patch.cc revision f220fa62
1/*
2** License Applicability. Except to the extent portions of this file are
3** made subject to an alternative license as permitted in the SGI Free
4** Software License B, Version 1.1 (the "License"), the contents of this
5** file are subject only to the provisions of the License. You may not use
6** this file except in compliance with the License. You may obtain a copy
7** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600
8** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:
9**
10** http://oss.sgi.com/projects/FreeB
11**
12** Note that, as provided in the License, the Software is distributed on an
13** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS
14** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND
15** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A
16** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.
17**
18** Original Code. The Original Code is: OpenGL Sample Implementation,
19** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,
20** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.
21** Copyright in any portions created by third parties is as indicated
22** elsewhere herein. All Rights Reserved.
23**
24** Additional Notice Provisions: The application programming interfaces
25** established by SGI in conjunction with the Original Code are The
26** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released
27** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version
28** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X
29** Window System(R) (Version 1.3), released October 19, 1998. This software
30** was created using the OpenGL(R) version 1.2.1 Sample Implementation
31** published by SGI, but has not been independently verified as being
32** compliant with the OpenGL(R) version 1.2.1 Specification.
33*/
34
35/*
36 * patch.c++
37 *
38 */
39
40#include <stdio.h>
41#include "glimports.h"
42#include "mystdio.h"
43#include "myassert.h"
44#include "mymath.h"
45#include "mystring.h"
46#include "patch.h"
47#include "mapdesc.h"
48#include "quilt.h"
49#include "nurbsconsts.h"
50#include "simplemath.h" //for glu_abs function in ::singleStep();
51
52
53/*--------------------------------------------------------------------------
54 * Patch - copy patch from quilt and transform control points
55 *--------------------------------------------------------------------------
56 */
57
58Patch::Patch( Quilt_ptr geo, REAL *pta, REAL *ptb, Patch *n )
59{
60/* pspec[i].range is uninit here */
61    mapdesc = geo->mapdesc;
62    cullval = mapdesc->isCulling() ? CULL_ACCEPT : CULL_TRIVIAL_ACCEPT;
63    notInBbox = mapdesc->isBboxSubdividing() ? 1 : 0;
64    needsSampling = mapdesc->isRangeSampling() ? 1 : 0;
65    pspec[0].order = geo->qspec[0].order;
66    pspec[1].order = geo->qspec[1].order;
67    pspec[0].stride = pspec[1].order * MAXCOORDS;
68    pspec[1].stride = MAXCOORDS;
69
70    /* transform control points to sampling and culling spaces */
71    REAL *ps  = geo->cpts;
72    geo->select( pta, ptb );
73    ps += geo->qspec[0].offset;
74    ps += geo->qspec[1].offset;
75    ps += geo->qspec[0].index * geo->qspec[0].order * geo->qspec[0].stride;
76    ps += geo->qspec[1].index * geo->qspec[1].order * geo->qspec[1].stride;
77
78    if( needsSampling ) {
79	mapdesc->xformSampling( ps, geo->qspec[0].order, geo->qspec[0].stride,
80				geo->qspec[1].order, geo->qspec[1].stride,
81			        spts, pspec[0].stride, pspec[1].stride );
82    }
83
84    if( cullval == CULL_ACCEPT  ) {
85	mapdesc->xformCulling( ps, geo->qspec[0].order, geo->qspec[0].stride,
86			       geo->qspec[1].order, geo->qspec[1].stride,
87			       cpts, pspec[0].stride, pspec[1].stride );
88    }
89
90    if( notInBbox ) {
91	mapdesc->xformBounding( ps, geo->qspec[0].order, geo->qspec[0].stride,
92			       geo->qspec[1].order, geo->qspec[1].stride,
93			       bpts, pspec[0].stride, pspec[1].stride );
94    }
95
96    /* set scale range */
97    pspec[0].range[0] = geo->qspec[0].breakpoints[geo->qspec[0].index];
98    pspec[0].range[1] = geo->qspec[0].breakpoints[geo->qspec[0].index+1];
99    pspec[0].range[2] = pspec[0].range[1] - pspec[0].range[0];
100
101    pspec[1].range[0] = geo->qspec[1].breakpoints[geo->qspec[1].index];
102    pspec[1].range[1] = geo->qspec[1].breakpoints[geo->qspec[1].index+1];
103    pspec[1].range[2] = pspec[1].range[1] - pspec[1].range[0];
104
105    // may need to subdivide to match range of sub-patch
106    if( pspec[0].range[0] != pta[0] ) {
107	assert( pspec[0].range[0] < pta[0] );
108	Patch lower( *this, 0, pta[0], 0 );
109	*this = lower;
110    }
111
112    if( pspec[0].range[1] != ptb[0] ) {
113	assert( pspec[0].range[1] > ptb[0] );
114	Patch upper( *this, 0, ptb[0], 0 );
115    }
116
117    if( pspec[1].range[0] != pta[1] ) {
118	assert( pspec[1].range[0] < pta[1] );
119	Patch lower( *this, 1, pta[1], 0 );
120	*this = lower;
121    }
122
123    if( pspec[1].range[1] != ptb[1] ) {
124	assert( pspec[1].range[1] > ptb[1] );
125	Patch upper( *this, 1, ptb[1], 0 );
126    }
127    checkBboxConstraint();
128    next = n;
129}
130
131/*--------------------------------------------------------------------------
132 * Patch - subdivide a patch along an isoparametric line
133 *--------------------------------------------------------------------------
134 */
135
136Patch::Patch( Patch& upper, int param, REAL value, Patch *n )
137{
138    Patch& lower = *this;
139
140    lower.cullval = upper.cullval;
141    lower.mapdesc = upper.mapdesc;
142    lower.notInBbox = upper.notInBbox;
143    lower.needsSampling = upper.needsSampling;
144    lower.pspec[0].order = upper.pspec[0].order;
145    lower.pspec[1].order = upper.pspec[1].order;
146    lower.pspec[0].stride = upper.pspec[0].stride;
147    lower.pspec[1].stride = upper.pspec[1].stride;
148    lower.next = n;
149
150    /* reset scale range */
151    switch( param ) {
152	case 0: {
153    	    REAL d = (value-upper.pspec[0].range[0]) / upper.pspec[0].range[2];
154	    if( needsSampling )
155                mapdesc->subdivide( upper.spts, lower.spts, d, pspec[1].order,
156                        pspec[1].stride, pspec[0].order, pspec[0].stride );
157
158    	    if( cullval == CULL_ACCEPT )
159	        mapdesc->subdivide( upper.cpts, lower.cpts, d, pspec[1].order,
160                        pspec[1].stride, pspec[0].order, pspec[0].stride );
161
162    	    if( notInBbox )
163	        mapdesc->subdivide( upper.bpts, lower.bpts, d, pspec[1].order,
164                        pspec[1].stride, pspec[0].order, pspec[0].stride );
165
166            lower.pspec[0].range[0] = upper.pspec[0].range[0];
167            lower.pspec[0].range[1] = value;
168    	    lower.pspec[0].range[2] = value - upper.pspec[0].range[0];
169            upper.pspec[0].range[0] = value;
170    	    upper.pspec[0].range[2] = upper.pspec[0].range[1] - value;
171
172            lower.pspec[1].range[0] = upper.pspec[1].range[0];
173            lower.pspec[1].range[1] = upper.pspec[1].range[1];
174    	    lower.pspec[1].range[2] = upper.pspec[1].range[2];
175	    break;
176	}
177	case 1: {
178    	    REAL d = (value-upper.pspec[1].range[0]) / upper.pspec[1].range[2];
179	    if( needsSampling )
180	        mapdesc->subdivide( upper.spts, lower.spts, d, pspec[0].order,
181                        pspec[0].stride, pspec[1].order, pspec[1].stride );
182    	    if( cullval == CULL_ACCEPT )
183	        mapdesc->subdivide( upper.cpts, lower.cpts, d, pspec[0].order,
184                        pspec[0].stride, pspec[1].order, pspec[1].stride );
185    	    if( notInBbox )
186	        mapdesc->subdivide( upper.bpts, lower.bpts, d, pspec[0].order,
187                        pspec[0].stride, pspec[1].order, pspec[1].stride );
188            lower.pspec[0].range[0] = upper.pspec[0].range[0];
189            lower.pspec[0].range[1] = upper.pspec[0].range[1];
190    	    lower.pspec[0].range[2] = upper.pspec[0].range[2];
191
192            lower.pspec[1].range[0] = upper.pspec[1].range[0];
193            lower.pspec[1].range[1] = value;
194    	    lower.pspec[1].range[2] = value - upper.pspec[1].range[0];
195            upper.pspec[1].range[0] = value;
196    	    upper.pspec[1].range[2] = upper.pspec[1].range[1] - value;
197	    break;
198	}
199    }
200
201    // inherit bounding box
202    if( mapdesc->isBboxSubdividing() && ! notInBbox )
203	memcpy( lower.bb, upper.bb, sizeof( bb ) );
204
205    lower.checkBboxConstraint();
206    upper.checkBboxConstraint();
207}
208
209/*--------------------------------------------------------------------------
210 * clamp - clamp the sampling rate to a given maximum
211 *--------------------------------------------------------------------------
212 */
213
214void
215Patch::clamp( void )
216{
217    if( mapdesc->clampfactor != N_NOCLAMPING ) {
218	pspec[0].clamp( mapdesc->clampfactor );
219	pspec[1].clamp( mapdesc->clampfactor );
220    }
221}
222
223void
224Patchspec::clamp( REAL clampfactor )
225{
226    if( sidestep[0] < minstepsize )
227        sidestep[0] = clampfactor * minstepsize;
228    if( sidestep[1] < minstepsize )
229        sidestep[1] = clampfactor * minstepsize;
230    if( stepsize < minstepsize )
231        stepsize = clampfactor * minstepsize;
232}
233
234void
235Patch::checkBboxConstraint( void )
236{
237    if( notInBbox &&
238	mapdesc->bboxTooBig( bpts, pspec[0].stride, pspec[1].stride,
239				   pspec[0].order, pspec[1].order, bb ) != 1 ) {
240	notInBbox = 0;
241    }
242}
243
244void
245Patch::bbox( void )
246{
247    if( mapdesc->isBboxSubdividing() )
248	mapdesc->surfbbox( bb );
249}
250
251/*--------------------------------------------------------------------------
252 * getstepsize - compute the sampling density across the patch
253 * 		and determine if patch needs to be subdivided
254 *--------------------------------------------------------------------------
255 */
256
257void
258Patch::getstepsize( void )
259{
260    pspec[0].minstepsize = pspec[1].minstepsize = 0;
261    pspec[0].needsSubdivision = pspec[1].needsSubdivision = 0;
262
263    if( mapdesc->isConstantSampling() ) {
264	// fixed number of samples per patch in each direction
265	// maxsrate is number of s samples per patch
266	// maxtrate is number of t samples per patch
267        pspec[0].getstepsize( mapdesc->maxsrate );
268        pspec[1].getstepsize( mapdesc->maxtrate );
269
270    } else if( mapdesc->isDomainSampling() ) {
271	// maxsrate is number of s samples per unit s length of domain
272	// maxtrate is number of t samples per unit t length of domain
273        pspec[0].getstepsize( mapdesc->maxsrate * pspec[0].range[2] );
274        pspec[1].getstepsize( mapdesc->maxtrate * pspec[1].range[2] );
275
276    } else if( ! needsSampling ) {
277	pspec[0].singleStep();
278	pspec[1].singleStep();
279    } else {
280	// upper bound on path length between sample points
281        REAL tmp[MAXORDER][MAXORDER][MAXCOORDS];
282	const int trstride = sizeof(tmp[0]) / sizeof(REAL);
283	const int tcstride = sizeof(tmp[0][0]) / sizeof(REAL);
284
285	assert( pspec[0].order <= MAXORDER );
286
287	/* points have been transformed, therefore they are homogeneous */
288
289	int val = mapdesc->project( spts, pspec[0].stride, pspec[1].stride,
290		 &tmp[0][0][0], trstride, tcstride,
291		 pspec[0].order, pspec[1].order );
292        if( val == 0 ) {
293	    // control points cross infinity, therefore partials are undefined
294            pspec[0].getstepsize( mapdesc->maxsrate );
295            pspec[1].getstepsize( mapdesc->maxtrate );
296        } else {
297            REAL t1 = mapdesc->getProperty( N_PIXEL_TOLERANCE );
298//	    REAL t2 = mapdesc->getProperty( N_ERROR_TOLERANCE );
299	    pspec[0].minstepsize = ( mapdesc->maxsrate > 0.0 ) ?
300			(pspec[0].range[2] / mapdesc->maxsrate) : 0.0;
301	    pspec[1].minstepsize = ( mapdesc->maxtrate > 0.0 ) ?
302			(pspec[1].range[2] / mapdesc->maxtrate) : 0.0;
303	    if( mapdesc->isParametricDistanceSampling() ||
304                mapdesc->isObjectSpaceParaSampling() ) {
305
306                REAL t2;
307                t2 = mapdesc->getProperty( N_ERROR_TOLERANCE );
308
309		// t2 is upper bound on the distance between surface and tessellant
310		REAL ssv[2], ttv[2];
311		REAL ss = mapdesc->calcPartialVelocity( ssv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 2, 0, pspec[0].range[2], pspec[1].range[2], 0 );
312		REAL st = mapdesc->calcPartialVelocity(   0, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 1, pspec[0].range[2], pspec[1].range[2], -1 );
313		REAL tt = mapdesc->calcPartialVelocity( ttv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 2, pspec[0].range[2], pspec[1].range[2], 1 );
314	        //make sure that ss st and tt are nonnegative:
315 	        if(ss <0) ss = -ss;
316	        if(st <0) st = -st;
317                if(tt <0) tt = -tt;
318
319		if( ss != 0.0 && tt != 0.0 ) {
320		    /* printf( "ssv[0] %g ssv[1] %g ttv[0] %g ttv[1] %g\n",
321			ssv[0], ssv[1], ttv[0], ttv[1] ); */
322		    REAL ttq = sqrtf( (float) ss );
323		    REAL ssq = sqrtf( (float) tt );
324		    REAL ds = sqrtf( 4 * t2 * ttq / ( ss * ttq + st * ssq ) );
325		    REAL dt = sqrtf( 4 * t2 * ssq / ( tt * ssq + st * ttq ) );
326		    pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
327		    REAL scutoff = 2.0 * t2 / ( pspec[0].range[2] * pspec[0].range[2]);
328		    pspec[0].sidestep[0] = (ssv[0] > scutoff) ? sqrtf( 2.0 * t2 / ssv[0] ) : pspec[0].range[2];
329		    pspec[0].sidestep[1] = (ssv[1] > scutoff) ? sqrtf( 2.0 * t2 / ssv[1] ) : pspec[0].range[2];
330
331		    pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
332		    REAL tcutoff = 2.0 * t2 / ( pspec[1].range[2] * pspec[1].range[2]);
333		    pspec[1].sidestep[0] = (ttv[0] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[0] ) : pspec[1].range[2];
334		    pspec[1].sidestep[1] = (ttv[1] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[1] ) : pspec[1].range[2];
335		} else if( ss != 0.0 ) {
336		    REAL x = pspec[1].range[2] * st;
337		    REAL ds = ( sqrtf( x * x + 8.0 * t2 * ss ) - x ) / ss;
338		    pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
339		    REAL scutoff = 2.0 * t2 / ( pspec[0].range[2] * pspec[0].range[2]);
340		    pspec[0].sidestep[0] = (ssv[0] > scutoff) ? sqrtf( 2.0 * t2 / ssv[0] ) : pspec[0].range[2];
341		    pspec[0].sidestep[1] = (ssv[1] > scutoff) ? sqrtf( 2.0 * t2 / ssv[1] ) : pspec[0].range[2];
342		    pspec[1].singleStep();
343		} else if( tt != 0.0 ) {
344		    REAL x = pspec[0].range[2] * st;
345		    REAL dt = ( sqrtf( x * x + 8.0 * t2 * tt ) - x )  / tt;
346		    pspec[0].singleStep();
347		    REAL tcutoff = 2.0 * t2 / ( pspec[1].range[2] * pspec[1].range[2]);
348		    pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
349		    pspec[1].sidestep[0] = (ttv[0] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[0] ) : pspec[1].range[2];
350		    pspec[1].sidestep[1] = (ttv[1] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[1] ) : pspec[1].range[2];
351		} else {
352		    if( 4.0 * t2  > st * pspec[0].range[2] * pspec[1].range[2] ) {
353			pspec[0].singleStep();
354			pspec[1].singleStep();
355		    } else {
356			REAL area = 4.0 * t2 / st;
357			REAL ds = sqrtf( area * pspec[0].range[2] / pspec[1].range[2] );
358			REAL dt = sqrtf( area * pspec[1].range[2] / pspec[0].range[2] );
359			pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
360			pspec[0].sidestep[0] = pspec[0].range[2];
361			pspec[0].sidestep[1] = pspec[0].range[2];
362
363			pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
364			pspec[1].sidestep[0] = pspec[1].range[2];
365			pspec[1].sidestep[1] = pspec[1].range[2];
366		    }
367		}
368	    } else if( mapdesc->isPathLengthSampling() ||
369		      mapdesc->isObjectSpacePathSampling()) {
370		// t1 is upper bound on path length
371		REAL msv[2], mtv[2];
372		REAL ms = mapdesc->calcPartialVelocity( msv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 0, pspec[0].range[2], pspec[1].range[2], 0 );
373		REAL mt = mapdesc->calcPartialVelocity( mtv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 1, pspec[0].range[2], pspec[1].range[2], 1 );
374                REAL side_scale = 1.0;
375
376		if( ms != 0.0 ) {
377		    if( mt != 0.0 ) {
378/*		    REAL d = t1 / ( ms * ms + mt * mt );*/
379/*		    REAL ds = mt * d;*/
380		    REAL ds = t1 / (2.0*ms);
381/*		    REAL dt = ms * d;*/
382		    REAL dt = t1 / (2.0*mt);
383			pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
384			pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t1 ) ? (side_scale* t1 / msv[0]) : pspec[0].range[2];
385			pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t1 ) ? (side_scale* t1 / msv[1]) : pspec[0].range[2];
386
387			pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
388			pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t1 ) ? (side_scale*t1 / mtv[0]) : pspec[1].range[2];
389			pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t1 ) ? (side_scale*t1 / mtv[1]) : pspec[1].range[2];
390		    } else {
391			pspec[0].stepsize = ( t1 < ms * pspec[0].range[2] ) ? (t1 / ms) : pspec[0].range[2];
392			pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t1 ) ? (t1 / msv[0]) : pspec[0].range[2];
393			pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t1 ) ? (t1 / msv[1]) : pspec[0].range[2];
394
395			pspec[1].singleStep();
396		    }
397		} else {
398		    if( mt != 0.0 ) {
399			pspec[0].singleStep();
400
401			pspec[1].stepsize = ( t1 < mt * pspec[1].range[2] ) ? (t1 / mt) : pspec[1].range[2];
402			pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t1 ) ? (t1 / mtv[0]) : pspec[1].range[2];
403			pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t1 ) ? (t1 / mtv[1]) : pspec[1].range[2];
404		    } else {
405			pspec[0].singleStep();
406			pspec[1].singleStep();
407		    }
408		}
409	    } else if( mapdesc->isSurfaceAreaSampling() ) {
410		// t is the square root of area
411/*
412		REAL msv[2], mtv[2];
413		REAL ms = mapdesc->calcPartialVelocity( msv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 0, pspec[0].range[2], pspec[1].range[2], 0 );
414		REAL mt = mapdesc->calcPartialVelocity( mtv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 1, pspec[0].range[2], pspec[1].range[2], 1 );
415		if( ms != 0.0 &&  mt != 0.0 ) {
416			REAL d = 1.0 / (ms * mt);
417			t *= M_SQRT2;
418			REAL ds = t * sqrtf( d * pspec[0].range[2] / pspec[1].range[2] );
419			REAL dt = t * sqrtf( d * pspec[1].range[2] / pspec[0].range[2] );
420			pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2];
421			pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t ) ? (t / msv[0]) : pspec[0].range[2];
422			pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t ) ? (t / msv[1]) : pspec[0].range[2];
423
424			pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2];
425			pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t ) ? (t / mtv[0]) : pspec[1].range[2];
426			pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t ) ? (t / mtv[1]) : pspec[1].range[2];
427		} else {
428		    pspec[0].singleStep();
429		    pspec[1].singleStep();
430		}
431*/
432	    } else {
433		pspec[0].singleStep();
434		pspec[1].singleStep();
435	    }
436	}
437    }
438
439#ifdef DEBUG
440    _glu_dprintf( "sidesteps %g %g %g %g, stepsize %g %g\n",
441	pspec[0].sidestep[0], pspec[0].sidestep[1],
442	pspec[1].sidestep[0], pspec[1].sidestep[1],
443	pspec[0].stepsize, pspec[1].stepsize );
444#endif
445
446    if( mapdesc->minsavings != N_NOSAVINGSSUBDIVISION ) {
447	REAL savings = 1./(pspec[0].stepsize * pspec[1].stepsize) ;
448	savings-= (2./( pspec[0].sidestep[0] + pspec[0].sidestep[1] )) *
449		  (2./( pspec[1].sidestep[0] + pspec[1].sidestep[1] ));
450
451	savings *= pspec[0].range[2] * pspec[1].range[2];
452	if( savings > mapdesc->minsavings ) {
453	    pspec[0].needsSubdivision = pspec[1].needsSubdivision = 1;
454	}
455    }
456
457    if( pspec[0].stepsize < pspec[0].minstepsize )  pspec[0].needsSubdivision =  1;
458    if( pspec[1].stepsize < pspec[1].minstepsize )  pspec[1].needsSubdivision =  1;
459    needsSampling = (needsSampling ? needsSamplingSubdivision() : 0);
460}
461
462void
463Patchspec::singleStep()
464{
465    stepsize =  sidestep[0] =  sidestep[1] = glu_abs(range[2]);
466}
467
468void
469Patchspec::getstepsize( REAL max ) // max is number of samples for entire patch
470{
471    stepsize = ( max >= 1.0 ) ? range[2] / max : range[2];
472    if (stepsize < 0.0) {
473       stepsize = -stepsize;
474    }
475    sidestep[0]	=  sidestep[1] = minstepsize = stepsize;
476}
477
478int
479Patch::needsSamplingSubdivision( void )
480{
481    return (pspec[0].needsSubdivision || pspec[1].needsSubdivision) ? 1 : 0;
482}
483
484int
485Patch::needsNonSamplingSubdivision( void )
486{
487    return notInBbox;
488}
489
490int
491Patch::needsSubdivision( int param )
492{
493    return pspec[param].needsSubdivision;
494}
495
496int
497Patch::cullCheck( void )
498{
499    if( cullval == CULL_ACCEPT )
500	cullval = mapdesc->cullCheck( cpts, pspec[0].order,  pspec[0].stride,
501					    pspec[1].order,  pspec[1].stride );
502    return cullval;
503}
504
505