch we are in big trouble as this means we had a cache
69 *   collision. In case of such an event please check the skys for giant
70 *   asteroids and that the entire Mesa team hasn't been eaten by wolves.
71 *
72 * - There is no strict requirement that cache versions be backwards
73 *   compatible but effort should be taken to limit disruption where possible.
74 */
75#define CACHE_VERSION 1
76
77struct disk_cache {
78   /* The path to the cache directory. */
79   char *path;
80   bool path_init_failed;
81
82   /* Thread queue for compressing and writing cache entries to disk */
83   struct util_queue cache_queue;
84
85   /* Seed for rand, which is used to pick a random directory */
86   uint64_t seed_xorshift128plus[2];
87
88   /* A pointer to the mmapped index file within the cache directory. */
89   uint8_t *index_mmap;
90   size_t index_mmap_size;
91
92   /* Pointer to total size of all objects in cache (within index_mmap) */
93   uint64_t *size;
94
95   /* Pointer to stored keys, (within index_mmap). */
96   uint8_t *stored_keys;
97
98   /* Maximum size of all cached objects (in bytes). */
99   uint64_t max_size;
100
101   /* Driver cache keys. */
102   uint8_t *driver_keys_blob;
103   size_t driver_keys_blob_size;
104
105   disk_cache_put_cb blob_put_cb;
106   disk_cache_get_cb blob_get_cb;
107};
108
109struct disk_cache_put_job {
110   struct util_queue_fence fence;
111
112   struct disk_cache *cache;
113
114   cache_key key;
115
116   /* Copy of cache data to be compressed and written. */
117   void *data;
118
119   /* Size of data to be compressed and written. */
120   size_t size;
121
122   struct cache_item_metadata cache_item_metadata;
123};
124
125/* Create a directory named 'path' if it does not already exist.
126 *
127 * Returns: 0 if path already exists as a directory or if created.
128 *         -1 in all other cases.
129 */
130static int
131mkdir_if_needed(const char *path)
132{
133   struct stat sb;
134
135   /* If the path exists already, then our work is done if it's a
136    * directory, but it's an error if it is not.
137    */
138   if (stat(path, &sb) == 0) {
139      if (S_ISDIR(sb.st_mode)) {
140         return 0;
141      } else {
142         fprintf(stderr, "Cannot use %s for shader cache (not a directory)"
143                         "---disabling.\n", path);
144         return -1;
145      }
146   }
147
148   int ret = mkdir(path, 0755);
149   if (ret == 0 || (ret == -1 && errno == EEXIST))
150     return 0;
151
152   fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n",
153           path, strerror(errno));
154
155   return -1;
156}
157
158/* Concatenate an existing path and a new name to form a new path.  If the new
159 * path does not exist as a directory, create it then return the resulting
160 * name of the new path (ralloc'ed off of 'ctx').
161 *
162 * Returns NULL on any error, such as:
163 *
164 *      <path> does not exist or is not a directory
165 *      <path>/<name> exists but is not a directory
166 *      <path>/<name> cannot be created as a directory
167 */
168static char *
169concatenate_and_mkdir(void *ctx, const char *path, const char *name)
170{
171   char *new_path;
172   struct stat sb;
173
174   if (stat(path, &sb) != 0 || ! S_ISDIR(sb.st_mode))
175      return NULL;
176
177   new_path = ralloc_asprintf(ctx, "%s/%s", path, name);
178
179   if (mkdir_if_needed(new_path) == 0)
180      return new_path;
181   else
182      return NULL;
183}
184
185#define DRV_KEY_CPY(_dst, _src, _src_size) \
186do {                                       \
187   memcpy(_dst, _src, _src_size);          \
188   _dst += _src_size;                      \
189} while (0);
190
191struct disk_cache *
192disk_cache_create(const char *gpu_name, const char *driver_id,
193                  uint64_t driver_flags)
194{
195   void *local;
196   struct disk_cache *cache = NULL;
197   char *path, *max_size_str;
198   uint64_t max_size;
199   int fd = -1;
200   struct stat sb;
201   size_t size;
202
203   uint8_t cache_version = CACHE_VERSION;
204   size_t cv_size = sizeof(cache_version);
205
206   /* If running as a users other than the real user disable cache */
207   if (geteuid() != getuid())
208      return NULL;
209
210   /* A ralloc context for transient data during this invocation. */
211   local = ralloc_context(NULL);
212   if (local == NULL)
213      goto fail;
214
215   /* At user request, disable shader cache entirely. */
216   if (env_var_as_boolean("MESA_GLSL_CACHE_DISABLE", false))
217      goto fail;
218
219   cache = rzalloc(NULL, struct disk_cache);
220   if (cache == NULL)
221      goto fail;
222
223   /* Assume failure. */
224   cache->path_init_failed = true;
225
226   /* Determine path for cache based on the first defined name as follows:
227    *
228    *   $MESA_GLSL_CACHE_DIR
229    *   $XDG_CACHE_HOME/mesa_shader_cache
230    *   <pwd.pw_dir>/.cache/mesa_shader_cache
231    */
232   path = getenv("MESA_GLSL_CACHE_DIR");
233   if (path) {
234      if (mkdir_if_needed(path) == -1)
235         goto path_fail;
236
237      path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME);
238      if (path == NULL)
239         goto path_fail;
240   }
241
242   if (path == NULL) {
243      char *xdg_cache_home = getenv("XDG_CACHE_HOME");
244
245      if (xdg_cache_home) {
246         if (mkdir_if_needed(xdg_cache_home) == -1)
247            goto path_fail;
248
249         path = concatenate_and_mkdir(local, xdg_cache_home, CACHE_DIR_NAME);
250         if (path == NULL)
251            goto path_fail;
252      }
253   }
254
255   if (path == NULL) {
256      char *buf;
257      size_t buf_size;
258      struct passwd pwd, *result;
259
260      buf_size = sysconf(_SC_GETPW_R_SIZE_MAX);
261      if (buf_size == -1)
262         buf_size = 512;
263
264      /* Loop until buf_size is large enough to query the directory */
265      while (1) {
266         buf = ralloc_size(local, buf_size);
267
268         getpwuid_r(getuid(), &pwd, buf, buf_size, &result);
269         if (result)
270            break;
271
272         if (errno == ERANGE) {
273            ralloc_free(buf);
274            buf = NULL;
275            buf_size *= 2;
276         } else {
277            goto path_fail;
278         }
279      }
280
281      path = concatenate_and_mkdir(local, pwd.pw_dir, ".cache");
282      if (path == NULL)
283         goto path_fail;
284
285      path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME);
286      if (path == NULL)
287         goto path_fail;
288   }
289
290   cache->path = ralloc_strdup(cache, path);
291   if (cache->path == NULL)
292      goto path_fail;
293
294   path = ralloc_asprintf(local, "%s/index", cache->path);
295   if (path == NULL)
296      goto path_fail;
297
298   fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644);
299   if (fd == -1)
300      goto path_fail;
301
302   if (fstat(fd, &sb) == -1)
303      goto path_fail;
304
305   /* Force the index file to be the expected size. */
306   size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE;
307   if (sb.st_size != size) {
308      if (ftruncate(fd, size) == -1)
309         goto path_fail;
310   }
311
312   /* We map this shared so that other processes see updates that we
313    * make.
314    *
315    * Note: We do use atomic addition to ensure that multiple
316    * processes don't scramble the cache size recorded in the
317    * index. But we don't use any locking to prevent multiple
318    * processes from updating the same entry simultaneously. The idea
319    * is that if either result lands entirely in the index, then
320    * that's equivalent to a well-ordered write followed by an
321    * eviction and a write. On the other hand, if the simultaneous
322    * writes result in a corrupt entry, that's not really any
323    * different than both entries being evicted, (since within the
324    * guarantees of the cryptographic hash, a corrupt entry is
325    * unlikely to ever match a real cache key).
326    */
327   cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE,
328                            MAP_SHARED, fd, 0);
329   if (cache->index_mmap == MAP_FAILED)
330      goto path_fail;
331   cache->index_mmap_size = size;
332
333   close(fd);
334
335   cache->size = (uint64_t *) cache->index_mmap;
336   cache->stored_keys = cache->index_mmap + sizeof(uint64_t);
337
338   max_size = 0;
339
340   max_size_str = getenv("MESA_GLSL_CACHE_MAX_SIZE");
341   if (max_size_str) {
342      char *end;
343      max_size = strtoul(max_size_str, &end, 10);
344      if (end == max_size_str) {
345         max_size = 0;
346      } else {
347         switch (*end) {
348         case 'K':
349         case 'k':
350            max_size *= 1024;
351            break;
352         case 'M':
353         case 'm':
354            max_size *= 1024*1024;
355            break;
356         case '\0':
357         case 'G':
358         case 'g':
359         default:
360            max_size *= 1024*1024*1024;
361            break;
362         }
363      }
364   }
365
366   /* Default to 1GB for maximum cache size. */
367   if (max_size == 0) {
368      max_size = 1024*1024*1024;
369   }
370
371   cache->max_size = max_size;
372
373   /* 1 thread was chosen because we don't really care about getting things
374    * to disk quickly just that it's not blocking other tasks.
375    *
376    * The queue will resize automatically when it's full, so adding new jobs
377    * doesn't stall.
378    */
379   util_queue_init(&cache->cache_queue, "disk$", 32, 1,
380                   UTIL_QUEUE_INIT_RESIZE_IF_FULL |
381                   UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY |
382                   UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY);
383
384   cache->path_init_failed = false;
385
386 path_fail:
387
388   cache->driver_keys_blob_size = cv_size;
389
390   /* Create driver id keys */
391   size_t id_size = strlen(driver_id) + 1;
392   size_t gpu_name_size = strlen(gpu_name) + 1;
393   cache->driver_keys_blob_size += id_size;
394   cache->driver_keys_blob_size += gpu_name_size;
395
396   /* We sometimes store entire structs that contains a pointers in the cache,
397    * use pointer size as a key to avoid hard to debug issues.
398    */
399   uint8_t ptr_size = sizeof(void *);
400   size_t ptr_size_size = sizeof(ptr_size);
401   cache->driver_keys_blob_size += ptr_size_size;
402
403   size_t driver_flags_size = sizeof(driver_flags);
404   cache->driver_keys_blob_size += driver_flags_size;
405
406   cache->driver_keys_blob =
407      ralloc_size(cache, cache->driver_keys_blob_size);
408   if (!cache->driver_keys_blob)
409      goto fail;
410
411   uint8_t *drv_key_blob = cache->driver_keys_blob;
412   DRV_KEY_CPY(drv_key_blob, &cache_version, cv_size)
413   DRV_KEY_CPY(drv_key_blob, driver_id, id_size)
414   DRV_KEY_CPY(drv_key_blob, gpu_name, gpu_name_size)
415   DRV_KEY_CPY(drv_key_blob, &ptr_size, ptr_size_size)
416   DRV_KEY_CPY(drv_key_blob, &driver_flags, driver_flags_size)
417
418   /* Seed our rand function */
419   s_rand_xorshift128plus(cache->seed_xorshift128plus, true);
420
421   ralloc_free(local);
422
423   return cache;
424
425 fail:
426   if (fd != -1)
427      close(fd);
428   if (cache)
429      ralloc_free(cache);
430   ralloc_free(local);
431
432   return NULL;
433}
434
435void
436disk_cache_destroy(struct disk_cache *cache)
437{
438   if (cache && !cache->path_init_failed) {
439      util_queue_destroy(&cache->cache_queue);
440      munmap(cache->index_mmap, cache->index_mmap_size);
441   }
442
443   ralloc_free(cache);
444}
445
446/* Return a filename within the cache's directory corresponding to 'key'. The
447 * returned filename is ralloced with 'cache' as the parent context.
448 *
449 * Returns NULL if out of memory.
450 */
451static char *
452get_cache_file(struct disk_cache *cache, const cache_key key)
453{
454   char buf[41];
455   char *filename;
456
457   if (cache->path_init_failed)
458      return NULL;
459
460   _mesa_sha1_format(buf, key);
461   if (asprintf(&filename, "%s/%c%c/%s", cache->path, buf[0],
462                buf[1], buf + 2) == -1)
463      return NULL;
464
465   return filename;
466}
467
468/* Create the directory that will be needed for the cache file for \key.
469 *
470 * Obviously, the implementation here must closely match
471 * _get_cache_file above.
472*/
473static void
474make_cache_file_directory(struct disk_cache *cache, const cache_key key)
475{
476   char *dir;
477   char buf[41];
478
479   _mesa_sha1_format(buf, key);
480   if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1)
481      return;
482
483   mkdir_if_needed(dir);
484   free(dir);
485}
486
487/* Given a directory path and predicate function, find the entry with
488 * the oldest access time in that directory for which the predicate
489 * returns true.
490 *
491 * Returns: A malloc'ed string for the path to the chosen file, (or
492 * NULL on any error). The caller should free the string when
493 * finished.
494 */
495static char *
496choose_lru_file_matching(const char *dir_path,
497                         bool (*predicate)(const char *dir_path,
498                                           const struct stat *,
499                                           const char *, const size_t))
500{
501   DIR *dir;
502   struct dirent *entry;
503   char *filename;
504   char *lru_name = NULL;
505   time_t lru_atime = 0;
506
507   dir = opendir(dir_path);
508   if (dir == NULL)
509      return NULL;
510
511   while (1) {
512      entry = readdir(dir);
513      if (entry == NULL)
514         break;
515
516      struct stat sb;
517      if (fstatat(dirfd(dir), entry->d_name, &sb, 0) == 0) {
518         if (!lru_atime || (sb.st_atime < lru_atime)) {
519            size_t len = strlen(entry->d_name);
520
521            if (!predicate(dir_path, &sb, entry->d_name, len))
522               continue;
523
524            char *tmp = realloc(lru_name, len + 1);
525            if (tmp) {
526               lru_name = tmp;
527               memcpy(lru_name, entry->d_name, len + 1);
528               lru_atime = sb.st_atime;
529            }
530         }
531      }
532   }
533
534   if (lru_name == NULL) {
535      closedir(dir);
536      return NULL;
537   }
538
539   if (asprintf(&filename, "%s/%s", dir_path, lru_name) < 0)
540      filename = NULL;
541
542   free(lru_name);
543   closedir(dir);
544
545   return filename;
546}
547
548/* Is entry a regular file, and not having a name with a trailing
549 * ".tmp"
550 */
551static bool
552is_regular_non_tmp_file(const char *path, const struct stat *sb,
553                        const char *d_name, const size_t len)
554{
555   if (!S_ISREG(sb->st_mode))
556      return false;
557
558   if (len >= 4 && strcmp(&d_name[len-4], ".tmp") == 0)
559      return false;
560
561   return true;
562}
563
564/* Returns the size of the deleted file, (or 0 on any error). */
565static size_t
566unlink_lru_file_from_directory(const char *path)
567{
568   struct stat sb;
569   char *filename;
570
571   filename = choose_lru_file_matching(path, is_regular_non_tmp_file);
572   if (filename == NULL)
573      return 0;
574
575   if (stat(filename, &sb) == -1) {
576      free (filename);
577      return 0;
578   }
579
580   unlink(filename);
581   free (filename);
582
583   return sb.st_blocks * 512;
584}
585
586/* Is entry a directory with a two-character name, (and not the
587 * special name of ".."). We also return false if the dir is empty.
588 */
589static bool
590is_two_character_sub_directory(const char *path, const struct stat *sb,
591                               const char *d_name, const size_t len)
592{
593   if (!S_ISDIR(sb->st_mode))
594      return false;
595
596   if (len != 2)
597      return false;
598
599   if (strcmp(d_name, "..") == 0)
600      return false;
601
602   char *subdir;
603   if (asprintf(&subdir, "%s/%s", path, d_name) == -1)
604      return false;
605   DIR *dir = opendir(subdir);
606   free(subdir);
607
608   if (dir == NULL)
609     return false;
610
611   unsigned subdir_entries = 0;
612   struct dirent *d;
613   while ((d = readdir(dir)) != NULL) {
614      if(++subdir_entries > 2)
615         break;
616   }
617   closedir(dir);
618
619   /* If dir only contains '.' and '..' it must be empty */
620   if (subdir_entries <= 2)
621      return false;
622
623   return true;
624}
625
626static void
627evict_lru_item(struct disk_cache *cache)
628{
629   char *dir_path;
630
631   /* With a reasonably-sized, full cache, (and with keys generated
632    * from a cryptographic hash), we can choose two random hex digits
633    * and reasonably expect the directory to exist with a file in it.
634    * Provides pseudo-LRU eviction to reduce checking all cache files.
635    */
636   uint64_t rand64 = rand_xorshift128plus(cache->seed_xorshift128plus);
637   if (asprintf(&dir_path, "%s/%02" PRIx64 , cache->path, rand64 & 0xff) < 0)
638      return;
639
640   size_t size = unlink_lru_file_from_directory(dir_path);
641
642   free(dir_path);
643
644   if (size) {
645      p_atomic_add(cache->size, - (uint64_t)size);
646      return;
647   }
648
649   /* In the case where the random choice of directory didn't find
650    * something, we choose the least recently accessed from the
651    * existing directories.
652    *
653    * Really, the only reason this code exists is to allow the unit
654    * tests to work, (which use an artificially-small cache to be able
655    * to force a single cached item to be evicted).
656    */
657   dir_path = choose_lru_file_matching(cache->path,
658                                       is_two_character_sub_directory);
659   if (dir_path == NULL)
660      return;
661
662   size = unlink_lru_file_from_directory(dir_path);
663
664   free(dir_path);
665
666   if (size)
667      p_atomic_add(cache->size, - (uint64_t)size);
668}
669
670void
671disk_cache_remove(struct disk_cache *cache, const cache_key key)
672{
673   struct stat sb;
674
675   char *filename = get_cache_file(cache, key);
676   if (filename == NULL) {
677      return;
678   }
679
680   if (stat(filename, &sb) == -1) {
681      free(filename);
682      return;
683   }
684
685   unlink(filename);
686   free(filename);
687
688   if (sb.st_blocks)
689      p_atomic_add(cache->size, - (uint64_t)sb.st_blocks * 512);
690}
691
692static ssize_t
693read_all(int fd, void *buf, size_t count)
694{
695   char *in = buf;
696   ssize_t read_ret;
697   size_t done;
698
699   for (done = 0; done < count; done += read_ret) {
700      read_ret = read(fd, in + done, count - done);
701      if (read_ret == -1 || read_ret == 0)
702         return -1;
703   }
704   return done;
705}
706
707static ssize_t
708write_all(int fd, const void *buf, size_t count)
709{
710   const char *out = buf;
711   ssize_t written;
712   size_t done;
713
714   for (done = 0; done < count; done += written) {
715      written = write(fd, out + done, count - done);
716      if (written == -1)
717         return -1;
718   }
719   return done;
720}
721
722/* From the zlib docs:
723 *    "If the memory is available, buffers sizes on the order of 128K or 256K
724 *    bytes should be used."
725 */
726#define BUFSIZE 256 * 1024
727
728/**
729 * Compresses cache entry in memory and writes it to disk. Returns the size
730 * of the data written to disk.
731 */
732static size_t
733deflate_and_write_to_disk(const void *in_data, size_t in_data_size, int dest,
734                          const char *filename)
735{
736   unsigned char out[BUFSIZE];
737
738   /* allocate deflate state */
739   z_stream strm;
740   strm.zalloc = Z_NULL;
741   strm.zfree = Z_NULL;
742   strm.opaque = Z_NULL;
743   strm.next_in = (uint8_t *) in_data;
744   strm.avail_in = in_data_size;
745
746   int ret = deflateInit(&strm, Z_BEST_COMPRESSION);
747   if (ret != Z_OK)
748       return 0;
749
750   /* compress until end of in_data */
751   size_t compressed_size = 0;
752   int flush;
753   do {
754      int remaining = in_data_size - BUFSIZE;
755      flush = remaining > 0 ? Z_NO_FLUSH : Z_FINISH;
756      in_data_size -= BUFSIZE;
757
758      /* Run deflate() on input until the output buffer is not full (which
759       * means there is no more data to deflate).
760       */
761      do {
762         strm.avail_out = BUFSIZE;
763         strm.next_out = out;
764
765         ret = deflate(&strm, flush);    /* no bad return value */
766         assert(ret != Z_STREAM_ERROR);  /* state not clobbered */
767
768         size_t have = BUFSIZE - strm.avail_out;
769         compressed_size += have;
770
771         ssize_t written = write_all(dest, out, have);
772         if (written == -1) {
773            (void)deflateEnd(&strm);
774            return 0;
775         }
776      } while (strm.avail_out == 0);
777
778      /* all input should be used */
779      assert(strm.avail_in == 0);
780
781   } while (flush != Z_FINISH);
782
783   /* stream should be complete */
784   assert(ret == Z_STREAM_END);
785
786   /* clean up and return */
787   (void)deflateEnd(&strm);
788   return compressed_size;
789}
790
791static struct disk_cache_put_job *
792create_put_job(struct disk_cache *cache, const cache_key key,
793               const void *data, size_t size,
794               struct cache_item_metadata *cache_item_metadata)
795{
796   struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *)
797      malloc(sizeof(struct disk_cache_put_job) + size);
798
799   if (dc_job) {
800      dc_job->cache = cache;
801      memcpy(dc_job->key, key, sizeof(cache_key));
802      dc_job->data = dc_job + 1;
803      memcpy(dc_job->data, data, size);
804      dc_job->size = size;
805
806      /* Copy the cache item metadata */
807      if (cache_item_metadata) {
808         dc_job->cache_item_metadata.type = cache_item_metadata->type;
809         if (cache_item_metadata->type == CACHE_ITEM_TYPE_GLSL) {
810            dc_job->cache_item_metadata.num_keys =
811               cache_item_metadata->num_keys;
812            dc_job->cache_item_metadata.keys = (cache_key *)
813               malloc(cache_item_metadata->num_keys * sizeof(cache_key));
814
815            if (!dc_job->cache_item_metadata.keys)
816               goto fail;
817
818            memcpy(dc_job->cache_item_metadata.keys,
819                   cache_item_metadata->keys,
820                   sizeof(cache_key) * cache_item_metadata->num_keys);
821         }
822      } else {
823         dc_job->cache_item_metadata.type = CACHE_ITEM_TYPE_UNKNOWN;
824         dc_job->cache_item_metadata.keys = NULL;
825      }
826   }
827
828   return dc_job;
829
830fail:
831   free(dc_job);
832
833   return NULL;
834}
835
836static void
837destroy_put_job(void *job, int thread_index)
838{
839   if (job) {
840      struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
841      free(dc_job->cache_item_metadata.keys);
842
843      free(job);
844   }
845}
846
847struct cache_entry_file_data {
848   uint32_t crc32;
849   uint32_t uncompressed_size;
850};
851
852static void
853cache_put(void *job, int thread_index)
854{
855   assert(job);
856
857   int fd = -1, fd_final = -1, err, ret;
858   unsigned i = 0;
859   char *filename = NULL, *filename_tmp = NULL;
860   struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
861
862   filename = get_cache_file(dc_job->cache, dc_job->key);
863   if (filename == NULL)
864      goto done;
865
866   /* If the cache is too large, evict something else first. */
867   while (*dc_job->cache->size + dc_job->size > dc_job->cache->max_size &&
868          i < 8) {
869      evict_lru_item(dc_job->cache);
870      i++;
871   }
872
873   /* Write to a temporary file to allow for an atomic rename to the
874    * final destination filename, (to prevent any readers from seeing
875    * a partially written file).
876    */
877   if (asprintf(&filename_tmp, "%s.tmp", filename) == -1)
878      goto done;
879
880   fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
881
882   /* Make the two-character subdirectory within the cache as needed. */
883   if (fd == -1) {
884      if (errno != ENOENT)
885         goto done;
886
887      make_cache_file_directory(dc_job->cache, dc_job->key);
888
889      fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
890      if (fd == -1)
891         goto done;
892   }
893
894   /* With the temporary file open, we take an exclusive flock on
895    * it. If the flock fails, then another process still has the file
896    * open with the flock held. So just let that file be responsible
897    * for writing the file.
898    */
899   err = flock(fd, LOCK_EX | LOCK_NB);
900   if (err == -1)
901      goto done;
902
903   /* Now that we have the lock on the open temporary file, we can
904    * check to see if the destination file already exists. If so,
905    * another process won the race between when we saw that the file
906    * didn't exist and now. In this case, we don't do anything more,
907    * (to ensure the size accounting of the cache doesn't get off).
908    */
909   fd_final = open(filename, O_RDONLY | O_CLOEXEC);
910   if (fd_final != -1) {
911      unlink(filename_tmp);
912      goto done;
913   }
914
915   /* OK, we're now on the hook to write out a file that we know is
916    * not in the cache, and is also not being written out to the cache
917    * by some other process.
918    */
919
920   /* Write the driver_keys_blob, this can be used find information about the
921    * mesa version that produced the entry or deal with hash collisions,
922    * should that ever become a real problem.
923    */
924   ret = write_all(fd, dc_job->cache->driver_keys_blob,
925                   dc_job->cache->driver_keys_blob_size);
926   if (ret == -1) {
927      unlink(filename_tmp);
928      goto done;
929   }
930
931   /* Write the cache item metadata. This data can be used to deal with
932    * hash collisions, as well as providing useful information to 3rd party
933    * tools reading the cache files.
934    */
935   ret = write_all(fd, &dc_job->cache_item_metadata.type,
936                   sizeof(uint32_t));
937   if (ret == -1) {
938      unlink(filename_tmp);
939      goto done;
940   }
941
942   if (dc_job->cache_item_metadata.type == CACHE_ITEM_TYPE_GLSL) {
943      ret = write_all(fd, &dc_job->cache_item_metadata.num_keys,
944                      sizeof(uint32_t));
945      if (ret == -1) {
946         unlink(filename_tmp);
947         goto done;
948      }
949
950      ret = write_all(fd, dc_job->cache_item_metadata.keys[0],
951                      dc_job->cache_item_metadata.num_keys *
952                      sizeof(cache_key));
953      if (ret == -1) {
954         unlink(filename_tmp);
955         goto done;
956      }
957   }
958
959   /* Create CRC of the data. We will read this when restoring the cache and
960    * use it to check for corruption.
961    */
962   struct cache_entry_file_data cf_data;
963   cf_data.crc32 = util_hash_crc32(dc_job->data, dc_job->size);
964   cf_data.uncompressed_size = dc_job->size;
965
966   size_t cf_data_size = sizeof(cf_data);
967   ret = write_all(fd, &cf_data, cf_data_size);
968   if (ret == -1) {
969      unlink(filename_tmp);
970      goto done;
971   }
972
973   /* Now, finally, write out the contents to the temporary file, then
974    * rename them atomically to the destination filename, and also
975    * perform an atomic increment of the total cache size.
976    */
977   size_t file_size = deflate_and_write_to_disk(dc_job->data, dc_job->size,
978                                                fd, filename_tmp);
979   if (file_size == 0) {
980      unlink(filename_tmp);
981      goto done;
982   }
983   ret = rename(filename_tmp, filename);
984   if (ret == -1) {
985      unlink(filename_tmp);
986      goto done;
987   }
988
989   struct stat sb;
990   if (stat(filename, &sb) == -1) {
991      /* Something went wrong remove the file */
992      unlink(filename);
993      goto done;
994   }
995
996   p_atomic_add(dc_job->cache->size, sb.st_blocks * 512);
997
998 done:
999   if (fd_final != -1)
1000      close(fd_final);
1001   /* This close finally releases the flock, (now that the final file
1002    * has been renamed into place and the size has been added).
1003    */
1004   if (fd != -1)
1005      close(fd);
1006   free(filename_tmp);
1007   free(filename);
1008}
1009
1010void
1011disk_cache_put(struct disk_cache *cache, const cache_key key,
1012               const void *data, size_t size,
1013               struct cache_item_metadata *cache_item_metadata)
1014{
1015   if (cache->blob_put_cb) {
1016      cache->blob_put_cb(key, CACHE_KEY_SIZE, data, size);
1017      return;
1018   }
1019
1020   if (cache->path_init_failed)
1021      return;
1022
1023   struct disk_cache_put_job *dc_job =
1024      create_put_job(cache, key, data, size, cache_item_metadata);
1025
1026   if (dc_job) {
1027      util_queue_fence_init(&dc_job->fence);
1028      util_queue_add_job(&cache->cache_queue, dc_job, &dc_job->fence,
1029                         cache_put, destroy_put_job);
1030   }
1031}
1032
1033/**
1034 * Decompresses cache entry, returns true if successful.
1035 */
1036static bool
1037inflate_cache_data(uint8_t *in_data, size_t in_data_size,
1038                   uint8_t *out_data, size_t out_data_size)
1039{
1040   z_stream strm;
1041
1042   /* allocate inflate state */
1043   strm.zalloc = Z_NULL;
1044   strm.zfree = Z_NULL;
1045   strm.opaque = Z_NULL;
1046   strm.next_in = in_data;
1047   strm.avail_in = in_data_size;
1048   strm.next_out = out_data;
1049   strm.avail_out = out_data_size;
1050
1051   int ret = inflateInit(&strm);
1052   if (ret != Z_OK)
1053      return false;
1054
1055   ret = inflate(&strm, Z_NO_FLUSH);
1056   assert(ret != Z_STREAM_ERROR);  /* state not clobbered */
1057
1058   /* Unless there was an error we should have decompressed everything in one
1059    * go as we know the uncompressed file size.
1060    */
1061   if (ret != Z_STREAM_END) {
1062      (void)inflateEnd(&strm);
1063      return false;
1064   }
1065   assert(strm.avail_out == 0);
1066
1067   /* clean up and return */
1068   (void)inflateEnd(&strm);
1069   return true;
1070}
1071
1072void *
1073disk_cache_get(struct disk_cache *cache, const cache_key key, size_t *size)
1074{
1075   int fd = -1, ret;
1076   struct stat sb;
1077   char *filename = NULL;
1078   uint8_t *data = NULL;
1079   uint8_t *uncompressed_data = NULL;
1080   uint8_t *file_header = NULL;
1081
1082   if (size)
1083      *size = 0;
1084
1085   if (cache->blob_get_cb) {
1086      /* This is what Android EGL defines as the maxValueSize in egl_cache_t
1087       * class implementation.
1088       */
1089      const signed long max_blob_size = 64 * 1024;
1090      void *blob = malloc(max_blob_size);
1091      if (!blob)
1092         return NULL;
1093
1094      signed long bytes =
1095         cache->blob_get_cb(key, CACHE_KEY_SIZE, blob, max_blob_size);
1096
1097      if (!bytes) {
1098         free(blob);
1099         return NULL;
1100      }
1101
1102      if (size)
1103         *size = bytes;
1104      return blob;
1105   }
1106
1107   filename = get_cache_file(cache, key);
1108   if (filename == NULL)
1109      goto fail;
1110
1111   fd = open(filename, O_RDONLY | O_CLOEXEC);
1112   if (fd == -1)
1113      goto fail;
1114
1115   if (fstat(fd, &sb) == -1)
1116      goto fail;
1117
1118   data = malloc(sb.st_size);
1119   if (data == NULL)
1120      goto fail;
1121
1122   size_t ck_size = cache->driver_keys_blob_size;
1123   file_header = malloc(ck_size);
1124   if (!file_header)
1125      goto fail;
1126
1127   if (sb.st_size < ck_size)
1128      goto fail;
1129
1130   ret = read_all(fd, file_header, ck_size);
1131   if (ret == -1)
1132      goto fail;
1133
1134   /* Check for extremely unlikely hash collisions */
1135   if (memcmp(cache->driver_keys_blob, file_header, ck_size) != 0) {
1136      assert(!"Mesa cache keys mismatch!");
1137      goto fail;
1138   }
1139
1140   size_t cache_item_md_size = sizeof(uint32_t);
1141   uint32_t md_type;
1142   ret = read_all(fd, &md_type, cache_item_md_size);
1143   if (ret == -1)
1144      goto fail;
1145
1146   if (md_type == CACHE_ITEM_TYPE_GLSL) {
1147      uint32_t num_keys;
1148      cache_item_md_size += sizeof(uint32_t);
1149      ret = read_all(fd, &num_keys, sizeof(uint32_t));
1150      if (ret == -1)
1151         goto fail;
1152
1153      /* The cache item metadata is currently just used for distributing
1154       * precompiled shaders, they are not used by Mesa so just skip them for
1155       * now.
1156       * TODO: pass the metadata back to the caller and do some basic
1157       * validation.
1158       */
1159      cache_item_md_size += num_keys * sizeof(cache_key);
1160      ret = lseek(fd, num_keys * sizeof(cache_key), SEEK_CUR);
1161      if (ret == -1)
1162         goto fail;
1163   }
1164
1165   /* Load the CRC that was created when the file was written. */
1166   struct cache_entry_file_data cf_data;
1167   size_t cf_data_size = sizeof(cf_data);
1168   ret = read_all(fd, &cf_data, cf_data_size);
1169   if (ret == -1)
1170      goto fail;
1171
1172   /* Load the actual cache data. */
1173   size_t cache_data_size =
1174      sb.st_size - cf_data_size - ck_size - cache_item_md_size;
1175   ret = read_all(fd, data, cache_data_size);
1176   if (ret == -1)
1177      goto fail;
1178
1179   /* Uncompress the cache data */
1180   uncompressed_data = malloc(cf_data.uncompressed_size);
1181   if (!inflate_cache_data(data, cache_data_size, uncompressed_data,
1182                           cf_data.uncompressed_size))
1183      goto fail;
1184
1185   /* Check the data for corruption */
1186   if (cf_data.crc32 != util_hash_crc32(uncompressed_data,
1187                                        cf_data.uncompressed_size))
1188      goto fail;
1189
1190   free(data);
1191   free(filename);
1192   free(file_header);
1193   close(fd);
1194
1195   if (size)
1196      *size = cf_data.uncompressed_size;
1197
1198   return uncompressed_data;
1199
1200 fail:
1201   if (data)
1202      free(data);
1203   if (uncompressed_data)
1204      free(uncompressed_data);
1205   if (filename)
1206      free(filename);
1207   if (file_header)
1208      free(file_header);
1209   if (fd != -1)
1210      close(fd);
1211
1212   return NULL;
1213}
1214
1215void
1216disk_cache_put_key(struct disk_cache *cache, const cache_key key)
1217{
1218   const uint32_t *key_chunk = (const uint32_t *) key;
1219   int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
1220   unsigned char *entry;
1221
1222   if (cache->blob_put_cb) {
1223      cache->blob_put_cb(key, CACHE_KEY_SIZE, key_chunk, sizeof(uint32_t));
1224      return;
1225   }
1226
1227   if (cache->path_init_failed)
1228      return;
1229
1230   entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1231
1232   memcpy(entry, key, CACHE_KEY_SIZE);
1233}
1234
1235/* This function lets us test whether a given key was previously
1236 * stored in the cache with disk_cache_put_key(). The implement is
1237 * efficient by not using syscalls or hitting the disk. It's not
1238 * race-free, but the races are benign. If we race with someone else
1239 * calling disk_cache_put_key, then that's just an extra cache miss and an
1240 * extra recompile.
1241 */
1242bool
1243disk_cache_has_key(struct disk_cache *cache, const cache_key key)
1244{
1245   const uint32_t *key_chunk = (const uint32_t *) key;
1246   int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
1247   unsigned char *entry;
1248
1249   if (cache->blob_get_cb) {
1250      uint32_t blob;
1251      return cache->blob_get_cb(key, CACHE_KEY_SIZE, &blob, sizeof(uint32_t));
1252   }
1253
1254   if (cache->path_init_failed)
1255      return false;
1256
1257   entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1258
1259   return memcmp(entry, key, CACHE_KEY_SIZE) == 0;
1260}
1261
1262void
1263disk_cache_compute_key(struct disk_cache *cache, const void *data, size_t size,
1264                       cache_key key)
1265{
1266   struct mesa_sha1 ctx;
1267
1268   _mesa_sha1_init(&ctx);
1269   _mesa_sha1_update(&ctx, cache->driver_keys_blob,
1270                     cache->driver_keys_blob_size);
1271   _mesa_sha1_update(&ctx, data, size);
1272   _mesa_sha1_final(&ctx, key);
1273}
1274
1275void
1276disk_cache_set_callbacks(struct disk_cache *cache, disk_cache_put_cb put,
1277                         disk_cache_get_cb get)
1278{
1279   cache->blob_put_cb = put;
1280   cache->blob_get_cb = get;
1281}
1282
1283#endif /* ENABLE_SHADER_CACHE */
1284