disk_cache.c revision d8407755
1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#ifdef ENABLE_SHADER_CACHE
25
26#include <ctype.h>
27#include <ftw.h>
28#include <string.h>
29#include <stdlib.h>
30#include <stdio.h>
31#include <sys/file.h>
32#include <sys/types.h>
33#include <sys/stat.h>
34#include <sys/mman.h>
35#include <unistd.h>
36#include <fcntl.h>
37#include <pwd.h>
38#include <errno.h>
39#include <dirent.h>
40#include "zlib.h"
41
42#include "util/crc32.h"
43#include "util/debug.h"
44#include "util/rand_xor.h"
45#include "util/u_atomic.h"
46#include "util/u_queue.h"
47#include "util/mesa-sha1.h"
48#include "util/ralloc.h"
49#include "main/compiler.h"
50#include "main/errors.h"
51
52#include "disk_cache.h"
53
54/* Number of bits to mask off from a cache key to get an index. */
55#define CACHE_INDEX_KEY_BITS 16
56
57/* Mask for computing an index from a key. */
58#define CACHE_INDEX_KEY_MASK ((1 << CACHE_INDEX_KEY_BITS) - 1)
59
60/* The number of keys that can be stored in the index. */
61#define CACHE_INDEX_MAX_KEYS (1 << CACHE_INDEX_KEY_BITS)
62
63/* The cache version should be bumped whenever a change is made to the
64 * structure of cache entries or the index. This will give any 3rd party
65 * applications reading the cache entries a chance to adjust to the changes.
66 *
67 * - The cache version is checked internally when reading a cache entry. If we
68 *   ever have a mismatch we are in big trouble as this means we had a cache
69 *   collision. In case of such an event please check the skys for giant
70 *   asteroids and that the entire Mesa team hasn't been eaten by wolves.
71 *
72 * - There is no strict requirement that cache versions be backwards
73 *   compatible but effort should be taken to limit disruption where possible.
74 */
75#define CACHE_VERSION 1
76
77struct disk_cache {
78   /* The path to the cache directory. */
79   char *path;
80   bool path_init_failed;
81
82   /* Thread queue for compressing and writing cache entries to disk */
83   struct util_queue cache_queue;
84
85   /* Seed for rand, which is used to pick a random directory */
86   uint64_t seed_xorshift128plus[2];
87
88   /* A pointer to the mmapped index file within the cache directory. */
89   uint8_t *index_mmap;
90   size_t index_mmap_size;
91
92   /* Pointer to total size of all objects in cache (within index_mmap) */
93   uint64_t *size;
94
95   /* Pointer to stored keys, (within index_mmap). */
96   uint8_t *stored_keys;
97
98   /* Maximum size of all cached objects (in bytes). */
99   uint64_t max_size;
100
101   /* Driver cache keys. */
102   uint8_t *driver_keys_blob;
103   size_t driver_keys_blob_size;
104
105   disk_cache_put_cb blob_put_cb;
106   disk_cache_get_cb blob_get_cb;
107};
108
109struct disk_cache_put_job {
110   struct util_queue_fence fence;
111
112   struct disk_cache *cache;
113
114   cache_key key;
115
116   /* Copy of cache data to be compressed and written. */
117   void *data;
118
119   /* Size of data to be compressed and written. */
120   size_t size;
121
122   struct cache_item_metadata cache_item_metadata;
123};
124
125#ifdef __HAVE_ATOMIC64_OPS
126#define cache_size_adjust(size, val)	p_atomic_add(size, val)
127#else
128	// XXX no locking
129#define cache_size_adjust(size, val)	(size) += (val)
130#endif
131
132
133/* Create a directory named 'path' if it does not already exist.
134 *
135 * Returns: 0 if path already exists as a directory or if created.
136 *         -1 in all other cases.
137 */
138static int
139mkdir_if_needed(const char *path)
140{
141   struct stat sb;
142
143   /* If the path exists already, then our work is done if it's a
144    * directory, but it's an error if it is not.
145    */
146   if (stat(path, &sb) == 0) {
147      if (S_ISDIR(sb.st_mode)) {
148         return 0;
149      } else {
150         fprintf(stderr, "Cannot use %s for shader cache (not a directory)"
151                         "---disabling.\n", path);
152         return -1;
153      }
154   }
155
156   int ret = mkdir(path, 0755);
157   if (ret == 0 || (ret == -1 && errno == EEXIST))
158     return 0;
159
160   fprintf(stderr, "Failed to create %s for shader cache (%s)---disabling.\n",
161           path, strerror(errno));
162
163   return -1;
164}
165
166/* Concatenate an existing path and a new name to form a new path.  If the new
167 * path does not exist as a directory, create it then return the resulting
168 * name of the new path (ralloc'ed off of 'ctx').
169 *
170 * Returns NULL on any error, such as:
171 *
172 *      <path> does not exist or is not a directory
173 *      <path>/<name> exists but is not a directory
174 *      <path>/<name> cannot be created as a directory
175 */
176static char *
177concatenate_and_mkdir(void *ctx, const char *path, const char *name)
178{
179   char *new_path;
180   struct stat sb;
181
182   if (stat(path, &sb) != 0 || ! S_ISDIR(sb.st_mode))
183      return NULL;
184
185   new_path = ralloc_asprintf(ctx, "%s/%s", path, name);
186
187   if (mkdir_if_needed(new_path) == 0)
188      return new_path;
189   else
190      return NULL;
191}
192
193#define DRV_KEY_CPY(_dst, _src, _src_size) \
194do {                                       \
195   memcpy(_dst, _src, _src_size);          \
196   _dst += _src_size;                      \
197} while (0);
198
199struct disk_cache *
200disk_cache_create(const char *gpu_name, const char *driver_id,
201                  uint64_t driver_flags)
202{
203   void *local;
204   struct disk_cache *cache = NULL;
205   char *path, *max_size_str;
206   uint64_t max_size;
207   int fd = -1;
208   struct stat sb;
209   size_t size;
210
211   uint8_t cache_version = CACHE_VERSION;
212   size_t cv_size = sizeof(cache_version);
213
214   /* If running as a users other than the real user disable cache */
215   if (geteuid() != getuid())
216      return NULL;
217
218   /* A ralloc context for transient data during this invocation. */
219   local = ralloc_context(NULL);
220   if (local == NULL)
221      goto fail;
222
223   /* At user request, disable shader cache entirely. */
224   if (env_var_as_boolean("MESA_GLSL_CACHE_DISABLE", false))
225      goto fail;
226
227   cache = rzalloc(NULL, struct disk_cache);
228   if (cache == NULL)
229      goto fail;
230
231   /* Assume failure. */
232   cache->path_init_failed = true;
233
234   /* Determine path for cache based on the first defined name as follows:
235    *
236    *   $MESA_GLSL_CACHE_DIR
237    *   $XDG_CACHE_HOME/mesa_shader_cache
238    *   <pwd.pw_dir>/.cache/mesa_shader_cache
239    */
240   path = getenv("MESA_GLSL_CACHE_DIR");
241   if (path) {
242      if (mkdir_if_needed(path) == -1)
243         goto path_fail;
244
245      path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME);
246      if (path == NULL)
247         goto path_fail;
248   }
249
250   if (path == NULL) {
251      char *xdg_cache_home = getenv("XDG_CACHE_HOME");
252
253      if (xdg_cache_home) {
254         if (mkdir_if_needed(xdg_cache_home) == -1)
255            goto path_fail;
256
257         path = concatenate_and_mkdir(local, xdg_cache_home, CACHE_DIR_NAME);
258         if (path == NULL)
259            goto path_fail;
260      }
261   }
262
263   if (path == NULL) {
264      char *buf;
265      size_t buf_size;
266      struct passwd pwd, *result;
267
268      buf_size = sysconf(_SC_GETPW_R_SIZE_MAX);
269      if (buf_size == -1)
270         buf_size = 512;
271
272      /* Loop until buf_size is large enough to query the directory */
273      while (1) {
274         buf = ralloc_size(local, buf_size);
275
276         getpwuid_r(getuid(), &pwd, buf, buf_size, &result);
277         if (result)
278            break;
279
280         if (errno == ERANGE) {
281            ralloc_free(buf);
282            buf = NULL;
283            buf_size *= 2;
284         } else {
285            goto path_fail;
286         }
287      }
288
289      path = concatenate_and_mkdir(local, pwd.pw_dir, ".cache");
290      if (path == NULL)
291         goto path_fail;
292
293      path = concatenate_and_mkdir(local, path, CACHE_DIR_NAME);
294      if (path == NULL)
295         goto path_fail;
296   }
297
298   cache->path = ralloc_strdup(cache, path);
299   if (cache->path == NULL)
300      goto path_fail;
301
302   path = ralloc_asprintf(local, "%s/index", cache->path);
303   if (path == NULL)
304      goto path_fail;
305
306   fd = open(path, O_RDWR | O_CREAT | O_CLOEXEC, 0644);
307   if (fd == -1)
308      goto path_fail;
309
310   if (fstat(fd, &sb) == -1)
311      goto path_fail;
312
313   /* Force the index file to be the expected size. */
314   size = sizeof(*cache->size) + CACHE_INDEX_MAX_KEYS * CACHE_KEY_SIZE;
315   if (sb.st_size != size) {
316      if (ftruncate(fd, size) == -1)
317         goto path_fail;
318   }
319
320   /* We map this shared so that other processes see updates that we
321    * make.
322    *
323    * Note: We do use atomic addition to ensure that multiple
324    * processes don't scramble the cache size recorded in the
325    * index. But we don't use any locking to prevent multiple
326    * processes from updating the same entry simultaneously. The idea
327    * is that if either result lands entirely in the index, then
328    * that's equivalent to a well-ordered write followed by an
329    * eviction and a write. On the other hand, if the simultaneous
330    * writes result in a corrupt entry, that's not really any
331    * different than both entries being evicted, (since within the
332    * guarantees of the cryptographic hash, a corrupt entry is
333    * unlikely to ever match a real cache key).
334    */
335   cache->index_mmap = mmap(NULL, size, PROT_READ | PROT_WRITE,
336                            MAP_SHARED, fd, 0);
337   if (cache->index_mmap == MAP_FAILED)
338      goto path_fail;
339   cache->index_mmap_size = size;
340
341   cache->size = (uint64_t *) cache->index_mmap;
342   cache->stored_keys = cache->index_mmap + sizeof(uint64_t);
343
344   max_size = 0;
345
346   max_size_str = getenv("MESA_GLSL_CACHE_MAX_SIZE");
347   if (max_size_str) {
348      char *end;
349      max_size = strtoul(max_size_str, &end, 10);
350      if (end == max_size_str) {
351         max_size = 0;
352      } else {
353         switch (*end) {
354         case 'K':
355         case 'k':
356            max_size *= 1024;
357            break;
358         case 'M':
359         case 'm':
360            max_size *= 1024*1024;
361            break;
362         case '\0':
363         case 'G':
364         case 'g':
365         default:
366            max_size *= 1024*1024*1024;
367            break;
368         }
369      }
370   }
371
372   /* Default to 1GB for maximum cache size. */
373   if (max_size == 0) {
374      max_size = 1024*1024*1024;
375   }
376
377   cache->max_size = max_size;
378
379   /* 1 thread was chosen because we don't really care about getting things
380    * to disk quickly just that it's not blocking other tasks.
381    *
382    * The queue will resize automatically when it's full, so adding new jobs
383    * doesn't stall.
384    */
385   util_queue_init(&cache->cache_queue, "disk$", 32, 1,
386                   UTIL_QUEUE_INIT_RESIZE_IF_FULL |
387                   UTIL_QUEUE_INIT_USE_MINIMUM_PRIORITY |
388                   UTIL_QUEUE_INIT_SET_FULL_THREAD_AFFINITY);
389
390   cache->path_init_failed = false;
391
392 path_fail:
393
394   if (fd != -1)
395      close(fd);
396
397   cache->driver_keys_blob_size = cv_size;
398
399   /* Create driver id keys */
400   size_t id_size = strlen(driver_id) + 1;
401   size_t gpu_name_size = strlen(gpu_name) + 1;
402   cache->driver_keys_blob_size += id_size;
403   cache->driver_keys_blob_size += gpu_name_size;
404
405   /* We sometimes store entire structs that contains a pointers in the cache,
406    * use pointer size as a key to avoid hard to debug issues.
407    */
408   uint8_t ptr_size = sizeof(void *);
409   size_t ptr_size_size = sizeof(ptr_size);
410   cache->driver_keys_blob_size += ptr_size_size;
411
412   size_t driver_flags_size = sizeof(driver_flags);
413   cache->driver_keys_blob_size += driver_flags_size;
414
415   cache->driver_keys_blob =
416      ralloc_size(cache, cache->driver_keys_blob_size);
417   if (!cache->driver_keys_blob)
418      goto fail;
419
420   uint8_t *drv_key_blob = cache->driver_keys_blob;
421   DRV_KEY_CPY(drv_key_blob, &cache_version, cv_size)
422   DRV_KEY_CPY(drv_key_blob, driver_id, id_size)
423   DRV_KEY_CPY(drv_key_blob, gpu_name, gpu_name_size)
424   DRV_KEY_CPY(drv_key_blob, &ptr_size, ptr_size_size)
425   DRV_KEY_CPY(drv_key_blob, &driver_flags, driver_flags_size)
426
427   /* Seed our rand function */
428   s_rand_xorshift128plus(cache->seed_xorshift128plus, true);
429
430   ralloc_free(local);
431
432   return cache;
433
434 fail:
435   if (cache)
436      ralloc_free(cache);
437   ralloc_free(local);
438
439   return NULL;
440}
441
442void
443disk_cache_destroy(struct disk_cache *cache)
444{
445   if (cache && !cache->path_init_failed) {
446      util_queue_destroy(&cache->cache_queue);
447      munmap(cache->index_mmap, cache->index_mmap_size);
448   }
449
450   ralloc_free(cache);
451}
452
453/* Return a filename within the cache's directory corresponding to 'key'. The
454 * returned filename is ralloced with 'cache' as the parent context.
455 *
456 * Returns NULL if out of memory.
457 */
458static char *
459get_cache_file(struct disk_cache *cache, const cache_key key)
460{
461   char buf[41];
462   char *filename;
463
464   if (cache->path_init_failed)
465      return NULL;
466
467   _mesa_sha1_format(buf, key);
468   if (asprintf(&filename, "%s/%c%c/%s", cache->path, buf[0],
469                buf[1], buf + 2) == -1)
470      return NULL;
471
472   return filename;
473}
474
475/* Create the directory that will be needed for the cache file for \key.
476 *
477 * Obviously, the implementation here must closely match
478 * _get_cache_file above.
479*/
480static void
481make_cache_file_directory(struct disk_cache *cache, const cache_key key)
482{
483   char *dir;
484   char buf[41];
485
486   _mesa_sha1_format(buf, key);
487   if (asprintf(&dir, "%s/%c%c", cache->path, buf[0], buf[1]) == -1)
488      return;
489
490   mkdir_if_needed(dir);
491   free(dir);
492}
493
494/* Given a directory path and predicate function, find the entry with
495 * the oldest access time in that directory for which the predicate
496 * returns true.
497 *
498 * Returns: A malloc'ed string for the path to the chosen file, (or
499 * NULL on any error). The caller should free the string when
500 * finished.
501 */
502static char *
503choose_lru_file_matching(const char *dir_path,
504                         bool (*predicate)(const char *dir_path,
505                                           const struct stat *,
506                                           const char *, const size_t))
507{
508   DIR *dir;
509   struct dirent *entry;
510   char *filename;
511   char *lru_name = NULL;
512   time_t lru_atime = 0;
513
514   dir = opendir(dir_path);
515   if (dir == NULL)
516      return NULL;
517
518   while (1) {
519      entry = readdir(dir);
520      if (entry == NULL)
521         break;
522
523      struct stat sb;
524      if (fstatat(dirfd(dir), entry->d_name, &sb, 0) == 0) {
525         if (!lru_atime || (sb.st_atime < lru_atime)) {
526            size_t len = strlen(entry->d_name);
527
528            if (!predicate(dir_path, &sb, entry->d_name, len))
529               continue;
530
531            char *tmp = realloc(lru_name, len + 1);
532            if (tmp) {
533               lru_name = tmp;
534               memcpy(lru_name, entry->d_name, len + 1);
535               lru_atime = sb.st_atime;
536            }
537         }
538      }
539   }
540
541   if (lru_name == NULL) {
542      closedir(dir);
543      return NULL;
544   }
545
546   if (asprintf(&filename, "%s/%s", dir_path, lru_name) < 0)
547      filename = NULL;
548
549   free(lru_name);
550   closedir(dir);
551
552   return filename;
553}
554
555/* Is entry a regular file, and not having a name with a trailing
556 * ".tmp"
557 */
558static bool
559is_regular_non_tmp_file(const char *path, const struct stat *sb,
560                        const char *d_name, const size_t len)
561{
562   if (!S_ISREG(sb->st_mode))
563      return false;
564
565   if (len >= 4 && strcmp(&d_name[len-4], ".tmp") == 0)
566      return false;
567
568   return true;
569}
570
571/* Returns the size of the deleted file, (or 0 on any error). */
572static size_t
573unlink_lru_file_from_directory(const char *path)
574{
575   struct stat sb;
576   char *filename;
577
578   filename = choose_lru_file_matching(path, is_regular_non_tmp_file);
579   if (filename == NULL)
580      return 0;
581
582   if (stat(filename, &sb) == -1) {
583      free (filename);
584      return 0;
585   }
586
587   unlink(filename);
588   free (filename);
589
590   return sb.st_blocks * 512;
591}
592
593/* Is entry a directory with a two-character name, (and not the
594 * special name of ".."). We also return false if the dir is empty.
595 */
596static bool
597is_two_character_sub_directory(const char *path, const struct stat *sb,
598                               const char *d_name, const size_t len)
599{
600   if (!S_ISDIR(sb->st_mode))
601      return false;
602
603   if (len != 2)
604      return false;
605
606   if (strcmp(d_name, "..") == 0)
607      return false;
608
609   char *subdir;
610   if (asprintf(&subdir, "%s/%s", path, d_name) == -1)
611      return false;
612   DIR *dir = opendir(subdir);
613   free(subdir);
614
615   if (dir == NULL)
616     return false;
617
618   unsigned subdir_entries = 0;
619   struct dirent *d;
620   while ((d = readdir(dir)) != NULL) {
621      if(++subdir_entries > 2)
622         break;
623   }
624   closedir(dir);
625
626   /* If dir only contains '.' and '..' it must be empty */
627   if (subdir_entries <= 2)
628      return false;
629
630   return true;
631}
632
633static void
634evict_lru_item(struct disk_cache *cache)
635{
636   char *dir_path;
637
638   /* With a reasonably-sized, full cache, (and with keys generated
639    * from a cryptographic hash), we can choose two random hex digits
640    * and reasonably expect the directory to exist with a file in it.
641    * Provides pseudo-LRU eviction to reduce checking all cache files.
642    */
643   uint64_t rand64 = rand_xorshift128plus(cache->seed_xorshift128plus);
644   if (asprintf(&dir_path, "%s/%02" PRIx64 , cache->path, rand64 & 0xff) < 0)
645      return;
646
647   size_t size = unlink_lru_file_from_directory(dir_path);
648
649   free(dir_path);
650
651   if (size) {
652      cache_size_adjust(cache->size, - (uint64_t)size);
653      return;
654   }
655
656   /* In the case where the random choice of directory didn't find
657    * something, we choose the least recently accessed from the
658    * existing directories.
659    *
660    * Really, the only reason this code exists is to allow the unit
661    * tests to work, (which use an artificially-small cache to be able
662    * to force a single cached item to be evicted).
663    */
664   dir_path = choose_lru_file_matching(cache->path,
665                                       is_two_character_sub_directory);
666   if (dir_path == NULL)
667      return;
668
669   size = unlink_lru_file_from_directory(dir_path);
670
671   free(dir_path);
672
673   if (size)
674      cache_size_adjust(cache->size, - (uint64_t)size);
675}
676
677void
678disk_cache_remove(struct disk_cache *cache, const cache_key key)
679{
680   struct stat sb;
681
682   char *filename = get_cache_file(cache, key);
683   if (filename == NULL) {
684      return;
685   }
686
687   if (stat(filename, &sb) == -1) {
688      free(filename);
689      return;
690   }
691
692   unlink(filename);
693   free(filename);
694
695   if (sb.st_blocks)
696      cache_size_adjust(cache->size, - (uint64_t)sb.st_blocks * 512);
697}
698
699static ssize_t
700read_all(int fd, void *buf, size_t count)
701{
702   char *in = buf;
703   ssize_t read_ret;
704   size_t done;
705
706   for (done = 0; done < count; done += read_ret) {
707      read_ret = read(fd, in + done, count - done);
708      if (read_ret == -1 || read_ret == 0)
709         return -1;
710   }
711   return done;
712}
713
714static ssize_t
715write_all(int fd, const void *buf, size_t count)
716{
717   const char *out = buf;
718   ssize_t written;
719   size_t done;
720
721   for (done = 0; done < count; done += written) {
722      written = write(fd, out + done, count - done);
723      if (written == -1)
724         return -1;
725   }
726   return done;
727}
728
729/* From the zlib docs:
730 *    "If the memory is available, buffers sizes on the order of 128K or 256K
731 *    bytes should be used."
732 */
733#define BUFSIZE 256 * 1024
734
735/**
736 * Compresses cache entry in memory and writes it to disk. Returns the size
737 * of the data written to disk.
738 */
739static size_t
740deflate_and_write_to_disk(const void *in_data, size_t in_data_size, int dest,
741                          const char *filename)
742{
743   unsigned char *out;
744
745   /* allocate deflate state */
746   z_stream strm;
747   strm.zalloc = Z_NULL;
748   strm.zfree = Z_NULL;
749   strm.opaque = Z_NULL;
750   strm.next_in = (uint8_t *) in_data;
751   strm.avail_in = in_data_size;
752
753   int ret = deflateInit(&strm, Z_BEST_COMPRESSION);
754   if (ret != Z_OK)
755       return 0;
756
757   /* compress until end of in_data */
758   size_t compressed_size = 0;
759   int flush;
760
761   out = malloc(BUFSIZE * sizeof(unsigned char));
762   if (out == NULL)
763      return 0;
764
765   do {
766      int remaining = in_data_size - BUFSIZE;
767      flush = remaining > 0 ? Z_NO_FLUSH : Z_FINISH;
768      in_data_size -= BUFSIZE;
769
770      /* Run deflate() on input until the output buffer is not full (which
771       * means there is no more data to deflate).
772       */
773      do {
774         strm.avail_out = BUFSIZE;
775         strm.next_out = out;
776
777         ret = deflate(&strm, flush);    /* no bad return value */
778         assert(ret != Z_STREAM_ERROR);  /* state not clobbered */
779
780         size_t have = BUFSIZE - strm.avail_out;
781         compressed_size += have;
782
783         ssize_t written = write_all(dest, out, have);
784         if (written == -1) {
785            (void)deflateEnd(&strm);
786            free(out);
787            return 0;
788         }
789      } while (strm.avail_out == 0);
790
791      /* all input should be used */
792      assert(strm.avail_in == 0);
793
794   } while (flush != Z_FINISH);
795
796   /* stream should be complete */
797   assert(ret == Z_STREAM_END);
798
799   /* clean up and return */
800   (void)deflateEnd(&strm);
801   free(out);
802   return compressed_size;
803}
804
805static struct disk_cache_put_job *
806create_put_job(struct disk_cache *cache, const cache_key key,
807               const void *data, size_t size,
808               struct cache_item_metadata *cache_item_metadata)
809{
810   struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *)
811      malloc(sizeof(struct disk_cache_put_job) + size);
812
813   if (dc_job) {
814      dc_job->cache = cache;
815      memcpy(dc_job->key, key, sizeof(cache_key));
816      dc_job->data = dc_job + 1;
817      memcpy(dc_job->data, data, size);
818      dc_job->size = size;
819
820      /* Copy the cache item metadata */
821      if (cache_item_metadata) {
822         dc_job->cache_item_metadata.type = cache_item_metadata->type;
823         if (cache_item_metadata->type == CACHE_ITEM_TYPE_GLSL) {
824            dc_job->cache_item_metadata.num_keys =
825               cache_item_metadata->num_keys;
826            dc_job->cache_item_metadata.keys = (cache_key *)
827               malloc(cache_item_metadata->num_keys * sizeof(cache_key));
828
829            if (!dc_job->cache_item_metadata.keys)
830               goto fail;
831
832            memcpy(dc_job->cache_item_metadata.keys,
833                   cache_item_metadata->keys,
834                   sizeof(cache_key) * cache_item_metadata->num_keys);
835         }
836      } else {
837         dc_job->cache_item_metadata.type = CACHE_ITEM_TYPE_UNKNOWN;
838         dc_job->cache_item_metadata.keys = NULL;
839      }
840   }
841
842   return dc_job;
843
844fail:
845   free(dc_job);
846
847   return NULL;
848}
849
850static void
851destroy_put_job(void *job, int thread_index)
852{
853   if (job) {
854      struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
855      free(dc_job->cache_item_metadata.keys);
856
857      free(job);
858   }
859}
860
861struct cache_entry_file_data {
862   uint32_t crc32;
863   uint32_t uncompressed_size;
864};
865
866static void
867cache_put(void *job, int thread_index)
868{
869   assert(job);
870
871   int fd = -1, fd_final = -1, err, ret;
872   unsigned i = 0;
873   char *filename = NULL, *filename_tmp = NULL;
874   struct disk_cache_put_job *dc_job = (struct disk_cache_put_job *) job;
875
876   filename = get_cache_file(dc_job->cache, dc_job->key);
877   if (filename == NULL)
878      goto done;
879
880   /* If the cache is too large, evict something else first. */
881   while (*dc_job->cache->size + dc_job->size > dc_job->cache->max_size &&
882          i < 8) {
883      evict_lru_item(dc_job->cache);
884      i++;
885   }
886
887   /* Write to a temporary file to allow for an atomic rename to the
888    * final destination filename, (to prevent any readers from seeing
889    * a partially written file).
890    */
891   if (asprintf(&filename_tmp, "%s.tmp", filename) == -1)
892      goto done;
893
894   fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
895
896   /* Make the two-character subdirectory within the cache as needed. */
897   if (fd == -1) {
898      if (errno != ENOENT)
899         goto done;
900
901      make_cache_file_directory(dc_job->cache, dc_job->key);
902
903      fd = open(filename_tmp, O_WRONLY | O_CLOEXEC | O_CREAT, 0644);
904      if (fd == -1)
905         goto done;
906   }
907
908   /* With the temporary file open, we take an exclusive flock on
909    * it. If the flock fails, then another process still has the file
910    * open with the flock held. So just let that file be responsible
911    * for writing the file.
912    */
913   err = flock(fd, LOCK_EX | LOCK_NB);
914   if (err == -1)
915      goto done;
916
917   /* Now that we have the lock on the open temporary file, we can
918    * check to see if the destination file already exists. If so,
919    * another process won the race between when we saw that the file
920    * didn't exist and now. In this case, we don't do anything more,
921    * (to ensure the size accounting of the cache doesn't get off).
922    */
923   fd_final = open(filename, O_RDONLY | O_CLOEXEC);
924   if (fd_final != -1) {
925      unlink(filename_tmp);
926      goto done;
927   }
928
929   /* OK, we're now on the hook to write out a file that we know is
930    * not in the cache, and is also not being written out to the cache
931    * by some other process.
932    */
933
934   /* Write the driver_keys_blob, this can be used find information about the
935    * mesa version that produced the entry or deal with hash collisions,
936    * should that ever become a real problem.
937    */
938   ret = write_all(fd, dc_job->cache->driver_keys_blob,
939                   dc_job->cache->driver_keys_blob_size);
940   if (ret == -1) {
941      unlink(filename_tmp);
942      goto done;
943   }
944
945   /* Write the cache item metadata. This data can be used to deal with
946    * hash collisions, as well as providing useful information to 3rd party
947    * tools reading the cache files.
948    */
949   ret = write_all(fd, &dc_job->cache_item_metadata.type,
950                   sizeof(uint32_t));
951   if (ret == -1) {
952      unlink(filename_tmp);
953      goto done;
954   }
955
956   if (dc_job->cache_item_metadata.type == CACHE_ITEM_TYPE_GLSL) {
957      ret = write_all(fd, &dc_job->cache_item_metadata.num_keys,
958                      sizeof(uint32_t));
959      if (ret == -1) {
960         unlink(filename_tmp);
961         goto done;
962      }
963
964      ret = write_all(fd, dc_job->cache_item_metadata.keys[0],
965                      dc_job->cache_item_metadata.num_keys *
966                      sizeof(cache_key));
967      if (ret == -1) {
968         unlink(filename_tmp);
969         goto done;
970      }
971   }
972
973   /* Create CRC of the data. We will read this when restoring the cache and
974    * use it to check for corruption.
975    */
976   struct cache_entry_file_data cf_data;
977   cf_data.crc32 = util_hash_crc32(dc_job->data, dc_job->size);
978   cf_data.uncompressed_size = dc_job->size;
979
980   size_t cf_data_size = sizeof(cf_data);
981   ret = write_all(fd, &cf_data, cf_data_size);
982   if (ret == -1) {
983      unlink(filename_tmp);
984      goto done;
985   }
986
987   /* Now, finally, write out the contents to the temporary file, then
988    * rename them atomically to the destination filename, and also
989    * perform an atomic increment of the total cache size.
990    */
991   size_t file_size = deflate_and_write_to_disk(dc_job->data, dc_job->size,
992                                                fd, filename_tmp);
993   if (file_size == 0) {
994      unlink(filename_tmp);
995      goto done;
996   }
997   ret = rename(filename_tmp, filename);
998   if (ret == -1) {
999      unlink(filename_tmp);
1000      goto done;
1001   }
1002
1003   struct stat sb;
1004   if (stat(filename, &sb) == -1) {
1005      /* Something went wrong remove the file */
1006      unlink(filename);
1007      goto done;
1008   }
1009
1010   cache_size_adjust(dc_job->cache->size, sb.st_blocks * 512);
1011
1012 done:
1013   if (fd_final != -1)
1014      close(fd_final);
1015   /* This close finally releases the flock, (now that the final file
1016    * has been renamed into place and the size has been added).
1017    */
1018   if (fd != -1)
1019      close(fd);
1020   free(filename_tmp);
1021   free(filename);
1022}
1023
1024void
1025disk_cache_put(struct disk_cache *cache, const cache_key key,
1026               const void *data, size_t size,
1027               struct cache_item_metadata *cache_item_metadata)
1028{
1029   if (cache->blob_put_cb) {
1030      cache->blob_put_cb(key, CACHE_KEY_SIZE, data, size);
1031      return;
1032   }
1033
1034   if (cache->path_init_failed)
1035      return;
1036
1037   struct disk_cache_put_job *dc_job =
1038      create_put_job(cache, key, data, size, cache_item_metadata);
1039
1040   if (dc_job) {
1041      util_queue_fence_init(&dc_job->fence);
1042      util_queue_add_job(&cache->cache_queue, dc_job, &dc_job->fence,
1043                         cache_put, destroy_put_job);
1044   }
1045}
1046
1047/**
1048 * Decompresses cache entry, returns true if successful.
1049 */
1050static bool
1051inflate_cache_data(uint8_t *in_data, size_t in_data_size,
1052                   uint8_t *out_data, size_t out_data_size)
1053{
1054   z_stream strm;
1055
1056   /* allocate inflate state */
1057   strm.zalloc = Z_NULL;
1058   strm.zfree = Z_NULL;
1059   strm.opaque = Z_NULL;
1060   strm.next_in = in_data;
1061   strm.avail_in = in_data_size;
1062   strm.next_out = out_data;
1063   strm.avail_out = out_data_size;
1064
1065   int ret = inflateInit(&strm);
1066   if (ret != Z_OK)
1067      return false;
1068
1069   ret = inflate(&strm, Z_NO_FLUSH);
1070   assert(ret != Z_STREAM_ERROR);  /* state not clobbered */
1071
1072   /* Unless there was an error we should have decompressed everything in one
1073    * go as we know the uncompressed file size.
1074    */
1075   if (ret != Z_STREAM_END) {
1076      (void)inflateEnd(&strm);
1077      return false;
1078   }
1079   assert(strm.avail_out == 0);
1080
1081   /* clean up and return */
1082   (void)inflateEnd(&strm);
1083   return true;
1084}
1085
1086void *
1087disk_cache_get(struct disk_cache *cache, const cache_key key, size_t *size)
1088{
1089   int fd = -1, ret;
1090   struct stat sb;
1091   char *filename = NULL;
1092   uint8_t *data = NULL;
1093   uint8_t *uncompressed_data = NULL;
1094   uint8_t *file_header = NULL;
1095
1096   if (size)
1097      *size = 0;
1098
1099   if (cache->blob_get_cb) {
1100      /* This is what Android EGL defines as the maxValueSize in egl_cache_t
1101       * class implementation.
1102       */
1103      const signed long max_blob_size = 64 * 1024;
1104      void *blob = malloc(max_blob_size);
1105      if (!blob)
1106         return NULL;
1107
1108      signed long bytes =
1109         cache->blob_get_cb(key, CACHE_KEY_SIZE, blob, max_blob_size);
1110
1111      if (!bytes) {
1112         free(blob);
1113         return NULL;
1114      }
1115
1116      if (size)
1117         *size = bytes;
1118      return blob;
1119   }
1120
1121   filename = get_cache_file(cache, key);
1122   if (filename == NULL)
1123      goto fail;
1124
1125   fd = open(filename, O_RDONLY | O_CLOEXEC);
1126   if (fd == -1)
1127      goto fail;
1128
1129   if (fstat(fd, &sb) == -1)
1130      goto fail;
1131
1132   data = malloc(sb.st_size);
1133   if (data == NULL)
1134      goto fail;
1135
1136   size_t ck_size = cache->driver_keys_blob_size;
1137   file_header = malloc(ck_size);
1138   if (!file_header)
1139      goto fail;
1140
1141   if (sb.st_size < ck_size)
1142      goto fail;
1143
1144   ret = read_all(fd, file_header, ck_size);
1145   if (ret == -1)
1146      goto fail;
1147
1148   /* Check for extremely unlikely hash collisions */
1149   if (memcmp(cache->driver_keys_blob, file_header, ck_size) != 0) {
1150      assert(!"Mesa cache keys mismatch!");
1151      goto fail;
1152   }
1153
1154   size_t cache_item_md_size = sizeof(uint32_t);
1155   uint32_t md_type;
1156   ret = read_all(fd, &md_type, cache_item_md_size);
1157   if (ret == -1)
1158      goto fail;
1159
1160   if (md_type == CACHE_ITEM_TYPE_GLSL) {
1161      uint32_t num_keys;
1162      cache_item_md_size += sizeof(uint32_t);
1163      ret = read_all(fd, &num_keys, sizeof(uint32_t));
1164      if (ret == -1)
1165         goto fail;
1166
1167      /* The cache item metadata is currently just used for distributing
1168       * precompiled shaders, they are not used by Mesa so just skip them for
1169       * now.
1170       * TODO: pass the metadata back to the caller and do some basic
1171       * validation.
1172       */
1173      cache_item_md_size += num_keys * sizeof(cache_key);
1174      ret = lseek(fd, num_keys * sizeof(cache_key), SEEK_CUR);
1175      if (ret == -1)
1176         goto fail;
1177   }
1178
1179   /* Load the CRC that was created when the file was written. */
1180   struct cache_entry_file_data cf_data;
1181   size_t cf_data_size = sizeof(cf_data);
1182   ret = read_all(fd, &cf_data, cf_data_size);
1183   if (ret == -1)
1184      goto fail;
1185
1186   /* Load the actual cache data. */
1187   size_t cache_data_size =
1188      sb.st_size - cf_data_size - ck_size - cache_item_md_size;
1189   ret = read_all(fd, data, cache_data_size);
1190   if (ret == -1)
1191      goto fail;
1192
1193   /* Uncompress the cache data */
1194   uncompressed_data = malloc(cf_data.uncompressed_size);
1195   if (!inflate_cache_data(data, cache_data_size, uncompressed_data,
1196                           cf_data.uncompressed_size))
1197      goto fail;
1198
1199   /* Check the data for corruption */
1200   if (cf_data.crc32 != util_hash_crc32(uncompressed_data,
1201                                        cf_data.uncompressed_size))
1202      goto fail;
1203
1204   free(data);
1205   free(filename);
1206   free(file_header);
1207   close(fd);
1208
1209   if (size)
1210      *size = cf_data.uncompressed_size;
1211
1212   return uncompressed_data;
1213
1214 fail:
1215   if (data)
1216      free(data);
1217   if (uncompressed_data)
1218      free(uncompressed_data);
1219   if (filename)
1220      free(filename);
1221   if (file_header)
1222      free(file_header);
1223   if (fd != -1)
1224      close(fd);
1225
1226   return NULL;
1227}
1228
1229void
1230disk_cache_put_key(struct disk_cache *cache, const cache_key key)
1231{
1232   const uint32_t *key_chunk = (const uint32_t *) key;
1233   int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
1234   unsigned char *entry;
1235
1236   if (cache->blob_put_cb) {
1237      cache->blob_put_cb(key, CACHE_KEY_SIZE, key_chunk, sizeof(uint32_t));
1238      return;
1239   }
1240
1241   if (cache->path_init_failed)
1242      return;
1243
1244   entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1245
1246   memcpy(entry, key, CACHE_KEY_SIZE);
1247}
1248
1249/* This function lets us test whether a given key was previously
1250 * stored in the cache with disk_cache_put_key(). The implement is
1251 * efficient by not using syscalls or hitting the disk. It's not
1252 * race-free, but the races are benign. If we race with someone else
1253 * calling disk_cache_put_key, then that's just an extra cache miss and an
1254 * extra recompile.
1255 */
1256bool
1257disk_cache_has_key(struct disk_cache *cache, const cache_key key)
1258{
1259   const uint32_t *key_chunk = (const uint32_t *) key;
1260   int i = CPU_TO_LE32(*key_chunk) & CACHE_INDEX_KEY_MASK;
1261   unsigned char *entry;
1262
1263   if (cache->blob_get_cb) {
1264      uint32_t blob;
1265      return cache->blob_get_cb(key, CACHE_KEY_SIZE, &blob, sizeof(uint32_t));
1266   }
1267
1268   if (cache->path_init_failed)
1269      return false;
1270
1271   entry = &cache->stored_keys[i * CACHE_KEY_SIZE];
1272
1273   return memcmp(entry, key, CACHE_KEY_SIZE) == 0;
1274}
1275
1276void
1277disk_cache_compute_key(struct disk_cache *cache, const void *data, size_t size,
1278                       cache_key key)
1279{
1280   struct mesa_sha1 ctx;
1281
1282   _mesa_sha1_init(&ctx);
1283   _mesa_sha1_update(&ctx, cache->driver_keys_blob,
1284                     cache->driver_keys_blob_size);
1285   _mesa_sha1_update(&ctx, data, size);
1286   _mesa_sha1_final(&ctx, key);
1287}
1288
1289void
1290disk_cache_set_callbacks(struct disk_cache *cache, disk_cache_put_cb put,
1291                         disk_cache_get_cb get)
1292{
1293   cache->blob_put_cb = put;
1294   cache->blob_get_cb = get;
1295}
1296
1297#endif /* ENABLE_SHADER_CACHE */
1298