u_math.h revision 01e04c3f
1/**************************************************************************
2 *
3 * Copyright 2008 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29/**
30 * Math utilities and approximations for common math functions.
31 * Reduced precision is usually acceptable in shaders...
32 *
33 * "fast" is used in the names of functions which are low-precision,
34 * or at least lower-precision than the normal C lib functions.
35 */
36
37
38#ifndef U_MATH_H
39#define U_MATH_H
40
41
42#include "pipe/p_compiler.h"
43
44#include "c99_math.h"
45#include <assert.h>
46#include <float.h>
47#include <stdarg.h>
48
49#include "bitscan.h"
50
51#ifdef __cplusplus
52extern "C" {
53#endif
54
55
56#ifndef M_SQRT2
57#define M_SQRT2 1.41421356237309504880
58#endif
59
60#define POW2_TABLE_SIZE_LOG2 9
61#define POW2_TABLE_SIZE (1 << POW2_TABLE_SIZE_LOG2)
62#define POW2_TABLE_OFFSET (POW2_TABLE_SIZE/2)
63#define POW2_TABLE_SCALE ((float)(POW2_TABLE_SIZE/2))
64extern float pow2_table[POW2_TABLE_SIZE];
65
66
67/**
68 * Initialize math module.  This should be called before using any
69 * other functions in this module.
70 */
71extern void
72util_init_math(void);
73
74
75union fi {
76   float f;
77   int32_t i;
78   uint32_t ui;
79};
80
81
82union di {
83   double d;
84   int64_t i;
85   uint64_t ui;
86};
87
88
89/**
90 * Extract the IEEE float32 exponent.
91 */
92static inline signed
93util_get_float32_exponent(float x)
94{
95   union fi f;
96
97   f.f = x;
98
99   return ((f.ui >> 23) & 0xff) - 127;
100}
101
102
103/**
104 * Fast version of 2^x
105 * Identity: exp2(a + b) = exp2(a) * exp2(b)
106 * Let ipart = int(x)
107 * Let fpart = x - ipart;
108 * So, exp2(x) = exp2(ipart) * exp2(fpart)
109 * Compute exp2(ipart) with i << ipart
110 * Compute exp2(fpart) with lookup table.
111 */
112static inline float
113util_fast_exp2(float x)
114{
115   int32_t ipart;
116   float fpart, mpart;
117   union fi epart;
118
119   if(x > 129.00000f)
120      return 3.402823466e+38f;
121
122   if (x < -126.99999f)
123      return 0.0f;
124
125   ipart = (int32_t) x;
126   fpart = x - (float) ipart;
127
128   /* same as
129    *   epart.f = (float) (1 << ipart)
130    * but faster and without integer overflow for ipart > 31
131    */
132   epart.i = (ipart + 127 ) << 23;
133
134   mpart = pow2_table[POW2_TABLE_OFFSET + (int)(fpart * POW2_TABLE_SCALE)];
135
136   return epart.f * mpart;
137}
138
139
140/**
141 * Fast approximation to exp(x).
142 */
143static inline float
144util_fast_exp(float x)
145{
146   const float k = 1.44269f; /* = log2(e) */
147   return util_fast_exp2(k * x);
148}
149
150
151#define LOG2_TABLE_SIZE_LOG2 16
152#define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2)
153#define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1)
154extern float log2_table[LOG2_TABLE_SIZE];
155
156
157/**
158 * Fast approximation to log2(x).
159 */
160static inline float
161util_fast_log2(float x)
162{
163   union fi num;
164   float epart, mpart;
165   num.f = x;
166   epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
167   /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */
168   mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)];
169   return epart + mpart;
170}
171
172
173/**
174 * Fast approximation to x^y.
175 */
176static inline float
177util_fast_pow(float x, float y)
178{
179   return util_fast_exp2(util_fast_log2(x) * y);
180}
181
182
183/**
184 * Floor(x), returned as int.
185 */
186static inline int
187util_ifloor(float f)
188{
189   int ai, bi;
190   double af, bf;
191   union fi u;
192   af = (3 << 22) + 0.5 + (double) f;
193   bf = (3 << 22) + 0.5 - (double) f;
194   u.f = (float) af;  ai = u.i;
195   u.f = (float) bf;  bi = u.i;
196   return (ai - bi) >> 1;
197}
198
199
200/**
201 * Round float to nearest int.
202 */
203static inline int
204util_iround(float f)
205{
206#if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
207   int r;
208   __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
209   return r;
210#elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86)
211   int r;
212   _asm {
213      fld f
214      fistp r
215   }
216   return r;
217#else
218   if (f >= 0.0f)
219      return (int) (f + 0.5f);
220   else
221      return (int) (f - 0.5f);
222#endif
223}
224
225
226/**
227 * Approximate floating point comparison
228 */
229static inline boolean
230util_is_approx(float a, float b, float tol)
231{
232   return fabsf(b - a) <= tol;
233}
234
235
236/**
237 * util_is_X_inf_or_nan = test if x is NaN or +/- Inf
238 * util_is_X_nan        = test if x is NaN
239 * util_X_inf_sign      = return +1 for +Inf, -1 for -Inf, or 0 for not Inf
240 *
241 * NaN can be checked with x != x, however this fails with the fast math flag
242 **/
243
244
245/**
246 * Single-float
247 */
248static inline boolean
249util_is_inf_or_nan(float x)
250{
251   union fi tmp;
252   tmp.f = x;
253   return (tmp.ui & 0x7f800000) == 0x7f800000;
254}
255
256
257static inline boolean
258util_is_nan(float x)
259{
260   union fi tmp;
261   tmp.f = x;
262   return (tmp.ui & 0x7fffffff) > 0x7f800000;
263}
264
265
266static inline int
267util_inf_sign(float x)
268{
269   union fi tmp;
270   tmp.f = x;
271   if ((tmp.ui & 0x7fffffff) != 0x7f800000) {
272      return 0;
273   }
274
275   return (x < 0) ? -1 : 1;
276}
277
278
279/**
280 * Double-float
281 */
282static inline boolean
283util_is_double_inf_or_nan(double x)
284{
285   union di tmp;
286   tmp.d = x;
287   return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL;
288}
289
290
291static inline boolean
292util_is_double_nan(double x)
293{
294   union di tmp;
295   tmp.d = x;
296   return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL;
297}
298
299
300static inline int
301util_double_inf_sign(double x)
302{
303   union di tmp;
304   tmp.d = x;
305   if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) {
306      return 0;
307   }
308
309   return (x < 0) ? -1 : 1;
310}
311
312
313/**
314 * Half-float
315 */
316static inline boolean
317util_is_half_inf_or_nan(int16_t x)
318{
319   return (x & 0x7c00) == 0x7c00;
320}
321
322
323static inline boolean
324util_is_half_nan(int16_t x)
325{
326   return (x & 0x7fff) > 0x7c00;
327}
328
329
330static inline int
331util_half_inf_sign(int16_t x)
332{
333   if ((x & 0x7fff) != 0x7c00) {
334      return 0;
335   }
336
337   return (x < 0) ? -1 : 1;
338}
339
340
341/**
342 * Return float bits.
343 */
344static inline unsigned
345fui( float f )
346{
347   union fi fi;
348   fi.f = f;
349   return fi.ui;
350}
351
352static inline float
353uif(uint32_t ui)
354{
355   union fi fi;
356   fi.ui = ui;
357   return fi.f;
358}
359
360
361/**
362 * Convert ubyte to float in [0, 1].
363 */
364static inline float
365ubyte_to_float(ubyte ub)
366{
367   return (float) ub * (1.0f / 255.0f);
368}
369
370
371/**
372 * Convert float in [0,1] to ubyte in [0,255] with clamping.
373 */
374static inline ubyte
375float_to_ubyte(float f)
376{
377   /* return 0 for NaN too */
378   if (!(f > 0.0f)) {
379      return (ubyte) 0;
380   }
381   else if (f >= 1.0f) {
382      return (ubyte) 255;
383   }
384   else {
385      union fi tmp;
386      tmp.f = f;
387      tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f;
388      return (ubyte) tmp.i;
389   }
390}
391
392static inline float
393byte_to_float_tex(int8_t b)
394{
395   return (b == -128) ? -1.0F : b * 1.0F / 127.0F;
396}
397
398static inline int8_t
399float_to_byte_tex(float f)
400{
401   return (int8_t) (127.0F * f);
402}
403
404/**
405 * Calc log base 2
406 */
407static inline unsigned
408util_logbase2(unsigned n)
409{
410#if defined(HAVE___BUILTIN_CLZ)
411   return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1));
412#else
413   unsigned pos = 0;
414   if (n >= 1<<16) { n >>= 16; pos += 16; }
415   if (n >= 1<< 8) { n >>=  8; pos +=  8; }
416   if (n >= 1<< 4) { n >>=  4; pos +=  4; }
417   if (n >= 1<< 2) { n >>=  2; pos +=  2; }
418   if (n >= 1<< 1) {           pos +=  1; }
419   return pos;
420#endif
421}
422
423static inline uint64_t
424util_logbase2_64(uint64_t n)
425{
426#if defined(HAVE___BUILTIN_CLZLL)
427   return ((sizeof(uint64_t) * 8 - 1) - __builtin_clzll(n | 1));
428#else
429   uint64_t pos = 0ull;
430   if (n >= 1ull<<32) { n >>= 32; pos += 32; }
431   if (n >= 1ull<<16) { n >>= 16; pos += 16; }
432   if (n >= 1ull<< 8) { n >>=  8; pos +=  8; }
433   if (n >= 1ull<< 4) { n >>=  4; pos +=  4; }
434   if (n >= 1ull<< 2) { n >>=  2; pos +=  2; }
435   if (n >= 1ull<< 1) {           pos +=  1; }
436   return pos;
437#endif
438}
439
440/**
441 * Returns the ceiling of log n base 2, and 0 when n == 0. Equivalently,
442 * returns the smallest x such that n <= 2**x.
443 */
444static inline unsigned
445util_logbase2_ceil(unsigned n)
446{
447   if (n <= 1)
448      return 0;
449
450   return 1 + util_logbase2(n - 1);
451}
452
453static inline uint64_t
454util_logbase2_ceil64(uint64_t n)
455{
456   if (n <= 1)
457      return 0;
458
459   return 1ull + util_logbase2_64(n - 1);
460}
461
462/**
463 * Returns the smallest power of two >= x
464 */
465static inline unsigned
466util_next_power_of_two(unsigned x)
467{
468#if defined(HAVE___BUILTIN_CLZ)
469   if (x <= 1)
470       return 1;
471
472   return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1)));
473#else
474   unsigned val = x;
475
476   if (x <= 1)
477      return 1;
478
479   if (util_is_power_of_two_or_zero(x))
480      return x;
481
482   val--;
483   val = (val >> 1) | val;
484   val = (val >> 2) | val;
485   val = (val >> 4) | val;
486   val = (val >> 8) | val;
487   val = (val >> 16) | val;
488   val++;
489   return val;
490#endif
491}
492
493static inline uint64_t
494util_next_power_of_two64(uint64_t x)
495{
496#if defined(HAVE___BUILTIN_CLZLL)
497   if (x <= 1)
498       return 1;
499
500   return (1ull << ((sizeof(uint64_t) * 8) - __builtin_clzll(x - 1)));
501#else
502   uint64_t val = x;
503
504   if (x <= 1)
505      return 1;
506
507   if (util_is_power_of_two_or_zero64(x))
508      return x;
509
510   val--;
511   val = (val >> 1)  | val;
512   val = (val >> 2)  | val;
513   val = (val >> 4)  | val;
514   val = (val >> 8)  | val;
515   val = (val >> 16) | val;
516   val = (val >> 32) | val;
517   val++;
518   return val;
519#endif
520}
521
522
523/**
524 * Return number of bits set in n.
525 */
526static inline unsigned
527util_bitcount(unsigned n)
528{
529#if defined(HAVE___BUILTIN_POPCOUNT)
530   return __builtin_popcount(n);
531#else
532   /* K&R classic bitcount.
533    *
534    * For each iteration, clear the LSB from the bitfield.
535    * Requires only one iteration per set bit, instead of
536    * one iteration per bit less than highest set bit.
537    */
538   unsigned bits;
539   for (bits = 0; n; bits++) {
540      n &= n - 1;
541   }
542   return bits;
543#endif
544}
545
546
547static inline unsigned
548util_bitcount64(uint64_t n)
549{
550#ifdef HAVE___BUILTIN_POPCOUNTLL
551   return __builtin_popcountll(n);
552#else
553   return util_bitcount(n) + util_bitcount(n >> 32);
554#endif
555}
556
557
558/**
559 * Reverse bits in n
560 * Algorithm taken from:
561 * http://stackoverflow.com/questions/9144800/c-reverse-bits-in-unsigned-integer
562 */
563static inline unsigned
564util_bitreverse(unsigned n)
565{
566    n = ((n >> 1) & 0x55555555u) | ((n & 0x55555555u) << 1);
567    n = ((n >> 2) & 0x33333333u) | ((n & 0x33333333u) << 2);
568    n = ((n >> 4) & 0x0f0f0f0fu) | ((n & 0x0f0f0f0fu) << 4);
569    n = ((n >> 8) & 0x00ff00ffu) | ((n & 0x00ff00ffu) << 8);
570    n = ((n >> 16) & 0xffffu) | ((n & 0xffffu) << 16);
571    return n;
572}
573
574/**
575 * Convert from little endian to CPU byte order.
576 */
577
578#ifdef PIPE_ARCH_BIG_ENDIAN
579#define util_le64_to_cpu(x) util_bswap64(x)
580#define util_le32_to_cpu(x) util_bswap32(x)
581#define util_le16_to_cpu(x) util_bswap16(x)
582#else
583#define util_le64_to_cpu(x) (x)
584#define util_le32_to_cpu(x) (x)
585#define util_le16_to_cpu(x) (x)
586#endif
587
588#define util_cpu_to_le64(x) util_le64_to_cpu(x)
589#define util_cpu_to_le32(x) util_le32_to_cpu(x)
590#define util_cpu_to_le16(x) util_le16_to_cpu(x)
591
592/**
593 * Reverse byte order of a 32 bit word.
594 */
595static inline uint32_t
596util_bswap32(uint32_t n)
597{
598#if defined(HAVE___BUILTIN_BSWAP32)
599   return __builtin_bswap32(n);
600#else
601   return (n >> 24) |
602          ((n >> 8) & 0x0000ff00) |
603          ((n << 8) & 0x00ff0000) |
604          (n << 24);
605#endif
606}
607
608/**
609 * Reverse byte order of a 64bit word.
610 */
611static inline uint64_t
612util_bswap64(uint64_t n)
613{
614#if defined(HAVE___BUILTIN_BSWAP64)
615   return __builtin_bswap64(n);
616#else
617   return ((uint64_t)util_bswap32((uint32_t)n) << 32) |
618          util_bswap32((n >> 32));
619#endif
620}
621
622
623/**
624 * Reverse byte order of a 16 bit word.
625 */
626static inline uint16_t
627util_bswap16(uint16_t n)
628{
629   return (n >> 8) |
630          (n << 8);
631}
632
633static inline void*
634util_memcpy_cpu_to_le32(void * restrict dest, const void * restrict src, size_t n)
635{
636#ifdef PIPE_ARCH_BIG_ENDIAN
637   size_t i, e;
638   assert(n % 4 == 0);
639
640   for (i = 0, e = n / 4; i < e; i++) {
641      uint32_t * restrict d = (uint32_t* restrict)dest;
642      const uint32_t * restrict s = (const uint32_t* restrict)src;
643      d[i] = util_bswap32(s[i]);
644   }
645   return dest;
646#else
647   return memcpy(dest, src, n);
648#endif
649}
650
651/**
652 * Clamp X to [MIN, MAX].
653 * This is a macro to allow float, int, uint, etc. types.
654 * We arbitrarily turn NaN into MIN.
655 */
656#define CLAMP( X, MIN, MAX )  ( (X)>(MIN) ? ((X)>(MAX) ? (MAX) : (X)) : (MIN) )
657
658#define MIN2( A, B )   ( (A)<(B) ? (A) : (B) )
659#define MAX2( A, B )   ( (A)>(B) ? (A) : (B) )
660
661#define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
662#define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
663
664#define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D))
665#define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D))
666
667
668/**
669 * Align a value, only works pot alignemnts.
670 */
671static inline int
672align(int value, int alignment)
673{
674   return (value + alignment - 1) & ~(alignment - 1);
675}
676
677static inline uint64_t
678align64(uint64_t value, unsigned alignment)
679{
680   return (value + alignment - 1) & ~((uint64_t)alignment - 1);
681}
682
683/**
684 * Works like align but on npot alignments.
685 */
686static inline size_t
687util_align_npot(size_t value, size_t alignment)
688{
689   if (value % alignment)
690      return value + (alignment - (value % alignment));
691   return value;
692}
693
694static inline unsigned
695u_minify(unsigned value, unsigned levels)
696{
697    return MAX2(1, value >> levels);
698}
699
700#ifndef COPY_4V
701#define COPY_4V( DST, SRC )         \
702do {                                \
703   (DST)[0] = (SRC)[0];             \
704   (DST)[1] = (SRC)[1];             \
705   (DST)[2] = (SRC)[2];             \
706   (DST)[3] = (SRC)[3];             \
707} while (0)
708#endif
709
710
711#ifndef COPY_4FV
712#define COPY_4FV( DST, SRC )  COPY_4V(DST, SRC)
713#endif
714
715
716#ifndef ASSIGN_4V
717#define ASSIGN_4V( DST, V0, V1, V2, V3 ) \
718do {                                     \
719   (DST)[0] = (V0);                      \
720   (DST)[1] = (V1);                      \
721   (DST)[2] = (V2);                      \
722   (DST)[3] = (V3);                      \
723} while (0)
724#endif
725
726
727static inline uint32_t
728util_unsigned_fixed(float value, unsigned frac_bits)
729{
730   return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits));
731}
732
733static inline int32_t
734util_signed_fixed(float value, unsigned frac_bits)
735{
736   return (int32_t)(value * (1<<frac_bits));
737}
738
739unsigned
740util_fpstate_get(void);
741unsigned
742util_fpstate_set_denorms_to_zero(unsigned current_fpstate);
743void
744util_fpstate_set(unsigned fpstate);
745
746
747
748#ifdef __cplusplus
749}
750#endif
751
752#endif /* U_MATH_H */
753