es2gears.c revision 32001f49
1/*
2 * Copyright (C) 1999-2001  Brian Paul   All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
18 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
19 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
20 */
21
22/*
23 * Ported to GLES2.
24 * Kristian Høgsberg <krh@bitplanet.net>
25 * May 3, 2010
26 *
27 * Improve GLES2 port:
28 *   * Refactor gear drawing.
29 *   * Use correct normals for surfaces.
30 *   * Improve shader.
31 *   * Use perspective projection transformation.
32 *   * Add FPS count.
33 *   * Add comments.
34 * Alexandros Frantzis <alexandros.frantzis@linaro.org>
35 * Jul 13, 2010
36 */
37
38#define GL_GLEXT_PROTOTYPES
39#define EGL_EGLEXT_PROTOTYPES
40
41#define _GNU_SOURCE
42
43#include <math.h>
44#include <stdlib.h>
45#include <stdio.h>
46#include <string.h>
47#include <sys/time.h>
48#include <unistd.h>
49#include <GLES2/gl2.h>
50#include <EGL/egl.h>
51#include <EGL/eglext.h>
52#include "eglut.h"
53
54#define STRIPS_PER_TOOTH 7
55#define VERTICES_PER_TOOTH 34
56#define GEAR_VERTEX_STRIDE 6
57
58/**
59 * Struct describing the vertices in triangle strip
60 */
61struct vertex_strip {
62   /** The first vertex in the strip */
63   GLint first;
64   /** The number of consecutive vertices in the strip after the first */
65   GLint count;
66};
67
68/* Each vertex consist of GEAR_VERTEX_STRIDE GLfloat attributes */
69typedef GLfloat GearVertex[GEAR_VERTEX_STRIDE];
70
71/**
72 * Struct representing a gear.
73 */
74struct gear {
75   /** The array of vertices comprising the gear */
76   GearVertex *vertices;
77   /** The number of vertices comprising the gear */
78   int nvertices;
79   /** The array of triangle strips comprising the gear */
80   struct vertex_strip *strips;
81   /** The number of triangle strips comprising the gear */
82   int nstrips;
83   /** The Vertex Buffer Object holding the vertices in the graphics card */
84   GLuint vbo;
85};
86
87/** The view rotation [x, y, z] */
88static GLfloat view_rot[3] = { 20.0, 30.0, 0.0 };
89/** The gears */
90static struct gear *gear1, *gear2, *gear3;
91/** The current gear rotation angle */
92static GLfloat angle = 0.0;
93/** The location of the shader uniforms */
94static GLuint ModelViewProjectionMatrix_location,
95              NormalMatrix_location,
96              LightSourcePosition_location,
97              MaterialColor_location;
98/** The projection matrix */
99static GLfloat ProjectionMatrix[16];
100/** The direction of the directional light for the scene */
101static const GLfloat LightSourcePosition[4] = { 5.0, 5.0, 10.0, 1.0};
102
103/**
104 * Fills a gear vertex.
105 *
106 * @param v the vertex to fill
107 * @param x the x coordinate
108 * @param y the y coordinate
109 * @param z the z coortinate
110 * @param n pointer to the normal table
111 *
112 * @return the operation error code
113 */
114static GearVertex *
115vert(GearVertex *v, GLfloat x, GLfloat y, GLfloat z, GLfloat n[3])
116{
117   v[0][0] = x;
118   v[0][1] = y;
119   v[0][2] = z;
120   v[0][3] = n[0];
121   v[0][4] = n[1];
122   v[0][5] = n[2];
123
124   return v + 1;
125}
126
127/**
128 *  Create a gear wheel.
129 *
130 *  @param inner_radius radius of hole at center
131 *  @param outer_radius radius at center of teeth
132 *  @param width width of gear
133 *  @param teeth number of teeth
134 *  @param tooth_depth depth of tooth
135 *
136 *  @return pointer to the constructed struct gear
137 */
138static struct gear *
139create_gear(GLfloat inner_radius, GLfloat outer_radius, GLfloat width,
140      GLint teeth, GLfloat tooth_depth)
141{
142   GLfloat r0, r1, r2;
143   GLfloat da;
144   GearVertex *v;
145   struct gear *gear;
146   double s[5], c[5];
147   GLfloat normal[3];
148   int cur_strip = 0;
149   int i;
150
151   /* Allocate memory for the gear */
152   gear = malloc(sizeof *gear);
153   if (gear == NULL)
154      return NULL;
155
156   /* Calculate the radii used in the gear */
157   r0 = inner_radius;
158   r1 = outer_radius - tooth_depth / 2.0;
159   r2 = outer_radius + tooth_depth / 2.0;
160
161   da = 2.0 * M_PI / teeth / 4.0;
162
163   /* Allocate memory for the triangle strip information */
164   gear->nstrips = STRIPS_PER_TOOTH * teeth;
165   gear->strips = calloc(gear->nstrips, sizeof (*gear->strips));
166
167   /* Allocate memory for the vertices */
168   gear->vertices = calloc(VERTICES_PER_TOOTH * teeth, sizeof(*gear->vertices));
169   v = gear->vertices;
170
171   for (i = 0; i < teeth; i++) {
172      /* Calculate needed sin/cos for varius angles */
173      sincos(i * 2.0 * M_PI / teeth, &s[0], &c[0]);
174      sincos(i * 2.0 * M_PI / teeth + da, &s[1], &c[1]);
175      sincos(i * 2.0 * M_PI / teeth + da * 2, &s[2], &c[2]);
176      sincos(i * 2.0 * M_PI / teeth + da * 3, &s[3], &c[3]);
177      sincos(i * 2.0 * M_PI / teeth + da * 4, &s[4], &c[4]);
178
179      /* A set of macros for making the creation of the gears easier */
180#define  GEAR_POINT(r, da) { (r) * c[(da)], (r) * s[(da)] }
181#define  SET_NORMAL(x, y, z) do { \
182   normal[0] = (x); normal[1] = (y); normal[2] = (z); \
183} while(0)
184
185#define  GEAR_VERT(v, point, sign) vert((v), p[(point)].x, p[(point)].y, (sign) * width * 0.5, normal)
186
187#define START_STRIP do { \
188   gear->strips[cur_strip].first = v - gear->vertices; \
189} while(0);
190
191#define END_STRIP do { \
192   int _tmp = (v - gear->vertices); \
193   gear->strips[cur_strip].count = _tmp - gear->strips[cur_strip].first; \
194   cur_strip++; \
195} while (0)
196
197#define QUAD_WITH_NORMAL(p1, p2) do { \
198   SET_NORMAL((p[(p1)].y - p[(p2)].y), -(p[(p1)].x - p[(p2)].x), 0); \
199   v = GEAR_VERT(v, (p1), -1); \
200   v = GEAR_VERT(v, (p1), 1); \
201   v = GEAR_VERT(v, (p2), -1); \
202   v = GEAR_VERT(v, (p2), 1); \
203} while(0)
204
205      struct point {
206         GLfloat x;
207         GLfloat y;
208      };
209
210      /* Create the 7 points (only x,y coords) used to draw a tooth */
211      struct point p[7] = {
212         GEAR_POINT(r2, 1), // 0
213         GEAR_POINT(r2, 2), // 1
214         GEAR_POINT(r1, 0), // 2
215         GEAR_POINT(r1, 3), // 3
216         GEAR_POINT(r0, 0), // 4
217         GEAR_POINT(r1, 4), // 5
218         GEAR_POINT(r0, 4), // 6
219      };
220
221      /* Front face */
222      START_STRIP;
223      SET_NORMAL(0, 0, 1.0);
224      v = GEAR_VERT(v, 0, +1);
225      v = GEAR_VERT(v, 1, +1);
226      v = GEAR_VERT(v, 2, +1);
227      v = GEAR_VERT(v, 3, +1);
228      v = GEAR_VERT(v, 4, +1);
229      v = GEAR_VERT(v, 5, +1);
230      v = GEAR_VERT(v, 6, +1);
231      END_STRIP;
232
233      /* Inner face */
234      START_STRIP;
235      QUAD_WITH_NORMAL(4, 6);
236      END_STRIP;
237
238      /* Back face */
239      START_STRIP;
240      SET_NORMAL(0, 0, -1.0);
241      v = GEAR_VERT(v, 6, -1);
242      v = GEAR_VERT(v, 5, -1);
243      v = GEAR_VERT(v, 4, -1);
244      v = GEAR_VERT(v, 3, -1);
245      v = GEAR_VERT(v, 2, -1);
246      v = GEAR_VERT(v, 1, -1);
247      v = GEAR_VERT(v, 0, -1);
248      END_STRIP;
249
250      /* Outer face */
251      START_STRIP;
252      QUAD_WITH_NORMAL(0, 2);
253      END_STRIP;
254
255      START_STRIP;
256      QUAD_WITH_NORMAL(1, 0);
257      END_STRIP;
258
259      START_STRIP;
260      QUAD_WITH_NORMAL(3, 1);
261      END_STRIP;
262
263      START_STRIP;
264      QUAD_WITH_NORMAL(5, 3);
265      END_STRIP;
266   }
267
268   gear->nvertices = (v - gear->vertices);
269
270   /* Store the vertices in a vertex buffer object (VBO) */
271   glGenBuffers(1, &gear->vbo);
272   glBindBuffer(GL_ARRAY_BUFFER, gear->vbo);
273   glBufferData(GL_ARRAY_BUFFER, gear->nvertices * sizeof(GearVertex),
274         gear->vertices, GL_STATIC_DRAW);
275
276   return gear;
277}
278
279/**
280 * Multiplies two 4x4 matrices.
281 *
282 * The result is stored in matrix m.
283 *
284 * @param m the first matrix to multiply
285 * @param n the second matrix to multiply
286 */
287static void
288multiply(GLfloat *m, const GLfloat *n)
289{
290   GLfloat tmp[16];
291   const GLfloat *row, *column;
292   div_t d;
293   int i, j;
294
295   for (i = 0; i < 16; i++) {
296      tmp[i] = 0;
297      d = div(i, 4);
298      row = n + d.quot * 4;
299      column = m + d.rem;
300      for (j = 0; j < 4; j++)
301         tmp[i] += row[j] * column[j * 4];
302   }
303   memcpy(m, &tmp, sizeof tmp);
304}
305
306/**
307 * Rotates a 4x4 matrix.
308 *
309 * @param[in,out] m the matrix to rotate
310 * @param angle the angle to rotate
311 * @param x the x component of the direction to rotate to
312 * @param y the y component of the direction to rotate to
313 * @param z the z component of the direction to rotate to
314 */
315static void
316rotate(GLfloat *m, GLfloat angle, GLfloat x, GLfloat y, GLfloat z)
317{
318   double s, c;
319
320   sincos(angle, &s, &c);
321   GLfloat r[16] = {
322      x * x * (1 - c) + c,     y * x * (1 - c) + z * s, x * z * (1 - c) - y * s, 0,
323      x * y * (1 - c) - z * s, y * y * (1 - c) + c,     y * z * (1 - c) + x * s, 0,
324      x * z * (1 - c) + y * s, y * z * (1 - c) - x * s, z * z * (1 - c) + c,     0,
325      0, 0, 0, 1
326   };
327
328   multiply(m, r);
329}
330
331
332/**
333 * Translates a 4x4 matrix.
334 *
335 * @param[in,out] m the matrix to translate
336 * @param x the x component of the direction to translate to
337 * @param y the y component of the direction to translate to
338 * @param z the z component of the direction to translate to
339 */
340static void
341translate(GLfloat *m, GLfloat x, GLfloat y, GLfloat z)
342{
343   GLfloat t[16] = { 1, 0, 0, 0,  0, 1, 0, 0,  0, 0, 1, 0,  x, y, z, 1 };
344
345   multiply(m, t);
346}
347
348/**
349 * Creates an identity 4x4 matrix.
350 *
351 * @param m the matrix make an identity matrix
352 */
353static void
354identity(GLfloat *m)
355{
356   GLfloat t[16] = {
357      1.0, 0.0, 0.0, 0.0,
358      0.0, 1.0, 0.0, 0.0,
359      0.0, 0.0, 1.0, 0.0,
360      0.0, 0.0, 0.0, 1.0,
361   };
362
363   memcpy(m, t, sizeof(t));
364}
365
366/**
367 * Transposes a 4x4 matrix.
368 *
369 * @param m the matrix to transpose
370 */
371static void
372transpose(GLfloat *m)
373{
374   GLfloat t[16] = {
375      m[0], m[4], m[8],  m[12],
376      m[1], m[5], m[9],  m[13],
377      m[2], m[6], m[10], m[14],
378      m[3], m[7], m[11], m[15]};
379
380   memcpy(m, t, sizeof(t));
381}
382
383/**
384 * Inverts a 4x4 matrix.
385 *
386 * This function can currently handle only pure translation-rotation matrices.
387 * Read http://www.gamedev.net/community/forums/topic.asp?topic_id=425118
388 * for an explanation.
389 */
390static void
391invert(GLfloat *m)
392{
393   GLfloat t[16];
394   identity(t);
395
396   // Extract and invert the translation part 't'. The inverse of a
397   // translation matrix can be calculated by negating the translation
398   // coordinates.
399   t[12] = -m[12]; t[13] = -m[13]; t[14] = -m[14];
400
401   // Invert the rotation part 'r'. The inverse of a rotation matrix is
402   // equal to its transpose.
403   m[12] = m[13] = m[14] = 0;
404   transpose(m);
405
406   // inv(m) = inv(r) * inv(t)
407   multiply(m, t);
408}
409
410/**
411 * Calculate a perspective projection transformation.
412 *
413 * @param m the matrix to save the transformation in
414 * @param fovy the field of view in the y direction
415 * @param aspect the view aspect ratio
416 * @param zNear the near clipping plane
417 * @param zFar the far clipping plane
418 */
419void perspective(GLfloat *m, GLfloat fovy, GLfloat aspect, GLfloat zNear, GLfloat zFar)
420{
421   GLfloat tmp[16];
422   identity(tmp);
423
424   double sine, cosine, cotangent, deltaZ;
425   GLfloat radians = fovy / 2 * M_PI / 180;
426
427   deltaZ = zFar - zNear;
428   sincos(radians, &sine, &cosine);
429
430   if ((deltaZ == 0) || (sine == 0) || (aspect == 0))
431      return;
432
433   cotangent = cosine / sine;
434
435   tmp[0] = cotangent / aspect;
436   tmp[5] = cotangent;
437   tmp[10] = -(zFar + zNear) / deltaZ;
438   tmp[11] = -1;
439   tmp[14] = -2 * zNear * zFar / deltaZ;
440   tmp[15] = 0;
441
442   memcpy(m, tmp, sizeof(tmp));
443}
444
445/**
446 * Draws a gear.
447 *
448 * @param gear the gear to draw
449 * @param transform the current transformation matrix
450 * @param x the x position to draw the gear at
451 * @param y the y position to draw the gear at
452 * @param angle the rotation angle of the gear
453 * @param color the color of the gear
454 */
455static void
456draw_gear(struct gear *gear, GLfloat *transform,
457      GLfloat x, GLfloat y, GLfloat angle, const GLfloat color[4])
458{
459   GLfloat model_view[16];
460   GLfloat normal_matrix[16];
461   GLfloat model_view_projection[16];
462
463   /* Translate and rotate the gear */
464   memcpy(model_view, transform, sizeof (model_view));
465   translate(model_view, x, y, 0);
466   rotate(model_view, 2 * M_PI * angle / 360.0, 0, 0, 1);
467
468   /* Create and set the ModelViewProjectionMatrix */
469   memcpy(model_view_projection, ProjectionMatrix, sizeof(model_view_projection));
470   multiply(model_view_projection, model_view);
471
472   glUniformMatrix4fv(ModelViewProjectionMatrix_location, 1, GL_FALSE,
473                      model_view_projection);
474
475   /*
476    * Create and set the NormalMatrix. It's the inverse transpose of the
477    * ModelView matrix.
478    */
479   memcpy(normal_matrix, model_view, sizeof (normal_matrix));
480   invert(normal_matrix);
481   transpose(normal_matrix);
482   glUniformMatrix4fv(NormalMatrix_location, 1, GL_FALSE, normal_matrix);
483
484   /* Set the gear color */
485   glUniform4fv(MaterialColor_location, 1, color);
486
487   /* Set the vertex buffer object to use */
488   glBindBuffer(GL_ARRAY_BUFFER, gear->vbo);
489
490   /* Set up the position of the attributes in the vertex buffer object */
491   glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE,
492         6 * sizeof(GLfloat), NULL);
493   glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE,
494         6 * sizeof(GLfloat), (GLfloat *) 0 + 3);
495
496   /* Enable the attributes */
497   glEnableVertexAttribArray(0);
498   glEnableVertexAttribArray(1);
499
500   /* Draw the triangle strips that comprise the gear */
501   int n;
502   for (n = 0; n < gear->nstrips; n++)
503      glDrawArrays(GL_TRIANGLE_STRIP, gear->strips[n].first, gear->strips[n].count);
504
505   /* Disable the attributes */
506   glDisableVertexAttribArray(1);
507   glDisableVertexAttribArray(0);
508}
509
510/**
511 * Draws the gears.
512 */
513static void
514gears_draw(void)
515{
516   const static GLfloat red[4] = { 0.8, 0.1, 0.0, 1.0 };
517   const static GLfloat green[4] = { 0.0, 0.8, 0.2, 1.0 };
518   const static GLfloat blue[4] = { 0.2, 0.2, 1.0, 1.0 };
519   GLfloat transform[16];
520   identity(transform);
521
522   glClearColor(0.0, 0.0, 0.0, 0.0);
523   glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
524
525   /* Translate and rotate the view */
526   translate(transform, 0, 0, -20);
527   rotate(transform, 2 * M_PI * view_rot[0] / 360.0, 1, 0, 0);
528   rotate(transform, 2 * M_PI * view_rot[1] / 360.0, 0, 1, 0);
529   rotate(transform, 2 * M_PI * view_rot[2] / 360.0, 0, 0, 1);
530
531   /* Draw the gears */
532   draw_gear(gear1, transform, -3.0, -2.0, angle, red);
533   draw_gear(gear2, transform, 3.1, -2.0, -2 * angle - 9.0, green);
534   draw_gear(gear3, transform, -3.1, 4.2, -2 * angle - 25.0, blue);
535}
536
537/**
538 * Handles a new window size or exposure.
539 *
540 * @param width the window width
541 * @param height the window height
542 */
543static void
544gears_reshape(int width, int height)
545{
546   /* Update the projection matrix */
547   perspective(ProjectionMatrix, 60.0, width / (float)height, 1.0, 1024.0);
548
549   /* Set the viewport */
550   glViewport(0, 0, (GLint) width, (GLint) height);
551}
552
553/**
554 * Handles special eglut events.
555 *
556 * @param special the event to handle.
557 */
558static void
559gears_special(int special)
560{
561   switch (special) {
562      case EGLUT_KEY_LEFT:
563         view_rot[1] += 5.0;
564         break;
565      case EGLUT_KEY_RIGHT:
566         view_rot[1] -= 5.0;
567         break;
568      case EGLUT_KEY_UP:
569         view_rot[0] += 5.0;
570         break;
571      case EGLUT_KEY_DOWN:
572         view_rot[0] -= 5.0;
573         break;
574   }
575}
576
577static void
578gears_idle(void)
579{
580   static int frames = 0;
581   static double tRot0 = -1.0, tRate0 = -1.0;
582   double dt, t = eglutGet(EGLUT_ELAPSED_TIME) / 1000.0;
583
584   if (tRot0 < 0.0)
585      tRot0 = t;
586   dt = t - tRot0;
587   tRot0 = t;
588
589   /* advance rotation for next frame */
590   angle += 70.0 * dt;  /* 70 degrees per second */
591   if (angle > 3600.0)
592      angle -= 3600.0;
593
594   eglutPostRedisplay();
595   frames++;
596
597   if (tRate0 < 0.0)
598      tRate0 = t;
599   if (t - tRate0 >= 5.0) {
600      GLfloat seconds = t - tRate0;
601      GLfloat fps = frames / seconds;
602      printf("%d frames in %3.1f seconds = %6.3f FPS\n", frames, seconds,
603            fps);
604      tRate0 = t;
605      frames = 0;
606   }
607}
608
609static const char vertex_shader[] =
610"attribute vec3 position;\n"
611"attribute vec3 normal;\n"
612"\n"
613"uniform mat4 ModelViewProjectionMatrix;\n"
614"uniform mat4 NormalMatrix;\n"
615"uniform vec4 LightSourcePosition;\n"
616"uniform vec4 MaterialColor;\n"
617"\n"
618"varying vec4 Color;\n"
619"\n"
620"void main(void)\n"
621"{\n"
622"    // Transform the normal to eye coordinates\n"
623"    vec3 N = normalize(vec3(NormalMatrix * vec4(normal, 1.0)));\n"
624"\n"
625"    // The LightSourcePosition is actually its direction for directional light\n"
626"    vec3 L = normalize(LightSourcePosition.xyz);\n"
627"\n"
628"    // Multiply the diffuse value by the vertex color (which is fixed in this case)\n"
629"    // to get the actual color that we will use to draw this vertex with\n"
630"    float diffuse = max(dot(N, L), 0.0);\n"
631"    Color = diffuse * MaterialColor;\n"
632"\n"
633"    // Transform the position to clip coordinates\n"
634"    gl_Position = ModelViewProjectionMatrix * vec4(position, 1.0);\n"
635"}";
636
637static const char fragment_shader[] =
638"precision mediump float;\n"
639"varying vec4 Color;\n"
640"\n"
641"void main(void)\n"
642"{\n"
643"    gl_FragColor = Color;\n"
644"}";
645
646static void
647gears_init(void)
648{
649   GLuint v, f, program;
650   const char *p;
651   char msg[512];
652
653   glEnable(GL_CULL_FACE);
654   glEnable(GL_DEPTH_TEST);
655
656   /* Compile the vertex shader */
657   p = vertex_shader;
658   v = glCreateShader(GL_VERTEX_SHADER);
659   glShaderSource(v, 1, &p, NULL);
660   glCompileShader(v);
661   glGetShaderInfoLog(v, sizeof msg, NULL, msg);
662   printf("vertex shader info: %s\n", msg);
663
664   /* Compile the fragment shader */
665   p = fragment_shader;
666   f = glCreateShader(GL_FRAGMENT_SHADER);
667   glShaderSource(f, 1, &p, NULL);
668   glCompileShader(f);
669   glGetShaderInfoLog(f, sizeof msg, NULL, msg);
670   printf("fragment shader info: %s\n", msg);
671
672   /* Create and link the shader program */
673   program = glCreateProgram();
674   glAttachShader(program, v);
675   glAttachShader(program, f);
676   glBindAttribLocation(program, 0, "position");
677   glBindAttribLocation(program, 1, "normal");
678
679   glLinkProgram(program);
680   glGetProgramInfoLog(program, sizeof msg, NULL, msg);
681   printf("info: %s\n", msg);
682
683   /* Enable the shaders */
684   glUseProgram(program);
685
686   /* Get the locations of the uniforms so we can access them */
687   ModelViewProjectionMatrix_location = glGetUniformLocation(program, "ModelViewProjectionMatrix");
688   NormalMatrix_location = glGetUniformLocation(program, "NormalMatrix");
689   LightSourcePosition_location = glGetUniformLocation(program, "LightSourcePosition");
690   MaterialColor_location = glGetUniformLocation(program, "MaterialColor");
691
692   /* Set the LightSourcePosition uniform which is constant throught the program */
693   glUniform4fv(LightSourcePosition_location, 1, LightSourcePosition);
694
695   /* make the gears */
696   gear1 = create_gear(1.0, 4.0, 1.0, 20, 0.7);
697   gear2 = create_gear(0.5, 2.0, 2.0, 10, 0.7);
698   gear3 = create_gear(1.3, 2.0, 0.5, 10, 0.7);
699}
700
701int
702main(int argc, char *argv[])
703{
704   /* Initialize the window */
705   eglutInitWindowSize(300, 300);
706   eglutInitAPIMask(EGLUT_OPENGL_ES2_BIT);
707   eglutInit(argc, argv);
708
709   eglutCreateWindow("es2gears");
710
711   /* Set up eglut callback functions */
712   eglutIdleFunc(gears_idle);
713   eglutReshapeFunc(gears_reshape);
714   eglutDisplayFunc(gears_draw);
715   eglutSpecialFunc(gears_special);
716
717   /* Initialize the gears */
718   gears_init();
719
720   eglutMainLoop();
721
722   return 0;
723}
724