u_math.h revision 1463c08d
1/************************************************************************** 2 * 3 * Copyright 2008 VMware, Inc. 4 * All Rights Reserved. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a 7 * copy of this software and associated documentation files (the 8 * "Software"), to deal in the Software without restriction, including 9 * without limitation the rights to use, copy, modify, merge, publish, 10 * distribute, sub license, and/or sell copies of the Software, and to 11 * permit persons to whom the Software is furnished to do so, subject to 12 * the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the 15 * next paragraph) shall be included in all copies or substantial portions 16 * of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR 22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 25 * 26 **************************************************************************/ 27 28 29/** 30 * Math utilities and approximations for common math functions. 31 * Reduced precision is usually acceptable in shaders... 32 * 33 * "fast" is used in the names of functions which are low-precision, 34 * or at least lower-precision than the normal C lib functions. 35 */ 36 37 38#ifndef U_MATH_H 39#define U_MATH_H 40 41 42#include "c99_math.h" 43#include <assert.h> 44#include <float.h> 45#include <stdarg.h> 46 47#include "bitscan.h" 48#include "u_endian.h" /* for UTIL_ARCH_BIG_ENDIAN */ 49 50#ifdef __cplusplus 51extern "C" { 52#endif 53 54 55#ifndef M_SQRT2 56#define M_SQRT2 1.41421356237309504880 57#endif 58 59 60/** 61 * Initialize math module. This should be called before using any 62 * other functions in this module. 63 */ 64extern void 65util_init_math(void); 66 67 68union fi { 69 float f; 70 int32_t i; 71 uint32_t ui; 72}; 73 74 75union di { 76 double d; 77 int64_t i; 78 uint64_t ui; 79}; 80 81 82/** 83 * Extract the IEEE float32 exponent. 84 */ 85static inline signed 86util_get_float32_exponent(float x) 87{ 88 union fi f; 89 90 f.f = x; 91 92 return ((f.ui >> 23) & 0xff) - 127; 93} 94 95 96#define LOG2_TABLE_SIZE_LOG2 8 97#define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2) 98#define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1) 99extern float log2_table[LOG2_TABLE_SIZE]; 100 101 102/** 103 * Fast approximation to log2(x). 104 */ 105static inline float 106util_fast_log2(float x) 107{ 108 union fi num; 109 float epart, mpart; 110 num.f = x; 111 epart = (float)(((num.i & 0x7f800000) >> 23) - 127); 112 /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */ 113 mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)]; 114 return epart + mpart; 115} 116 117 118/** 119 * Floor(x), returned as int. 120 */ 121static inline int 122util_ifloor(float f) 123{ 124#if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__) 125 /* 126 * IEEE floor for computers that round to nearest or even. 127 * 'f' must be between -4194304 and 4194303. 128 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1", 129 * but uses some IEEE specific tricks for better speed. 130 * Contributed by Josh Vanderhoof 131 */ 132 int ai, bi; 133 double af, bf; 134 af = (3 << 22) + 0.5 + (double)f; 135 bf = (3 << 22) + 0.5 - (double)f; 136 /* GCC generates an extra fstp/fld without this. */ 137 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st"); 138 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st"); 139 return (ai - bi) >> 1; 140#else 141 int ai, bi; 142 double af, bf; 143 union fi u; 144 af = (3 << 22) + 0.5 + (double) f; 145 bf = (3 << 22) + 0.5 - (double) f; 146 u.f = (float) af; ai = u.i; 147 u.f = (float) bf; bi = u.i; 148 return (ai - bi) >> 1; 149#endif 150} 151 152 153/** 154 * Round float to nearest int. 155 */ 156static inline int 157util_iround(float f) 158{ 159#if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86) 160 int r; 161 __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st"); 162 return r; 163#elif defined(PIPE_CC_MSVC) && defined(PIPE_ARCH_X86) 164 int r; 165 _asm { 166 fld f 167 fistp r 168 } 169 return r; 170#else 171 if (f >= 0.0f) 172 return (int) (f + 0.5f); 173 else 174 return (int) (f - 0.5f); 175#endif 176} 177 178 179/** 180 * Approximate floating point comparison 181 */ 182static inline bool 183util_is_approx(float a, float b, float tol) 184{ 185 return fabsf(b - a) <= tol; 186} 187 188 189/** 190 * util_is_X_inf_or_nan = test if x is NaN or +/- Inf 191 * util_is_X_nan = test if x is NaN 192 * util_X_inf_sign = return +1 for +Inf, -1 for -Inf, or 0 for not Inf 193 * 194 * NaN can be checked with x != x, however this fails with the fast math flag 195 **/ 196 197 198/** 199 * Single-float 200 */ 201static inline bool 202util_is_inf_or_nan(float x) 203{ 204 union fi tmp; 205 tmp.f = x; 206 return (tmp.ui & 0x7f800000) == 0x7f800000; 207} 208 209 210static inline bool 211util_is_nan(float x) 212{ 213 union fi tmp; 214 tmp.f = x; 215 return (tmp.ui & 0x7fffffff) > 0x7f800000; 216} 217 218 219static inline int 220util_inf_sign(float x) 221{ 222 union fi tmp; 223 tmp.f = x; 224 if ((tmp.ui & 0x7fffffff) != 0x7f800000) { 225 return 0; 226 } 227 228 return (x < 0) ? -1 : 1; 229} 230 231 232/** 233 * Double-float 234 */ 235static inline bool 236util_is_double_inf_or_nan(double x) 237{ 238 union di tmp; 239 tmp.d = x; 240 return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL; 241} 242 243 244static inline bool 245util_is_double_nan(double x) 246{ 247 union di tmp; 248 tmp.d = x; 249 return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL; 250} 251 252 253static inline int 254util_double_inf_sign(double x) 255{ 256 union di tmp; 257 tmp.d = x; 258 if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) { 259 return 0; 260 } 261 262 return (x < 0) ? -1 : 1; 263} 264 265 266/** 267 * Half-float 268 */ 269static inline bool 270util_is_half_inf_or_nan(int16_t x) 271{ 272 return (x & 0x7c00) == 0x7c00; 273} 274 275 276static inline bool 277util_is_half_nan(int16_t x) 278{ 279 return (x & 0x7fff) > 0x7c00; 280} 281 282 283static inline int 284util_half_inf_sign(int16_t x) 285{ 286 if ((x & 0x7fff) != 0x7c00) { 287 return 0; 288 } 289 290 return (x < 0) ? -1 : 1; 291} 292 293 294/** 295 * Return float bits. 296 */ 297static inline unsigned 298fui( float f ) 299{ 300 union fi fi; 301 fi.f = f; 302 return fi.ui; 303} 304 305static inline float 306uif(uint32_t ui) 307{ 308 union fi fi; 309 fi.ui = ui; 310 return fi.f; 311} 312 313 314/** 315 * Convert uint8_t to float in [0, 1]. 316 */ 317static inline float 318ubyte_to_float(uint8_t ub) 319{ 320 return (float) ub * (1.0f / 255.0f); 321} 322 323 324/** 325 * Convert float in [0,1] to uint8_t in [0,255] with clamping. 326 */ 327static inline uint8_t 328float_to_ubyte(float f) 329{ 330 /* return 0 for NaN too */ 331 if (!(f > 0.0f)) { 332 return (uint8_t) 0; 333 } 334 else if (f >= 1.0f) { 335 return (uint8_t) 255; 336 } 337 else { 338 union fi tmp; 339 tmp.f = f; 340 tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f; 341 return (uint8_t) tmp.i; 342 } 343} 344 345/** 346 * Convert uint16_t to float in [0, 1]. 347 */ 348static inline float 349ushort_to_float(uint16_t us) 350{ 351 return (float) us * (1.0f / 65535.0f); 352} 353 354 355/** 356 * Convert float in [0,1] to uint16_t in [0,65535] with clamping. 357 */ 358static inline uint16_t 359float_to_ushort(float f) 360{ 361 /* return 0 for NaN too */ 362 if (!(f > 0.0f)) { 363 return (uint16_t) 0; 364 } 365 else if (f >= 1.0f) { 366 return (uint16_t) 65535; 367 } 368 else { 369 union fi tmp; 370 tmp.f = f; 371 tmp.f = tmp.f * (65535.0f/65536.0f) + 128.0f; 372 return (uint16_t) tmp.i; 373 } 374} 375 376static inline float 377byte_to_float_tex(int8_t b) 378{ 379 return (b == -128) ? -1.0F : b * 1.0F / 127.0F; 380} 381 382static inline int8_t 383float_to_byte_tex(float f) 384{ 385 return (int8_t) (127.0F * f); 386} 387 388/** 389 * Calc log base 2 390 */ 391static inline unsigned 392util_logbase2(unsigned n) 393{ 394#if defined(HAVE___BUILTIN_CLZ) 395 return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1)); 396#else 397 unsigned pos = 0; 398 if (n >= 1<<16) { n >>= 16; pos += 16; } 399 if (n >= 1<< 8) { n >>= 8; pos += 8; } 400 if (n >= 1<< 4) { n >>= 4; pos += 4; } 401 if (n >= 1<< 2) { n >>= 2; pos += 2; } 402 if (n >= 1<< 1) { pos += 1; } 403 return pos; 404#endif 405} 406 407static inline uint64_t 408util_logbase2_64(uint64_t n) 409{ 410#if defined(HAVE___BUILTIN_CLZLL) 411 return ((sizeof(uint64_t) * 8 - 1) - __builtin_clzll(n | 1)); 412#else 413 uint64_t pos = 0ull; 414 if (n >= 1ull<<32) { n >>= 32; pos += 32; } 415 if (n >= 1ull<<16) { n >>= 16; pos += 16; } 416 if (n >= 1ull<< 8) { n >>= 8; pos += 8; } 417 if (n >= 1ull<< 4) { n >>= 4; pos += 4; } 418 if (n >= 1ull<< 2) { n >>= 2; pos += 2; } 419 if (n >= 1ull<< 1) { pos += 1; } 420 return pos; 421#endif 422} 423 424/** 425 * Returns the ceiling of log n base 2, and 0 when n == 0. Equivalently, 426 * returns the smallest x such that n <= 2**x. 427 */ 428static inline unsigned 429util_logbase2_ceil(unsigned n) 430{ 431 if (n <= 1) 432 return 0; 433 434 return 1 + util_logbase2(n - 1); 435} 436 437static inline uint64_t 438util_logbase2_ceil64(uint64_t n) 439{ 440 if (n <= 1) 441 return 0; 442 443 return 1ull + util_logbase2_64(n - 1); 444} 445 446/** 447 * Returns the smallest power of two >= x 448 */ 449static inline unsigned 450util_next_power_of_two(unsigned x) 451{ 452#if defined(HAVE___BUILTIN_CLZ) 453 if (x <= 1) 454 return 1; 455 456 return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1))); 457#else 458 unsigned val = x; 459 460 if (x <= 1) 461 return 1; 462 463 if (util_is_power_of_two_or_zero(x)) 464 return x; 465 466 val--; 467 val = (val >> 1) | val; 468 val = (val >> 2) | val; 469 val = (val >> 4) | val; 470 val = (val >> 8) | val; 471 val = (val >> 16) | val; 472 val++; 473 return val; 474#endif 475} 476 477static inline uint64_t 478util_next_power_of_two64(uint64_t x) 479{ 480#if defined(HAVE___BUILTIN_CLZLL) 481 if (x <= 1) 482 return 1; 483 484 return (1ull << ((sizeof(uint64_t) * 8) - __builtin_clzll(x - 1))); 485#else 486 uint64_t val = x; 487 488 if (x <= 1) 489 return 1; 490 491 if (util_is_power_of_two_or_zero64(x)) 492 return x; 493 494 val--; 495 val = (val >> 1) | val; 496 val = (val >> 2) | val; 497 val = (val >> 4) | val; 498 val = (val >> 8) | val; 499 val = (val >> 16) | val; 500 val = (val >> 32) | val; 501 val++; 502 return val; 503#endif 504} 505 506/** 507 * Reverse bits in n 508 * Algorithm taken from: 509 * http://stackoverflow.com/questions/9144800/c-reverse-bits-in-unsigned-integer 510 */ 511static inline unsigned 512util_bitreverse(unsigned n) 513{ 514 n = ((n >> 1) & 0x55555555u) | ((n & 0x55555555u) << 1); 515 n = ((n >> 2) & 0x33333333u) | ((n & 0x33333333u) << 2); 516 n = ((n >> 4) & 0x0f0f0f0fu) | ((n & 0x0f0f0f0fu) << 4); 517 n = ((n >> 8) & 0x00ff00ffu) | ((n & 0x00ff00ffu) << 8); 518 n = ((n >> 16) & 0xffffu) | ((n & 0xffffu) << 16); 519 return n; 520} 521 522/** 523 * Convert from little endian to CPU byte order. 524 */ 525 526#if UTIL_ARCH_BIG_ENDIAN 527#define util_le64_to_cpu(x) util_bswap64(x) 528#define util_le32_to_cpu(x) util_bswap32(x) 529#define util_le16_to_cpu(x) util_bswap16(x) 530#else 531#define util_le64_to_cpu(x) (x) 532#define util_le32_to_cpu(x) (x) 533#define util_le16_to_cpu(x) (x) 534#endif 535 536#define util_cpu_to_le64(x) util_le64_to_cpu(x) 537#define util_cpu_to_le32(x) util_le32_to_cpu(x) 538#define util_cpu_to_le16(x) util_le16_to_cpu(x) 539 540/** 541 * Reverse byte order of a 32 bit word. 542 */ 543static inline uint32_t 544util_bswap32(uint32_t n) 545{ 546#if defined(HAVE___BUILTIN_BSWAP32) 547 return __builtin_bswap32(n); 548#else 549 return (n >> 24) | 550 ((n >> 8) & 0x0000ff00) | 551 ((n << 8) & 0x00ff0000) | 552 (n << 24); 553#endif 554} 555 556/** 557 * Reverse byte order of a 64bit word. 558 */ 559static inline uint64_t 560util_bswap64(uint64_t n) 561{ 562#if defined(HAVE___BUILTIN_BSWAP64) 563 return __builtin_bswap64(n); 564#else 565 return ((uint64_t)util_bswap32((uint32_t)n) << 32) | 566 util_bswap32((n >> 32)); 567#endif 568} 569 570 571/** 572 * Reverse byte order of a 16 bit word. 573 */ 574static inline uint16_t 575util_bswap16(uint16_t n) 576{ 577 return (n >> 8) | 578 (n << 8); 579} 580 581/** 582 * Extend sign. 583 */ 584static inline int64_t 585util_sign_extend(uint64_t val, unsigned width) 586{ 587 assert(width > 0); 588 if (val & (UINT64_C(1) << (width - 1))) { 589 return -(int64_t)((UINT64_C(1) << width) - val); 590 } else { 591 return val; 592 } 593} 594 595static inline void* 596util_memcpy_cpu_to_le32(void * restrict dest, const void * restrict src, size_t n) 597{ 598#if UTIL_ARCH_BIG_ENDIAN 599 size_t i, e; 600 assert(n % 4 == 0); 601 602 for (i = 0, e = n / 4; i < e; i++) { 603 uint32_t * restrict d = (uint32_t* restrict)dest; 604 const uint32_t * restrict s = (const uint32_t* restrict)src; 605 d[i] = util_bswap32(s[i]); 606 } 607 return dest; 608#else 609 return memcpy(dest, src, n); 610#endif 611} 612 613/** 614 * Clamp X to [MIN, MAX]. 615 * This is a macro to allow float, int, uint, etc. types. 616 * We arbitrarily turn NaN into MIN. 617 */ 618#define CLAMP( X, MIN, MAX ) ( (X)>(MIN) ? ((X)>(MAX) ? (MAX) : (X)) : (MIN) ) 619 620/* Syntax sugar occuring frequently in graphics code */ 621#define SATURATE( X ) CLAMP(X, 0.0f, 1.0f) 622 623#define MIN2( A, B ) ( (A)<(B) ? (A) : (B) ) 624#define MAX2( A, B ) ( (A)>(B) ? (A) : (B) ) 625 626#define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C)) 627#define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C)) 628 629#define MIN4( A, B, C, D ) ((A) < (B) ? MIN3(A, C, D) : MIN3(B, C, D)) 630#define MAX4( A, B, C, D ) ((A) > (B) ? MAX3(A, C, D) : MAX3(B, C, D)) 631 632 633/** 634 * Align a value up to an alignment value 635 * 636 * If \c value is not already aligned to the requested alignment value, it 637 * will be rounded up. 638 * 639 * \param value Value to be rounded 640 * \param alignment Alignment value to be used. This must be a power of two. 641 * 642 * \sa ROUND_DOWN_TO() 643 */ 644 645#if defined(ALIGN) 646#undef ALIGN 647#endif 648static inline uintptr_t 649ALIGN(uintptr_t value, int32_t alignment) 650{ 651 assert(util_is_power_of_two_nonzero(alignment)); 652 return (((value) + (alignment) - 1) & ~((alignment) - 1)); 653} 654 655/** 656 * Like ALIGN(), but works with a non-power-of-two alignment. 657 */ 658static inline uintptr_t 659ALIGN_NPOT(uintptr_t value, int32_t alignment) 660{ 661 assert(alignment > 0); 662 return (value + alignment - 1) / alignment * alignment; 663} 664 665/** 666 * Align a value down to an alignment value 667 * 668 * If \c value is not already aligned to the requested alignment value, it 669 * will be rounded down. 670 * 671 * \param value Value to be rounded 672 * \param alignment Alignment value to be used. This must be a power of two. 673 * 674 * \sa ALIGN() 675 */ 676static inline uint64_t 677ROUND_DOWN_TO(uint64_t value, int32_t alignment) 678{ 679 assert(util_is_power_of_two_nonzero(alignment)); 680 return ((value) & ~(alignment - 1)); 681} 682 683/** 684 * Align a value, only works pot alignemnts. 685 */ 686static inline int 687align(int value, int alignment) 688{ 689 return (value + alignment - 1) & ~(alignment - 1); 690} 691 692static inline uint64_t 693align64(uint64_t value, unsigned alignment) 694{ 695 return (value + alignment - 1) & ~((uint64_t)alignment - 1); 696} 697 698/** 699 * Works like align but on npot alignments. 700 */ 701static inline size_t 702util_align_npot(size_t value, size_t alignment) 703{ 704 if (value % alignment) 705 return value + (alignment - (value % alignment)); 706 return value; 707} 708 709static inline unsigned 710u_minify(unsigned value, unsigned levels) 711{ 712 return MAX2(1, value >> levels); 713} 714 715#ifndef COPY_4V 716#define COPY_4V( DST, SRC ) \ 717do { \ 718 (DST)[0] = (SRC)[0]; \ 719 (DST)[1] = (SRC)[1]; \ 720 (DST)[2] = (SRC)[2]; \ 721 (DST)[3] = (SRC)[3]; \ 722} while (0) 723#endif 724 725 726#ifndef COPY_4FV 727#define COPY_4FV( DST, SRC ) COPY_4V(DST, SRC) 728#endif 729 730 731#ifndef ASSIGN_4V 732#define ASSIGN_4V( DST, V0, V1, V2, V3 ) \ 733do { \ 734 (DST)[0] = (V0); \ 735 (DST)[1] = (V1); \ 736 (DST)[2] = (V2); \ 737 (DST)[3] = (V3); \ 738} while (0) 739#endif 740 741 742static inline uint32_t 743util_unsigned_fixed(float value, unsigned frac_bits) 744{ 745 return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits)); 746} 747 748static inline int32_t 749util_signed_fixed(float value, unsigned frac_bits) 750{ 751 return (int32_t)(value * (1<<frac_bits)); 752} 753 754unsigned 755util_fpstate_get(void); 756unsigned 757util_fpstate_set_denorms_to_zero(unsigned current_fpstate); 758void 759util_fpstate_set(unsigned fpstate); 760 761/** 762 * For indexed draw calls, return true if the vertex count to be drawn is 763 * much lower than the vertex count that has to be uploaded, meaning 764 * that the driver should flatten indices instead of trying to upload 765 * a too big range. 766 * 767 * This is used by vertex upload code in u_vbuf and glthread. 768 */ 769static inline bool 770util_is_vbo_upload_ratio_too_large(unsigned draw_vertex_count, 771 unsigned upload_vertex_count) 772{ 773 if (draw_vertex_count > 1024) 774 return upload_vertex_count > draw_vertex_count * 4; 775 else if (draw_vertex_count > 32) 776 return upload_vertex_count > draw_vertex_count * 8; 777 else 778 return upload_vertex_count > draw_vertex_count * 16; 779} 780 781bool util_invert_mat4x4(float *out, const float *m); 782 783/* Quantize the lod bias value to reduce the number of sampler state 784 * variants in gallium because apps use it for smooth mipmap transitions, 785 * thrashing cso_cache and degrading performance. 786 * 787 * This quantization matches the AMD hw specification, so having more 788 * precision would have no effect anyway. 789 */ 790static inline float 791util_quantize_lod_bias(float lod) 792{ 793 lod = CLAMP(lod, -16, 16); 794 return roundf(lod * 256) / 256; 795} 796 797#ifdef __cplusplus 798} 799#endif 800 801#endif /* U_MATH_H */ 802