1f220fa62Smrg/*
2f220fa62Smrg * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
3f220fa62Smrg * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
4f220fa62Smrg *
5f220fa62Smrg * Permission is hereby granted, free of charge, to any person obtaining a
6f220fa62Smrg * copy of this software and associated documentation files (the "Software"),
7f220fa62Smrg * to deal in the Software without restriction, including without limitation
8f220fa62Smrg * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9f220fa62Smrg * and/or sell copies of the Software, and to permit persons to whom the
10f220fa62Smrg * Software is furnished to do so, subject to the following conditions:
11f220fa62Smrg *
12f220fa62Smrg * The above copyright notice including the dates of first publication and
13f220fa62Smrg * either this permission notice or a reference to
14f220fa62Smrg * http://oss.sgi.com/projects/FreeB/
15f220fa62Smrg * shall be included in all copies or substantial portions of the Software.
16f220fa62Smrg *
17f220fa62Smrg * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18f220fa62Smrg * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19f220fa62Smrg * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20f220fa62Smrg * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
21f220fa62Smrg * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
22f220fa62Smrg * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23f220fa62Smrg * SOFTWARE.
24f220fa62Smrg *
25f220fa62Smrg * Except as contained in this notice, the name of Silicon Graphics, Inc.
26f220fa62Smrg * shall not be used in advertising or otherwise to promote the sale, use or
27f220fa62Smrg * other dealings in this Software without prior written authorization from
28f220fa62Smrg * Silicon Graphics, Inc.
29f220fa62Smrg */
30f220fa62Smrg/*
31f220fa62Smrg** Author: Eric Veach, July 1994.
32f220fa62Smrg**
33f220fa62Smrg*/
34f220fa62Smrg
35f220fa62Smrg#include "gluos.h"
36f220fa62Smrg#include "mesh.h"
37f220fa62Smrg#include "tess.h"
38f220fa62Smrg#include "normal.h"
39f220fa62Smrg#include <math.h>
40f220fa62Smrg#include <assert.h>
41f220fa62Smrg
42f220fa62Smrg#ifndef TRUE
43f220fa62Smrg#define TRUE 1
44f220fa62Smrg#endif
45f220fa62Smrg#ifndef FALSE
46f220fa62Smrg#define FALSE 0
47f220fa62Smrg#endif
48f220fa62Smrg
49f220fa62Smrg#define Dot(u,v)	(u[0]*v[0] + u[1]*v[1] + u[2]*v[2])
50f220fa62Smrg
51f220fa62Smrg#if 0
52f220fa62Smrgstatic void Normalize( GLdouble v[3] )
53f220fa62Smrg{
54f220fa62Smrg  GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
55f220fa62Smrg
56f220fa62Smrg  assert( len > 0 );
57f220fa62Smrg  len = sqrt( len );
58f220fa62Smrg  v[0] /= len;
59f220fa62Smrg  v[1] /= len;
60f220fa62Smrg  v[2] /= len;
61f220fa62Smrg}
62f220fa62Smrg#endif
63f220fa62Smrg
64f220fa62Smrg#undef	ABS
65f220fa62Smrg#define ABS(x)	((x) < 0 ? -(x) : (x))
66f220fa62Smrg
67f220fa62Smrgstatic int LongAxis( GLdouble v[3] )
68f220fa62Smrg{
69f220fa62Smrg  int i = 0;
70f220fa62Smrg
71f220fa62Smrg  if( ABS(v[1]) > ABS(v[0]) ) { i = 1; }
72f220fa62Smrg  if( ABS(v[2]) > ABS(v[i]) ) { i = 2; }
73f220fa62Smrg  return i;
74f220fa62Smrg}
75f220fa62Smrg
76f220fa62Smrgstatic void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] )
77f220fa62Smrg{
78f220fa62Smrg  GLUvertex *v, *v1, *v2;
79f220fa62Smrg  GLdouble c, tLen2, maxLen2;
80f220fa62Smrg  GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
81f220fa62Smrg  GLUvertex *maxVert[3], *minVert[3];
82f220fa62Smrg  GLUvertex *vHead = &tess->mesh->vHead;
83f220fa62Smrg  int i;
84f220fa62Smrg
85f220fa62Smrg  maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;
86f220fa62Smrg  minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;
87f220fa62Smrg
88f220fa62Smrg  for( v = vHead->next; v != vHead; v = v->next ) {
89f220fa62Smrg    for( i = 0; i < 3; ++i ) {
90f220fa62Smrg      c = v->coords[i];
91f220fa62Smrg      if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }
92f220fa62Smrg      if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }
93f220fa62Smrg    }
94f220fa62Smrg  }
95f220fa62Smrg
96f220fa62Smrg  /* Find two vertices separated by at least 1/sqrt(3) of the maximum
97f220fa62Smrg   * distance between any two vertices
98f220fa62Smrg   */
99f220fa62Smrg  i = 0;
100f220fa62Smrg  if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }
101f220fa62Smrg  if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }
102f220fa62Smrg  if( minVal[i] >= maxVal[i] ) {
103f220fa62Smrg    /* All vertices are the same -- normal doesn't matter */
104f220fa62Smrg    norm[0] = 0; norm[1] = 0; norm[2] = 1;
105f220fa62Smrg    return;
106f220fa62Smrg  }
107f220fa62Smrg
108f220fa62Smrg  /* Look for a third vertex which forms the triangle with maximum area
109f220fa62Smrg   * (Length of normal == twice the triangle area)
110f220fa62Smrg   */
111f220fa62Smrg  maxLen2 = 0;
112f220fa62Smrg  v1 = minVert[i];
113f220fa62Smrg  v2 = maxVert[i];
114f220fa62Smrg  d1[0] = v1->coords[0] - v2->coords[0];
115f220fa62Smrg  d1[1] = v1->coords[1] - v2->coords[1];
116f220fa62Smrg  d1[2] = v1->coords[2] - v2->coords[2];
117f220fa62Smrg  for( v = vHead->next; v != vHead; v = v->next ) {
118f220fa62Smrg    d2[0] = v->coords[0] - v2->coords[0];
119f220fa62Smrg    d2[1] = v->coords[1] - v2->coords[1];
120f220fa62Smrg    d2[2] = v->coords[2] - v2->coords[2];
121f220fa62Smrg    tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];
122f220fa62Smrg    tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];
123f220fa62Smrg    tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];
124f220fa62Smrg    tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];
125f220fa62Smrg    if( tLen2 > maxLen2 ) {
126f220fa62Smrg      maxLen2 = tLen2;
127f220fa62Smrg      norm[0] = tNorm[0];
128f220fa62Smrg      norm[1] = tNorm[1];
129f220fa62Smrg      norm[2] = tNorm[2];
130f220fa62Smrg    }
131f220fa62Smrg  }
132f220fa62Smrg
133f220fa62Smrg  if( maxLen2 <= 0 ) {
134f220fa62Smrg    /* All points lie on a single line -- any decent normal will do */
135f220fa62Smrg    norm[0] = norm[1] = norm[2] = 0;
136f220fa62Smrg    norm[LongAxis(d1)] = 1;
137f220fa62Smrg  }
138f220fa62Smrg}
139f220fa62Smrg
140f220fa62Smrg
141f220fa62Smrgstatic void CheckOrientation( GLUtesselator *tess )
142f220fa62Smrg{
143f220fa62Smrg  GLdouble area;
144f220fa62Smrg  GLUface *f, *fHead = &tess->mesh->fHead;
145f220fa62Smrg  GLUvertex *v, *vHead = &tess->mesh->vHead;
146f220fa62Smrg  GLUhalfEdge *e;
147f220fa62Smrg
148f220fa62Smrg  /* When we compute the normal automatically, we choose the orientation
149f220fa62Smrg   * so that the sum of the signed areas of all contours is non-negative.
150f220fa62Smrg   */
151f220fa62Smrg  area = 0;
152f220fa62Smrg  for( f = fHead->next; f != fHead; f = f->next ) {
153f220fa62Smrg    e = f->anEdge;
154f220fa62Smrg    if( e->winding <= 0 ) continue;
155f220fa62Smrg    do {
156f220fa62Smrg      area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
157f220fa62Smrg      e = e->Lnext;
158f220fa62Smrg    } while( e != f->anEdge );
159f220fa62Smrg  }
160f220fa62Smrg  if( area < 0 ) {
161f220fa62Smrg    /* Reverse the orientation by flipping all the t-coordinates */
162f220fa62Smrg    for( v = vHead->next; v != vHead; v = v->next ) {
163f220fa62Smrg      v->t = - v->t;
164f220fa62Smrg    }
165f220fa62Smrg    tess->tUnit[0] = - tess->tUnit[0];
166f220fa62Smrg    tess->tUnit[1] = - tess->tUnit[1];
167f220fa62Smrg    tess->tUnit[2] = - tess->tUnit[2];
168f220fa62Smrg  }
169f220fa62Smrg}
170f220fa62Smrg
171f220fa62Smrg#ifdef FOR_TRITE_TEST_PROGRAM
172f220fa62Smrg#include <stdlib.h>
173f220fa62Smrgextern int RandomSweep;
174f220fa62Smrg#define S_UNIT_X	(RandomSweep ? (2*drand48()-1) : 1.0)
175f220fa62Smrg#define S_UNIT_Y	(RandomSweep ? (2*drand48()-1) : 0.0)
176f220fa62Smrg#else
177f220fa62Smrg#if defined(SLANTED_SWEEP)
178f220fa62Smrg/* The "feature merging" is not intended to be complete.  There are
179f220fa62Smrg * special cases where edges are nearly parallel to the sweep line
180f220fa62Smrg * which are not implemented.  The algorithm should still behave
181f220fa62Smrg * robustly (ie. produce a reasonable tesselation) in the presence
182f220fa62Smrg * of such edges, however it may miss features which could have been
183f220fa62Smrg * merged.  We could minimize this effect by choosing the sweep line
184f220fa62Smrg * direction to be something unusual (ie. not parallel to one of the
185f220fa62Smrg * coordinate axes).
186f220fa62Smrg */
187f220fa62Smrg#define S_UNIT_X	0.50941539564955385	/* Pre-normalized */
188f220fa62Smrg#define S_UNIT_Y	0.86052074622010633
189f220fa62Smrg#else
190f220fa62Smrg#define S_UNIT_X	1.0
191f220fa62Smrg#define S_UNIT_Y	0.0
192f220fa62Smrg#endif
193f220fa62Smrg#endif
194f220fa62Smrg
195f220fa62Smrg/* Determine the polygon normal and project vertices onto the plane
196f220fa62Smrg * of the polygon.
197f220fa62Smrg */
198f220fa62Smrgvoid __gl_projectPolygon( GLUtesselator *tess )
199f220fa62Smrg{
200f220fa62Smrg  GLUvertex *v, *vHead = &tess->mesh->vHead;
201f220fa62Smrg  GLdouble norm[3];
202f220fa62Smrg  GLdouble *sUnit, *tUnit;
203f220fa62Smrg  int i, computedNormal = FALSE;
204f220fa62Smrg
205f220fa62Smrg  norm[0] = tess->normal[0];
206f220fa62Smrg  norm[1] = tess->normal[1];
207f220fa62Smrg  norm[2] = tess->normal[2];
208f220fa62Smrg  if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
209f220fa62Smrg    ComputeNormal( tess, norm );
210f220fa62Smrg    computedNormal = TRUE;
211f220fa62Smrg  }
212f220fa62Smrg  sUnit = tess->sUnit;
213f220fa62Smrg  tUnit = tess->tUnit;
214f220fa62Smrg  i = LongAxis( norm );
215f220fa62Smrg
216f220fa62Smrg#if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
217f220fa62Smrg  /* Choose the initial sUnit vector to be approximately perpendicular
218f220fa62Smrg   * to the normal.
219f220fa62Smrg   */
220f220fa62Smrg  Normalize( norm );
221f220fa62Smrg
222f220fa62Smrg  sUnit[i] = 0;
223f220fa62Smrg  sUnit[(i+1)%3] = S_UNIT_X;
224f220fa62Smrg  sUnit[(i+2)%3] = S_UNIT_Y;
225f220fa62Smrg
226f220fa62Smrg  /* Now make it exactly perpendicular */
227f220fa62Smrg  w = Dot( sUnit, norm );
228f220fa62Smrg  sUnit[0] -= w * norm[0];
229f220fa62Smrg  sUnit[1] -= w * norm[1];
230f220fa62Smrg  sUnit[2] -= w * norm[2];
231f220fa62Smrg  Normalize( sUnit );
232f220fa62Smrg
233f220fa62Smrg  /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
234f220fa62Smrg  tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
235f220fa62Smrg  tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
236f220fa62Smrg  tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
237f220fa62Smrg  Normalize( tUnit );
238f220fa62Smrg#else
239f220fa62Smrg  /* Project perpendicular to a coordinate axis -- better numerically */
240f220fa62Smrg  sUnit[i] = 0;
241f220fa62Smrg  sUnit[(i+1)%3] = S_UNIT_X;
242f220fa62Smrg  sUnit[(i+2)%3] = S_UNIT_Y;
243f220fa62Smrg
244f220fa62Smrg  tUnit[i] = 0;
245f220fa62Smrg  tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
246f220fa62Smrg  tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
247f220fa62Smrg#endif
248f220fa62Smrg
249f220fa62Smrg  /* Project the vertices onto the sweep plane */
250f220fa62Smrg  for( v = vHead->next; v != vHead; v = v->next ) {
251f220fa62Smrg    v->s = Dot( v->coords, sUnit );
252f220fa62Smrg    v->t = Dot( v->coords, tUnit );
253f220fa62Smrg  }
254f220fa62Smrg  if( computedNormal ) {
255f220fa62Smrg    CheckOrientation( tess );
256f220fa62Smrg  }
257f220fa62Smrg}
258