drm_fourcc.h revision 41687f09
1/*
2 * Copyright 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#ifndef DRM_FOURCC_H
25#define DRM_FOURCC_H
26
27#include "drm.h"
28
29#if defined(__cplusplus)
30extern "C" {
31#endif
32
33/**
34 * DOC: overview
35 *
36 * In the DRM subsystem, framebuffer pixel formats are described using the
37 * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38 * fourcc code, a Format Modifier may optionally be provided, in order to
39 * further describe the buffer's format - for example tiling or compression.
40 *
41 * Format Modifiers
42 * ----------------
43 *
44 * Format modifiers are used in conjunction with a fourcc code, forming a
45 * unique fourcc:modifier pair. This format:modifier pair must fully define the
46 * format and data layout of the buffer, and should be the only way to describe
47 * that particular buffer.
48 *
49 * Having multiple fourcc:modifier pairs which describe the same layout should
50 * be avoided, as such aliases run the risk of different drivers exposing
51 * different names for the same data format, forcing userspace to understand
52 * that they are aliases.
53 *
54 * Format modifiers may change any property of the buffer, including the number
55 * of planes and/or the required allocation size. Format modifiers are
56 * vendor-namespaced, and as such the relationship between a fourcc code and a
57 * modifier is specific to the modifer being used. For example, some modifiers
58 * may preserve meaning - such as number of planes - from the fourcc code,
59 * whereas others may not.
60 *
61 * Modifiers must uniquely encode buffer layout. In other words, a buffer must
62 * match only a single modifier. A modifier must not be a subset of layouts of
63 * another modifier. For instance, it's incorrect to encode pitch alignment in
64 * a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65 * aligned modifier. That said, modifiers can have implicit minimal
66 * requirements.
67 *
68 * For modifiers where the combination of fourcc code and modifier can alias,
69 * a canonical pair needs to be defined and used by all drivers. Preferred
70 * combinations are also encouraged where all combinations might lead to
71 * confusion and unnecessarily reduced interoperability. An example for the
72 * latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73 *
74 * There are two kinds of modifier users:
75 *
76 * - Kernel and user-space drivers: for drivers it's important that modifiers
77 *   don't alias, otherwise two drivers might support the same format but use
78 *   different aliases, preventing them from sharing buffers in an efficient
79 *   format.
80 * - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81 *   see modifiers as opaque tokens they can check for equality and intersect.
82 *   These users musn't need to know to reason about the modifier value
83 *   (i.e. they are not expected to extract information out of the modifier).
84 *
85 * Vendors should document their modifier usage in as much detail as
86 * possible, to ensure maximum compatibility across devices, drivers and
87 * applications.
88 *
89 * The authoritative list of format modifier codes is found in
90 * `include/uapi/drm/drm_fourcc.h`
91 */
92
93#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
94				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
95
96#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
97
98/* Reserve 0 for the invalid format specifier */
99#define DRM_FORMAT_INVALID	0
100
101/* color index */
102#define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
103
104/* 8 bpp Red */
105#define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
106
107/* 16 bpp Red */
108#define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
109
110/* 16 bpp RG */
111#define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
112#define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
113
114/* 32 bpp RG */
115#define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
116#define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
117
118/* 8 bpp RGB */
119#define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
120#define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
121
122/* 16 bpp RGB */
123#define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
124#define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
125#define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
126#define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
127
128#define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
129#define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
130#define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
131#define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
132
133#define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
134#define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
135#define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
136#define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
137
138#define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
139#define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
140#define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
141#define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
142
143#define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
144#define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
145
146/* 24 bpp RGB */
147#define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
148#define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
149
150/* 32 bpp RGB */
151#define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
152#define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
153#define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
154#define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
155
156#define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
157#define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
158#define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
159#define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
160
161#define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
162#define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
163#define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
164#define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
165
166#define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
167#define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
168#define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
169#define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
170
171/*
172 * Floating point 64bpp RGB
173 * IEEE 754-2008 binary16 half-precision float
174 * [15:0] sign:exponent:mantissa 1:5:10
175 */
176#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
177#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
178
179#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
180#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
181
182/*
183 * RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
184 * of unused padding per component:
185 */
186#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
187
188/* packed YCbCr */
189#define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
190#define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
191#define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
192#define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
193
194#define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
195#define DRM_FORMAT_XYUV8888	fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
196#define DRM_FORMAT_VUY888	fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
197#define DRM_FORMAT_VUY101010	fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
198
199/*
200 * packed Y2xx indicate for each component, xx valid data occupy msb
201 * 16-xx padding occupy lsb
202 */
203#define DRM_FORMAT_Y210         fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
204#define DRM_FORMAT_Y212         fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
205#define DRM_FORMAT_Y216         fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
206
207/*
208 * packed Y4xx indicate for each component, xx valid data occupy msb
209 * 16-xx padding occupy lsb except Y410
210 */
211#define DRM_FORMAT_Y410         fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
212#define DRM_FORMAT_Y412         fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
213#define DRM_FORMAT_Y416         fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
214
215#define DRM_FORMAT_XVYU2101010	fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
216#define DRM_FORMAT_XVYU12_16161616	fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
217#define DRM_FORMAT_XVYU16161616	fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
218
219/*
220 * packed YCbCr420 2x2 tiled formats
221 * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
222 */
223/* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
224#define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
225/* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
226#define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
227
228/* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
229#define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
230/* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
231#define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
232
233/*
234 * 1-plane YUV 4:2:0
235 * In these formats, the component ordering is specified (Y, followed by U
236 * then V), but the exact Linear layout is undefined.
237 * These formats can only be used with a non-Linear modifier.
238 */
239#define DRM_FORMAT_YUV420_8BIT	fourcc_code('Y', 'U', '0', '8')
240#define DRM_FORMAT_YUV420_10BIT	fourcc_code('Y', 'U', '1', '0')
241
242/*
243 * 2 plane RGB + A
244 * index 0 = RGB plane, same format as the corresponding non _A8 format has
245 * index 1 = A plane, [7:0] A
246 */
247#define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
248#define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
249#define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
250#define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
251#define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
252#define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
253#define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
254#define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
255
256/*
257 * 2 plane YCbCr
258 * index 0 = Y plane, [7:0] Y
259 * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
260 * or
261 * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
262 */
263#define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
264#define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
265#define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
266#define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
267#define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
268#define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
269/*
270 * 2 plane YCbCr
271 * index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
272 * index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
273 */
274#define DRM_FORMAT_NV15		fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
275
276/*
277 * 2 plane YCbCr MSB aligned
278 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
279 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
280 */
281#define DRM_FORMAT_P210		fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
282
283/*
284 * 2 plane YCbCr MSB aligned
285 * index 0 = Y plane, [15:0] Y:x [10:6] little endian
286 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
287 */
288#define DRM_FORMAT_P010		fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
289
290/*
291 * 2 plane YCbCr MSB aligned
292 * index 0 = Y plane, [15:0] Y:x [12:4] little endian
293 * index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
294 */
295#define DRM_FORMAT_P012		fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
296
297/*
298 * 2 plane YCbCr MSB aligned
299 * index 0 = Y plane, [15:0] Y little endian
300 * index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
301 */
302#define DRM_FORMAT_P016		fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
303
304/* 3 plane non-subsampled (444) YCbCr
305 * 16 bits per component, but only 10 bits are used and 6 bits are padded
306 * index 0: Y plane, [15:0] Y:x [10:6] little endian
307 * index 1: Cb plane, [15:0] Cb:x [10:6] little endian
308 * index 2: Cr plane, [15:0] Cr:x [10:6] little endian
309 */
310#define DRM_FORMAT_Q410		fourcc_code('Q', '4', '1', '0')
311
312/* 3 plane non-subsampled (444) YCrCb
313 * 16 bits per component, but only 10 bits are used and 6 bits are padded
314 * index 0: Y plane, [15:0] Y:x [10:6] little endian
315 * index 1: Cr plane, [15:0] Cr:x [10:6] little endian
316 * index 2: Cb plane, [15:0] Cb:x [10:6] little endian
317 */
318#define DRM_FORMAT_Q401		fourcc_code('Q', '4', '0', '1')
319
320/*
321 * 3 plane YCbCr
322 * index 0: Y plane, [7:0] Y
323 * index 1: Cb plane, [7:0] Cb
324 * index 2: Cr plane, [7:0] Cr
325 * or
326 * index 1: Cr plane, [7:0] Cr
327 * index 2: Cb plane, [7:0] Cb
328 */
329#define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
330#define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
331#define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
332#define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
333#define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
334#define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
335#define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
336#define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
337#define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
338#define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
339
340
341/*
342 * Format Modifiers:
343 *
344 * Format modifiers describe, typically, a re-ordering or modification
345 * of the data in a plane of an FB.  This can be used to express tiled/
346 * swizzled formats, or compression, or a combination of the two.
347 *
348 * The upper 8 bits of the format modifier are a vendor-id as assigned
349 * below.  The lower 56 bits are assigned as vendor sees fit.
350 */
351
352/* Vendor Ids: */
353#define DRM_FORMAT_MOD_VENDOR_NONE    0
354#define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
355#define DRM_FORMAT_MOD_VENDOR_AMD     0x02
356#define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
357#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
358#define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
359#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
360#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
361#define DRM_FORMAT_MOD_VENDOR_ARM     0x08
362#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
363#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
364
365/* add more to the end as needed */
366
367#define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
368
369#define fourcc_mod_code(vendor, val) \
370	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
371
372/*
373 * Format Modifier tokens:
374 *
375 * When adding a new token please document the layout with a code comment,
376 * similar to the fourcc codes above. drm_fourcc.h is considered the
377 * authoritative source for all of these.
378 *
379 * Generic modifier names:
380 *
381 * DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
382 * for layouts which are common across multiple vendors. To preserve
383 * compatibility, in cases where a vendor-specific definition already exists and
384 * a generic name for it is desired, the common name is a purely symbolic alias
385 * and must use the same numerical value as the original definition.
386 *
387 * Note that generic names should only be used for modifiers which describe
388 * generic layouts (such as pixel re-ordering), which may have
389 * independently-developed support across multiple vendors.
390 *
391 * In future cases where a generic layout is identified before merging with a
392 * vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
393 * 'NONE' could be considered. This should only be for obvious, exceptional
394 * cases to avoid polluting the 'GENERIC' namespace with modifiers which only
395 * apply to a single vendor.
396 *
397 * Generic names should not be used for cases where multiple hardware vendors
398 * have implementations of the same standardised compression scheme (such as
399 * AFBC). In those cases, all implementations should use the same format
400 * modifier(s), reflecting the vendor of the standard.
401 */
402
403#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
404
405/*
406 * Invalid Modifier
407 *
408 * This modifier can be used as a sentinel to terminate the format modifiers
409 * list, or to initialize a variable with an invalid modifier. It might also be
410 * used to report an error back to userspace for certain APIs.
411 */
412#define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
413
414/*
415 * Linear Layout
416 *
417 * Just plain linear layout. Note that this is different from no specifying any
418 * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
419 * which tells the driver to also take driver-internal information into account
420 * and so might actually result in a tiled framebuffer.
421 */
422#define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
423
424/*
425 * Deprecated: use DRM_FORMAT_MOD_LINEAR instead
426 *
427 * The "none" format modifier doesn't actually mean that the modifier is
428 * implicit, instead it means that the layout is linear. Whether modifiers are
429 * used is out-of-band information carried in an API-specific way (e.g. in a
430 * flag for drm_mode_fb_cmd2).
431 */
432#define DRM_FORMAT_MOD_NONE	0
433
434/* Intel framebuffer modifiers */
435
436/*
437 * Intel X-tiling layout
438 *
439 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
440 * in row-major layout. Within the tile bytes are laid out row-major, with
441 * a platform-dependent stride. On top of that the memory can apply
442 * platform-depending swizzling of some higher address bits into bit6.
443 *
444 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
445 * On earlier platforms the is highly platforms specific and not useful for
446 * cross-driver sharing. It exists since on a given platform it does uniquely
447 * identify the layout in a simple way for i915-specific userspace, which
448 * facilitated conversion of userspace to modifiers. Additionally the exact
449 * format on some really old platforms is not known.
450 */
451#define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
452
453/*
454 * Intel Y-tiling layout
455 *
456 * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
457 * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
458 * chunks column-major, with a platform-dependent height. On top of that the
459 * memory can apply platform-depending swizzling of some higher address bits
460 * into bit6.
461 *
462 * Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
463 * On earlier platforms the is highly platforms specific and not useful for
464 * cross-driver sharing. It exists since on a given platform it does uniquely
465 * identify the layout in a simple way for i915-specific userspace, which
466 * facilitated conversion of userspace to modifiers. Additionally the exact
467 * format on some really old platforms is not known.
468 */
469#define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
470
471/*
472 * Intel Yf-tiling layout
473 *
474 * This is a tiled layout using 4Kb tiles in row-major layout.
475 * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
476 * are arranged in four groups (two wide, two high) with column-major layout.
477 * Each group therefore consists out of four 256 byte units, which are also laid
478 * out as 2x2 column-major.
479 * 256 byte units are made out of four 64 byte blocks of pixels, producing
480 * either a square block or a 2:1 unit.
481 * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
482 * in pixel depends on the pixel depth.
483 */
484#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
485
486/*
487 * Intel color control surface (CCS) for render compression
488 *
489 * The framebuffer format must be one of the 8:8:8:8 RGB formats.
490 * The main surface will be plane index 0 and must be Y/Yf-tiled,
491 * the CCS will be plane index 1.
492 *
493 * Each CCS tile matches a 1024x512 pixel area of the main surface.
494 * To match certain aspects of the 3D hardware the CCS is
495 * considered to be made up of normal 128Bx32 Y tiles, Thus
496 * the CCS pitch must be specified in multiples of 128 bytes.
497 *
498 * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
499 * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
500 * But that fact is not relevant unless the memory is accessed
501 * directly.
502 */
503#define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
504#define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
505
506/*
507 * Intel color control surfaces (CCS) for Gen-12 render compression.
508 *
509 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
510 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
511 * main surface. In other words, 4 bits in CCS map to a main surface cache
512 * line pair. The main surface pitch is required to be a multiple of four
513 * Y-tile widths.
514 */
515#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
516
517/*
518 * Intel color control surfaces (CCS) for Gen-12 media compression
519 *
520 * The main surface is Y-tiled and at plane index 0, the CCS is linear and
521 * at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
522 * main surface. In other words, 4 bits in CCS map to a main surface cache
523 * line pair. The main surface pitch is required to be a multiple of four
524 * Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
525 * Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
526 * planes 2 and 3 for the respective CCS.
527 */
528#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
529
530/*
531 * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
532 *
533 * Macroblocks are laid in a Z-shape, and each pixel data is following the
534 * standard NV12 style.
535 * As for NV12, an image is the result of two frame buffers: one for Y,
536 * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
537 * Alignment requirements are (for each buffer):
538 * - multiple of 128 pixels for the width
539 * - multiple of  32 pixels for the height
540 *
541 * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
542 */
543#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
544
545/*
546 * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
547 *
548 * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
549 * layout. For YCbCr formats Cb/Cr components are taken in such a way that
550 * they correspond to their 16x16 luma block.
551 */
552#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
553
554/*
555 * Qualcomm Compressed Format
556 *
557 * Refers to a compressed variant of the base format that is compressed.
558 * Implementation may be platform and base-format specific.
559 *
560 * Each macrotile consists of m x n (mostly 4 x 4) tiles.
561 * Pixel data pitch/stride is aligned with macrotile width.
562 * Pixel data height is aligned with macrotile height.
563 * Entire pixel data buffer is aligned with 4k(bytes).
564 */
565#define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
566
567/* Vivante framebuffer modifiers */
568
569/*
570 * Vivante 4x4 tiling layout
571 *
572 * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
573 * layout.
574 */
575#define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
576
577/*
578 * Vivante 64x64 super-tiling layout
579 *
580 * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
581 * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
582 * major layout.
583 *
584 * For more information: see
585 * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
586 */
587#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
588
589/*
590 * Vivante 4x4 tiling layout for dual-pipe
591 *
592 * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
593 * different base address. Offsets from the base addresses are therefore halved
594 * compared to the non-split tiled layout.
595 */
596#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
597
598/*
599 * Vivante 64x64 super-tiling layout for dual-pipe
600 *
601 * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
602 * starts at a different base address. Offsets from the base addresses are
603 * therefore halved compared to the non-split super-tiled layout.
604 */
605#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
606
607/* NVIDIA frame buffer modifiers */
608
609/*
610 * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
611 *
612 * Pixels are arranged in simple tiles of 16 x 16 bytes.
613 */
614#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
615
616/*
617 * Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
618 * and Tegra GPUs starting with Tegra K1.
619 *
620 * Pixels are arranged in Groups of Bytes (GOBs).  GOB size and layout varies
621 * based on the architecture generation.  GOBs themselves are then arranged in
622 * 3D blocks, with the block dimensions (in terms of GOBs) always being a power
623 * of two, and hence expressible as their log2 equivalent (E.g., "2" represents
624 * a block depth or height of "4").
625 *
626 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
627 * in full detail.
628 *
629 *       Macro
630 * Bits  Param Description
631 * ----  ----- -----------------------------------------------------------------
632 *
633 *  3:0  h     log2(height) of each block, in GOBs.  Placed here for
634 *             compatibility with the existing
635 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
636 *
637 *  4:4  -     Must be 1, to indicate block-linear layout.  Necessary for
638 *             compatibility with the existing
639 *             DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
640 *
641 *  8:5  -     Reserved (To support 3D-surfaces with variable log2(depth) block
642 *             size).  Must be zero.
643 *
644 *             Note there is no log2(width) parameter.  Some portions of the
645 *             hardware support a block width of two gobs, but it is impractical
646 *             to use due to lack of support elsewhere, and has no known
647 *             benefits.
648 *
649 * 11:9  -     Reserved (To support 2D-array textures with variable array stride
650 *             in blocks, specified via log2(tile width in blocks)).  Must be
651 *             zero.
652 *
653 * 19:12 k     Page Kind.  This value directly maps to a field in the page
654 *             tables of all GPUs >= NV50.  It affects the exact layout of bits
655 *             in memory and can be derived from the tuple
656 *
657 *               (format, GPU model, compression type, samples per pixel)
658 *
659 *             Where compression type is defined below.  If GPU model were
660 *             implied by the format modifier, format, or memory buffer, page
661 *             kind would not need to be included in the modifier itself, but
662 *             since the modifier should define the layout of the associated
663 *             memory buffer independent from any device or other context, it
664 *             must be included here.
665 *
666 * 21:20 g     GOB Height and Page Kind Generation.  The height of a GOB changed
667 *             starting with Fermi GPUs.  Additionally, the mapping between page
668 *             kind and bit layout has changed at various points.
669 *
670 *               0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
671 *               1 = Gob Height 4, G80 - GT2XX Page Kind mapping
672 *               2 = Gob Height 8, Turing+ Page Kind mapping
673 *               3 = Reserved for future use.
674 *
675 * 22:22 s     Sector layout.  On Tegra GPUs prior to Xavier, there is a further
676 *             bit remapping step that occurs at an even lower level than the
677 *             page kind and block linear swizzles.  This causes the layout of
678 *             surfaces mapped in those SOC's GPUs to be incompatible with the
679 *             equivalent mapping on other GPUs in the same system.
680 *
681 *               0 = Tegra K1 - Tegra Parker/TX2 Layout.
682 *               1 = Desktop GPU and Tegra Xavier+ Layout
683 *
684 * 25:23 c     Lossless Framebuffer Compression type.
685 *
686 *               0 = none
687 *               1 = ROP/3D, layout 1, exact compression format implied by Page
688 *                   Kind field
689 *               2 = ROP/3D, layout 2, exact compression format implied by Page
690 *                   Kind field
691 *               3 = CDE horizontal
692 *               4 = CDE vertical
693 *               5 = Reserved for future use
694 *               6 = Reserved for future use
695 *               7 = Reserved for future use
696 *
697 * 55:25 -     Reserved for future use.  Must be zero.
698 */
699#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
700	fourcc_mod_code(NVIDIA, (0x10 | \
701				 ((h) & 0xf) | \
702				 (((k) & 0xff) << 12) | \
703				 (((g) & 0x3) << 20) | \
704				 (((s) & 0x1) << 22) | \
705				 (((c) & 0x7) << 23)))
706
707/* To grandfather in prior block linear format modifiers to the above layout,
708 * the page kind "0", which corresponds to "pitch/linear" and hence is unusable
709 * with block-linear layouts, is remapped within drivers to the value 0xfe,
710 * which corresponds to the "generic" kind used for simple single-sample
711 * uncompressed color formats on Fermi - Volta GPUs.
712 */
713static __inline__ __u64
714drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
715{
716	if (!(modifier & 0x10) || (modifier & (0xff << 12)))
717		return modifier;
718	else
719		return modifier | (0xfe << 12);
720}
721
722/*
723 * 16Bx2 Block Linear layout, used by Tegra K1 and later
724 *
725 * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
726 * vertically by a power of 2 (1 to 32 GOBs) to form a block.
727 *
728 * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
729 *
730 * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
731 * Valid values are:
732 *
733 * 0 == ONE_GOB
734 * 1 == TWO_GOBS
735 * 2 == FOUR_GOBS
736 * 3 == EIGHT_GOBS
737 * 4 == SIXTEEN_GOBS
738 * 5 == THIRTYTWO_GOBS
739 *
740 * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
741 * in full detail.
742 */
743#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
744	DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
745
746#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
747	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
748#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
749	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
750#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
751	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
752#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
753	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
754#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
755	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
756#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
757	DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
758
759/*
760 * Some Broadcom modifiers take parameters, for example the number of
761 * vertical lines in the image. Reserve the lower 32 bits for modifier
762 * type, and the next 24 bits for parameters. Top 8 bits are the
763 * vendor code.
764 */
765#define __fourcc_mod_broadcom_param_shift 8
766#define __fourcc_mod_broadcom_param_bits 48
767#define fourcc_mod_broadcom_code(val, params) \
768	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
769#define fourcc_mod_broadcom_param(m) \
770	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
771	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
772#define fourcc_mod_broadcom_mod(m) \
773	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
774		 __fourcc_mod_broadcom_param_shift))
775
776/*
777 * Broadcom VC4 "T" format
778 *
779 * This is the primary layout that the V3D GPU can texture from (it
780 * can't do linear).  The T format has:
781 *
782 * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
783 *   pixels at 32 bit depth.
784 *
785 * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
786 *   16x16 pixels).
787 *
788 * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
789 *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
790 *   they're (TR, BR, BL, TL), where bottom left is start of memory.
791 *
792 * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
793 *   tiles) or right-to-left (odd rows of 4k tiles).
794 */
795#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
796
797/*
798 * Broadcom SAND format
799 *
800 * This is the native format that the H.264 codec block uses.  For VC4
801 * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
802 *
803 * The image can be considered to be split into columns, and the
804 * columns are placed consecutively into memory.  The width of those
805 * columns can be either 32, 64, 128, or 256 pixels, but in practice
806 * only 128 pixel columns are used.
807 *
808 * The pitch between the start of each column is set to optimally
809 * switch between SDRAM banks. This is passed as the number of lines
810 * of column width in the modifier (we can't use the stride value due
811 * to various core checks that look at it , so you should set the
812 * stride to width*cpp).
813 *
814 * Note that the column height for this format modifier is the same
815 * for all of the planes, assuming that each column contains both Y
816 * and UV.  Some SAND-using hardware stores UV in a separate tiled
817 * image from Y to reduce the column height, which is not supported
818 * with these modifiers.
819 */
820
821#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
822	fourcc_mod_broadcom_code(2, v)
823#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
824	fourcc_mod_broadcom_code(3, v)
825#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
826	fourcc_mod_broadcom_code(4, v)
827#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
828	fourcc_mod_broadcom_code(5, v)
829
830#define DRM_FORMAT_MOD_BROADCOM_SAND32 \
831	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
832#define DRM_FORMAT_MOD_BROADCOM_SAND64 \
833	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
834#define DRM_FORMAT_MOD_BROADCOM_SAND128 \
835	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
836#define DRM_FORMAT_MOD_BROADCOM_SAND256 \
837	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
838
839/* Broadcom UIF format
840 *
841 * This is the common format for the current Broadcom multimedia
842 * blocks, including V3D 3.x and newer, newer video codecs, and
843 * displays.
844 *
845 * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
846 * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
847 * stored in columns, with padding between the columns to ensure that
848 * moving from one column to the next doesn't hit the same SDRAM page
849 * bank.
850 *
851 * To calculate the padding, it is assumed that each hardware block
852 * and the software driving it knows the platform's SDRAM page size,
853 * number of banks, and XOR address, and that it's identical between
854 * all blocks using the format.  This tiling modifier will use XOR as
855 * necessary to reduce the padding.  If a hardware block can't do XOR,
856 * the assumption is that a no-XOR tiling modifier will be created.
857 */
858#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
859
860/*
861 * Arm Framebuffer Compression (AFBC) modifiers
862 *
863 * AFBC is a proprietary lossless image compression protocol and format.
864 * It provides fine-grained random access and minimizes the amount of data
865 * transferred between IP blocks.
866 *
867 * AFBC has several features which may be supported and/or used, which are
868 * represented using bits in the modifier. Not all combinations are valid,
869 * and different devices or use-cases may support different combinations.
870 *
871 * Further information on the use of AFBC modifiers can be found in
872 * Documentation/gpu/afbc.rst
873 */
874
875/*
876 * The top 4 bits (out of the 56 bits alloted for specifying vendor specific
877 * modifiers) denote the category for modifiers. Currently we have only two
878 * categories of modifiers ie AFBC and MISC. We can have a maximum of sixteen
879 * different categories.
880 */
881#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
882	fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
883
884#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
885#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
886
887#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
888	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
889
890/*
891 * AFBC superblock size
892 *
893 * Indicates the superblock size(s) used for the AFBC buffer. The buffer
894 * size (in pixels) must be aligned to a multiple of the superblock size.
895 * Four lowest significant bits(LSBs) are reserved for block size.
896 *
897 * Where one superblock size is specified, it applies to all planes of the
898 * buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
899 * the first applies to the Luma plane and the second applies to the Chroma
900 * plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
901 * Multiple superblock sizes are only valid for multi-plane YCbCr formats.
902 */
903#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
904#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
905#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
906#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4      (3ULL)
907#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
908
909/*
910 * AFBC lossless colorspace transform
911 *
912 * Indicates that the buffer makes use of the AFBC lossless colorspace
913 * transform.
914 */
915#define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
916
917/*
918 * AFBC block-split
919 *
920 * Indicates that the payload of each superblock is split. The second
921 * half of the payload is positioned at a predefined offset from the start
922 * of the superblock payload.
923 */
924#define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
925
926/*
927 * AFBC sparse layout
928 *
929 * This flag indicates that the payload of each superblock must be stored at a
930 * predefined position relative to the other superblocks in the same AFBC
931 * buffer. This order is the same order used by the header buffer. In this mode
932 * each superblock is given the same amount of space as an uncompressed
933 * superblock of the particular format would require, rounding up to the next
934 * multiple of 128 bytes in size.
935 */
936#define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
937
938/*
939 * AFBC copy-block restrict
940 *
941 * Buffers with this flag must obey the copy-block restriction. The restriction
942 * is such that there are no copy-blocks referring across the border of 8x8
943 * blocks. For the subsampled data the 8x8 limitation is also subsampled.
944 */
945#define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
946
947/*
948 * AFBC tiled layout
949 *
950 * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
951 * superblocks inside a tile are stored together in memory. 8x8 tiles are used
952 * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
953 * larger bpp formats. The order between the tiles is scan line.
954 * When the tiled layout is used, the buffer size (in pixels) must be aligned
955 * to the tile size.
956 */
957#define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
958
959/*
960 * AFBC solid color blocks
961 *
962 * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
963 * can be reduced if a whole superblock is a single color.
964 */
965#define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
966
967/*
968 * AFBC double-buffer
969 *
970 * Indicates that the buffer is allocated in a layout safe for front-buffer
971 * rendering.
972 */
973#define AFBC_FORMAT_MOD_DB      (1ULL << 10)
974
975/*
976 * AFBC buffer content hints
977 *
978 * Indicates that the buffer includes per-superblock content hints.
979 */
980#define AFBC_FORMAT_MOD_BCH     (1ULL << 11)
981
982/* AFBC uncompressed storage mode
983 *
984 * Indicates that the buffer is using AFBC uncompressed storage mode.
985 * In this mode all superblock payloads in the buffer use the uncompressed
986 * storage mode, which is usually only used for data which cannot be compressed.
987 * The buffer layout is the same as for AFBC buffers without USM set, this only
988 * affects the storage mode of the individual superblocks. Note that even a
989 * buffer without USM set may use uncompressed storage mode for some or all
990 * superblocks, USM just guarantees it for all.
991 */
992#define AFBC_FORMAT_MOD_USM	(1ULL << 12)
993
994/*
995 * Arm 16x16 Block U-Interleaved modifier
996 *
997 * This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
998 * into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
999 * in the block are reordered.
1000 */
1001#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1002	DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1003
1004/*
1005 * Allwinner tiled modifier
1006 *
1007 * This tiling mode is implemented by the VPU found on all Allwinner platforms,
1008 * codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1009 * planes.
1010 *
1011 * With this tiling, the luminance samples are disposed in tiles representing
1012 * 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1013 * The pixel order in each tile is linear and the tiles are disposed linearly,
1014 * both in row-major order.
1015 */
1016#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1017
1018/*
1019 * Amlogic Video Framebuffer Compression modifiers
1020 *
1021 * Amlogic uses a proprietary lossless image compression protocol and format
1022 * for their hardware video codec accelerators, either video decoders or
1023 * video input encoders.
1024 *
1025 * It considerably reduces memory bandwidth while writing and reading
1026 * frames in memory.
1027 *
1028 * The underlying storage is considered to be 3 components, 8bit or 10-bit
1029 * per component YCbCr 420, single plane :
1030 * - DRM_FORMAT_YUV420_8BIT
1031 * - DRM_FORMAT_YUV420_10BIT
1032 *
1033 * The first 8 bits of the mode defines the layout, then the following 8 bits
1034 * defines the options changing the layout.
1035 *
1036 * Not all combinations are valid, and different SoCs may support different
1037 * combinations of layout and options.
1038 */
1039#define __fourcc_mod_amlogic_layout_mask 0xf
1040#define __fourcc_mod_amlogic_options_shift 8
1041#define __fourcc_mod_amlogic_options_mask 0xf
1042
1043#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1044	fourcc_mod_code(AMLOGIC, \
1045			((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1046			(((__options) & __fourcc_mod_amlogic_options_mask) \
1047			 << __fourcc_mod_amlogic_options_shift))
1048
1049/* Amlogic FBC Layouts */
1050
1051/*
1052 * Amlogic FBC Basic Layout
1053 *
1054 * The basic layout is composed of:
1055 * - a body content organized in 64x32 superblocks with 4096 bytes per
1056 *   superblock in default mode.
1057 * - a 32 bytes per 128x64 header block
1058 *
1059 * This layout is transferrable between Amlogic SoCs supporting this modifier.
1060 */
1061#define AMLOGIC_FBC_LAYOUT_BASIC		(1ULL)
1062
1063/*
1064 * Amlogic FBC Scatter Memory layout
1065 *
1066 * Indicates the header contains IOMMU references to the compressed
1067 * frames content to optimize memory access and layout.
1068 *
1069 * In this mode, only the header memory address is needed, thus the
1070 * content memory organization is tied to the current producer
1071 * execution and cannot be saved/dumped neither transferrable between
1072 * Amlogic SoCs supporting this modifier.
1073 *
1074 * Due to the nature of the layout, these buffers are not expected to
1075 * be accessible by the user-space clients, but only accessible by the
1076 * hardware producers and consumers.
1077 *
1078 * The user-space clients should expect a failure while trying to mmap
1079 * the DMA-BUF handle returned by the producer.
1080 */
1081#define AMLOGIC_FBC_LAYOUT_SCATTER		(2ULL)
1082
1083/* Amlogic FBC Layout Options Bit Mask */
1084
1085/*
1086 * Amlogic FBC Memory Saving mode
1087 *
1088 * Indicates the storage is packed when pixel size is multiple of word
1089 * boudaries, i.e. 8bit should be stored in this mode to save allocation
1090 * memory.
1091 *
1092 * This mode reduces body layout to 3072 bytes per 64x32 superblock with
1093 * the basic layout and 3200 bytes per 64x32 superblock combined with
1094 * the scatter layout.
1095 */
1096#define AMLOGIC_FBC_OPTION_MEM_SAVING		(1ULL << 0)
1097
1098/*
1099 * AMD modifiers
1100 *
1101 * Memory layout:
1102 *
1103 * without DCC:
1104 *   - main surface
1105 *
1106 * with DCC & without DCC_RETILE:
1107 *   - main surface in plane 0
1108 *   - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1109 *
1110 * with DCC & DCC_RETILE:
1111 *   - main surface in plane 0
1112 *   - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1113 *   - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1114 *
1115 * For multi-plane formats the above surfaces get merged into one plane for
1116 * each format plane, based on the required alignment only.
1117 *
1118 * Bits  Parameter                Notes
1119 * ----- ------------------------ ---------------------------------------------
1120 *
1121 *   7:0 TILE_VERSION             Values are AMD_FMT_MOD_TILE_VER_*
1122 *  12:8 TILE                     Values are AMD_FMT_MOD_TILE_<version>_*
1123 *    13 DCC
1124 *    14 DCC_RETILE
1125 *    15 DCC_PIPE_ALIGN
1126 *    16 DCC_INDEPENDENT_64B
1127 *    17 DCC_INDEPENDENT_128B
1128 * 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1129 *    20 DCC_CONSTANT_ENCODE
1130 * 23:21 PIPE_XOR_BITS            Only for some chips
1131 * 26:24 BANK_XOR_BITS            Only for some chips
1132 * 29:27 PACKERS                  Only for some chips
1133 * 32:30 RB                       Only for some chips
1134 * 35:33 PIPE                     Only for some chips
1135 * 55:36 -                        Reserved for future use, must be zero
1136 */
1137#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1138
1139#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1140
1141/* Reserve 0 for GFX8 and older */
1142#define AMD_FMT_MOD_TILE_VER_GFX9 1
1143#define AMD_FMT_MOD_TILE_VER_GFX10 2
1144#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1145
1146/*
1147 * 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1148 * version.
1149 */
1150#define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1151
1152/*
1153 * 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1154 * GFX9 as canonical version.
1155 */
1156#define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1157#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1158#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1159#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1160
1161#define AMD_FMT_MOD_DCC_BLOCK_64B 0
1162#define AMD_FMT_MOD_DCC_BLOCK_128B 1
1163#define AMD_FMT_MOD_DCC_BLOCK_256B 2
1164
1165#define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1166#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1167#define AMD_FMT_MOD_TILE_SHIFT 8
1168#define AMD_FMT_MOD_TILE_MASK 0x1F
1169
1170/* Whether DCC compression is enabled. */
1171#define AMD_FMT_MOD_DCC_SHIFT 13
1172#define AMD_FMT_MOD_DCC_MASK 0x1
1173
1174/*
1175 * Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1176 * one which is not-aligned.
1177 */
1178#define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1179#define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1180
1181/* Only set if DCC_RETILE = false */
1182#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1183#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1184
1185#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1186#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1187#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1188#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1189#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1190#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1191
1192/*
1193 * DCC supports embedding some clear colors directly in the DCC surface.
1194 * However, on older GPUs the rendering HW ignores the embedded clear color
1195 * and prefers the driver provided color. This necessitates doing a fastclear
1196 * eliminate operation before a process transfers control.
1197 *
1198 * If this bit is set that means the fastclear eliminate is not needed for these
1199 * embeddable colors.
1200 */
1201#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1202#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1203
1204/*
1205 * The below fields are for accounting for per GPU differences. These are only
1206 * relevant for GFX9 and later and if the tile field is *_X/_T.
1207 *
1208 * PIPE_XOR_BITS = always needed
1209 * BANK_XOR_BITS = only for TILE_VER_GFX9
1210 * PACKERS = only for TILE_VER_GFX10_RBPLUS
1211 * RB = only for TILE_VER_GFX9 & DCC
1212 * PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1213 */
1214#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1215#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1216#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1217#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1218#define AMD_FMT_MOD_PACKERS_SHIFT 27
1219#define AMD_FMT_MOD_PACKERS_MASK 0x7
1220#define AMD_FMT_MOD_RB_SHIFT 30
1221#define AMD_FMT_MOD_RB_MASK 0x7
1222#define AMD_FMT_MOD_PIPE_SHIFT 33
1223#define AMD_FMT_MOD_PIPE_MASK 0x7
1224
1225#define AMD_FMT_MOD_SET(field, value) \
1226	((uint64_t)(value) << AMD_FMT_MOD_##field##_SHIFT)
1227#define AMD_FMT_MOD_GET(field, value) \
1228	(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1229#define AMD_FMT_MOD_CLEAR(field) \
1230	(~((uint64_t)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1231
1232#if defined(__cplusplus)
1233}
1234#endif
1235
1236#endif /* DRM_FOURCC_H */
1237