mga_dac3026.c revision eda3803b
1fe5e51b7Smrg/* 2fe5e51b7Smrg * Copyright 1994 by Robin Cutshaw <robin@XFree86.org> 3fe5e51b7Smrg * 4fe5e51b7Smrg * Permission to use, copy, modify, distribute, and sell this software and its 5fe5e51b7Smrg * documentation for any purpose is hereby granted without fee, provided that 6fe5e51b7Smrg * the above copyright notice appear in all copies and that both that 7fe5e51b7Smrg * copyright notice and this permission notice appear in supporting 8fe5e51b7Smrg * documentation, and that the name of Robin Cutshaw not be used in 9fe5e51b7Smrg * advertising or publicity pertaining to distribution of the software without 10fe5e51b7Smrg * specific, written prior permission. Robin Cutshaw makes no representations 11fe5e51b7Smrg * about the suitability of this software for any purpose. It is provided 12fe5e51b7Smrg * "as is" without express or implied warranty. 13fe5e51b7Smrg * 14fe5e51b7Smrg * ROBIN CUTSHAW DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 15fe5e51b7Smrg * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 16fe5e51b7Smrg * EVENT SHALL ROBIN CUTSHAW BE LIABLE FOR ANY SPECIAL, INDIRECT OR 17fe5e51b7Smrg * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 18fe5e51b7Smrg * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 19fe5e51b7Smrg * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR 20fe5e51b7Smrg * PERFORMANCE OF THIS SOFTWARE. 21fe5e51b7Smrg * 22fe5e51b7Smrg * 23fe5e51b7Smrg * Modified for TVP3026 by Harald Koenig <koenig@tat.physik.uni-tuebingen.de> 24fe5e51b7Smrg * 25fe5e51b7Smrg * Modified for MGA Millennium by Xavier Ducoin <xavier@rd.lectra.fr> 26fe5e51b7Smrg * 27fe5e51b7Smrg * Doug Merritt <doug@netcom.com> 28fe5e51b7Smrg * 24bpp: fixed high res stripe glitches, clock glitches on all res 29fe5e51b7Smrg * 30fe5e51b7Smrg */ 31fe5e51b7Smrg 32fe5e51b7Smrg#ifdef HAVE_CONFIG_H 33fe5e51b7Smrg#include "config.h" 34fe5e51b7Smrg#endif 35fe5e51b7Smrg 36fe5e51b7Smrg/* 37fe5e51b7Smrg * This is a first cut at a non-accelerated version to work with the 38fe5e51b7Smrg * new server design (DHD). 39fe5e51b7Smrg */ 40fe5e51b7Smrg 41fe5e51b7Smrg/* All drivers should typically include these */ 42fe5e51b7Smrg#include "xf86.h" 43fe5e51b7Smrg#include "xf86_OSproc.h" 44fe5e51b7Smrg 45fe5e51b7Smrg/* Drivers for PCI hardware need this */ 46fe5e51b7Smrg#include "xf86PciInfo.h" 47fe5e51b7Smrg 48fe5e51b7Smrg/* Drivers that need to access the PCI config space directly need this */ 49fe5e51b7Smrg#include "xf86Pci.h" 50fe5e51b7Smrg 51fe5e51b7Smrg#include "mga_reg.h" 52fe5e51b7Smrg#include "mga.h" 53fe5e51b7Smrg#include "mga_macros.h" 54fe5e51b7Smrg 55fe5e51b7Smrg#include "xf86DDC.h" 56fe5e51b7Smrg 57fe5e51b7Smrg/* 58fe5e51b7Smrg * Only change these bits in the Option register. Make sure that the 59fe5e51b7Smrg * vgaioen bit is never in this mask because it is controlled elsewhere 60fe5e51b7Smrg */ 61fe5e51b7Smrg#define OPTION_MASK 0xFFEFFEFF /* ~(eepromwt | vgaioen) */ 62fe5e51b7Smrg 63fe5e51b7Smrgstatic void MGA3026LoadPalette(ScrnInfoPtr, int, int*, LOCO*, VisualPtr); 64fe5e51b7Smrgstatic void MGA3026SavePalette(ScrnInfoPtr, unsigned char*); 65fe5e51b7Smrgstatic void MGA3026RestorePalette(ScrnInfoPtr, unsigned char*); 66fe5e51b7Smrgstatic void MGA3026RamdacInit(ScrnInfoPtr); 67fe5e51b7Smrgstatic void MGA3026Save(ScrnInfoPtr, vgaRegPtr, MGARegPtr, Bool); 68fe5e51b7Smrgstatic void MGA3026Restore(ScrnInfoPtr, vgaRegPtr, MGARegPtr, Bool); 69fe5e51b7Smrgstatic Bool MGA3026Init(ScrnInfoPtr, DisplayModePtr); 70fe5e51b7Smrgstatic Bool MGA3026_i2cInit(ScrnInfoPtr pScrn); 71fe5e51b7Smrg 72fe5e51b7Smrg 73fe5e51b7Smrg/* 74fe5e51b7Smrg * implementation 75fe5e51b7Smrg */ 76fe5e51b7Smrg 77fe5e51b7Smrg/* 78fe5e51b7Smrg * indexes to ti3026 registers (the order is important) 79fe5e51b7Smrg */ 80fe5e51b7Smrgconst static unsigned char MGADACregs[] = { 81fe5e51b7Smrg 0x0F, 0x18, 0x19, 0x1A, 0x1C, 0x1D, 0x1E, 0x2A, 0x2B, 0x30, 82fe5e51b7Smrg 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 83fe5e51b7Smrg 0x06 84fe5e51b7Smrg}; 85fe5e51b7Smrg 86fe5e51b7Smrg/* note: to fix a cursor hw glitch, register 0x37 (blue color key) needs 87fe5e51b7Smrg to be set to magic numbers, even though they are "never" used because 88fe5e51b7Smrg blue keying disabled in 0x38. 89fe5e51b7Smrg 90fe5e51b7Smrg Matrox sez: 91fe5e51b7Smrg 92fe5e51b7Smrg ...The more precise statement of the software workaround is to insure 93fe5e51b7Smrg that bits 7-5 of register 0x37 (Blue Color Key High) and bits 7-5 of 94fe5e51b7Smrg register 0x38 (HZOOM)are the same... 95fe5e51b7Smrg*/ 96fe5e51b7Smrg 97fe5e51b7Smrg/* also note: the values of the MUX control register 0x19 (index [2]) can be 98fe5e51b7Smrg found in table 2-17 of the 3026 manual. If interlace is set, the values 99fe5e51b7Smrg listed here are incremented by one. 100fe5e51b7Smrg*/ 101fe5e51b7Smrg 102fe5e51b7Smrg#define DACREGSIZE sizeof(MGADACregs) 103fe5e51b7Smrg/* 104fe5e51b7Smrg * initial values of ti3026 registers 105fe5e51b7Smrg */ 106fe5e51b7Smrgconst static unsigned char MGADACbpp8[DACREGSIZE] = { 107fe5e51b7Smrg 0x06, 0x80, 0x4b, 0x25, 0x00, 0x00, 0x0C, 0x00, 0x1E, 0xFF, 108fe5e51b7Smrg 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0, 0x00, 109fe5e51b7Smrg 0x00 110fe5e51b7Smrg}; 111fe5e51b7Smrgconst static unsigned char MGADACbpp16[DACREGSIZE] = { 112fe5e51b7Smrg 0x07, 0x45, 0x53, 0x15, 0x00, 0x00, 0x2C, 0x00, 0x1E, 0xFF, 113fe5e51b7Smrg 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x10, 0, 0x00, 114fe5e51b7Smrg 0x00 115fe5e51b7Smrg}; 116fe5e51b7Smrg/* 117fe5e51b7Smrg * [0] value was 0x07, but changed to 0x06 by Doug Merrit to fix high res 118fe5e51b7Smrg * stripe glitches and clock glitches at 24bpp. 119fe5e51b7Smrg */ 120fe5e51b7Smrg/* [0] value is now set inside of MGA3026Init, based on the silicon revision 121fe5e51b7Smrg It is still set to 7 or 6 based on the revision, though, since setting to 122fe5e51b7Smrg 8 as in the documentation makes (some?) revB chips get the colors wrong... 123fe5e51b7Smrg maybe BGR instead of RGB? This only applies to 24bpp, since it is the only 124fe5e51b7Smrg one documented as depending on revision. 125fe5e51b7Smrg */ 126fe5e51b7Smrg 127fe5e51b7Smrgconst static unsigned char MGADACbpp24[DACREGSIZE] = { 128fe5e51b7Smrg 0x06, 0x56, 0x5b, 0x25, 0x00, 0x00, 0x2C, 0x00, 0x1E, 0xFF, 129fe5e51b7Smrg 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x10, 0, 0x00, 130fe5e51b7Smrg 0x00 131fe5e51b7Smrg}; 132fe5e51b7Smrgconst static unsigned char MGADACbpp32[DACREGSIZE] = { 133fe5e51b7Smrg 0x07, 0x46, 0x5b, 0x05, 0x00, 0x00, 0x2C, 0x00, 0x1E, 0xFF, 134fe5e51b7Smrg 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x10, 0, 0x00, 135fe5e51b7Smrg 0x00 136fe5e51b7Smrg}; 137fe5e51b7Smrg 138fe5e51b7Smrg 139fe5e51b7Smrg/* 140fe5e51b7Smrg * Read/write to the DAC via MMIO 141fe5e51b7Smrg */ 142fe5e51b7Smrg 143fe5e51b7Smrg/* 144fe5e51b7Smrg * These were functions. Use macros instead to avoid the need to 145fe5e51b7Smrg * pass pMga to them. 146fe5e51b7Smrg */ 147fe5e51b7Smrg 148fe5e51b7Smrg#define inTi3026dreg(reg) INREG8(RAMDAC_OFFSET + (reg)) 149fe5e51b7Smrg 150fe5e51b7Smrg#define outTi3026dreg(reg, val) OUTREG8(RAMDAC_OFFSET + (reg), val) 151fe5e51b7Smrg 152fe5e51b7Smrg#define inTi3026(reg) \ 153fe5e51b7Smrg (outTi3026dreg(TVP3026_INDEX, reg), inTi3026dreg(TVP3026_DATA)) 154fe5e51b7Smrg 155fe5e51b7Smrg#define outTi3026(reg, mask, val) \ 156fe5e51b7Smrg do { /* note: mask and reg may get evaluated twice */ \ 157fe5e51b7Smrg unsigned char tmp = (mask) ? (inTi3026(reg) & (mask)) : 0; \ 158fe5e51b7Smrg outTi3026dreg(TVP3026_INDEX, reg); \ 159fe5e51b7Smrg outTi3026dreg(TVP3026_DATA, tmp | (val)); \ 160fe5e51b7Smrg } while (0) 161fe5e51b7Smrg 162fe5e51b7Smrg 163fe5e51b7Smrg/* 164fe5e51b7Smrg * MGATi3026CalcClock - Calculate the PLL settings (m, n, p). 165fe5e51b7Smrg * 166fe5e51b7Smrg * DESCRIPTION 167fe5e51b7Smrg * For more information, refer to the Texas Instruments 168fe5e51b7Smrg * "TVP3026 Data Manual" (document SLAS098B). 169fe5e51b7Smrg * Section 2.4 "PLL Clock Generators" 170fe5e51b7Smrg * Appendix A "Frequency Synthesis PLL Register Settings" 171fe5e51b7Smrg * Appendix B "PLL Programming Examples" 172fe5e51b7Smrg * 173fe5e51b7Smrg * PARAMETERS 174fe5e51b7Smrg * f_out IN Desired clock frequency. 175fe5e51b7Smrg * f_max IN Maximum allowed clock frequency. 176fe5e51b7Smrg * m OUT Value of PLL 'm' register. 177fe5e51b7Smrg * n OUT Value of PLL 'n' register. 178fe5e51b7Smrg * p OUT Value of PLL 'p' register. 179fe5e51b7Smrg * 180fe5e51b7Smrg * HISTORY 181fe5e51b7Smrg * January 11, 1997 - [aem] Andrew E. Mileski 182fe5e51b7Smrg * Split off from MGATi3026SetClock. 183fe5e51b7Smrg */ 184fe5e51b7Smrg 185fe5e51b7Smrg/* The following values are in kHz */ 186fe5e51b7Smrg#define TI_MIN_VCO_FREQ 110000 187fe5e51b7Smrg#define TI_MAX_VCO_FREQ 220000 188fe5e51b7Smrg#define TI_MAX_MCLK_FREQ 100000 189fe5e51b7Smrg#define TI_REF_FREQ 14318.18 190fe5e51b7Smrg 191fe5e51b7Smrgstatic double 192fe5e51b7SmrgMGATi3026CalcClock ( 193fe5e51b7Smrg long f_out, long f_max, 194fe5e51b7Smrg int *m, int *n, int *p 195fe5e51b7Smrg){ 196fe5e51b7Smrg int best_m = 0, best_n = 0; 197fe5e51b7Smrg double f_pll, f_vco; 198fe5e51b7Smrg double m_err, inc_m, calc_m; 199fe5e51b7Smrg 200fe5e51b7Smrg /* Make sure that f_min <= f_out <= f_max */ 201fe5e51b7Smrg if ( f_out < ( TI_MIN_VCO_FREQ / 8 )) 202fe5e51b7Smrg f_out = TI_MIN_VCO_FREQ / 8; 203fe5e51b7Smrg if ( f_out > f_max ) 204fe5e51b7Smrg f_out = f_max; 205fe5e51b7Smrg 206fe5e51b7Smrg /* 207fe5e51b7Smrg * f_pll = f_vco / 2 ^ p 208fe5e51b7Smrg * Choose p so that TI_MIN_VCO_FREQ <= f_vco <= TI_MAX_VCO_FREQ 209fe5e51b7Smrg * Note that since TI_MAX_VCO_FREQ = 2 * TI_MIN_VCO_FREQ 210fe5e51b7Smrg * we don't have to bother checking for this maximum limit. 211fe5e51b7Smrg */ 212fe5e51b7Smrg f_vco = ( double ) f_out; 213fe5e51b7Smrg for ( *p = 0; *p < 3 && f_vco < TI_MIN_VCO_FREQ; ( *p )++ ) 214fe5e51b7Smrg f_vco *= 2.0; 215fe5e51b7Smrg 216fe5e51b7Smrg /* 217fe5e51b7Smrg * We avoid doing multiplications by ( 65 - n ), 218fe5e51b7Smrg * and add an increment instead - this keeps any error small. 219fe5e51b7Smrg */ 220fe5e51b7Smrg inc_m = f_vco / ( TI_REF_FREQ * 8.0 ); 221fe5e51b7Smrg 222fe5e51b7Smrg /* Initial value of calc_m for the loop */ 223fe5e51b7Smrg calc_m = inc_m + inc_m + inc_m; 224fe5e51b7Smrg 225fe5e51b7Smrg /* Initial amount of error for an integer - impossibly large */ 226fe5e51b7Smrg m_err = 2.0; 227fe5e51b7Smrg 228fe5e51b7Smrg /* Search for the closest INTEGER value of ( 65 - m ) */ 229fe5e51b7Smrg for ( *n = 3; *n <= 25; ( *n )++, calc_m += inc_m ) { 230fe5e51b7Smrg 231fe5e51b7Smrg /* Ignore values of ( 65 - m ) which we can't use */ 232fe5e51b7Smrg if ( calc_m < 3.0 || calc_m > 64.0 ) 233fe5e51b7Smrg continue; 234fe5e51b7Smrg 235fe5e51b7Smrg /* 236fe5e51b7Smrg * Pick the closest INTEGER (has smallest fractional part). 237fe5e51b7Smrg * The optimizer should clean this up for us. 238fe5e51b7Smrg */ 239fe5e51b7Smrg if (( calc_m - ( int ) calc_m ) < m_err ) { 240fe5e51b7Smrg m_err = calc_m - ( int ) calc_m; 241fe5e51b7Smrg best_m = ( int ) calc_m; 242fe5e51b7Smrg best_n = *n; 243fe5e51b7Smrg } 244fe5e51b7Smrg } 245fe5e51b7Smrg 246fe5e51b7Smrg /* 65 - ( 65 - x ) = x */ 247fe5e51b7Smrg *m = 65 - best_m; 248fe5e51b7Smrg *n = 65 - best_n; 249fe5e51b7Smrg 250fe5e51b7Smrg /* Now all the calculations can be completed */ 251fe5e51b7Smrg f_vco = 8.0 * TI_REF_FREQ * best_m / best_n; 252fe5e51b7Smrg f_pll = f_vco / ( 1 << *p ); 253fe5e51b7Smrg 254fe5e51b7Smrg#ifdef DEBUG 255fe5e51b7Smrg ErrorF( "f_out=%ld f_pll=%.1f f_vco=%.1f n=%d m=%d p=%d\n", 256fe5e51b7Smrg f_out, f_pll, f_vco, *n, *m, *p ); 257fe5e51b7Smrg#endif 258fe5e51b7Smrg 259fe5e51b7Smrg return f_pll; 260fe5e51b7Smrg} 261fe5e51b7Smrg 262fe5e51b7Smrg/* 263fe5e51b7Smrg * MGATi3026SetMCLK - Set the memory clock (MCLK) PLL. 264fe5e51b7Smrg * 265fe5e51b7Smrg * HISTORY 266fe5e51b7Smrg * January 11, 1997 - [aem] Andrew E. Mileski 267fe5e51b7Smrg * Written and tested. 268fe5e51b7Smrg */ 269fe5e51b7Smrgstatic void 270fe5e51b7SmrgMGATi3026SetMCLK( ScrnInfoPtr pScrn, long f_out ) 271fe5e51b7Smrg{ 272fe5e51b7Smrg int mclk_m, mclk_n, mclk_p; 273fe5e51b7Smrg int pclk_m, pclk_n, pclk_p; 274fe5e51b7Smrg int mclk_ctl; 275fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 276fe5e51b7Smrg 277fe5e51b7Smrg MGATi3026CalcClock(f_out, TI_MAX_MCLK_FREQ, &mclk_m, &mclk_n, &mclk_p); 278fe5e51b7Smrg 279fe5e51b7Smrg /* Save PCLK settings */ 280fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfc ); 281fe5e51b7Smrg pclk_n = inTi3026( TVP3026_PIX_CLK_DATA ); 282fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfd ); 283fe5e51b7Smrg pclk_m = inTi3026( TVP3026_PIX_CLK_DATA ); 284fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfe ); 285fe5e51b7Smrg pclk_p = inTi3026( TVP3026_PIX_CLK_DATA ); 286fe5e51b7Smrg 287fe5e51b7Smrg /* Stop PCLK (PLLEN = 0, PCLKEN = 0) */ 288fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfe ); 289fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, 0x00 ); 290fe5e51b7Smrg 291fe5e51b7Smrg /* Set PCLK to the new MCLK frequency (PLLEN = 1, PCLKEN = 0 ) */ 292fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfc ); 293fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, ( mclk_n & 0x3f ) | 0xc0 ); 294fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, mclk_m & 0x3f ); 295fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, ( mclk_p & 0x03 ) | 0xb0 ); 296fe5e51b7Smrg 297fe5e51b7Smrg /* Wait for PCLK PLL to lock on frequency */ 298fe5e51b7Smrg while (( inTi3026( TVP3026_PIX_CLK_DATA ) & 0x40 ) == 0 ) { 299fe5e51b7Smrg ; 300fe5e51b7Smrg } 301fe5e51b7Smrg 302fe5e51b7Smrg /* Output PCLK on MCLK pin */ 303fe5e51b7Smrg mclk_ctl = inTi3026( TVP3026_MCLK_CTL ); 304fe5e51b7Smrg outTi3026( TVP3026_MCLK_CTL, 0, mclk_ctl & 0xe7 ); 305fe5e51b7Smrg outTi3026( TVP3026_MCLK_CTL, 0, ( mclk_ctl & 0xe7 ) | 0x08 ); 306fe5e51b7Smrg 307fe5e51b7Smrg /* Stop MCLK (PLLEN = 0 ) */ 308fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfb ); 309fe5e51b7Smrg outTi3026( TVP3026_MEM_CLK_DATA, 0, 0x00 ); 310fe5e51b7Smrg 311fe5e51b7Smrg /* Set MCLK to the new frequency (PLLEN = 1) */ 312fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xf3 ); 313fe5e51b7Smrg outTi3026( TVP3026_MEM_CLK_DATA, 0, ( mclk_n & 0x3f ) | 0xc0 ); 314fe5e51b7Smrg outTi3026( TVP3026_MEM_CLK_DATA, 0, mclk_m & 0x3f ); 315fe5e51b7Smrg outTi3026( TVP3026_MEM_CLK_DATA, 0, ( mclk_p & 0x03 ) | 0xb0 ); 316fe5e51b7Smrg 317fe5e51b7Smrg /* Wait for MCLK PLL to lock on frequency */ 318fe5e51b7Smrg while (( inTi3026( TVP3026_MEM_CLK_DATA ) & 0x40 ) == 0 ) { 319fe5e51b7Smrg ; 320fe5e51b7Smrg } 321fe5e51b7Smrg 322fe5e51b7Smrg /* Output MCLK PLL on MCLK pin */ 323fe5e51b7Smrg outTi3026( TVP3026_MCLK_CTL, 0, ( mclk_ctl & 0xe7 ) | 0x10 ); 324fe5e51b7Smrg outTi3026( TVP3026_MCLK_CTL, 0, ( mclk_ctl & 0xe7 ) | 0x18 ); 325fe5e51b7Smrg 326fe5e51b7Smrg /* Stop PCLK (PLLEN = 0, PCLKEN = 0 ) */ 327fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfe ); 328fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, 0x00 ); 329fe5e51b7Smrg 330fe5e51b7Smrg /* Restore PCLK (PLLEN = ?, PCLKEN = ?) */ 331fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfc ); 332fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, pclk_n ); 333fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, pclk_m ); 334fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, pclk_p ); 335fe5e51b7Smrg 336fe5e51b7Smrg /* Wait for PCLK PLL to lock on frequency */ 337fe5e51b7Smrg while (( inTi3026( TVP3026_PIX_CLK_DATA ) & 0x40 ) == 0 ) { 338fe5e51b7Smrg ; 339fe5e51b7Smrg } 340fe5e51b7Smrg} 341fe5e51b7Smrg 342fe5e51b7Smrg/* 343fe5e51b7Smrg * MGATi3026SetPCLK - Set the pixel (PCLK) and loop (LCLK) clocks. 344fe5e51b7Smrg * 345fe5e51b7Smrg * PARAMETERS 346fe5e51b7Smrg * f_pll IN Pixel clock PLL frequencly in kHz. 347fe5e51b7Smrg * bpp IN Bytes per pixel. 348fe5e51b7Smrg * 349fe5e51b7Smrg * HISTORY 350fe5e51b7Smrg * January 11, 1997 - [aem] Andrew E. Mileski 351fe5e51b7Smrg * Split to simplify code for MCLK (=GCLK) setting. 352fe5e51b7Smrg * 353fe5e51b7Smrg * December 14, 1996 - [aem] Andrew E. Mileski 354fe5e51b7Smrg * Fixed loop clock to be based on the calculated, not requested, 355fe5e51b7Smrg * pixel clock. Added f_max = maximum f_vco frequency. 356fe5e51b7Smrg * 357fe5e51b7Smrg * October 19, 1996 - [aem] Andrew E. Mileski 358fe5e51b7Smrg * Commented the loop clock code (wow, I understand everything now), 359fe5e51b7Smrg * and simplified it a bit. This should really be two separate functions. 360fe5e51b7Smrg * 361fe5e51b7Smrg * October 1, 1996 - [aem] Andrew E. Mileski 362fe5e51b7Smrg * Optimized the m & n picking algorithm. Added maxClock detection. 363fe5e51b7Smrg * Low speed pixel clock fix (per the docs). Documented what I understand. 364fe5e51b7Smrg * 365fe5e51b7Smrg * ?????, ??, ???? - [???] ???????????? 366fe5e51b7Smrg * Based on the TVP3026 code in the S3 driver. 367fe5e51b7Smrg */ 368fe5e51b7Smrg 369fe5e51b7Smrgstatic void 370fe5e51b7SmrgMGATi3026SetPCLK( ScrnInfoPtr pScrn, long f_out, int bpp ) 371fe5e51b7Smrg{ 372fe5e51b7Smrg /* Pixel clock values */ 373fe5e51b7Smrg int m, n, p; 374fe5e51b7Smrg 375fe5e51b7Smrg /* Loop clock values */ 376fe5e51b7Smrg int lm, ln, lp, lq; 377fe5e51b7Smrg double z; 378fe5e51b7Smrg 379fe5e51b7Smrg /* The actual frequency output by the clock */ 380fe5e51b7Smrg double f_pll; 381fe5e51b7Smrg 382fe5e51b7Smrg long f_max = TI_MAX_VCO_FREQ; 383fe5e51b7Smrg 384fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 385fe5e51b7Smrg MGARegPtr pReg = &pMga->ModeReg; 386fe5e51b7Smrg 387fe5e51b7Smrg /* Get the maximum pixel clock frequency */ 388fe5e51b7Smrg if ( pMga->MaxClock > TI_MAX_VCO_FREQ ) 389fe5e51b7Smrg f_max = pMga->MaxClock; 390fe5e51b7Smrg 391fe5e51b7Smrg /* Do the calculations for m, n, and p */ 392fe5e51b7Smrg f_pll = MGATi3026CalcClock( f_out, f_max, & m, & n, & p ); 393fe5e51b7Smrg 394fe5e51b7Smrg /* Values for the pixel clock PLL registers */ 395fe5e51b7Smrg pReg->DacClk[ 0 ] = ( n & 0x3f ) | 0xc0; 396fe5e51b7Smrg pReg->DacClk[ 1 ] = ( m & 0x3f ); 397fe5e51b7Smrg pReg->DacClk[ 2 ] = ( p & 0x03 ) | 0xb0; 398fe5e51b7Smrg 399fe5e51b7Smrg /* 400fe5e51b7Smrg * Now that the pixel clock PLL is setup, 401fe5e51b7Smrg * the loop clock PLL must be setup. 402fe5e51b7Smrg */ 403fe5e51b7Smrg 404fe5e51b7Smrg /* 405fe5e51b7Smrg * First we figure out lm, ln, and z. 406fe5e51b7Smrg * Things are different in packed pixel mode (24bpp) though. 407fe5e51b7Smrg */ 408fe5e51b7Smrg if ( pMga->CurrentLayout.bitsPerPixel == 24 ) { 409fe5e51b7Smrg 410fe5e51b7Smrg /* ln:lm = ln:3 */ 411fe5e51b7Smrg lm = 65 - 3; 412fe5e51b7Smrg 413fe5e51b7Smrg /* Check for interleaved mode */ 414fe5e51b7Smrg if ( bpp == 2 ) 415fe5e51b7Smrg /* ln:lm = 4:3 */ 416fe5e51b7Smrg ln = 65 - 4; 417fe5e51b7Smrg else 418fe5e51b7Smrg /* ln:lm = 8:3 */ 419fe5e51b7Smrg ln = 65 - 8; 420fe5e51b7Smrg 421fe5e51b7Smrg /* Note: this is actually 100 * z for more precision */ 422fe5e51b7Smrg z = ( 11000 * ( 65 - ln )) / (( f_pll / 1000 ) * ( 65 - lm )); 423fe5e51b7Smrg } 424fe5e51b7Smrg else { 425fe5e51b7Smrg /* ln:lm = ln:4 */ 426fe5e51b7Smrg lm = 65 - 4; 427fe5e51b7Smrg 428fe5e51b7Smrg /* Note: bpp = bytes per pixel */ 429fe5e51b7Smrg ln = 65 - 4 * ( 64 / 8 ) / bpp; 430fe5e51b7Smrg 431fe5e51b7Smrg /* Note: this is actually 100 * z for more precision */ 432fe5e51b7Smrg z = (( 11000 / 4 ) * ( 65 - ln )) / ( f_pll / 1000 ); 433fe5e51b7Smrg } 434fe5e51b7Smrg 435fe5e51b7Smrg /* 436fe5e51b7Smrg * Now we choose dividers lp and lq so that the VCO frequency 437fe5e51b7Smrg * is within the operating range of 110 MHz to 220 MHz. 438fe5e51b7Smrg */ 439fe5e51b7Smrg 440fe5e51b7Smrg /* Assume no lq divider */ 441fe5e51b7Smrg lq = 0; 442fe5e51b7Smrg 443fe5e51b7Smrg /* Note: z is actually 100 * z for more precision */ 444fe5e51b7Smrg if ( z <= 200.0 ) 445fe5e51b7Smrg lp = 0; 446fe5e51b7Smrg else if ( z <= 400.0 ) 447fe5e51b7Smrg lp = 1; 448fe5e51b7Smrg else if ( z <= 800.0 ) 449fe5e51b7Smrg lp = 2; 450fe5e51b7Smrg else if ( z <= 1600.0 ) 451fe5e51b7Smrg lp = 3; 452fe5e51b7Smrg else { 453fe5e51b7Smrg lp = 3; 454fe5e51b7Smrg lq = ( int )( z / 1600.0 ); 455fe5e51b7Smrg } 456fe5e51b7Smrg 457fe5e51b7Smrg /* Values for the loop clock PLL registers */ 458fe5e51b7Smrg if ( pMga->CurrentLayout.bitsPerPixel == 24 ) { 459fe5e51b7Smrg /* Packed pixel mode values */ 460fe5e51b7Smrg pReg->DacClk[ 3 ] = ( ln & 0x3f ) | 0x80; 461fe5e51b7Smrg pReg->DacClk[ 4 ] = ( lm & 0x3f ) | 0x80; 462fe5e51b7Smrg pReg->DacClk[ 5 ] = ( lp & 0x03 ) | 0xf8; 463fe5e51b7Smrg } else { 464fe5e51b7Smrg /* Non-packed pixel mode values */ 465fe5e51b7Smrg pReg->DacClk[ 3 ] = ( ln & 0x3f ) | 0xc0; 466fe5e51b7Smrg pReg->DacClk[ 4 ] = ( lm & 0x3f ); 467fe5e51b7Smrg pReg->DacClk[ 5 ] = ( lp & 0x03 ) | 0xf0; 468fe5e51b7Smrg } 469fe5e51b7Smrg pReg->DacRegs[ 18 ] = lq | 0x38; 470fe5e51b7Smrg 471fe5e51b7Smrg#ifdef DEBUG 472fe5e51b7Smrg ErrorF( "bpp=%d z=%.1f ln=%d lm=%d lp=%d lq=%d\n", 473fe5e51b7Smrg bpp, z, ln, lm, lp, lq ); 474fe5e51b7Smrg#endif 475fe5e51b7Smrg} 476fe5e51b7Smrg 477fe5e51b7Smrg/* 478fe5e51b7Smrg * MGA3026Init -- for mga2064 with ti3026 479fe5e51b7Smrg * 480fe5e51b7Smrg * The 'mode' parameter describes the video mode. The 'mode' structure 481fe5e51b7Smrg * as well as the 'vga256InfoRec' structure can be dereferenced for 482fe5e51b7Smrg * information that is needed to initialize the mode. The 'new' macro 483fe5e51b7Smrg * (see definition above) is used to simply fill in the structure. 484fe5e51b7Smrg */ 485fe5e51b7Smrgstatic Bool 486fe5e51b7SmrgMGA3026Init(ScrnInfoPtr pScrn, DisplayModePtr mode) 487fe5e51b7Smrg{ 488fe5e51b7Smrg int hd, hs, he, ht, vd, vs, ve, vt, wd; 489fe5e51b7Smrg int i, BppShift, index_1d = 0; 490fe5e51b7Smrg const unsigned char* initDAC; 491fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 492fe5e51b7Smrg MGARamdacPtr MGAdac = &pMga->Dac; 493fe5e51b7Smrg MGAFBLayout *pLayout = &pMga->CurrentLayout; 494fe5e51b7Smrg MGARegPtr pReg = &pMga->ModeReg; 495fe5e51b7Smrg vgaRegPtr pVga = &VGAHWPTR(pScrn)->ModeReg; 496fe5e51b7Smrg 497fe5e51b7Smrg BppShift = pMga->BppShifts[(pLayout->bitsPerPixel >> 3) - 1]; 498fe5e51b7Smrg 499fe5e51b7Smrg switch(pLayout->bitsPerPixel) 500fe5e51b7Smrg { 501fe5e51b7Smrg case 8: 502fe5e51b7Smrg initDAC = MGADACbpp8; 503fe5e51b7Smrg break; 504fe5e51b7Smrg case 16: 505fe5e51b7Smrg initDAC = MGADACbpp16; 506fe5e51b7Smrg break; 507fe5e51b7Smrg case 24: 508fe5e51b7Smrg initDAC = MGADACbpp24; 509fe5e51b7Smrg break; 510fe5e51b7Smrg case 32: 511eda3803bSmrg initDAC = MGADACbpp32; 512eda3803bSmrg break; 513fe5e51b7Smrg default: 514fe5e51b7Smrg FatalError("MGA: unsupported bits per pixel\n"); 515fe5e51b7Smrg } 516fe5e51b7Smrg 517fe5e51b7Smrg /* Allocate the DacRegs space if not done already */ 518fe5e51b7Smrg if (pReg->DacRegs == NULL) { 519fe5e51b7Smrg pReg->DacRegs = xnfcalloc(DACREGSIZE, 1); 520fe5e51b7Smrg } 521fe5e51b7Smrg for (i = 0; i < DACREGSIZE; i++) { 522fe5e51b7Smrg pReg->DacRegs[i] = initDAC[i]; 523fe5e51b7Smrg if (MGADACregs[i] == 0x1D) 524fe5e51b7Smrg index_1d = i; 525fe5e51b7Smrg } 526fe5e51b7Smrg 527fe5e51b7Smrg if ( (pLayout->bitsPerPixel == 16) && (pLayout->weight.red == 5) 528fe5e51b7Smrg && (pLayout->weight.green == 5) && (pLayout->weight.blue == 5) ) { 529fe5e51b7Smrg pReg->DacRegs[1] &= ~0x01; 530fe5e51b7Smrg } 531fe5e51b7Smrg if (pMga->Interleave ) pReg->DacRegs[2] += 1; 532fe5e51b7Smrg 533fe5e51b7Smrg 534fe5e51b7Smrg if ( pLayout->bitsPerPixel == 24 ) { 535fe5e51b7Smrg int silicon_rev; 536fe5e51b7Smrg /* we need to set DacRegs[0] differently based on the silicon 537fe5e51b7Smrg * revision of the 3026 RAMDAC, as per page 2-14 of tvp3026.pdf. 538fe5e51b7Smrg * If we have rev A silicon, we want 0x07; rev B silicon wants 539fe5e51b7Smrg * 0x06. 540fe5e51b7Smrg */ 541fe5e51b7Smrg silicon_rev = inTi3026(TVP3026_SILICON_REV); 542fe5e51b7Smrg 543fe5e51b7Smrg#ifdef DEBUG 544fe5e51b7Smrg ErrorF("TVP3026 revision 0x%x (rev %s)\n", 545fe5e51b7Smrg silicon_rev, (silicon_rev <= 0x20) ? "A" : "B"); 546fe5e51b7Smrg#endif 547fe5e51b7Smrg 548fe5e51b7Smrg if(silicon_rev <= 0x20) { 549fe5e51b7Smrg /* rev A */ 550fe5e51b7Smrg pReg->DacRegs[0] = 0x07; 551fe5e51b7Smrg } else { 552fe5e51b7Smrg /* rev B */ 553fe5e51b7Smrg pReg->DacRegs[0] = 0x06; 554fe5e51b7Smrg } 555fe5e51b7Smrg } 556fe5e51b7Smrg 557fe5e51b7Smrg /* 558fe5e51b7Smrg * This will initialize all of the generic VGA registers. 559fe5e51b7Smrg */ 560fe5e51b7Smrg if (!vgaHWInit(pScrn, mode)) 561fe5e51b7Smrg return(FALSE); 562fe5e51b7Smrg 563fe5e51b7Smrg /* 564fe5e51b7Smrg * Here all of the MGA registers get filled in. 565fe5e51b7Smrg */ 566fe5e51b7Smrg hd = (mode->CrtcHDisplay >> 3) - 1; 567fe5e51b7Smrg hs = (mode->CrtcHSyncStart >> 3) - 1; 568fe5e51b7Smrg he = (mode->CrtcHSyncEnd >> 3) - 1; 569fe5e51b7Smrg ht = (mode->CrtcHTotal >> 3) - 1; 570fe5e51b7Smrg vd = mode->CrtcVDisplay - 1; 571fe5e51b7Smrg vs = mode->CrtcVSyncStart - 1; 572fe5e51b7Smrg ve = mode->CrtcVSyncEnd - 1; 573fe5e51b7Smrg vt = mode->CrtcVTotal - 2; 574fe5e51b7Smrg 575fe5e51b7Smrg /* HTOTAL & 0x7 equal to 0x6 in 8bpp or 0x4 in 24bpp causes strange 576fe5e51b7Smrg * vertical stripes 577fe5e51b7Smrg */ 578fe5e51b7Smrg if((ht & 0x07) == 0x06 || (ht & 0x07) == 0x04) 579fe5e51b7Smrg ht++; 580fe5e51b7Smrg 581fe5e51b7Smrg if (pLayout->bitsPerPixel == 24) 582fe5e51b7Smrg wd = (pLayout->displayWidth * 3) >> (4 - BppShift); 583fe5e51b7Smrg else 584fe5e51b7Smrg wd = pLayout->displayWidth >> (4 - BppShift); 585fe5e51b7Smrg 586fe5e51b7Smrg pReg->ExtVga[0] = 0; 587fe5e51b7Smrg pReg->ExtVga[5] = 0; 588fe5e51b7Smrg 589fe5e51b7Smrg if (mode->Flags & V_INTERLACE) 590fe5e51b7Smrg { 591fe5e51b7Smrg pReg->ExtVga[0] = 0x80; 592fe5e51b7Smrg pReg->ExtVga[5] = (hs + he - ht) >> 1; 593fe5e51b7Smrg wd <<= 1; 594fe5e51b7Smrg vt &= 0xFFFE; 595fe5e51b7Smrg 596fe5e51b7Smrg /* enable interlaced cursor */ 597fe5e51b7Smrg pReg->DacRegs[20] |= 0x20; 598fe5e51b7Smrg } 599fe5e51b7Smrg 600fe5e51b7Smrg pReg->ExtVga[0] |= (wd & 0x300) >> 4; 601fe5e51b7Smrg pReg->ExtVga[1] = (((ht - 4) & 0x100) >> 8) | 602fe5e51b7Smrg ((hd & 0x100) >> 7) | 603fe5e51b7Smrg ((hs & 0x100) >> 6) | 604fe5e51b7Smrg (ht & 0x40); 605fe5e51b7Smrg pReg->ExtVga[2] = ((vt & 0xc00) >> 10) | 606fe5e51b7Smrg ((vd & 0x400) >> 8) | 607fe5e51b7Smrg ((vd & 0xc00) >> 7) | 608fe5e51b7Smrg ((vs & 0xc00) >> 5); 609fe5e51b7Smrg if (pLayout->bitsPerPixel == 24) 610fe5e51b7Smrg pReg->ExtVga[3] = (((1 << BppShift) * 3) - 1) | 0x80; 611fe5e51b7Smrg else 612fe5e51b7Smrg pReg->ExtVga[3] = ((1 << BppShift) - 1) | 0x80; 613fe5e51b7Smrg 614fe5e51b7Smrg /* Set viddelay (CRTCEXT3 Bits 3-4). */ 615fe5e51b7Smrg pReg->ExtVga[3] |= (pScrn->videoRam == 8192 ? 0x10 616fe5e51b7Smrg : pScrn->videoRam == 2048 ? 0x08 : 0x00); 617fe5e51b7Smrg 618fe5e51b7Smrg pReg->ExtVga[4] = 0; 619fe5e51b7Smrg 620fe5e51b7Smrg pVga->CRTC[0] = ht - 4; 621fe5e51b7Smrg pVga->CRTC[1] = hd; 622fe5e51b7Smrg pVga->CRTC[2] = hd; 623fe5e51b7Smrg pVga->CRTC[3] = (ht & 0x1F) | 0x80; 624fe5e51b7Smrg pVga->CRTC[4] = hs; 625fe5e51b7Smrg pVga->CRTC[5] = ((ht & 0x20) << 2) | (he & 0x1F); 626fe5e51b7Smrg pVga->CRTC[6] = vt & 0xFF; 627fe5e51b7Smrg pVga->CRTC[7] = ((vt & 0x100) >> 8 ) | 628fe5e51b7Smrg ((vd & 0x100) >> 7 ) | 629fe5e51b7Smrg ((vs & 0x100) >> 6 ) | 630fe5e51b7Smrg ((vd & 0x100) >> 5 ) | 631fe5e51b7Smrg 0x10 | 632fe5e51b7Smrg ((vt & 0x200) >> 4 ) | 633fe5e51b7Smrg ((vd & 0x200) >> 3 ) | 634fe5e51b7Smrg ((vs & 0x200) >> 2 ); 635fe5e51b7Smrg pVga->CRTC[9] = ((vd & 0x200) >> 4) | 0x40; 636fe5e51b7Smrg pVga->CRTC[16] = vs & 0xFF; 637fe5e51b7Smrg pVga->CRTC[17] = (ve & 0x0F) | 0x20; 638fe5e51b7Smrg pVga->CRTC[18] = vd & 0xFF; 639fe5e51b7Smrg pVga->CRTC[19] = wd & 0xFF; 640fe5e51b7Smrg pVga->CRTC[21] = vd & 0xFF; 641fe5e51b7Smrg pVga->CRTC[22] = (vt + 1) & 0xFF; 642fe5e51b7Smrg 643fe5e51b7Smrg if (mode->Flags & V_DBLSCAN) 644fe5e51b7Smrg pVga->CRTC[9] |= 0x80; 645fe5e51b7Smrg 646fe5e51b7Smrg /* Per DDK vid.c line 75, sync polarity should be controlled 647fe5e51b7Smrg * via the TVP3026 RAMDAC register 1D and so MISC Output Register 648fe5e51b7Smrg * should always have bits 6 and 7 set. */ 649fe5e51b7Smrg 650fe5e51b7Smrg pVga->MiscOutReg |= 0xC0; 651fe5e51b7Smrg if ((mode->Flags & (V_PHSYNC | V_NHSYNC)) && 652fe5e51b7Smrg (mode->Flags & (V_PVSYNC | V_NVSYNC))) 653fe5e51b7Smrg { 654fe5e51b7Smrg if (mode->Flags & V_PHSYNC) 655fe5e51b7Smrg pReg->DacRegs[index_1d] |= 0x01; 656fe5e51b7Smrg if (mode->Flags & V_PVSYNC) 657fe5e51b7Smrg pReg->DacRegs[index_1d] |= 0x02; 658fe5e51b7Smrg } 659fe5e51b7Smrg else 660fe5e51b7Smrg { 661fe5e51b7Smrg int VDisplay = mode->VDisplay; 662fe5e51b7Smrg if (mode->Flags & V_DBLSCAN) 663fe5e51b7Smrg VDisplay *= 2; 664fe5e51b7Smrg if (VDisplay < 400) 665fe5e51b7Smrg pReg->DacRegs[index_1d] |= 0x01; /* +hsync -vsync */ 666fe5e51b7Smrg else if (VDisplay < 480) 667fe5e51b7Smrg pReg->DacRegs[index_1d] |= 0x02; /* -hsync +vsync */ 668fe5e51b7Smrg else if (VDisplay < 768) 669fe5e51b7Smrg pReg->DacRegs[index_1d] |= 0x00; /* -hsync -vsync */ 670fe5e51b7Smrg else 671fe5e51b7Smrg pReg->DacRegs[index_1d] |= 0x03; /* +hsync +vsync */ 672fe5e51b7Smrg } 673fe5e51b7Smrg 674fe5e51b7Smrg if (pMga->SyncOnGreen) 675fe5e51b7Smrg pReg->DacRegs[index_1d] |= 0x20; 676fe5e51b7Smrg 677fe5e51b7Smrg pReg->Option = 0x402C0100; /* fine for 2064 and 2164 */ 678fe5e51b7Smrg 679fe5e51b7Smrg if (pMga->Interleave) 680fe5e51b7Smrg pReg->Option |= 0x1000; 681fe5e51b7Smrg else 682fe5e51b7Smrg pReg->Option &= ~0x1000; 683fe5e51b7Smrg 684fe5e51b7Smrg /* must always have the pci retries on but rely on 685fe5e51b7Smrg polling to keep them from occuring */ 686fe5e51b7Smrg pReg->Option &= ~0x20000000; 687fe5e51b7Smrg 688fe5e51b7Smrg pVga->MiscOutReg |= 0x0C; 689fe5e51b7Smrg /* XXX Need to check the first argument */ 690fe5e51b7Smrg MGATi3026SetPCLK( pScrn, mode->Clock, 1 << BppShift ); 691fe5e51b7Smrg 692fe5e51b7Smrg /* this one writes registers rather than writing to the 693fe5e51b7Smrg mgaReg->ModeReg and letting Restore write to the hardware 694fe5e51b7Smrg but that's no big deal since we will Restore right after 695fe5e51b7Smrg this function */ 696fe5e51b7Smrg 697fe5e51b7Smrg MGA_NOT_HAL(MGATi3026SetMCLK(pScrn, MGAdac->MemoryClock)); 698fe5e51b7Smrg 699fe5e51b7Smrg#ifdef DEBUG 700fe5e51b7Smrg ErrorF("%6ld: %02X %02X %02X %02X %02X %02X %08lX\n", mode->Clock, 701fe5e51b7Smrg pReg->DacClk[0], pReg->DacClk[1], pReg->DacClk[2], pReg->DacClk[3], pReg->DacClk[4], pReg->DacClk[5], pReg->Option); 702fe5e51b7Smrg for (i=0; i<sizeof(MGADACregs); i++) ErrorF("%02X ", pReg->DacRegs[i]); 703fe5e51b7Smrg for (i=0; i<6; i++) ErrorF(" %02X", pReg->ExtVga[i]); 704fe5e51b7Smrg ErrorF("\n"); 705fe5e51b7Smrg#endif 706fe5e51b7Smrg 707fe5e51b7Smrg /* This disables the VGA memory aperture */ 708fe5e51b7Smrg pVga->MiscOutReg &= ~0x02; 709fe5e51b7Smrg return(TRUE); 710fe5e51b7Smrg} 711fe5e51b7Smrg 712fe5e51b7Smrg/* 713fe5e51b7Smrg * MGA3026Restore -- for mga2064 with ti3026 714fe5e51b7Smrg * 715fe5e51b7Smrg * This function restores a video mode. It basically writes out all of 716fe5e51b7Smrg * the registers that have previously been saved in the vgaMGARec data 717fe5e51b7Smrg * structure. 718fe5e51b7Smrg */ 719fe5e51b7Smrgstatic void 720fe5e51b7SmrgMGA3026Restore(ScrnInfoPtr pScrn, vgaRegPtr vgaReg, MGARegPtr mgaReg, 721fe5e51b7Smrg Bool restoreFonts) 722fe5e51b7Smrg{ 723fe5e51b7Smrg int i; 724fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 725fe5e51b7Smrg 726fe5e51b7Smrg /* 727fe5e51b7Smrg * Code is needed to get things back to bank zero. 728fe5e51b7Smrg */ 729fe5e51b7Smrg for (i = 0; i < 6; i++) 730fe5e51b7Smrg OUTREG16(0x1FDE, (mgaReg->ExtVga[i] << 8) | i); 731fe5e51b7Smrg 732fe5e51b7Smrg#ifdef XSERVER_LIBPCIACCESS 733fe5e51b7Smrg pci_device_cfg_write_bits(pMga->PciInfo, OPTION_MASK, mgaReg->Option, 734fe5e51b7Smrg PCI_OPTION_REG); 735fe5e51b7Smrg#else 736fe5e51b7Smrg pciSetBitsLong(pMga->PciTag, PCI_OPTION_REG, OPTION_MASK, 737fe5e51b7Smrg mgaReg->Option); 738fe5e51b7Smrg#endif 739fe5e51b7Smrg 740fe5e51b7Smrg MGA_NOT_HAL( 741fe5e51b7Smrg /* select pixel clock PLL as clock source */ 742fe5e51b7Smrg outTi3026(TVP3026_CLK_SEL, 0, mgaReg->DacRegs[3]); 743fe5e51b7Smrg 744fe5e51b7Smrg /* set loop and pixel clock PLL PLLEN bits to 0 */ 745fe5e51b7Smrg outTi3026(TVP3026_PLL_ADDR, 0, 0x2A); 746fe5e51b7Smrg outTi3026(TVP3026_LOAD_CLK_DATA, 0, 0); 747fe5e51b7Smrg outTi3026(TVP3026_PIX_CLK_DATA, 0, 0); 748fe5e51b7Smrg ); /* MGA_NOT_HAL */ 749fe5e51b7Smrg 750fe5e51b7Smrg /* 751fe5e51b7Smrg * This function handles restoring the generic VGA registers. 752fe5e51b7Smrg */ 753fe5e51b7Smrg vgaHWRestore(pScrn, vgaReg, 754fe5e51b7Smrg VGA_SR_MODE | (restoreFonts ? VGA_SR_FONTS : 0)); 755fe5e51b7Smrg MGA3026RestorePalette(pScrn, vgaReg->DAC); 756fe5e51b7Smrg 757fe5e51b7Smrg /* 758fe5e51b7Smrg * Code to restore SVGA registers that have been saved/modified 759fe5e51b7Smrg * goes here. 760fe5e51b7Smrg */ 761fe5e51b7Smrg 762fe5e51b7Smrg MGA_NOT_HAL( 763fe5e51b7Smrg /* program pixel clock PLL */ 764fe5e51b7Smrg outTi3026(TVP3026_PLL_ADDR, 0, 0x00); 765fe5e51b7Smrg for (i = 0; i < 3; i++) 766fe5e51b7Smrg outTi3026(TVP3026_PIX_CLK_DATA, 0, mgaReg->DacClk[i]); 767fe5e51b7Smrg 768fe5e51b7Smrg if (vgaReg->MiscOutReg & 0x08) { 769fe5e51b7Smrg /* poll until pixel clock PLL LOCK bit is set */ 770fe5e51b7Smrg outTi3026(TVP3026_PLL_ADDR, 0, 0x3F); 771fe5e51b7Smrg while ( ! (inTi3026(TVP3026_PIX_CLK_DATA) & 0x40) ); 772fe5e51b7Smrg } 773fe5e51b7Smrg 774fe5e51b7Smrg /* set Q divider for loop clock PLL */ 775fe5e51b7Smrg outTi3026(TVP3026_MCLK_CTL, 0, mgaReg->DacRegs[18]); 776fe5e51b7Smrg ); /* MGA_NOT_HAL */ 777fe5e51b7Smrg 778fe5e51b7Smrg /* program loop PLL */ 779fe5e51b7Smrg outTi3026(TVP3026_PLL_ADDR, 0, 0x00); 780fe5e51b7Smrg for (i = 3; i < 6; i++) 781fe5e51b7Smrg outTi3026(TVP3026_LOAD_CLK_DATA, 0, mgaReg->DacClk[i]); 782fe5e51b7Smrg 783fe5e51b7Smrg MGA_NOT_HAL( 784fe5e51b7Smrg if ((vgaReg->MiscOutReg & 0x08) && ((mgaReg->DacClk[3] & 0xC0) == 0xC0) ) { 785fe5e51b7Smrg /* poll until loop PLL LOCK bit is set */ 786fe5e51b7Smrg outTi3026(TVP3026_PLL_ADDR, 0, 0x3F); 787fe5e51b7Smrg while ( ! (inTi3026(TVP3026_LOAD_CLK_DATA) & 0x40) ); 788fe5e51b7Smrg } 789fe5e51b7Smrg ); /* MGA_NOT_HAL */ 790fe5e51b7Smrg 791fe5e51b7Smrg /* 792fe5e51b7Smrg * restore other DAC registers 793fe5e51b7Smrg */ 794fe5e51b7Smrg for (i = 0; i < DACREGSIZE; i++) 795fe5e51b7Smrg outTi3026(MGADACregs[i], 0, mgaReg->DacRegs[i]); 796fe5e51b7Smrg 797fe5e51b7Smrg#ifdef DEBUG 798fe5e51b7Smrg ErrorF("PCI retry (0-enabled / 1-disabled): %d\n", 799fe5e51b7Smrg !!(mgaReg->Option & 0x20000000)); 800fe5e51b7Smrg#endif 801fe5e51b7Smrg} 802fe5e51b7Smrg 803fe5e51b7Smrg/* 804fe5e51b7Smrg * MGA3026Save -- for mga2064 with ti3026 805fe5e51b7Smrg * 806fe5e51b7Smrg * This function saves the video state. 807fe5e51b7Smrg */ 808fe5e51b7Smrgstatic void 809fe5e51b7SmrgMGA3026Save(ScrnInfoPtr pScrn, vgaRegPtr vgaReg, MGARegPtr mgaReg, 810fe5e51b7Smrg Bool saveFonts) 811fe5e51b7Smrg{ 812fe5e51b7Smrg int i; 813fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 814fe5e51b7Smrg 815fe5e51b7Smrg /* Allocate the DacRegs space if not done already */ 816fe5e51b7Smrg if (mgaReg->DacRegs == NULL) { 817fe5e51b7Smrg mgaReg->DacRegs = xnfcalloc(DACREGSIZE, 1); 818fe5e51b7Smrg } 819fe5e51b7Smrg 820fe5e51b7Smrg /* 821fe5e51b7Smrg * Code is needed to get back to bank zero. 822fe5e51b7Smrg */ 823fe5e51b7Smrg OUTREG16(0x1FDE, 0x0004); 824fe5e51b7Smrg 825fe5e51b7Smrg /* 826fe5e51b7Smrg * This function will handle creating the data structure and filling 827fe5e51b7Smrg * in the generic VGA portion. 828fe5e51b7Smrg */ 829fe5e51b7Smrg vgaHWSave(pScrn, vgaReg, VGA_SR_MODE | (saveFonts ? VGA_SR_FONTS : 0)); 830fe5e51b7Smrg MGA3026SavePalette(pScrn, vgaReg->DAC); 831fe5e51b7Smrg 832fe5e51b7Smrg /* 833fe5e51b7Smrg * The port I/O code necessary to read in the extended registers 834fe5e51b7Smrg * into the fields of the vgaMGARec structure. 835fe5e51b7Smrg */ 836fe5e51b7Smrg for (i = 0; i < 6; i++) 837fe5e51b7Smrg { 838fe5e51b7Smrg OUTREG8(0x1FDE, i); 839fe5e51b7Smrg mgaReg->ExtVga[i] = INREG8(0x1FDF); 840fe5e51b7Smrg } 841fe5e51b7Smrg 842fe5e51b7Smrg MGA_NOT_HAL( 843fe5e51b7Smrg outTi3026(TVP3026_PLL_ADDR, 0, 0x00); 844fe5e51b7Smrg for (i = 0; i < 3; i++) 845fe5e51b7Smrg outTi3026(TVP3026_PIX_CLK_DATA, 0, mgaReg->DacClk[i] = 846fe5e51b7Smrg inTi3026(TVP3026_PIX_CLK_DATA)); 847fe5e51b7Smrg 848fe5e51b7Smrg outTi3026(TVP3026_PLL_ADDR, 0, 0x00); 849fe5e51b7Smrg for (i = 3; i < 6; i++) 850fe5e51b7Smrg outTi3026(TVP3026_LOAD_CLK_DATA, 0, mgaReg->DacClk[i] = 851fe5e51b7Smrg inTi3026(TVP3026_LOAD_CLK_DATA)); 852fe5e51b7Smrg ); /* MGA_NOT_HAL */ 853fe5e51b7Smrg 854fe5e51b7Smrg for (i = 0; i < DACREGSIZE; i++) 855fe5e51b7Smrg mgaReg->DacRegs[i] = inTi3026(MGADACregs[i]); 856fe5e51b7Smrg 857fe5e51b7Smrg#ifdef XSERVER_LIBPCIACCESS 858fe5e51b7Smrg pci_device_cfg_read_u32(pMga->PciInfo, & mgaReg->Option, 859fe5e51b7Smrg PCI_OPTION_REG); 860fe5e51b7Smrg#else 861fe5e51b7Smrg mgaReg->Option = pciReadLong(pMga->PciTag, PCI_OPTION_REG); 862fe5e51b7Smrg#endif 863fe5e51b7Smrg 864fe5e51b7Smrg#ifdef DEBUG 865fe5e51b7Smrg ErrorF("read: %02X %02X %02X %02X %02X %02X %08lX\n", 866fe5e51b7Smrg mgaReg->DacClk[0], mgaReg->DacClk[1], mgaReg->DacClk[2], mgaReg->DacClk[3], mgaReg->DacClk[4], mgaReg->DacClk[5], mgaReg->Option); 867fe5e51b7Smrg for (i=0; i<sizeof(MGADACregs); i++) ErrorF("%02X ", mgaReg->DacRegs[i]); 868fe5e51b7Smrg for (i=0; i<6; i++) ErrorF(" %02X", mgaReg->ExtVga[i]); 869fe5e51b7Smrg ErrorF("\n"); 870fe5e51b7Smrg#endif 871fe5e51b7Smrg} 872fe5e51b7Smrg 873fe5e51b7Smrg 874fe5e51b7Smrgstatic void 875fe5e51b7SmrgMGA3026LoadCursorImage( 876fe5e51b7Smrg ScrnInfoPtr pScrn, 877fe5e51b7Smrg unsigned char *src 878fe5e51b7Smrg) 879fe5e51b7Smrg{ 880fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 881fe5e51b7Smrg int i = 1024; 882fe5e51b7Smrg 883fe5e51b7Smrg outTi3026(TVP3026_CURSOR_CTL, 0xf3, 0x00); /* reset A9,A8 */ 884fe5e51b7Smrg /* reset cursor RAM load address A7..A0 */ 885fe5e51b7Smrg outTi3026dreg(TVP3026_WADR_PAL, 0x00); 886fe5e51b7Smrg 887fe5e51b7Smrg while(i--) { 888fe5e51b7Smrg while (INREG8(0x1FDA) & 0x01); 889fe5e51b7Smrg while (!(INREG8(0x1FDA) & 0x01)); 890fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_RAM, *(src++)); 891fe5e51b7Smrg } 892fe5e51b7Smrg} 893fe5e51b7Smrg 894fe5e51b7Smrg 895fe5e51b7Smrgstatic void 896fe5e51b7SmrgMGA3026ShowCursor(ScrnInfoPtr pScrn) 897fe5e51b7Smrg{ 898fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 899fe5e51b7Smrg /* Enable cursor - X11 mode */ 900fe5e51b7Smrg outTi3026(TVP3026_CURSOR_CTL, 0x6c, 0x13); 901fe5e51b7Smrg} 902fe5e51b7Smrg 903fe5e51b7Smrgstatic void 904fe5e51b7SmrgMGA3026HideCursor(ScrnInfoPtr pScrn) 905fe5e51b7Smrg{ 906fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 907fe5e51b7Smrg /* Disable cursor */ 908fe5e51b7Smrg outTi3026(TVP3026_CURSOR_CTL, 0xfc, 0x00); 909fe5e51b7Smrg} 910fe5e51b7Smrg 911fe5e51b7Smrgstatic void 912fe5e51b7SmrgMGA3026SetCursorPosition( 913fe5e51b7Smrg ScrnInfoPtr pScrn, 914fe5e51b7Smrg int x, int y 915fe5e51b7Smrg) 916fe5e51b7Smrg{ 917fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 918fe5e51b7Smrg x += 64; 919fe5e51b7Smrg y += 64; 920fe5e51b7Smrg 921fe5e51b7Smrg /* Output position - "only" 12 bits of location documented */ 922fe5e51b7Smrg 923fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_XLOW, x & 0xFF); 924fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_XHI, (x >> 8) & 0x0F); 925fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_YLOW, y & 0xFF); 926fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_YHI, (y >> 8) & 0x0F); 927fe5e51b7Smrg} 928fe5e51b7Smrg 929fe5e51b7Smrgstatic void 930fe5e51b7SmrgMGA3026SetCursorColors( 931fe5e51b7Smrg ScrnInfoPtr pScrn, 932fe5e51b7Smrg int bg, int fg 933fe5e51b7Smrg) 934fe5e51b7Smrg{ 935fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 936fe5e51b7Smrg /* The TI 3026 cursor is always 8 bits so shift 8, not 10 */ 937fe5e51b7Smrg 938fe5e51b7Smrg /* Background color */ 939fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_ADDR, 1); 940fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_DATA, (bg & 0x00FF0000) >> 16); 941fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_DATA, (bg & 0x0000FF00) >> 8); 942fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_DATA, (bg & 0x000000FF)); 943fe5e51b7Smrg 944fe5e51b7Smrg /* Foreground color */ 945fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_ADDR, 2); 946fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_DATA, (fg & 0x00FF0000) >> 16); 947fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_DATA, (fg & 0x0000FF00) >> 8); 948fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_DATA, (fg & 0x000000FF)); 949fe5e51b7Smrg} 950fe5e51b7Smrg 951fe5e51b7Smrgstatic Bool 952fe5e51b7SmrgMGA3026UseHWCursor(ScreenPtr pScrn, CursorPtr pCurs) 953fe5e51b7Smrg{ 954fe5e51b7Smrg if( XF86SCRNINFO(pScrn)->currentMode->Flags & V_DBLSCAN ) 955fe5e51b7Smrg return FALSE; 956fe5e51b7Smrg return TRUE; 957fe5e51b7Smrg} 958fe5e51b7Smrg 959fe5e51b7Smrgstatic const int DDC_SDA_MASK = 1 << 2; 960fe5e51b7Smrgstatic const int DDC_SCL_MASK = 1 << 4; 961fe5e51b7Smrg 962fe5e51b7Smrgstatic unsigned int 963fe5e51b7SmrgMGA3026_ddc1Read(ScrnInfoPtr pScrn) 964fe5e51b7Smrg{ 965fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 966fe5e51b7Smrg 967fe5e51b7Smrg /* Define the SDA as an input */ 968fe5e51b7Smrg outTi3026(TVP3026_GEN_IO_CTL, 0xfb, 0); 969fe5e51b7Smrg 970fe5e51b7Smrg /* wait for Vsync */ 971fe5e51b7Smrg while( INREG( MGAREG_Status ) & 0x08 ); 972fe5e51b7Smrg while( ! (INREG( MGAREG_Status ) & 0x08) ); 973fe5e51b7Smrg 974fe5e51b7Smrg /* Get the result */ 975fe5e51b7Smrg return (inTi3026(TVP3026_GEN_IO_DATA) & DDC_SDA_MASK) >> 2 ; 976fe5e51b7Smrg} 977fe5e51b7Smrg 978fe5e51b7Smrgstatic void 979fe5e51b7SmrgMGA3026_I2CGetBits(I2CBusPtr b, int *clock, int *data) 980fe5e51b7Smrg{ 981fe5e51b7Smrg ScrnInfoPtr pScrn = xf86Screens[b->scrnIndex]; 982fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 983fe5e51b7Smrg unsigned char val; 984fe5e51b7Smrg 985fe5e51b7Smrg /* Get the result. */ 986fe5e51b7Smrg val = inTi3026(TVP3026_GEN_IO_DATA); 987fe5e51b7Smrg *clock = (val & DDC_SCL_MASK) != 0; 988fe5e51b7Smrg *data = (val & DDC_SDA_MASK) != 0; 989fe5e51b7Smrg 990fe5e51b7Smrg#ifdef DEBUG 991fe5e51b7Smrg ErrorF("MGA3026_I2CGetBits(%p,...) val=0x%x, returns clock %d, data %d\n", b, val, *clock, *data); 992fe5e51b7Smrg#endif 993fe5e51b7Smrg} 994fe5e51b7Smrg 995fe5e51b7Smrg/* 996fe5e51b7Smrg * ATTENTION! - the DATA and CLOCK lines need to be tri-stated when 997fe5e51b7Smrg * high. Therefore turn off output driver for the line to set line 998fe5e51b7Smrg * to high. High signal is maintained by a 15k Ohm pll-up resistor. 999fe5e51b7Smrg */ 1000fe5e51b7Smrgstatic void 1001fe5e51b7SmrgMGA3026_I2CPutBits(I2CBusPtr b, int clock, int data) 1002fe5e51b7Smrg{ 1003fe5e51b7Smrg ScrnInfoPtr pScrn = xf86Screens[b->scrnIndex]; 1004fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 1005fe5e51b7Smrg unsigned char val,drv; 1006fe5e51b7Smrg 1007fe5e51b7Smrg /* Write the values */ 1008fe5e51b7Smrg val = (clock ? DDC_SCL_MASK : 0) | (data ? DDC_SDA_MASK : 0); 1009fe5e51b7Smrg drv = ((!clock) ? DDC_SCL_MASK : 0) | ((!data) ? DDC_SDA_MASK : 0); 1010fe5e51b7Smrg /* Define the SDA (Data) and SCL (clock) as outputs */ 1011fe5e51b7Smrg outTi3026(TVP3026_GEN_IO_CTL, ~(DDC_SDA_MASK | DDC_SCL_MASK), drv); 1012fe5e51b7Smrg outTi3026(TVP3026_GEN_IO_DATA, ~(DDC_SDA_MASK | DDC_SCL_MASK), val); 1013fe5e51b7Smrg 1014fe5e51b7Smrg#ifdef DEBUG 1015fe5e51b7Smrg ErrorF("MGA3026_I2CPutBits(%p, %d, %d) val=0x%x\n", b, clock, data, val); 1016fe5e51b7Smrg#endif 1017fe5e51b7Smrg 1018fe5e51b7Smrg} 1019fe5e51b7Smrg 1020fe5e51b7Smrg 1021fe5e51b7SmrgBool 1022fe5e51b7SmrgMGA3026_i2cInit(ScrnInfoPtr pScrn) 1023fe5e51b7Smrg{ 1024fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 1025fe5e51b7Smrg I2CBusPtr I2CPtr; 1026fe5e51b7Smrg 1027fe5e51b7Smrg I2CPtr = xf86CreateI2CBusRec(); 1028fe5e51b7Smrg if(!I2CPtr) return FALSE; 1029fe5e51b7Smrg 1030fe5e51b7Smrg pMga->DDC_Bus1 = I2CPtr; 1031fe5e51b7Smrg 1032fe5e51b7Smrg I2CPtr->BusName = "DDC"; 1033fe5e51b7Smrg I2CPtr->scrnIndex = pScrn->scrnIndex; 1034fe5e51b7Smrg I2CPtr->I2CPutBits = MGA3026_I2CPutBits; 1035fe5e51b7Smrg I2CPtr->I2CGetBits = MGA3026_I2CGetBits; 1036fe5e51b7Smrg 1037fe5e51b7Smrg /* I2CPutByte is timing out, experimenting with AcknTimeout 1038fe5e51b7Smrg * default is 2CPtr->AcknTimeout = 5; 1039fe5e51b7Smrg */ 1040fe5e51b7Smrg /* I2CPtr->AcknTimeout = 10; */ 1041fe5e51b7Smrg 1042fe5e51b7Smrg if (!xf86I2CBusInit(I2CPtr)) { 1043fe5e51b7Smrg return FALSE; 1044fe5e51b7Smrg } 1045fe5e51b7Smrg return TRUE; 1046fe5e51b7Smrg} 1047fe5e51b7Smrg 1048fe5e51b7Smrgstatic void 1049fe5e51b7SmrgMGA3026RamdacInit(ScrnInfoPtr pScrn) 1050fe5e51b7Smrg{ 1051fe5e51b7Smrg MGAPtr pMga; 1052fe5e51b7Smrg MGARamdacPtr MGAdac; 1053fe5e51b7Smrg 1054fe5e51b7Smrg pMga = MGAPTR(pScrn); 1055fe5e51b7Smrg MGAdac = &pMga->Dac; 1056fe5e51b7Smrg 1057fe5e51b7Smrg MGAdac->isHwCursor = TRUE; 1058fe5e51b7Smrg MGAdac->CursorMaxWidth = 64; 1059fe5e51b7Smrg MGAdac->CursorMaxHeight = 64; 1060fe5e51b7Smrg MGAdac->SetCursorColors = MGA3026SetCursorColors; 1061fe5e51b7Smrg MGAdac->SetCursorPosition = MGA3026SetCursorPosition; 1062fe5e51b7Smrg MGAdac->LoadCursorImage = MGA3026LoadCursorImage; 1063fe5e51b7Smrg MGAdac->HideCursor = MGA3026HideCursor; 1064fe5e51b7Smrg MGAdac->ShowCursor = MGA3026ShowCursor; 1065fe5e51b7Smrg MGAdac->UseHWCursor = MGA3026UseHWCursor; 1066fe5e51b7Smrg MGAdac->CursorFlags = 1067fe5e51b7Smrg#if X_BYTE_ORDER == X_LITTLE_ENDIAN 1068fe5e51b7Smrg HARDWARE_CURSOR_BIT_ORDER_MSBFIRST | 1069fe5e51b7Smrg#endif 1070fe5e51b7Smrg HARDWARE_CURSOR_TRUECOLOR_AT_8BPP | 1071fe5e51b7Smrg HARDWARE_CURSOR_SOURCE_MASK_NOT_INTERLEAVED; 1072fe5e51b7Smrg 1073fe5e51b7Smrg MGAdac->LoadPalette = MGA3026LoadPalette; 1074fe5e51b7Smrg MGAdac->RestorePalette = MGA3026RestorePalette; 1075fe5e51b7Smrg 1076fe5e51b7Smrg MGAdac->maxPixelClock = pMga->bios.pixel.max_freq; 1077fe5e51b7Smrg MGAdac->ClockFrom = X_PROBED; 1078fe5e51b7Smrg 1079fe5e51b7Smrg MGAdac->MemoryClock = pMga->bios.mem_clock; 1080fe5e51b7Smrg MGAdac->MemClkFrom = X_PROBED; 1081fe5e51b7Smrg MGAdac->SetMemClk = TRUE; 1082fe5e51b7Smrg 1083fe5e51b7Smrg 1084fe5e51b7Smrg /* safety check */ 1085fe5e51b7Smrg if ( (MGAdac->MemoryClock < 40000) || 1086fe5e51b7Smrg (MGAdac->MemoryClock > 70000) ) 1087fe5e51b7Smrg MGAdac->MemoryClock = 50000; 1088fe5e51b7Smrg 1089fe5e51b7Smrg /* 1090fe5e51b7Smrg * Should initialise a sane default when the probed value is 1091fe5e51b7Smrg * obviously garbage. 1092fe5e51b7Smrg */ 1093fe5e51b7Smrg 1094fe5e51b7Smrg /* Check if interleaving can be used and set the rounding value */ 1095fe5e51b7Smrg if (pScrn->videoRam > 2048) 1096fe5e51b7Smrg pMga->Interleave = TRUE; 1097fe5e51b7Smrg else { 1098fe5e51b7Smrg pMga->Interleave = FALSE; 1099fe5e51b7Smrg pMga->BppShifts[0]++; 1100fe5e51b7Smrg pMga->BppShifts[1]++; 1101fe5e51b7Smrg pMga->BppShifts[2]++; 1102fe5e51b7Smrg pMga->BppShifts[3]++; 1103fe5e51b7Smrg } 1104fe5e51b7Smrg 1105fe5e51b7Smrg pMga->Roundings[0] = 128 >> pMga->BppShifts[0]; 1106fe5e51b7Smrg pMga->Roundings[1] = 128 >> pMga->BppShifts[1]; 1107fe5e51b7Smrg pMga->Roundings[2] = 128 >> pMga->BppShifts[2]; 1108fe5e51b7Smrg pMga->Roundings[3] = 128 >> pMga->BppShifts[3]; 1109fe5e51b7Smrg 1110fe5e51b7Smrg /* Set Fast bitblt flag */ 1111fe5e51b7Smrg pMga->HasFBitBlt = pMga->bios.fast_bitblt; 1112fe5e51b7Smrg} 1113fe5e51b7Smrg 1114fe5e51b7Smrgvoid MGA3026LoadPalette( 1115fe5e51b7Smrg ScrnInfoPtr pScrn, 1116fe5e51b7Smrg int numColors, 1117fe5e51b7Smrg int *indices, 1118fe5e51b7Smrg LOCO *colors, 1119fe5e51b7Smrg VisualPtr pVisual 1120fe5e51b7Smrg){ 1121fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 1122fe5e51b7Smrg int i, index; 1123fe5e51b7Smrg 1124fe5e51b7Smrg if (pVisual->nplanes == 16) { 1125fe5e51b7Smrg for(i = 0; i < numColors; i++) { 1126fe5e51b7Smrg index = indices[i]; 1127fe5e51b7Smrg outTi3026dreg(MGA1064_WADR_PAL, index << 2); 1128fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index >> 1].red); 1129fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index].green); 1130fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index >> 1].blue); 1131fe5e51b7Smrg 1132fe5e51b7Smrg /* we have to write 2 indices since the pixel X on the 1133fe5e51b7Smrg TVP3026 has green colors at different locations from 1134fe5e51b7Smrg the red and blue colors */ 1135fe5e51b7Smrg if(index <= 31) { 1136fe5e51b7Smrg outTi3026dreg(MGA1064_WADR_PAL, index << 3); 1137fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index].red); 1138fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[(index << 1) + 1].green); 1139fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index].blue); 1140fe5e51b7Smrg } 1141fe5e51b7Smrg } 1142fe5e51b7Smrg } else { 1143fe5e51b7Smrg int shift = (pVisual->nplanes == 15) ? 3 : 0; 1144fe5e51b7Smrg 1145fe5e51b7Smrg for(i = 0; i < numColors; i++) { 1146fe5e51b7Smrg index = indices[i]; 1147fe5e51b7Smrg outTi3026dreg(MGA1064_WADR_PAL, index << shift); 1148fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index].red); 1149fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index].green); 1150fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index].blue); 1151fe5e51b7Smrg } 1152fe5e51b7Smrg } 1153fe5e51b7Smrg} 1154fe5e51b7Smrg 1155fe5e51b7Smrg 1156fe5e51b7Smrgstatic void 1157fe5e51b7SmrgMGA3026SavePalette(ScrnInfoPtr pScrn, unsigned char* pntr) 1158fe5e51b7Smrg{ 1159fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 1160fe5e51b7Smrg int i = 768; 1161fe5e51b7Smrg 1162fe5e51b7Smrg outTi3026dreg(TVP3026_RADR_PAL, 0x00); 1163fe5e51b7Smrg while(i--) 1164fe5e51b7Smrg *(pntr++) = inTi3026dreg(TVP3026_COL_PAL); 1165fe5e51b7Smrg} 1166fe5e51b7Smrg 1167fe5e51b7Smrgstatic void 1168fe5e51b7SmrgMGA3026RestorePalette(ScrnInfoPtr pScrn, unsigned char* pntr) 1169fe5e51b7Smrg{ 1170fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 1171fe5e51b7Smrg int i = 768; 1172fe5e51b7Smrg 1173fe5e51b7Smrg outTi3026dreg(TVP3026_WADR_PAL, 0x00); 1174fe5e51b7Smrg while(i--) 1175fe5e51b7Smrg outTi3026dreg(TVP3026_COL_PAL, *(pntr++)); 1176fe5e51b7Smrg} 1177fe5e51b7Smrg 1178fe5e51b7Smrg 1179fe5e51b7Smrgvoid MGA2064SetupFuncs(ScrnInfoPtr pScrn) 1180fe5e51b7Smrg{ 1181fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 1182fe5e51b7Smrg 1183fe5e51b7Smrg pMga->PreInit = MGA3026RamdacInit; 1184fe5e51b7Smrg pMga->Save = MGA3026Save; 1185fe5e51b7Smrg pMga->Restore = MGA3026Restore; 1186fe5e51b7Smrg pMga->ModeInit = MGA3026Init; 1187fe5e51b7Smrg pMga->ddc1Read = MGA3026_ddc1Read; 1188fe5e51b7Smrg /* vgaHWddc1SetSpeed will only work if the card is in VGA mode */ 1189fe5e51b7Smrg pMga->DDC1SetSpeed = vgaHWddc1SetSpeedWeak(); 1190fe5e51b7Smrg pMga->i2cInit = MGA3026_i2cInit; 1191fe5e51b7Smrg} 1192