disk_cache.c revision 7e995a2e
1/* 2 * Copyright © 2014 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 */ 23 24#ifdef ENABLE_SHADER_CACHE 25 26#include <ctype.h> 27#include <ftw.h> 28#include <string.h> 29#include <stdlib.h> 30#include <stdio.h> 31#include <sys/file.h> 32#include <sys/types.h> 33#include <sys/stat.h> 34#include <sys/mman.h> 35#include <unistd.h> 36#include <fcntl.h> 37#include <pwd.h> 38#include <errno.h> 39#include <dirent.h> 40#include "zlib.h" 41 42#include "util/crc32.h" 43#include "util/debug.h" 44#include "util/rand_xor.h" 45#include "util/u_atomic.h" 46#include "util/u_queue.h" 47#include "util/mesa-sha1.h" 48#include "util/ralloc.h" 49#include "main/compiler.h" 50#include "main/errors.h" 51 52#include "disk_cache.h" 53 54/* Number of bits to mask off from a cache key to get an index. */ 55#define CACHE_INDEX_KEY_BITS 16 56 57/* Mask for computing an index from a key. */ 58#define CACHE_INDEX_KEY_MASK ((1 << CACHE_INDEX_KEY_BITS) - 1) 59 60/* The number of keys that can be stored in the index. */ 61#define CACHE_INDEX_MAX_KEYS (1 << CACHE_INDEX_KEY_BITS) 62 63/* The cache version should be bumped whenever a change is made to the 64 * structure of cache entries or the index. This will give any 3rd party 65 * applications reading the cache entries a chance to adjust to the changes. 66 * 67 * - The cache version is checked internally when reading a cache entry. If we 68 * ever have a mismatch we are in big trouble as this means we had a cache 69 * collision. In case of such an event please check the skys for giant 70 * asteroids and that the entire Mesa team hasn't been eaten by wolves. 71 * 72 * - There is no strict requirement that cache versions be backwards 73 * compatible but effort should be taken to limit disruption where possible. 74 */ 75#define CACHE_VERSION 1 76 77struct disk_cache { 78 /* The path to the cache directory. */ 79 char *path; 80 bool path_init_failed; 81 82 /* Thread queue for compressing and writing cache entries to disk */ 83 struct util_queue cache_queue; 84 85 /* Seed for rand, which is used to pick a random directory */ 86 uint64_t seed_xorshift128plus[2]; 87 88 /* A pointer to the mmapped index file within the cache directory. */ 89 uint8_t *index_mmap; 90 size_t index_mmap_size; 91 92 /* Pointer to total size of all objects in cache (within index_mmap) */ 93 uint64_t *size; 94 95 /* Pointer to stored keys, (within index_mmap). */ 96 uint8_t *stored_keys; 97 98 /* Maximum size of all cached objects (in bytes). */ 99 uint64_t max_size; 100 101 /* Driver cache keys. */ 102 uint8_t *driver_keys_blob; 103 size_t driver_keys_blob_size; 104 105 disk_cache_put_cb blob_put_cb; 106 disk_cache_get_cb blob_get_cb; 107}; 108 109struct disk_cache_put_job { 110 struct util_queue_fence fence; 111 112 struct disk_cache *cache; 113 114 cache_key key; 115 116 /* Copy of cache data to be compressed and written. */ 117 void *data; 118 119 /* Size of data to be compressed and written. */ 120 size_t size; 121 122 struct cache_item_metadata cache_item_metadata; 123}; 124 125#ifdef __HAVE_ATOMIC64_OPS 126#define cache_size_adjust(size, val) p_atomic_add(size, val) 127#else 128 // XXX no locking 129#define cache_size_adjust(size, val) (size) += (val) 130#endif 131 132 133/* Create a directory named 'path' if it does not already exist. 134 * 135 * Returns: 0 if path already exists as a directory or if created. 136 * -1 in all other cases. 137 */ 138static int 139mkdir_if_needed(const char *path) 140{ 141 struct stat sb; 142 143 /* If the path exists already, then our work is done if it's a 144 * directory, but it's an error if it is not. 145 */ 146 if (stat(path, &sb) == 0) { 147 if (S_ISDIR(sb.st_mode)) { 148 return 0; 149 } else { 150 fprintf(stderr, "Cannot use %s for shader cache (not a directory)" 151 "---disabling.\n", path); 152 return -1; 153 } 154 } 155 156 int ret = mkdir(path, 0755); 157 if (ret == 0 || (ret == -1 && errno == EEXIST)) 158 return 0; 159 160 fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n", 161 path, strerror(errno)); 162 163 return -1; 164} 165 166/* Concatenate an existing path and a new name to form a new path. If the new 167 * path does not exist as a directory, create it then return the resulting 168 * name of the new path (ralloc'ed off of 'ctx'). 169 * 170 * Returns NULL on any error, such as: 171 * 172 * <path> does not exist or is not a directory 173 * <path>/<name> exists but is not a directory 174 * <path>/<name> cannot be created as a directory 175 */ 176static char * 177concatenate_and_mkdir(void *ctx, const char *path, const char *name) 178{ 179 char *new_path; 180 struct stat sb; 181 182 if (stat(path, &sb) != 0 || ! S_ISDIR(sb.st_mode)) 183 return NULL; 184 185 new_path = ralloc_asprintf(ctx, "%s/%s", path, name); 186 187 if (mkdir_if_needed(new_path) == 0) 188 return new_path; 189 else 190 return NULL; 191} 192 193#define DRV_KEY_CPY(_dst, _src, _src_size) \ 194do { \ 195 memcpy(_dst, _src, _src_size); \ 196 _dst += _src_size; \ 197} while (0); 198 199struct disk_cache * 200disk_cache_create(const char *gpu_name, const char *driver_id, 201 uint64_t driver_flags) 202{ 203 void *local; 204 struct disk_cache *cache = NULL; 205 char *path, *max_size_str; 206 uint64_t max_size; 207 int fd = -1; 208 struct stat sb; 209 size_t size; 210 211 uint8_t cache_version = CACHE_VERSION; 212 size_t cv_size = sizeof(cache_version); 213 214 /* If running as a users other than the real user disable cache */ 215 if (geteuid() != getuid()) 216 return NULL; 217 218 /* A ralloc context for transient data during this invocation. */ 219 local = ralloc_context(NULL); 220 if (local == NULL) 221 goto fail; 222 223 /* At user request, disable shader cache entirely. */ 224 if (env_var_as_boolean("MESA_GLSL_CACHE_DISABLE", false)) 225 goto fail; 226 227 cache = rzalloc(NULL, struct disk_cache); 228 if (cache == NULL) 229 goto fail; 230 231 /* Assume failure. */ 232 cache->path_init_failed = true; 233 234 /* Determine path for cache based on the first defined name as follows: 235 * 236 * $MESA_GLSL_CACHE_DIR 237 * $XDG_CACHE_HOME/mesa_shader_cache 238 * <pwd.pw_dir>/.cache/mesa_shader_cache 239 */ 240 path = getenv("MESA_GLSL_CACHE_DIR"); 241 if (path) { 242 if (mkdir_if_needed(path) == -1) 243 goto path_fail; 244 245 path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME); 246 if (path == NULL) 247 goto path_fail; 248 } 249 250 if (path == NULL) { 251 char *xdg_cache_home = getenv("XDG_CACHE_HOME"); 252 253 if (xdg_cache_home) { 254 if (mkdir_if_needed(xdg_cache_home) == -1) 255 goto path_fail; 256 257 path = concatenate_and_mkdir(local, xdg_cache_home, CACHE_DIR_NAME); 258 if (path == NULL) 259 goto path_fail; 260 } 261 } 262 263 if (path == NULL) { 264 char *buf; 265 size_t buf_size; 266 struct passwd pwd, *result; 267 268 buf_size = sysconf(_SC_GETPW_R_SIZE_MAX); 269 if (buf_size == -1) 270 buf_size = 512; 271 272 /* Loop until buf_size is large enough to query the directory */ 273 while (1) { 274 buf = ralloc_size(local, buf_size); 275 276 getpwuid_r(getuid(), &pwd, buf, buf_size, &result); 277 if (result) 278 break; 279 280 if (errno == ERANGE) { 281 ralloc_free(buf); 282 buf = NULL; 283 buf_size *= 2; 284 } else { 285 goto path_fail; 286 } 287 } 288 289 path = concatenate_and_mkdir(local, pwd.pw_dir, ".cache"); 290 if (path == NULL) 291 goto path_fail; 292 293 path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME); 294 if (path == NULL) 295 goto path_fail; 296 } 297 298 cache->path = ralloc_strdup(cache, path); 299 if (cache->path == NULL) 300 goto path_fail; 301 302 path = ralloc_asprintf(local, "%s/index", cache->path); 303 if (path == NULL) 304 goto path_fail; 305 306 fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644); 307 if (fd == -1) 308 goto path_fail; 309 310 if (fstat(fd, &sb) == -1) 311 goto path_fail; 312 313 /* Force the index file to be the expected size. */ 314 size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE; 315 if (sb.st_size != size) { 316 if (ftruncate(fd, size) == -1) 317 goto path_fail; 318 } 319 320 /* We map this shared so that other processes see updates that we 321 * make. 322 * 323 * Note: We do use atomic addition to ensure that multiple 324 * processes don't scramble the cache size recorded in the 325 * index. But we don't use any locking to prevent multiple 326 * processes from updating the same entry simultaneously. The idea 327 * is that if either result lands entirely in the index, then 328 * that's equivalent to a well-ordered write followed by an 329 * eviction and a write. On the other hand, if the simultaneous 330 * writes result in a corrupt entry, that's not really any 331 * different than both entries being evicted, (since within the 332 * guarantees of the cryptographic hash, a corrupt entry is 333 * unlikely to ever match a real cache key). 334 */ 335 cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE, 336 MAP_SHARED, fd, 0); 337 if (cache->index_mmap == MAP_FAILED) 338 goto path_fail; 339 cache->index_mmap_size = size; 340 341 close(fd); 342 343 cache->size = (uint64_t *) cache->index_mmap; 344 cache->stored_keys = cache->index_mmap + sizeof(uint64_t); 345 346 max_size = 0; 347 348 max_size_str = getenv("MESA_GLSL_CACHE_MAX_SIZE"); 349 if (max_size_str) { 350 char *end; 351 max_size = strtoul(max_size_str, &end, 10); 352 if (end == max_size_str) { 353 max_size = 0; 354 } else { 355 switch (*end) { 356 case 'K': 357 case 'k': 358 max_size *= 1024; 359 break; 360 case 'M': 361 case 'm': 362 max_size *= 1024*1024; 363 break; 364 case '\0': 365 case 'G': 366 case 'g': 367 default: 368 max_size *= 1024*1024*1024; 369 break; 370 } 371 } 372 } 373 374 /* Default to 1GB for maximum cache size. */ 375 if (max_size == 0) { 376 max_size = 1024*1024*1024; 377 } 378 379 cache->max_size = max_size; 380 381 /* 1 thread was chosen because we don't really care about getting things 382 * to disk quickly just that it's not blocking other tasks. 383 * 384 * The queue will resize automatically when it's full, so adding new jobs 385 * doesn't stall. 386 */ 387 util_queue_init(&cache->cache_queue, "disk$", 32, 1, 388 UTIL_QUEUE_INIT_RESIZE_IF_FULL | 389 UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY | 390 UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY); 391 392 cache->path_init_failed = false; 393 394 path_fail: 395 396 cache->driver_keys_blob_size = cv_size; 397 398 /* Create driver id keys */ 399 size_t id_size = strlen(driver_id) + 1; 400 size_t gpu_name_size = strlen(gpu_name) + 1; 401 cache->driver_keys_blob_size += id_size; 402 cache->driver_keys_blob_size += gpu_name_size; 403 404 /* We sometimes store entire structs that contains a pointers in the cache, 405 * use pointer size as a key to avoid hard to debug issues. 406 */ 407 uint8_t ptr_size = sizeof(void *); 408 size_t ptr_size_size = sizeof(ptr_size); 409 cache->driver_keys_blob_size += ptr_size_size; 410 411 size_t driver_flags_size = sizeof(driver_flags); 412 cache->driver_keys_blob_size += driver_flags_size; 413 414 cache->driver_keys_blob = 415 ralloc_size(cache, cache->driver_keys_blob_size); 416 if (!cache->driver_keys_blob) 417 goto fail; 418 419 uint8_t *drv_key_blob = cache->driver_keys_blob; 420 DRV_KEY_CPY(drv_key_blob, &cache_version, cv_size) 421 DRV_KEY_CPY(drv_key_blob, driver_id, id_size) 422 DRV_KEY_CPY(drv_key_blob, gpu_name, gpu_name_size) 423 DRV_KEY_CPY(drv_key_blob, &ptr_size, ptr_size_size) 424 DRV_KEY_CPY(drv_key_blob, &driver_flags, driver_flags_size) 425 426 /* Seed our rand function */ 427 s_rand_xorshift128plus(cache->seed_xorshift128plus, true); 428 429 ralloc_free(local); 430 431 return cache; 432 433 fail: 434 if (fd != -1) 435 close(fd); 436 if (cache) 437 ralloc_free(cache); 438 ralloc_free(local); 439 440 return NULL; 441} 442 443void 444disk_cache_destroy(struct disk_cache *cache) 445{ 446 if (cache && !cache->path_init_failed) { 447 util_queue_destroy(&cache->cache_queue); 448 munmap(cache->index_mmap, cache->index_mmap_size); 449 } 450 451 ralloc_free(cache); 452} 453 454/* Return a filename within the cache's directory corresponding to 'key'. The 455 * returned filename is ralloced with 'cache' as the parent context. 456 * 457 * Returns NULL if out of memory. 458 */ 459static char * 460get_cache_file(struct disk_cache *cache, const cache_key key) 461{ 462 char buf[41]; 463 char *filename; 464 465 if (cache->path_init_failed) 466 return NULL; 467 468 _mesa_sha1_format(buf, key); 469 if (asprintf(&filename, "%s/%c%c/%s", cache->path, buf[0], 470 buf[1], buf + 2) == -1) 471 return NULL; 472 473 return filename; 474} 475 476/* Create the directory that will be needed for the cache file for \key. 477 * 478 * Obviously, the implementation here must closely match 479 * _get_cache_file above. 480*/ 481static void 482make_cache_file_directory(struct disk_cache *cache, const cache_key key) 483{ 484 char *dir; 485 char buf[41]; 486 487 _mesa_sha1_format(buf, key); 488 if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1) 489 return; 490 491 mkdir_if_needed(dir); 492 free(dir); 493} 494 495/* Given a directory path and predicate function, find the entry with 496 * the oldest access time in that directory for which the predicate 497 * returns true. 498 * 499 * Returns: A malloc'ed string for the path to the chosen file, (or 500 * NULL on any error). The caller should free the string when 501 * finished. 502 */ 503static char * 504choose_lru_file_matching(const char *dir_path, 505 bool (*predicate)(const char *dir_path, 506 const struct stat *, 507 const char *, const size_t)) 508{ 509 DIR *dir; 510 struct dirent *entry; 511 char *filename; 512 char *lru_name = NULL; 513 time_t lru_atime = 0; 514 515 dir = opendir(dir_path); 516 if (dir == NULL) 517 return NULL; 518 519 while (1) { 520 entry = readdir(dir); 521 if (entry == NULL) 522 break; 523 524 struct stat sb; 525 if (fstatat(dirfd(dir), entry->d_name, &sb, 0) == 0) { 526 if (!lru_atime || (sb.st_atime < lru_atime)) { 527 size_t len = strlen(entry->d_name); 528 529 if (!predicate(dir_path, &sb, entry->d_name, len)) 530 continue; 531 532 char *tmp = realloc(lru_name, len + 1); 533 if (tmp) { 534 lru_name = tmp; 535 memcpy(lru_name, entry->d_name, len + 1); 536 lru_atime = sb.st_atime; 537 } 538 } 539 } 540 } 541 542 if (lru_name == NULL) { 543 closedir(dir); 544 return NULL; 545 } 546 547 if (asprintf(&filename, "%s/%s", dir_path, lru_name) < 0) 548 filename = NULL; 549 550 free(lru_name); 551 closedir(dir); 552 553 return filename; 554} 555 556/* Is entry a regular file, and not having a name with a trailing 557 * ".tmp" 558 */ 559static bool 560is_regular_non_tmp_file(const char *path, const struct stat *sb, 561 const char *d_name, const size_t len) 562{ 563 if (!S_ISREG(sb->st_mode)) 564 return false; 565 566 if (len >= 4 && strcmp(&d_name[len-4], ".tmp") == 0) 567 return false; 568 569 return true; 570} 571 572/* Returns the size of the deleted file, (or 0 on any error). */ 573static size_t 574unlink_lru_file_from_directory(const char *path) 575{ 576 struct stat sb; 577 char *filename; 578 579 filename = choose_lru_file_matching(path, is_regular_non_tmp_file); 580 if (filename == NULL) 581 return 0; 582 583 if (stat(filename, &sb) == -1) { 584 free (filename); 585 return 0; 586 } 587 588 unlink(filename); 589 free (filename); 590 591 return sb.st_blocks * 512; 592} 593 594/* Is entry a directory with a two-character name, (and not the 595 * special name of ".."). We also return false if the dir is empty. 596 */ 597static bool 598is_two_character_sub_directory(const char *path, const struct stat *sb, 599 const char *d_name, const size_t len) 600{ 601 if (!S_ISDIR(sb->st_mode)) 602 return false; 603 604 if (len != 2) 605 return false; 606 607 if (strcmp(d_name, "..") == 0) 608 return false; 609 610 char *subdir; 611 if (asprintf(&subdir, "%s/%s", path, d_name) == -1) 612 return false; 613 DIR *dir = opendir(subdir); 614 free(subdir); 615 616 if (dir == NULL) 617 return false; 618 619 unsigned subdir_entries = 0; 620 struct dirent *d; 621 while ((d = readdir(dir)) != NULL) { 622 if(++subdir_entries > 2) 623 break; 624 } 625 closedir(dir); 626 627 /* If dir only contains '.' and '..' it must be empty */ 628 if (subdir_entries <= 2) 629 return false; 630 631 return true; 632} 633 634static void 635evict_lru_item(struct disk_cache *cache) 636{ 637 char *dir_path; 638 639 /* With a reasonably-sized, full cache, (and with keys generated 640 * from a cryptographic hash), we can choose two random hex digits 641 * and reasonably expect the directory to exist with a file in it. 642 * Provides pseudo-LRU eviction to reduce checking all cache files. 643 */ 644 uint64_t rand64 = rand_xorshift128plus(cache->seed_xorshift128plus); 645 if (asprintf(&dir_path, "%s/%02" PRIx64 , cache->path, rand64 & 0xff) < 0) 646 return; 647 648 size_t size = unlink_lru_file_from_directory(dir_path); 649 650 free(dir_path); 651 652 if (size) { 653 cache_size_adjust(cache->size, - (uint64_t)size); 654 return; 655 } 656 657 /* In the case where the random choice of directory didn't find 658 * something, we choose the least recently accessed from the 659 * existing directories. 660 * 661 * Really, the only reason this code exists is to allow the unit 662 * tests to work, (which use an artificially-small cache to be able 663 * to force a single cached item to be evicted). 664 */ 665 dir_path = choose_lru_file_matching(cache->path, 666 is_two_character_sub_directory); 667 if (dir_path == NULL) 668 return; 669 670 size = unlink_lru_file_from_directory(dir_path); 671 672 free(dir_path); 673 674 if (size) 675 cache_size_adjust(cache->size, - (uint64_t)size); 676} 677 678void 679disk_cache_remove(struct disk_cache *cache, const cache_key key) 680{ 681 struct stat sb; 682 683 char *filename = get_cache_file(cache, key); 684 if (filename == NULL) { 685 return; 686 } 687 688 if (stat(filename, &sb) == -1) { 689 free(filename); 690 return; 691 } 692 693 unlink(filename); 694 free(filename); 695 696 if (sb.st_blocks) 697 cache_size_adjust(cache->size, - (uint64_t)sb.st_blocks * 512); 698} 699 700static ssize_t 701read_all(int fd, void *buf, size_t count) 702{ 703 char *in = buf; 704 ssize_t read_ret; 705 size_t done; 706 707 for (done = 0; done < count; done += read_ret) { 708 read_ret = read(fd, in + done, count - done); 709 if (read_ret == -1 || read_ret == 0) 710 return -1; 711 } 712 return done; 713} 714 715static ssize_t 716write_all(int fd, const void *buf, size_t count) 717{ 718 const char *out = buf; 719 ssize_t written; 720 size_t done; 721 722 for (done = 0; done < count; done += written) { 723 written = write(fd, out + done, count - done); 724 if (written == -1) 725 return -1; 726 } 727 return done; 728} 729 730/* From the zlib docs: 731 * "If the memory is available, buffers sizes on the order of 128K or 256K 732 * bytes should be used." 733 */ 734#define BUFSIZE 256 * 1024 735 736/** 737 * Compresses cache entry in memory and writes it to disk. Returns the size 738 * of the data written to disk. 739 */ 740static size_t 741deflate_and_write_to_disk(const void *in_data, size_t in_data_size, int dest, 742 const char *filename) 743{ 744 unsigned char out[BUFSIZE]; 745 746 /* allocate deflate state */ 747 z_stream strm; 748 strm.zalloc = Z_NULL; 749 strm.zfree = Z_NULL; 750 strm.opaque = Z_NULL; 751 strm.next_in = (uint8_t *) in_data; 752 strm.avail_in = in_data_size; 753 754 int ret = deflateInit(&strm, Z_BEST_COMPRESSION); 755 if (ret != Z_OK) 756 return 0; 757 758 /* compress until end of in_data */ 759 size_t compressed_size = 0; 760 int flush; 761 do { 762 int remaining = in_data_size - BUFSIZE; 763 flush = remaining > 0 ? Z_NO_FLUSH : Z_FINISH; 764 in_data_size -= BUFSIZE; 765 766 /* Run deflate() on input until the output buffer is not full (which 767 * means there is no more data to deflate). 768 */ 769 do { 770 strm.avail_out = BUFSIZE; 771 strm.next_out = out; 772 773 ret = deflate(&strm, flush); /* no bad return value */ 774 assert(ret != Z_STREAM_ERROR); /* state not clobbered */ 775 776 size_t have = BUFSIZE - strm.avail_out; 777 compressed_size += have; 778 779 ssize_t written = write_all(dest, out, have); 780 if (written == -1) { 781 (void)deflateEnd(&strm); 782 return 0; 783 } 784 } while (strm.avail_out == 0); 785 786 /* all input should be used */ 787 assert(strm.avail_in == 0); 788 789 } while (flush != Z_FINISH); 790 791 /* stream should be complete */ 792 assert(ret == Z_STREAM_END); 793 794 /* clean up and return */ 795 (void)deflateEnd(&strm); 796 return compressed_size; 797} 798 799static struct disk_cache_put_job * 800create_put_job(struct disk_cache *cache, const cache_key key, 801 const void *data, size_t size, 802 struct cache_item_metadata *cache_item_metadata) 803{ 804 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) 805 malloc(sizeof(struct disk_cache_put_job) + size); 806 807 if (dc_job) { 808 dc_job->cache = cache; 809 memcpy(dc_job->key, key, sizeof(cache_key)); 810 dc_job->data = dc_job + 1; 811 memcpy(dc_job->data, data, size); 812 dc_job->size = size; 813 814 /* Copy the cache item metadata */ 815 if (cache_item_metadata) { 816 dc_job->cache_item_metadata.type = cache_item_metadata->type; 817 if (cache_item_metadata->type == CACHE_ITEM_TYPE_GLSL) { 818 dc_job->cache_item_metadata.num_keys = 819 cache_item_metadata->num_keys; 820 dc_job->cache_item_metadata.keys = (cache_key *) 821 malloc(cache_item_metadata->num_keys * sizeof(cache_key)); 822 823 if (!dc_job->cache_item_metadata.keys) 824 goto fail; 825 826 memcpy(dc_job->cache_item_metadata.keys, 827 cache_item_metadata->keys, 828 sizeof(cache_key) * cache_item_metadata->num_keys); 829 } 830 } else { 831 dc_job->cache_item_metadata.type = CACHE_ITEM_TYPE_UNKNOWN; 832 dc_job->cache_item_metadata.keys = NULL; 833 } 834 } 835 836 return dc_job; 837 838fail: 839 free(dc_job); 840 841 return NULL; 842} 843 844static void 845destroy_put_job(void *job, int thread_index) 846{ 847 if (job) { 848 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job; 849 free(dc_job->cache_item_metadata.keys); 850 851 free(job); 852 } 853} 854 855struct cache_entry_file_data { 856 uint32_t crc32; 857 uint32_t uncompressed_size; 858}; 859 860static void 861cache_put(void *job, int thread_index) 862{ 863 assert(job); 864 865 int fd = -1, fd_final = -1, err, ret; 866 unsigned i = 0; 867 char *filename = NULL, *filename_tmp = NULL; 868 struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job; 869 870 filename = get_cache_file(dc_job->cache, dc_job->key); 871 if (filename == NULL) 872 goto done; 873 874 /* If the cache is too large, evict something else first. */ 875 while (*dc_job->cache->size + dc_job->size > dc_job->cache->max_size && 876 i < 8) { 877 evict_lru_item(dc_job->cache); 878 i++; 879 } 880 881 /* Write to a temporary file to allow for an atomic rename to the 882 * final destination filename, (to prevent any readers from seeing 883 * a partially written file). 884 */ 885 if (asprintf(&filename_tmp, "%s.tmp", filename) == -1) 886 goto done; 887 888 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644); 889 890 /* Make the two-character subdirectory within the cache as needed. */ 891 if (fd == -1) { 892 if (errno != ENOENT) 893 goto done; 894 895 make_cache_file_directory(dc_job->cache, dc_job->key); 896 897 fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644); 898 if (fd == -1) 899 goto done; 900 } 901 902 /* With the temporary file open, we take an exclusive flock on 903 * it. If the flock fails, then another process still has the file 904 * open with the flock held. So just let that file be responsible 905 * for writing the file. 906 */ 907 err = flock(fd, LOCK_EX | LOCK_NB); 908 if (err == -1) 909 goto done; 910 911 /* Now that we have the lock on the open temporary file, we can 912 * check to see if the destination file already exists. If so, 913 * another process won the race between when we saw that the file 914 * didn't exist and now. In this case, we don't do anything more, 915 * (to ensure the size accounting of the cache doesn't get off). 916 */ 917 fd_final = open(filename, O_RDONLY | O_CLOEXEC); 918 if (fd_final != -1) { 919 unlink(filename_tmp); 920 goto done; 921 } 922 923 /* OK, we're now on the hook to write out a file that we know is 924 * not in the cache, and is also not being written out to the cache 925 * by some other process. 926 */ 927 928 /* Write the driver_keys_blob, this can be used find information about the 929 * mesa version that produced the entry or deal with hash collisions, 930 * should that ever become a real problem. 931 */ 932 ret = write_all(fd, dc_job->cache->driver_keys_blob, 933 dc_job->cache->driver_keys_blob_size); 934 if (ret == -1) { 935 unlink(filename_tmp); 936 goto done; 937 } 938 939 /* Write the cache item metadata. This data can be used to deal with 940 * hash collisions, as well as providing useful information to 3rd party 941 * tools reading the cache files. 942 */ 943 ret = write_all(fd, &dc_job->cache_item_metadata.type, 944 sizeof(uint32_t)); 945 if (ret == -1) { 946 unlink(filename_tmp); 947 goto done; 948 } 949 950 if (dc_job->cache_item_metadata.type == CACHE_ITEM_TYPE_GLSL) { 951 ret = write_all(fd, &dc_job->cache_item_metadata.num_keys, 952 sizeof(uint32_t)); 953 if (ret == -1) { 954 unlink(filename_tmp); 955 goto done; 956 } 957 958 ret = write_all(fd, dc_job->cache_item_metadata.keys[0], 959 dc_job->cache_item_metadata.num_keys * 960 sizeof(cache_key)); 961 if (ret == -1) { 962 unlink(filename_tmp); 963 goto done; 964 } 965 } 966 967 /* Create CRC of the data. We will read this when restoring the cache and 968 * use it to check for corruption. 969 */ 970 struct cache_entry_file_data cf_data; 971 cf_data.crc32 = util_hash_crc32(dc_job->data, dc_job->size); 972 cf_data.uncompressed_size = dc_job->size; 973 974 size_t cf_data_size = sizeof(cf_data); 975 ret = write_all(fd, &cf_data, cf_data_size); 976 if (ret == -1) { 977 unlink(filename_tmp); 978 goto done; 979 } 980 981 /* Now, finally, write out the contents to the temporary file, then 982 * rename them atomically to the destination filename, and also 983 * perform an atomic increment of the total cache size. 984 */ 985 size_t file_size = deflate_and_write_to_disk(dc_job->data, dc_job->size, 986 fd, filename_tmp); 987 if (file_size == 0) { 988 unlink(filename_tmp); 989 goto done; 990 } 991 ret = rename(filename_tmp, filename); 992 if (ret == -1) { 993 unlink(filename_tmp); 994 goto done; 995 } 996 997 struct stat sb; 998 if (stat(filename, &sb) == -1) { 999 /* Something went wrong remove the file */ 1000 unlink(filename); 1001 goto done; 1002 } 1003 1004 cache_size_adjust(dc_job->cache->size, sb.st_blocks * 512); 1005 1006 done: 1007 if (fd_final != -1) 1008 close(fd_final); 1009 /* This close finally releases the flock, (now that the final file 1010 * has been renamed into place and the size has been added). 1011 */ 1012 if (fd != -1) 1013 close(fd); 1014 free(filename_tmp); 1015 free(filename); 1016} 1017 1018void 1019disk_cache_put(struct disk_cache *cache, const cache_key key, 1020 const void *data, size_t size, 1021 struct cache_item_metadata *cache_item_metadata) 1022{ 1023 if (cache->blob_put_cb) { 1024 cache->blob_put_cb(key, CACHE_KEY_SIZE, data, size); 1025 return; 1026 } 1027 1028 if (cache->path_init_failed) 1029 return; 1030 1031 struct disk_cache_put_job *dc_job = 1032 create_put_job(cache, key, data, size, cache_item_metadata); 1033 1034 if (dc_job) { 1035 util_queue_fence_init(&dc_job->fence); 1036 util_queue_add_job(&cache->cache_queue, dc_job, &dc_job->fence, 1037 cache_put, destroy_put_job); 1038 } 1039} 1040 1041/** 1042 * Decompresses cache entry, returns true if successful. 1043 */ 1044static bool 1045inflate_cache_data(uint8_t *in_data, size_t in_data_size, 1046 uint8_t *out_data, size_t out_data_size) 1047{ 1048 z_stream strm; 1049 1050 /* allocate inflate state */ 1051 strm.zalloc = Z_NULL; 1052 strm.zfree = Z_NULL; 1053 strm.opaque = Z_NULL; 1054 strm.next_in = in_data; 1055 strm.avail_in = in_data_size; 1056 strm.next_out = out_data; 1057 strm.avail_out = out_data_size; 1058 1059 int ret = inflateInit(&strm); 1060 if (ret != Z_OK) 1061 return false; 1062 1063 ret = inflate(&strm, Z_NO_FLUSH); 1064 assert(ret != Z_STREAM_ERROR); /* state not clobbered */ 1065 1066 /* Unless there was an error we should have decompressed everything in one 1067 * go as we know the uncompressed file size. 1068 */ 1069 if (ret != Z_STREAM_END) { 1070 (void)inflateEnd(&strm); 1071 return false; 1072 } 1073 assert(strm.avail_out == 0); 1074 1075 /* clean up and return */ 1076 (void)inflateEnd(&strm); 1077 return true; 1078} 1079 1080void * 1081disk_cache_get(struct disk_cache *cache, const cache_key key, size_t *size) 1082{ 1083 int fd = -1, ret; 1084 struct stat sb; 1085 char *filename = NULL; 1086 uint8_t *data = NULL; 1087 uint8_t *uncompressed_data = NULL; 1088 uint8_t *file_header = NULL; 1089 1090 if (size) 1091 *size = 0; 1092 1093 if (cache->blob_get_cb) { 1094 /* This is what Android EGL defines as the maxValueSize in egl_cache_t 1095 * class implementation. 1096 */ 1097 const signed long max_blob_size = 64 * 1024; 1098 void *blob = malloc(max_blob_size); 1099 if (!blob) 1100 return NULL; 1101 1102 signed long bytes = 1103 cache->blob_get_cb(key, CACHE_KEY_SIZE, blob, max_blob_size); 1104 1105 if (!bytes) { 1106 free(blob); 1107 return NULL; 1108 } 1109 1110 if (size) 1111 *size = bytes; 1112 return blob; 1113 } 1114 1115 filename = get_cache_file(cache, key); 1116 if (filename == NULL) 1117 goto fail; 1118 1119 fd = open(filename, O_RDONLY | O_CLOEXEC); 1120 if (fd == -1) 1121 goto fail; 1122 1123 if (fstat(fd, &sb) == -1) 1124 goto fail; 1125 1126 data = malloc(sb.st_size); 1127 if (data == NULL) 1128 goto fail; 1129 1130 size_t ck_size = cache->driver_keys_blob_size; 1131 file_header = malloc(ck_size); 1132 if (!file_header) 1133 goto fail; 1134 1135 if (sb.st_size < ck_size) 1136 goto fail; 1137 1138 ret = read_all(fd, file_header, ck_size); 1139 if (ret == -1) 1140 goto fail; 1141 1142 /* Check for extremely unlikely hash collisions */ 1143 if (memcmp(cache->driver_keys_blob, file_header, ck_size) != 0) { 1144 assert(!"Mesa cache keys mismatch!"); 1145 goto fail; 1146 } 1147 1148 size_t cache_item_md_size = sizeof(uint32_t); 1149 uint32_t md_type; 1150 ret = read_all(fd, &md_type, cache_item_md_size); 1151 if (ret == -1) 1152 goto fail; 1153 1154 if (md_type == CACHE_ITEM_TYPE_GLSL) { 1155 uint32_t num_keys; 1156 cache_item_md_size += sizeof(uint32_t); 1157 ret = read_all(fd, &num_keys, sizeof(uint32_t)); 1158 if (ret == -1) 1159 goto fail; 1160 1161 /* The cache item metadata is currently just used for distributing 1162 * precompiled shaders, they are not used by Mesa so just skip them for 1163 * now. 1164 * TODO: pass the metadata back to the caller and do some basic 1165 * validation. 1166 */ 1167 cache_item_md_size += num_keys * sizeof(cache_key); 1168 ret = lseek(fd, num_keys * sizeof(cache_key), SEEK_CUR); 1169 if (ret == -1) 1170 goto fail; 1171 } 1172 1173 /* Load the CRC that was created when the file was written. */ 1174 struct cache_entry_file_data cf_data; 1175 size_t cf_data_size = sizeof(cf_data); 1176 ret = read_all(fd, &cf_data, cf_data_size); 1177 if (ret == -1) 1178 goto fail; 1179 1180 /* Load the actual cache data. */ 1181 size_t cache_data_size = 1182 sb.st_size - cf_data_size - ck_size - cache_item_md_size; 1183 ret = read_all(fd, data, cache_data_size); 1184 if (ret == -1) 1185 goto fail; 1186 1187 /* Uncompress the cache data */ 1188 uncompressed_data = malloc(cf_data.uncompressed_size); 1189 if (!inflate_cache_data(data, cache_data_size, uncompressed_data, 1190 cf_data.uncompressed_size)) 1191 goto fail; 1192 1193 /* Check the data for corruption */ 1194 if (cf_data.crc32 != util_hash_crc32(uncompressed_data, 1195 cf_data.uncompressed_size)) 1196 goto fail; 1197 1198 free(data); 1199 free(filename); 1200 free(file_header); 1201 close(fd); 1202 1203 if (size) 1204 *size = cf_data.uncompressed_size; 1205 1206 return uncompressed_data; 1207 1208 fail: 1209 if (data) 1210 free(data); 1211 if (uncompressed_data) 1212 free(uncompressed_data); 1213 if (filename) 1214 free(filename); 1215 if (file_header) 1216 free(file_header); 1217 if (fd != -1) 1218 close(fd); 1219 1220 return NULL; 1221} 1222 1223void 1224disk_cache_put_key(struct disk_cache *cache, const cache_key key) 1225{ 1226 const uint32_t *key_chunk = (const uint32_t *) key; 1227 int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK; 1228 unsigned char *entry; 1229 1230 if (cache->blob_put_cb) { 1231 cache->blob_put_cb(key, CACHE_KEY_SIZE, key_chunk, sizeof(uint32_t)); 1232 return; 1233 } 1234 1235 if (cache->path_init_failed) 1236 return; 1237 1238 entry = &cache->stored_keys[i * CACHE_KEY_SIZE]; 1239 1240 memcpy(entry, key, CACHE_KEY_SIZE); 1241} 1242 1243/* This function lets us test whether a given key was previously 1244 * stored in the cache with disk_cache_put_key(). The implement is 1245 * efficient by not using syscalls or hitting the disk. It's not 1246 * race-free, but the races are benign. If we race with someone else 1247 * calling disk_cache_put_key, then that's just an extra cache miss and an 1248 * extra recompile. 1249 */ 1250bool 1251disk_cache_has_key(struct disk_cache *cache, const cache_key key) 1252{ 1253 const uint32_t *key_chunk = (const uint32_t *) key; 1254 int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK; 1255 unsigned char *entry; 1256 1257 if (cache->blob_get_cb) { 1258 uint32_t blob; 1259 return cache->blob_get_cb(key, CACHE_KEY_SIZE, &blob, sizeof(uint32_t)); 1260 } 1261 1262 if (cache->path_init_failed) 1263 return false; 1264 1265 entry = &cache->stored_keys[i * CACHE_KEY_SIZE]; 1266 1267 return memcmp(entry, key, CACHE_KEY_SIZE) == 0; 1268} 1269 1270void 1271disk_cache_compute_key(struct disk_cache *cache, const void *data, size_t size, 1272 cache_key key) 1273{ 1274 struct mesa_sha1 ctx; 1275 1276 _mesa_sha1_init(&ctx); 1277 _mesa_sha1_update(&ctx, cache->driver_keys_blob, 1278 cache->driver_keys_blob_size); 1279 _mesa_sha1_update(&ctx, data, size); 1280 _mesa_sha1_final(&ctx, key); 1281} 1282 1283void 1284disk_cache_set_callbacks(struct disk_cache *cache, disk_cache_put_cb put, 1285 disk_cache_get_cb get) 1286{ 1287 cache->blob_put_cb = put; 1288 cache->blob_get_cb = get; 1289} 1290 1291#endif /* ENABLE_SHADER_CACHE */ 1292