1f220fa62Smrg/*
2f220fa62Smrg * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3f220fa62Smrg * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
4f220fa62Smrg *
5f220fa62Smrg * Permission is hereby granted, free of charge, to any person obtaining a
6f220fa62Smrg * copy of this software and associated documentation files (the "Software"),
7f220fa62Smrg * to deal in the Software without restriction, including without limitation
8f220fa62Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9f220fa62Smrg * and/or sell copies of the Software, and to permit persons to whom the
10f220fa62Smrg * Software is furnished to do so, subject to the following conditions:
11f220fa62Smrg *
12f220fa62Smrg * The above copyright notice including the dates of first publication and
13f220fa62Smrg * either this permission notice or a reference to
14f220fa62Smrg * http://oss.sgi.com/projects/FreeB/
15f220fa62Smrg * shall be included in all copies or substantial portions of the Software.
16f220fa62Smrg *
17f220fa62Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18f220fa62Smrg * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19f220fa62Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20f220fa62Smrg * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21f220fa62Smrg * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22f220fa62Smrg * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23f220fa62Smrg * SOFTWARE.
24f220fa62Smrg *
25f220fa62Smrg * Except as contained in this notice, the name of Silicon Graphics, Inc.
26f220fa62Smrg * shall not be used in advertising or otherwise to promote the sale, use or
27f220fa62Smrg * other dealings in this Software without prior written authorization from
28f220fa62Smrg * Silicon Graphics, Inc.
29f220fa62Smrg */
30f220fa62Smrg/*
31f220fa62Smrg** Author: Eric Veach, July 1994.
32f220fa62Smrg**
33f220fa62Smrg*/
34f220fa62Smrg
35f220fa62Smrg#include "gluos.h"
36f220fa62Smrg#include <assert.h>
37f220fa62Smrg#include "mesh.h"
38f220fa62Smrg#include "geom.h"
39f220fa62Smrg
40f220fa62Smrgint __gl_vertLeq( GLUvertex *u, GLUvertex *v )
41f220fa62Smrg{
42f220fa62Smrg  /* Returns TRUE if u is lexicographically <= v. */
43f220fa62Smrg
44f220fa62Smrg  return VertLeq( u, v );
45f220fa62Smrg}
46f220fa62Smrg
47f220fa62SmrgGLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
48f220fa62Smrg{
49f220fa62Smrg  /* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
50f220fa62Smrg   * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
51f220fa62Smrg   * Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
52f220fa62Smrg   * If uw is vertical (and thus passes thru v), the result is zero.
53f220fa62Smrg   *
54f220fa62Smrg   * The calculation is extremely accurate and stable, even when v
55f220fa62Smrg   * is very close to u or w.  In particular if we set v->t = 0 and
56f220fa62Smrg   * let r be the negated result (this evaluates (uw)(v->s)), then
57f220fa62Smrg   * r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
58f220fa62Smrg   */
59f220fa62Smrg  GLdouble gapL, gapR;
60f220fa62Smrg
61f220fa62Smrg  assert( VertLeq( u, v ) && VertLeq( v, w ));
62f220fa62Smrg
63f220fa62Smrg  gapL = v->s - u->s;
64f220fa62Smrg  gapR = w->s - v->s;
65f220fa62Smrg
66f220fa62Smrg  if( gapL + gapR > 0 ) {
67f220fa62Smrg    if( gapL < gapR ) {
68f220fa62Smrg      return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
69f220fa62Smrg    } else {
70f220fa62Smrg      return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
71f220fa62Smrg    }
72f220fa62Smrg  }
73f220fa62Smrg  /* vertical line */
74f220fa62Smrg  return 0;
75f220fa62Smrg}
76f220fa62Smrg
77f220fa62SmrgGLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
78f220fa62Smrg{
79f220fa62Smrg  /* Returns a number whose sign matches EdgeEval(u,v,w) but which
80f220fa62Smrg   * is cheaper to evaluate.  Returns > 0, == 0 , or < 0
81f220fa62Smrg   * as v is above, on, or below the edge uw.
82f220fa62Smrg   */
83f220fa62Smrg  GLdouble gapL, gapR;
84f220fa62Smrg
85f220fa62Smrg  assert( VertLeq( u, v ) && VertLeq( v, w ));
86f220fa62Smrg
87f220fa62Smrg  gapL = v->s - u->s;
88f220fa62Smrg  gapR = w->s - v->s;
89f220fa62Smrg
90f220fa62Smrg  if( gapL + gapR > 0 ) {
91f220fa62Smrg    return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
92f220fa62Smrg  }
93f220fa62Smrg  /* vertical line */
94f220fa62Smrg  return 0;
95f220fa62Smrg}
96f220fa62Smrg
97f220fa62Smrg
98f220fa62Smrg/***********************************************************************
99f220fa62Smrg * Define versions of EdgeSign, EdgeEval with s and t transposed.
100f220fa62Smrg */
101f220fa62Smrg
102f220fa62SmrgGLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
103f220fa62Smrg{
104f220fa62Smrg  /* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
105f220fa62Smrg   * evaluates the t-coord of the edge uw at the s-coord of the vertex v.
106f220fa62Smrg   * Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
107f220fa62Smrg   * If uw is vertical (and thus passes thru v), the result is zero.
108f220fa62Smrg   *
109f220fa62Smrg   * The calculation is extremely accurate and stable, even when v
110f220fa62Smrg   * is very close to u or w.  In particular if we set v->s = 0 and
111f220fa62Smrg   * let r be the negated result (this evaluates (uw)(v->t)), then
112f220fa62Smrg   * r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
113f220fa62Smrg   */
114f220fa62Smrg  GLdouble gapL, gapR;
115f220fa62Smrg
116f220fa62Smrg  assert( TransLeq( u, v ) && TransLeq( v, w ));
117f220fa62Smrg
118f220fa62Smrg  gapL = v->t - u->t;
119f220fa62Smrg  gapR = w->t - v->t;
120f220fa62Smrg
121f220fa62Smrg  if( gapL + gapR > 0 ) {
122f220fa62Smrg    if( gapL < gapR ) {
123f220fa62Smrg      return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
124f220fa62Smrg    } else {
125f220fa62Smrg      return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
126f220fa62Smrg    }
127f220fa62Smrg  }
128f220fa62Smrg  /* vertical line */
129f220fa62Smrg  return 0;
130f220fa62Smrg}
131f220fa62Smrg
132f220fa62SmrgGLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
133f220fa62Smrg{
134f220fa62Smrg  /* Returns a number whose sign matches TransEval(u,v,w) but which
135f220fa62Smrg   * is cheaper to evaluate.  Returns > 0, == 0 , or < 0
136f220fa62Smrg   * as v is above, on, or below the edge uw.
137f220fa62Smrg   */
138f220fa62Smrg  GLdouble gapL, gapR;
139f220fa62Smrg
140f220fa62Smrg  assert( TransLeq( u, v ) && TransLeq( v, w ));
141f220fa62Smrg
142f220fa62Smrg  gapL = v->t - u->t;
143f220fa62Smrg  gapR = w->t - v->t;
144f220fa62Smrg
145f220fa62Smrg  if( gapL + gapR > 0 ) {
146f220fa62Smrg    return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
147f220fa62Smrg  }
148f220fa62Smrg  /* vertical line */
149f220fa62Smrg  return 0;
150f220fa62Smrg}
151f220fa62Smrg
152f220fa62Smrg
153f220fa62Smrgint __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w )
154f220fa62Smrg{
155f220fa62Smrg  /* For almost-degenerate situations, the results are not reliable.
156f220fa62Smrg   * Unless the floating-point arithmetic can be performed without
157f220fa62Smrg   * rounding errors, *any* implementation will give incorrect results
158f220fa62Smrg   * on some degenerate inputs, so the client must have some way to
159f220fa62Smrg   * handle this situation.
160f220fa62Smrg   */
161f220fa62Smrg  return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
162f220fa62Smrg}
163f220fa62Smrg
164f220fa62Smrg/* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
165f220fa62Smrg * or (x+y)/2 if a==b==0.  It requires that a,b >= 0, and enforces
166f220fa62Smrg * this in the rare case that one argument is slightly negative.
167f220fa62Smrg * The implementation is extremely stable numerically.
168f220fa62Smrg * In particular it guarantees that the result r satisfies
169f220fa62Smrg * MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
170f220fa62Smrg * even when a and b differ greatly in magnitude.
171f220fa62Smrg */
172f220fa62Smrg#define RealInterpolate(a,x,b,y)			\
173f220fa62Smrg  (a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b,		\
174f220fa62Smrg  ((a <= b) ? ((b == 0) ? ((x+y) / 2)			\
175f220fa62Smrg                        : (x + (y-x) * (a/(a+b))))	\
176f220fa62Smrg            : (y + (x-y) * (b/(a+b)))))
177f220fa62Smrg
178f220fa62Smrg#ifndef FOR_TRITE_TEST_PROGRAM
179f220fa62Smrg#define Interpolate(a,x,b,y)	RealInterpolate(a,x,b,y)
180f220fa62Smrg#else
181f220fa62Smrg
182f220fa62Smrg/* Claim: the ONLY property the sweep algorithm relies on is that
183f220fa62Smrg * MIN(x,y) <= r <= MAX(x,y).  This is a nasty way to test that.
184f220fa62Smrg */
185f220fa62Smrg#include <stdlib.h>
186f220fa62Smrgextern int RandomInterpolate;
187f220fa62Smrg
188f220fa62SmrgGLdouble Interpolate( GLdouble a, GLdouble x, GLdouble b, GLdouble y)
189f220fa62Smrg{
190f220fa62Smrgprintf("*********************%d\n",RandomInterpolate);
191f220fa62Smrg  if( RandomInterpolate ) {
192f220fa62Smrg    a = 1.2 * drand48() - 0.1;
193f220fa62Smrg    a = (a < 0) ? 0 : ((a > 1) ? 1 : a);
194f220fa62Smrg    b = 1.0 - a;
195f220fa62Smrg  }
196f220fa62Smrg  return RealInterpolate(a,x,b,y);
197f220fa62Smrg}
198f220fa62Smrg
199f220fa62Smrg#endif
200f220fa62Smrg
201f220fa62Smrg#define Swap(a,b)	do { GLUvertex *t = a; a = b; b = t; } while (0)
202f220fa62Smrg
203f220fa62Smrgvoid __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
204f220fa62Smrg			 GLUvertex *o2, GLUvertex *d2,
205f220fa62Smrg			 GLUvertex *v )
206f220fa62Smrg/* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
207f220fa62Smrg * The computed point is guaranteed to lie in the intersection of the
208f220fa62Smrg * bounding rectangles defined by each edge.
209f220fa62Smrg */
210f220fa62Smrg{
211f220fa62Smrg  GLdouble z1, z2;
212f220fa62Smrg
213f220fa62Smrg  /* This is certainly not the most efficient way to find the intersection
214f220fa62Smrg   * of two line segments, but it is very numerically stable.
215f220fa62Smrg   *
216f220fa62Smrg   * Strategy: find the two middle vertices in the VertLeq ordering,
217f220fa62Smrg   * and interpolate the intersection s-value from these.  Then repeat
218f220fa62Smrg   * using the TransLeq ordering to find the intersection t-value.
219f220fa62Smrg   */
220f220fa62Smrg
221f220fa62Smrg  if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
222f220fa62Smrg  if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
223f220fa62Smrg  if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
224f220fa62Smrg
225f220fa62Smrg  if( ! VertLeq( o2, d1 )) {
226f220fa62Smrg    /* Technically, no intersection -- do our best */
227f220fa62Smrg    v->s = (o2->s + d1->s) / 2;
228f220fa62Smrg  } else if( VertLeq( d1, d2 )) {
229f220fa62Smrg    /* Interpolate between o2 and d1 */
230f220fa62Smrg    z1 = EdgeEval( o1, o2, d1 );
231f220fa62Smrg    z2 = EdgeEval( o2, d1, d2 );
232f220fa62Smrg    if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
233f220fa62Smrg    v->s = Interpolate( z1, o2->s, z2, d1->s );
234f220fa62Smrg  } else {
235f220fa62Smrg    /* Interpolate between o2 and d2 */
236f220fa62Smrg    z1 = EdgeSign( o1, o2, d1 );
237f220fa62Smrg    z2 = -EdgeSign( o1, d2, d1 );
238f220fa62Smrg    if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
239f220fa62Smrg    v->s = Interpolate( z1, o2->s, z2, d2->s );
240f220fa62Smrg  }
241f220fa62Smrg
242f220fa62Smrg  /* Now repeat the process for t */
243f220fa62Smrg
244f220fa62Smrg  if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
245f220fa62Smrg  if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
246f220fa62Smrg  if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
247f220fa62Smrg
248f220fa62Smrg  if( ! TransLeq( o2, d1 )) {
249f220fa62Smrg    /* Technically, no intersection -- do our best */
250f220fa62Smrg    v->t = (o2->t + d1->t) / 2;
251f220fa62Smrg  } else if( TransLeq( d1, d2 )) {
252f220fa62Smrg    /* Interpolate between o2 and d1 */
253f220fa62Smrg    z1 = TransEval( o1, o2, d1 );
254f220fa62Smrg    z2 = TransEval( o2, d1, d2 );
255f220fa62Smrg    if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
256f220fa62Smrg    v->t = Interpolate( z1, o2->t, z2, d1->t );
257f220fa62Smrg  } else {
258f220fa62Smrg    /* Interpolate between o2 and d2 */
259f220fa62Smrg    z1 = TransSign( o1, o2, d1 );
260f220fa62Smrg    z2 = -TransSign( o1, d2, d1 );
261f220fa62Smrg    if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
262f220fa62Smrg    v->t = Interpolate( z1, o2->t, z2, d2->t );
263f220fa62Smrg  }
264f220fa62Smrg}
265