mga_dac3026.c revision fe5e51b7
1fe5e51b7Smrg/* $XFree86: xc/programs/Xserver/hw/xfree86/drivers/mga/mga_dac3026.c,v 1.58tsi Exp $ */ 2fe5e51b7Smrg/* 3fe5e51b7Smrg * Copyright 1994 by Robin Cutshaw <robin@XFree86.org> 4fe5e51b7Smrg * 5fe5e51b7Smrg * Permission to use, copy, modify, distribute, and sell this software and its 6fe5e51b7Smrg * documentation for any purpose is hereby granted without fee, provided that 7fe5e51b7Smrg * the above copyright notice appear in all copies and that both that 8fe5e51b7Smrg * copyright notice and this permission notice appear in supporting 9fe5e51b7Smrg * documentation, and that the name of Robin Cutshaw not be used in 10fe5e51b7Smrg * advertising or publicity pertaining to distribution of the software without 11fe5e51b7Smrg * specific, written prior permission. Robin Cutshaw makes no representations 12fe5e51b7Smrg * about the suitability of this software for any purpose. It is provided 13fe5e51b7Smrg * "as is" without express or implied warranty. 14fe5e51b7Smrg * 15fe5e51b7Smrg * ROBIN CUTSHAW DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, 16fe5e51b7Smrg * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO 17fe5e51b7Smrg * EVENT SHALL ROBIN CUTSHAW BE LIABLE FOR ANY SPECIAL, INDIRECT OR 18fe5e51b7Smrg * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, 19fe5e51b7Smrg * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER 20fe5e51b7Smrg * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR 21fe5e51b7Smrg * PERFORMANCE OF THIS SOFTWARE. 22fe5e51b7Smrg * 23fe5e51b7Smrg * 24fe5e51b7Smrg * Modified for TVP3026 by Harald Koenig <koenig@tat.physik.uni-tuebingen.de> 25fe5e51b7Smrg * 26fe5e51b7Smrg * Modified for MGA Millennium by Xavier Ducoin <xavier@rd.lectra.fr> 27fe5e51b7Smrg * 28fe5e51b7Smrg * Doug Merritt <doug@netcom.com> 29fe5e51b7Smrg * 24bpp: fixed high res stripe glitches, clock glitches on all res 30fe5e51b7Smrg * 31fe5e51b7Smrg */ 32fe5e51b7Smrg 33fe5e51b7Smrg#ifdef HAVE_CONFIG_H 34fe5e51b7Smrg#include "config.h" 35fe5e51b7Smrg#endif 36fe5e51b7Smrg 37fe5e51b7Smrg/* 38fe5e51b7Smrg * This is a first cut at a non-accelerated version to work with the 39fe5e51b7Smrg * new server design (DHD). 40fe5e51b7Smrg */ 41fe5e51b7Smrg 42fe5e51b7Smrg/* All drivers should typically include these */ 43fe5e51b7Smrg#include "xf86.h" 44fe5e51b7Smrg#include "xf86_OSproc.h" 45fe5e51b7Smrg 46fe5e51b7Smrg/* Drivers for PCI hardware need this */ 47fe5e51b7Smrg#include "xf86PciInfo.h" 48fe5e51b7Smrg 49fe5e51b7Smrg/* Drivers that need to access the PCI config space directly need this */ 50fe5e51b7Smrg#include "xf86Pci.h" 51fe5e51b7Smrg 52fe5e51b7Smrg#include "mga_reg.h" 53fe5e51b7Smrg#include "mga.h" 54fe5e51b7Smrg#include "mga_macros.h" 55fe5e51b7Smrg 56fe5e51b7Smrg#include "xf86DDC.h" 57fe5e51b7Smrg 58fe5e51b7Smrg/* 59fe5e51b7Smrg * Only change these bits in the Option register. Make sure that the 60fe5e51b7Smrg * vgaioen bit is never in this mask because it is controlled elsewhere 61fe5e51b7Smrg */ 62fe5e51b7Smrg#define OPTION_MASK 0xFFEFFEFF /* ~(eepromwt | vgaioen) */ 63fe5e51b7Smrg 64fe5e51b7Smrgstatic void MGA3026LoadPalette(ScrnInfoPtr, int, int*, LOCO*, VisualPtr); 65fe5e51b7Smrgstatic void MGA3026SavePalette(ScrnInfoPtr, unsigned char*); 66fe5e51b7Smrgstatic void MGA3026RestorePalette(ScrnInfoPtr, unsigned char*); 67fe5e51b7Smrgstatic void MGA3026RamdacInit(ScrnInfoPtr); 68fe5e51b7Smrgstatic void MGA3026Save(ScrnInfoPtr, vgaRegPtr, MGARegPtr, Bool); 69fe5e51b7Smrgstatic void MGA3026Restore(ScrnInfoPtr, vgaRegPtr, MGARegPtr, Bool); 70fe5e51b7Smrgstatic Bool MGA3026Init(ScrnInfoPtr, DisplayModePtr); 71fe5e51b7Smrgstatic Bool MGA3026_i2cInit(ScrnInfoPtr pScrn); 72fe5e51b7Smrg 73fe5e51b7Smrg 74fe5e51b7Smrg/* 75fe5e51b7Smrg * implementation 76fe5e51b7Smrg */ 77fe5e51b7Smrg 78fe5e51b7Smrg/* 79fe5e51b7Smrg * indexes to ti3026 registers (the order is important) 80fe5e51b7Smrg */ 81fe5e51b7Smrgconst static unsigned char MGADACregs[] = { 82fe5e51b7Smrg 0x0F, 0x18, 0x19, 0x1A, 0x1C, 0x1D, 0x1E, 0x2A, 0x2B, 0x30, 83fe5e51b7Smrg 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 84fe5e51b7Smrg 0x06 85fe5e51b7Smrg}; 86fe5e51b7Smrg 87fe5e51b7Smrg/* note: to fix a cursor hw glitch, register 0x37 (blue color key) needs 88fe5e51b7Smrg to be set to magic numbers, even though they are "never" used because 89fe5e51b7Smrg blue keying disabled in 0x38. 90fe5e51b7Smrg 91fe5e51b7Smrg Matrox sez: 92fe5e51b7Smrg 93fe5e51b7Smrg ...The more precise statement of the software workaround is to insure 94fe5e51b7Smrg that bits 7-5 of register 0x37 (Blue Color Key High) and bits 7-5 of 95fe5e51b7Smrg register 0x38 (HZOOM)are the same... 96fe5e51b7Smrg*/ 97fe5e51b7Smrg 98fe5e51b7Smrg/* also note: the values of the MUX control register 0x19 (index [2]) can be 99fe5e51b7Smrg found in table 2-17 of the 3026 manual. If interlace is set, the values 100fe5e51b7Smrg listed here are incremented by one. 101fe5e51b7Smrg*/ 102fe5e51b7Smrg 103fe5e51b7Smrg#define DACREGSIZE sizeof(MGADACregs) 104fe5e51b7Smrg/* 105fe5e51b7Smrg * initial values of ti3026 registers 106fe5e51b7Smrg */ 107fe5e51b7Smrgconst static unsigned char MGADACbpp8[DACREGSIZE] = { 108fe5e51b7Smrg 0x06, 0x80, 0x4b, 0x25, 0x00, 0x00, 0x0C, 0x00, 0x1E, 0xFF, 109fe5e51b7Smrg 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0, 0x00, 110fe5e51b7Smrg 0x00 111fe5e51b7Smrg}; 112fe5e51b7Smrgconst static unsigned char MGADACbpp16[DACREGSIZE] = { 113fe5e51b7Smrg 0x07, 0x45, 0x53, 0x15, 0x00, 0x00, 0x2C, 0x00, 0x1E, 0xFF, 114fe5e51b7Smrg 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x10, 0, 0x00, 115fe5e51b7Smrg 0x00 116fe5e51b7Smrg}; 117fe5e51b7Smrg/* 118fe5e51b7Smrg * [0] value was 0x07, but changed to 0x06 by Doug Merrit to fix high res 119fe5e51b7Smrg * stripe glitches and clock glitches at 24bpp. 120fe5e51b7Smrg */ 121fe5e51b7Smrg/* [0] value is now set inside of MGA3026Init, based on the silicon revision 122fe5e51b7Smrg It is still set to 7 or 6 based on the revision, though, since setting to 123fe5e51b7Smrg 8 as in the documentation makes (some?) revB chips get the colors wrong... 124fe5e51b7Smrg maybe BGR instead of RGB? This only applies to 24bpp, since it is the only 125fe5e51b7Smrg one documented as depending on revision. 126fe5e51b7Smrg */ 127fe5e51b7Smrg 128fe5e51b7Smrgconst static unsigned char MGADACbpp24[DACREGSIZE] = { 129fe5e51b7Smrg 0x06, 0x56, 0x5b, 0x25, 0x00, 0x00, 0x2C, 0x00, 0x1E, 0xFF, 130fe5e51b7Smrg 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x10, 0, 0x00, 131fe5e51b7Smrg 0x00 132fe5e51b7Smrg}; 133fe5e51b7Smrgconst static unsigned char MGADACbpp32[DACREGSIZE] = { 134fe5e51b7Smrg 0x07, 0x46, 0x5b, 0x05, 0x00, 0x00, 0x2C, 0x00, 0x1E, 0xFF, 135fe5e51b7Smrg 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x10, 0, 0x00, 136fe5e51b7Smrg 0x00 137fe5e51b7Smrg}; 138fe5e51b7Smrg 139fe5e51b7Smrg/* on at least some 2064Ws, the PSEL line flips at 4MB or so, so PSEL keying 140fe5e51b7Smrg has to be off in register 0x1e -> bit4 clear */ 141fe5e51b7Smrg 142fe5e51b7Smrgconst static unsigned char MGADACbpp8plus24[DACREGSIZE] = { 143fe5e51b7Smrg 0x07, 0x06, 0x5b, 0x05, 0x00, 0x00, 0x2C, 0x00, 0x1E, 0xFF, 144fe5e51b7Smrg 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x01, 0x00, 0x00, 145fe5e51b7Smrg 0x00 146fe5e51b7Smrg}; 147fe5e51b7Smrg 148fe5e51b7Smrg/* 149fe5e51b7Smrg * Read/write to the DAC via MMIO 150fe5e51b7Smrg */ 151fe5e51b7Smrg 152fe5e51b7Smrg/* 153fe5e51b7Smrg * These were functions. Use macros instead to avoid the need to 154fe5e51b7Smrg * pass pMga to them. 155fe5e51b7Smrg */ 156fe5e51b7Smrg 157fe5e51b7Smrg#define inTi3026dreg(reg) INREG8(RAMDAC_OFFSET + (reg)) 158fe5e51b7Smrg 159fe5e51b7Smrg#define outTi3026dreg(reg, val) OUTREG8(RAMDAC_OFFSET + (reg), val) 160fe5e51b7Smrg 161fe5e51b7Smrg#define inTi3026(reg) \ 162fe5e51b7Smrg (outTi3026dreg(TVP3026_INDEX, reg), inTi3026dreg(TVP3026_DATA)) 163fe5e51b7Smrg 164fe5e51b7Smrg#define outTi3026(reg, mask, val) \ 165fe5e51b7Smrg do { /* note: mask and reg may get evaluated twice */ \ 166fe5e51b7Smrg unsigned char tmp = (mask) ? (inTi3026(reg) & (mask)) : 0; \ 167fe5e51b7Smrg outTi3026dreg(TVP3026_INDEX, reg); \ 168fe5e51b7Smrg outTi3026dreg(TVP3026_DATA, tmp | (val)); \ 169fe5e51b7Smrg } while (0) 170fe5e51b7Smrg 171fe5e51b7Smrg 172fe5e51b7Smrg/* 173fe5e51b7Smrg * MGATi3026CalcClock - Calculate the PLL settings (m, n, p). 174fe5e51b7Smrg * 175fe5e51b7Smrg * DESCRIPTION 176fe5e51b7Smrg * For more information, refer to the Texas Instruments 177fe5e51b7Smrg * "TVP3026 Data Manual" (document SLAS098B). 178fe5e51b7Smrg * Section 2.4 "PLL Clock Generators" 179fe5e51b7Smrg * Appendix A "Frequency Synthesis PLL Register Settings" 180fe5e51b7Smrg * Appendix B "PLL Programming Examples" 181fe5e51b7Smrg * 182fe5e51b7Smrg * PARAMETERS 183fe5e51b7Smrg * f_out IN Desired clock frequency. 184fe5e51b7Smrg * f_max IN Maximum allowed clock frequency. 185fe5e51b7Smrg * m OUT Value of PLL 'm' register. 186fe5e51b7Smrg * n OUT Value of PLL 'n' register. 187fe5e51b7Smrg * p OUT Value of PLL 'p' register. 188fe5e51b7Smrg * 189fe5e51b7Smrg * HISTORY 190fe5e51b7Smrg * January 11, 1997 - [aem] Andrew E. Mileski 191fe5e51b7Smrg * Split off from MGATi3026SetClock. 192fe5e51b7Smrg */ 193fe5e51b7Smrg 194fe5e51b7Smrg/* The following values are in kHz */ 195fe5e51b7Smrg#define TI_MIN_VCO_FREQ 110000 196fe5e51b7Smrg#define TI_MAX_VCO_FREQ 220000 197fe5e51b7Smrg#define TI_MAX_MCLK_FREQ 100000 198fe5e51b7Smrg#define TI_REF_FREQ 14318.18 199fe5e51b7Smrg 200fe5e51b7Smrgstatic double 201fe5e51b7SmrgMGATi3026CalcClock ( 202fe5e51b7Smrg long f_out, long f_max, 203fe5e51b7Smrg int *m, int *n, int *p 204fe5e51b7Smrg){ 205fe5e51b7Smrg int best_m = 0, best_n = 0; 206fe5e51b7Smrg double f_pll, f_vco; 207fe5e51b7Smrg double m_err, inc_m, calc_m; 208fe5e51b7Smrg 209fe5e51b7Smrg /* Make sure that f_min <= f_out <= f_max */ 210fe5e51b7Smrg if ( f_out < ( TI_MIN_VCO_FREQ / 8 )) 211fe5e51b7Smrg f_out = TI_MIN_VCO_FREQ / 8; 212fe5e51b7Smrg if ( f_out > f_max ) 213fe5e51b7Smrg f_out = f_max; 214fe5e51b7Smrg 215fe5e51b7Smrg /* 216fe5e51b7Smrg * f_pll = f_vco / 2 ^ p 217fe5e51b7Smrg * Choose p so that TI_MIN_VCO_FREQ <= f_vco <= TI_MAX_VCO_FREQ 218fe5e51b7Smrg * Note that since TI_MAX_VCO_FREQ = 2 * TI_MIN_VCO_FREQ 219fe5e51b7Smrg * we don't have to bother checking for this maximum limit. 220fe5e51b7Smrg */ 221fe5e51b7Smrg f_vco = ( double ) f_out; 222fe5e51b7Smrg for ( *p = 0; *p < 3 && f_vco < TI_MIN_VCO_FREQ; ( *p )++ ) 223fe5e51b7Smrg f_vco *= 2.0; 224fe5e51b7Smrg 225fe5e51b7Smrg /* 226fe5e51b7Smrg * We avoid doing multiplications by ( 65 - n ), 227fe5e51b7Smrg * and add an increment instead - this keeps any error small. 228fe5e51b7Smrg */ 229fe5e51b7Smrg inc_m = f_vco / ( TI_REF_FREQ * 8.0 ); 230fe5e51b7Smrg 231fe5e51b7Smrg /* Initial value of calc_m for the loop */ 232fe5e51b7Smrg calc_m = inc_m + inc_m + inc_m; 233fe5e51b7Smrg 234fe5e51b7Smrg /* Initial amount of error for an integer - impossibly large */ 235fe5e51b7Smrg m_err = 2.0; 236fe5e51b7Smrg 237fe5e51b7Smrg /* Search for the closest INTEGER value of ( 65 - m ) */ 238fe5e51b7Smrg for ( *n = 3; *n <= 25; ( *n )++, calc_m += inc_m ) { 239fe5e51b7Smrg 240fe5e51b7Smrg /* Ignore values of ( 65 - m ) which we can't use */ 241fe5e51b7Smrg if ( calc_m < 3.0 || calc_m > 64.0 ) 242fe5e51b7Smrg continue; 243fe5e51b7Smrg 244fe5e51b7Smrg /* 245fe5e51b7Smrg * Pick the closest INTEGER (has smallest fractional part). 246fe5e51b7Smrg * The optimizer should clean this up for us. 247fe5e51b7Smrg */ 248fe5e51b7Smrg if (( calc_m - ( int ) calc_m ) < m_err ) { 249fe5e51b7Smrg m_err = calc_m - ( int ) calc_m; 250fe5e51b7Smrg best_m = ( int ) calc_m; 251fe5e51b7Smrg best_n = *n; 252fe5e51b7Smrg } 253fe5e51b7Smrg } 254fe5e51b7Smrg 255fe5e51b7Smrg /* 65 - ( 65 - x ) = x */ 256fe5e51b7Smrg *m = 65 - best_m; 257fe5e51b7Smrg *n = 65 - best_n; 258fe5e51b7Smrg 259fe5e51b7Smrg /* Now all the calculations can be completed */ 260fe5e51b7Smrg f_vco = 8.0 * TI_REF_FREQ * best_m / best_n; 261fe5e51b7Smrg f_pll = f_vco / ( 1 << *p ); 262fe5e51b7Smrg 263fe5e51b7Smrg#ifdef DEBUG 264fe5e51b7Smrg ErrorF( "f_out=%ld f_pll=%.1f f_vco=%.1f n=%d m=%d p=%d\n", 265fe5e51b7Smrg f_out, f_pll, f_vco, *n, *m, *p ); 266fe5e51b7Smrg#endif 267fe5e51b7Smrg 268fe5e51b7Smrg return f_pll; 269fe5e51b7Smrg} 270fe5e51b7Smrg 271fe5e51b7Smrg/* 272fe5e51b7Smrg * MGATi3026SetMCLK - Set the memory clock (MCLK) PLL. 273fe5e51b7Smrg * 274fe5e51b7Smrg * HISTORY 275fe5e51b7Smrg * January 11, 1997 - [aem] Andrew E. Mileski 276fe5e51b7Smrg * Written and tested. 277fe5e51b7Smrg */ 278fe5e51b7Smrgstatic void 279fe5e51b7SmrgMGATi3026SetMCLK( ScrnInfoPtr pScrn, long f_out ) 280fe5e51b7Smrg{ 281fe5e51b7Smrg int mclk_m, mclk_n, mclk_p; 282fe5e51b7Smrg int pclk_m, pclk_n, pclk_p; 283fe5e51b7Smrg int mclk_ctl; 284fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 285fe5e51b7Smrg 286fe5e51b7Smrg MGATi3026CalcClock(f_out, TI_MAX_MCLK_FREQ, &mclk_m, &mclk_n, &mclk_p); 287fe5e51b7Smrg 288fe5e51b7Smrg /* Save PCLK settings */ 289fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfc ); 290fe5e51b7Smrg pclk_n = inTi3026( TVP3026_PIX_CLK_DATA ); 291fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfd ); 292fe5e51b7Smrg pclk_m = inTi3026( TVP3026_PIX_CLK_DATA ); 293fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfe ); 294fe5e51b7Smrg pclk_p = inTi3026( TVP3026_PIX_CLK_DATA ); 295fe5e51b7Smrg 296fe5e51b7Smrg /* Stop PCLK (PLLEN = 0, PCLKEN = 0) */ 297fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfe ); 298fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, 0x00 ); 299fe5e51b7Smrg 300fe5e51b7Smrg /* Set PCLK to the new MCLK frequency (PLLEN = 1, PCLKEN = 0 ) */ 301fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfc ); 302fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, ( mclk_n & 0x3f ) | 0xc0 ); 303fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, mclk_m & 0x3f ); 304fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, ( mclk_p & 0x03 ) | 0xb0 ); 305fe5e51b7Smrg 306fe5e51b7Smrg /* Wait for PCLK PLL to lock on frequency */ 307fe5e51b7Smrg while (( inTi3026( TVP3026_PIX_CLK_DATA ) & 0x40 ) == 0 ) { 308fe5e51b7Smrg ; 309fe5e51b7Smrg } 310fe5e51b7Smrg 311fe5e51b7Smrg /* Output PCLK on MCLK pin */ 312fe5e51b7Smrg mclk_ctl = inTi3026( TVP3026_MCLK_CTL ); 313fe5e51b7Smrg outTi3026( TVP3026_MCLK_CTL, 0, mclk_ctl & 0xe7 ); 314fe5e51b7Smrg outTi3026( TVP3026_MCLK_CTL, 0, ( mclk_ctl & 0xe7 ) | 0x08 ); 315fe5e51b7Smrg 316fe5e51b7Smrg /* Stop MCLK (PLLEN = 0 ) */ 317fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfb ); 318fe5e51b7Smrg outTi3026( TVP3026_MEM_CLK_DATA, 0, 0x00 ); 319fe5e51b7Smrg 320fe5e51b7Smrg /* Set MCLK to the new frequency (PLLEN = 1) */ 321fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xf3 ); 322fe5e51b7Smrg outTi3026( TVP3026_MEM_CLK_DATA, 0, ( mclk_n & 0x3f ) | 0xc0 ); 323fe5e51b7Smrg outTi3026( TVP3026_MEM_CLK_DATA, 0, mclk_m & 0x3f ); 324fe5e51b7Smrg outTi3026( TVP3026_MEM_CLK_DATA, 0, ( mclk_p & 0x03 ) | 0xb0 ); 325fe5e51b7Smrg 326fe5e51b7Smrg /* Wait for MCLK PLL to lock on frequency */ 327fe5e51b7Smrg while (( inTi3026( TVP3026_MEM_CLK_DATA ) & 0x40 ) == 0 ) { 328fe5e51b7Smrg ; 329fe5e51b7Smrg } 330fe5e51b7Smrg 331fe5e51b7Smrg /* Output MCLK PLL on MCLK pin */ 332fe5e51b7Smrg outTi3026( TVP3026_MCLK_CTL, 0, ( mclk_ctl & 0xe7 ) | 0x10 ); 333fe5e51b7Smrg outTi3026( TVP3026_MCLK_CTL, 0, ( mclk_ctl & 0xe7 ) | 0x18 ); 334fe5e51b7Smrg 335fe5e51b7Smrg /* Stop PCLK (PLLEN = 0, PCLKEN = 0 ) */ 336fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfe ); 337fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, 0x00 ); 338fe5e51b7Smrg 339fe5e51b7Smrg /* Restore PCLK (PLLEN = ?, PCLKEN = ?) */ 340fe5e51b7Smrg outTi3026( TVP3026_PLL_ADDR, 0, 0xfc ); 341fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, pclk_n ); 342fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, pclk_m ); 343fe5e51b7Smrg outTi3026( TVP3026_PIX_CLK_DATA, 0, pclk_p ); 344fe5e51b7Smrg 345fe5e51b7Smrg /* Wait for PCLK PLL to lock on frequency */ 346fe5e51b7Smrg while (( inTi3026( TVP3026_PIX_CLK_DATA ) & 0x40 ) == 0 ) { 347fe5e51b7Smrg ; 348fe5e51b7Smrg } 349fe5e51b7Smrg} 350fe5e51b7Smrg 351fe5e51b7Smrg/* 352fe5e51b7Smrg * MGATi3026SetPCLK - Set the pixel (PCLK) and loop (LCLK) clocks. 353fe5e51b7Smrg * 354fe5e51b7Smrg * PARAMETERS 355fe5e51b7Smrg * f_pll IN Pixel clock PLL frequencly in kHz. 356fe5e51b7Smrg * bpp IN Bytes per pixel. 357fe5e51b7Smrg * 358fe5e51b7Smrg * HISTORY 359fe5e51b7Smrg * January 11, 1997 - [aem] Andrew E. Mileski 360fe5e51b7Smrg * Split to simplify code for MCLK (=GCLK) setting. 361fe5e51b7Smrg * 362fe5e51b7Smrg * December 14, 1996 - [aem] Andrew E. Mileski 363fe5e51b7Smrg * Fixed loop clock to be based on the calculated, not requested, 364fe5e51b7Smrg * pixel clock. Added f_max = maximum f_vco frequency. 365fe5e51b7Smrg * 366fe5e51b7Smrg * October 19, 1996 - [aem] Andrew E. Mileski 367fe5e51b7Smrg * Commented the loop clock code (wow, I understand everything now), 368fe5e51b7Smrg * and simplified it a bit. This should really be two separate functions. 369fe5e51b7Smrg * 370fe5e51b7Smrg * October 1, 1996 - [aem] Andrew E. Mileski 371fe5e51b7Smrg * Optimized the m & n picking algorithm. Added maxClock detection. 372fe5e51b7Smrg * Low speed pixel clock fix (per the docs). Documented what I understand. 373fe5e51b7Smrg * 374fe5e51b7Smrg * ?????, ??, ???? - [???] ???????????? 375fe5e51b7Smrg * Based on the TVP3026 code in the S3 driver. 376fe5e51b7Smrg */ 377fe5e51b7Smrg 378fe5e51b7Smrgstatic void 379fe5e51b7SmrgMGATi3026SetPCLK( ScrnInfoPtr pScrn, long f_out, int bpp ) 380fe5e51b7Smrg{ 381fe5e51b7Smrg /* Pixel clock values */ 382fe5e51b7Smrg int m, n, p; 383fe5e51b7Smrg 384fe5e51b7Smrg /* Loop clock values */ 385fe5e51b7Smrg int lm, ln, lp, lq; 386fe5e51b7Smrg double z; 387fe5e51b7Smrg 388fe5e51b7Smrg /* The actual frequency output by the clock */ 389fe5e51b7Smrg double f_pll; 390fe5e51b7Smrg 391fe5e51b7Smrg long f_max = TI_MAX_VCO_FREQ; 392fe5e51b7Smrg 393fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 394fe5e51b7Smrg MGARegPtr pReg = &pMga->ModeReg; 395fe5e51b7Smrg 396fe5e51b7Smrg /* Get the maximum pixel clock frequency */ 397fe5e51b7Smrg if ( pMga->MaxClock > TI_MAX_VCO_FREQ ) 398fe5e51b7Smrg f_max = pMga->MaxClock; 399fe5e51b7Smrg 400fe5e51b7Smrg /* Do the calculations for m, n, and p */ 401fe5e51b7Smrg f_pll = MGATi3026CalcClock( f_out, f_max, & m, & n, & p ); 402fe5e51b7Smrg 403fe5e51b7Smrg /* Values for the pixel clock PLL registers */ 404fe5e51b7Smrg pReg->DacClk[ 0 ] = ( n & 0x3f ) | 0xc0; 405fe5e51b7Smrg pReg->DacClk[ 1 ] = ( m & 0x3f ); 406fe5e51b7Smrg pReg->DacClk[ 2 ] = ( p & 0x03 ) | 0xb0; 407fe5e51b7Smrg 408fe5e51b7Smrg /* 409fe5e51b7Smrg * Now that the pixel clock PLL is setup, 410fe5e51b7Smrg * the loop clock PLL must be setup. 411fe5e51b7Smrg */ 412fe5e51b7Smrg 413fe5e51b7Smrg /* 414fe5e51b7Smrg * First we figure out lm, ln, and z. 415fe5e51b7Smrg * Things are different in packed pixel mode (24bpp) though. 416fe5e51b7Smrg */ 417fe5e51b7Smrg if ( pMga->CurrentLayout.bitsPerPixel == 24 ) { 418fe5e51b7Smrg 419fe5e51b7Smrg /* ln:lm = ln:3 */ 420fe5e51b7Smrg lm = 65 - 3; 421fe5e51b7Smrg 422fe5e51b7Smrg /* Check for interleaved mode */ 423fe5e51b7Smrg if ( bpp == 2 ) 424fe5e51b7Smrg /* ln:lm = 4:3 */ 425fe5e51b7Smrg ln = 65 - 4; 426fe5e51b7Smrg else 427fe5e51b7Smrg /* ln:lm = 8:3 */ 428fe5e51b7Smrg ln = 65 - 8; 429fe5e51b7Smrg 430fe5e51b7Smrg /* Note: this is actually 100 * z for more precision */ 431fe5e51b7Smrg z = ( 11000 * ( 65 - ln )) / (( f_pll / 1000 ) * ( 65 - lm )); 432fe5e51b7Smrg } 433fe5e51b7Smrg else { 434fe5e51b7Smrg /* ln:lm = ln:4 */ 435fe5e51b7Smrg lm = 65 - 4; 436fe5e51b7Smrg 437fe5e51b7Smrg /* Note: bpp = bytes per pixel */ 438fe5e51b7Smrg ln = 65 - 4 * ( 64 / 8 ) / bpp; 439fe5e51b7Smrg 440fe5e51b7Smrg /* Note: this is actually 100 * z for more precision */ 441fe5e51b7Smrg z = (( 11000 / 4 ) * ( 65 - ln )) / ( f_pll / 1000 ); 442fe5e51b7Smrg } 443fe5e51b7Smrg 444fe5e51b7Smrg /* 445fe5e51b7Smrg * Now we choose dividers lp and lq so that the VCO frequency 446fe5e51b7Smrg * is within the operating range of 110 MHz to 220 MHz. 447fe5e51b7Smrg */ 448fe5e51b7Smrg 449fe5e51b7Smrg /* Assume no lq divider */ 450fe5e51b7Smrg lq = 0; 451fe5e51b7Smrg 452fe5e51b7Smrg /* Note: z is actually 100 * z for more precision */ 453fe5e51b7Smrg if ( z <= 200.0 ) 454fe5e51b7Smrg lp = 0; 455fe5e51b7Smrg else if ( z <= 400.0 ) 456fe5e51b7Smrg lp = 1; 457fe5e51b7Smrg else if ( z <= 800.0 ) 458fe5e51b7Smrg lp = 2; 459fe5e51b7Smrg else if ( z <= 1600.0 ) 460fe5e51b7Smrg lp = 3; 461fe5e51b7Smrg else { 462fe5e51b7Smrg lp = 3; 463fe5e51b7Smrg lq = ( int )( z / 1600.0 ); 464fe5e51b7Smrg } 465fe5e51b7Smrg 466fe5e51b7Smrg /* Values for the loop clock PLL registers */ 467fe5e51b7Smrg if ( pMga->CurrentLayout.bitsPerPixel == 24 ) { 468fe5e51b7Smrg /* Packed pixel mode values */ 469fe5e51b7Smrg pReg->DacClk[ 3 ] = ( ln & 0x3f ) | 0x80; 470fe5e51b7Smrg pReg->DacClk[ 4 ] = ( lm & 0x3f ) | 0x80; 471fe5e51b7Smrg pReg->DacClk[ 5 ] = ( lp & 0x03 ) | 0xf8; 472fe5e51b7Smrg } else { 473fe5e51b7Smrg /* Non-packed pixel mode values */ 474fe5e51b7Smrg pReg->DacClk[ 3 ] = ( ln & 0x3f ) | 0xc0; 475fe5e51b7Smrg pReg->DacClk[ 4 ] = ( lm & 0x3f ); 476fe5e51b7Smrg pReg->DacClk[ 5 ] = ( lp & 0x03 ) | 0xf0; 477fe5e51b7Smrg } 478fe5e51b7Smrg pReg->DacRegs[ 18 ] = lq | 0x38; 479fe5e51b7Smrg 480fe5e51b7Smrg#ifdef DEBUG 481fe5e51b7Smrg ErrorF( "bpp=%d z=%.1f ln=%d lm=%d lp=%d lq=%d\n", 482fe5e51b7Smrg bpp, z, ln, lm, lp, lq ); 483fe5e51b7Smrg#endif 484fe5e51b7Smrg} 485fe5e51b7Smrg 486fe5e51b7Smrg/* 487fe5e51b7Smrg * MGA3026Init -- for mga2064 with ti3026 488fe5e51b7Smrg * 489fe5e51b7Smrg * The 'mode' parameter describes the video mode. The 'mode' structure 490fe5e51b7Smrg * as well as the 'vga256InfoRec' structure can be dereferenced for 491fe5e51b7Smrg * information that is needed to initialize the mode. The 'new' macro 492fe5e51b7Smrg * (see definition above) is used to simply fill in the structure. 493fe5e51b7Smrg */ 494fe5e51b7Smrgstatic Bool 495fe5e51b7SmrgMGA3026Init(ScrnInfoPtr pScrn, DisplayModePtr mode) 496fe5e51b7Smrg{ 497fe5e51b7Smrg int hd, hs, he, ht, vd, vs, ve, vt, wd; 498fe5e51b7Smrg int i, BppShift, index_1d = 0; 499fe5e51b7Smrg const unsigned char* initDAC; 500fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 501fe5e51b7Smrg MGARamdacPtr MGAdac = &pMga->Dac; 502fe5e51b7Smrg MGAFBLayout *pLayout = &pMga->CurrentLayout; 503fe5e51b7Smrg MGARegPtr pReg = &pMga->ModeReg; 504fe5e51b7Smrg vgaRegPtr pVga = &VGAHWPTR(pScrn)->ModeReg; 505fe5e51b7Smrg 506fe5e51b7Smrg BppShift = pMga->BppShifts[(pLayout->bitsPerPixel >> 3) - 1]; 507fe5e51b7Smrg 508fe5e51b7Smrg switch(pLayout->bitsPerPixel) 509fe5e51b7Smrg { 510fe5e51b7Smrg case 8: 511fe5e51b7Smrg initDAC = MGADACbpp8; 512fe5e51b7Smrg break; 513fe5e51b7Smrg case 16: 514fe5e51b7Smrg initDAC = MGADACbpp16; 515fe5e51b7Smrg break; 516fe5e51b7Smrg case 24: 517fe5e51b7Smrg initDAC = MGADACbpp24; 518fe5e51b7Smrg break; 519fe5e51b7Smrg case 32: 520fe5e51b7Smrg if(pLayout->Overlay8Plus24) 521fe5e51b7Smrg initDAC = MGADACbpp8plus24; 522fe5e51b7Smrg else 523fe5e51b7Smrg initDAC = MGADACbpp32; 524fe5e51b7Smrg break; 525fe5e51b7Smrg default: 526fe5e51b7Smrg FatalError("MGA: unsupported bits per pixel\n"); 527fe5e51b7Smrg } 528fe5e51b7Smrg 529fe5e51b7Smrg /* Allocate the DacRegs space if not done already */ 530fe5e51b7Smrg if (pReg->DacRegs == NULL) { 531fe5e51b7Smrg pReg->DacRegs = xnfcalloc(DACREGSIZE, 1); 532fe5e51b7Smrg } 533fe5e51b7Smrg for (i = 0; i < DACREGSIZE; i++) { 534fe5e51b7Smrg pReg->DacRegs[i] = initDAC[i]; 535fe5e51b7Smrg if (MGADACregs[i] == 0x1D) 536fe5e51b7Smrg index_1d = i; 537fe5e51b7Smrg } 538fe5e51b7Smrg 539fe5e51b7Smrg if((pLayout->bitsPerPixel == 32) && pLayout->Overlay8Plus24) { 540fe5e51b7Smrg pReg->DacRegs[9] = pMga->colorKey; 541fe5e51b7Smrg pReg->DacRegs[10] = pMga->colorKey; 542fe5e51b7Smrg } 543fe5e51b7Smrg 544fe5e51b7Smrg if ( (pLayout->bitsPerPixel == 16) && (pLayout->weight.red == 5) 545fe5e51b7Smrg && (pLayout->weight.green == 5) && (pLayout->weight.blue == 5) ) { 546fe5e51b7Smrg pReg->DacRegs[1] &= ~0x01; 547fe5e51b7Smrg } 548fe5e51b7Smrg if (pMga->Interleave ) pReg->DacRegs[2] += 1; 549fe5e51b7Smrg 550fe5e51b7Smrg 551fe5e51b7Smrg if ( pLayout->bitsPerPixel == 24 ) { 552fe5e51b7Smrg int silicon_rev; 553fe5e51b7Smrg /* we need to set DacRegs[0] differently based on the silicon 554fe5e51b7Smrg * revision of the 3026 RAMDAC, as per page 2-14 of tvp3026.pdf. 555fe5e51b7Smrg * If we have rev A silicon, we want 0x07; rev B silicon wants 556fe5e51b7Smrg * 0x06. 557fe5e51b7Smrg */ 558fe5e51b7Smrg silicon_rev = inTi3026(TVP3026_SILICON_REV); 559fe5e51b7Smrg 560fe5e51b7Smrg#ifdef DEBUG 561fe5e51b7Smrg ErrorF("TVP3026 revision 0x%x (rev %s)\n", 562fe5e51b7Smrg silicon_rev, (silicon_rev <= 0x20) ? "A" : "B"); 563fe5e51b7Smrg#endif 564fe5e51b7Smrg 565fe5e51b7Smrg if(silicon_rev <= 0x20) { 566fe5e51b7Smrg /* rev A */ 567fe5e51b7Smrg pReg->DacRegs[0] = 0x07; 568fe5e51b7Smrg } else { 569fe5e51b7Smrg /* rev B */ 570fe5e51b7Smrg pReg->DacRegs[0] = 0x06; 571fe5e51b7Smrg } 572fe5e51b7Smrg } 573fe5e51b7Smrg 574fe5e51b7Smrg /* 575fe5e51b7Smrg * This will initialize all of the generic VGA registers. 576fe5e51b7Smrg */ 577fe5e51b7Smrg if (!vgaHWInit(pScrn, mode)) 578fe5e51b7Smrg return(FALSE); 579fe5e51b7Smrg 580fe5e51b7Smrg /* 581fe5e51b7Smrg * Here all of the MGA registers get filled in. 582fe5e51b7Smrg */ 583fe5e51b7Smrg hd = (mode->CrtcHDisplay >> 3) - 1; 584fe5e51b7Smrg hs = (mode->CrtcHSyncStart >> 3) - 1; 585fe5e51b7Smrg he = (mode->CrtcHSyncEnd >> 3) - 1; 586fe5e51b7Smrg ht = (mode->CrtcHTotal >> 3) - 1; 587fe5e51b7Smrg vd = mode->CrtcVDisplay - 1; 588fe5e51b7Smrg vs = mode->CrtcVSyncStart - 1; 589fe5e51b7Smrg ve = mode->CrtcVSyncEnd - 1; 590fe5e51b7Smrg vt = mode->CrtcVTotal - 2; 591fe5e51b7Smrg 592fe5e51b7Smrg /* HTOTAL & 0x7 equal to 0x6 in 8bpp or 0x4 in 24bpp causes strange 593fe5e51b7Smrg * vertical stripes 594fe5e51b7Smrg */ 595fe5e51b7Smrg if((ht & 0x07) == 0x06 || (ht & 0x07) == 0x04) 596fe5e51b7Smrg ht++; 597fe5e51b7Smrg 598fe5e51b7Smrg if (pLayout->bitsPerPixel == 24) 599fe5e51b7Smrg wd = (pLayout->displayWidth * 3) >> (4 - BppShift); 600fe5e51b7Smrg else 601fe5e51b7Smrg wd = pLayout->displayWidth >> (4 - BppShift); 602fe5e51b7Smrg 603fe5e51b7Smrg pReg->ExtVga[0] = 0; 604fe5e51b7Smrg pReg->ExtVga[5] = 0; 605fe5e51b7Smrg 606fe5e51b7Smrg if (mode->Flags & V_INTERLACE) 607fe5e51b7Smrg { 608fe5e51b7Smrg pReg->ExtVga[0] = 0x80; 609fe5e51b7Smrg pReg->ExtVga[5] = (hs + he - ht) >> 1; 610fe5e51b7Smrg wd <<= 1; 611fe5e51b7Smrg vt &= 0xFFFE; 612fe5e51b7Smrg 613fe5e51b7Smrg /* enable interlaced cursor */ 614fe5e51b7Smrg pReg->DacRegs[20] |= 0x20; 615fe5e51b7Smrg } 616fe5e51b7Smrg 617fe5e51b7Smrg pReg->ExtVga[0] |= (wd & 0x300) >> 4; 618fe5e51b7Smrg pReg->ExtVga[1] = (((ht - 4) & 0x100) >> 8) | 619fe5e51b7Smrg ((hd & 0x100) >> 7) | 620fe5e51b7Smrg ((hs & 0x100) >> 6) | 621fe5e51b7Smrg (ht & 0x40); 622fe5e51b7Smrg pReg->ExtVga[2] = ((vt & 0xc00) >> 10) | 623fe5e51b7Smrg ((vd & 0x400) >> 8) | 624fe5e51b7Smrg ((vd & 0xc00) >> 7) | 625fe5e51b7Smrg ((vs & 0xc00) >> 5); 626fe5e51b7Smrg if (pLayout->bitsPerPixel == 24) 627fe5e51b7Smrg pReg->ExtVga[3] = (((1 << BppShift) * 3) - 1) | 0x80; 628fe5e51b7Smrg else 629fe5e51b7Smrg pReg->ExtVga[3] = ((1 << BppShift) - 1) | 0x80; 630fe5e51b7Smrg 631fe5e51b7Smrg /* Set viddelay (CRTCEXT3 Bits 3-4). */ 632fe5e51b7Smrg pReg->ExtVga[3] |= (pScrn->videoRam == 8192 ? 0x10 633fe5e51b7Smrg : pScrn->videoRam == 2048 ? 0x08 : 0x00); 634fe5e51b7Smrg 635fe5e51b7Smrg pReg->ExtVga[4] = 0; 636fe5e51b7Smrg 637fe5e51b7Smrg pVga->CRTC[0] = ht - 4; 638fe5e51b7Smrg pVga->CRTC[1] = hd; 639fe5e51b7Smrg pVga->CRTC[2] = hd; 640fe5e51b7Smrg pVga->CRTC[3] = (ht & 0x1F) | 0x80; 641fe5e51b7Smrg pVga->CRTC[4] = hs; 642fe5e51b7Smrg pVga->CRTC[5] = ((ht & 0x20) << 2) | (he & 0x1F); 643fe5e51b7Smrg pVga->CRTC[6] = vt & 0xFF; 644fe5e51b7Smrg pVga->CRTC[7] = ((vt & 0x100) >> 8 ) | 645fe5e51b7Smrg ((vd & 0x100) >> 7 ) | 646fe5e51b7Smrg ((vs & 0x100) >> 6 ) | 647fe5e51b7Smrg ((vd & 0x100) >> 5 ) | 648fe5e51b7Smrg 0x10 | 649fe5e51b7Smrg ((vt & 0x200) >> 4 ) | 650fe5e51b7Smrg ((vd & 0x200) >> 3 ) | 651fe5e51b7Smrg ((vs & 0x200) >> 2 ); 652fe5e51b7Smrg pVga->CRTC[9] = ((vd & 0x200) >> 4) | 0x40; 653fe5e51b7Smrg pVga->CRTC[16] = vs & 0xFF; 654fe5e51b7Smrg pVga->CRTC[17] = (ve & 0x0F) | 0x20; 655fe5e51b7Smrg pVga->CRTC[18] = vd & 0xFF; 656fe5e51b7Smrg pVga->CRTC[19] = wd & 0xFF; 657fe5e51b7Smrg pVga->CRTC[21] = vd & 0xFF; 658fe5e51b7Smrg pVga->CRTC[22] = (vt + 1) & 0xFF; 659fe5e51b7Smrg 660fe5e51b7Smrg if (mode->Flags & V_DBLSCAN) 661fe5e51b7Smrg pVga->CRTC[9] |= 0x80; 662fe5e51b7Smrg 663fe5e51b7Smrg /* Per DDK vid.c line 75, sync polarity should be controlled 664fe5e51b7Smrg * via the TVP3026 RAMDAC register 1D and so MISC Output Register 665fe5e51b7Smrg * should always have bits 6 and 7 set. */ 666fe5e51b7Smrg 667fe5e51b7Smrg pVga->MiscOutReg |= 0xC0; 668fe5e51b7Smrg if ((mode->Flags & (V_PHSYNC | V_NHSYNC)) && 669fe5e51b7Smrg (mode->Flags & (V_PVSYNC | V_NVSYNC))) 670fe5e51b7Smrg { 671fe5e51b7Smrg if (mode->Flags & V_PHSYNC) 672fe5e51b7Smrg pReg->DacRegs[index_1d] |= 0x01; 673fe5e51b7Smrg if (mode->Flags & V_PVSYNC) 674fe5e51b7Smrg pReg->DacRegs[index_1d] |= 0x02; 675fe5e51b7Smrg } 676fe5e51b7Smrg else 677fe5e51b7Smrg { 678fe5e51b7Smrg int VDisplay = mode->VDisplay; 679fe5e51b7Smrg if (mode->Flags & V_DBLSCAN) 680fe5e51b7Smrg VDisplay *= 2; 681fe5e51b7Smrg if (VDisplay < 400) 682fe5e51b7Smrg pReg->DacRegs[index_1d] |= 0x01; /* +hsync -vsync */ 683fe5e51b7Smrg else if (VDisplay < 480) 684fe5e51b7Smrg pReg->DacRegs[index_1d] |= 0x02; /* -hsync +vsync */ 685fe5e51b7Smrg else if (VDisplay < 768) 686fe5e51b7Smrg pReg->DacRegs[index_1d] |= 0x00; /* -hsync -vsync */ 687fe5e51b7Smrg else 688fe5e51b7Smrg pReg->DacRegs[index_1d] |= 0x03; /* +hsync +vsync */ 689fe5e51b7Smrg } 690fe5e51b7Smrg 691fe5e51b7Smrg if (pMga->SyncOnGreen) 692fe5e51b7Smrg pReg->DacRegs[index_1d] |= 0x20; 693fe5e51b7Smrg 694fe5e51b7Smrg pReg->Option = 0x402C0100; /* fine for 2064 and 2164 */ 695fe5e51b7Smrg 696fe5e51b7Smrg if (pMga->Interleave) 697fe5e51b7Smrg pReg->Option |= 0x1000; 698fe5e51b7Smrg else 699fe5e51b7Smrg pReg->Option &= ~0x1000; 700fe5e51b7Smrg 701fe5e51b7Smrg /* must always have the pci retries on but rely on 702fe5e51b7Smrg polling to keep them from occuring */ 703fe5e51b7Smrg pReg->Option &= ~0x20000000; 704fe5e51b7Smrg 705fe5e51b7Smrg pVga->MiscOutReg |= 0x0C; 706fe5e51b7Smrg /* XXX Need to check the first argument */ 707fe5e51b7Smrg MGATi3026SetPCLK( pScrn, mode->Clock, 1 << BppShift ); 708fe5e51b7Smrg 709fe5e51b7Smrg /* this one writes registers rather than writing to the 710fe5e51b7Smrg mgaReg->ModeReg and letting Restore write to the hardware 711fe5e51b7Smrg but that's no big deal since we will Restore right after 712fe5e51b7Smrg this function */ 713fe5e51b7Smrg 714fe5e51b7Smrg MGA_NOT_HAL(MGATi3026SetMCLK(pScrn, MGAdac->MemoryClock)); 715fe5e51b7Smrg 716fe5e51b7Smrg#ifdef DEBUG 717fe5e51b7Smrg ErrorF("%6ld: %02X %02X %02X %02X %02X %02X %08lX\n", mode->Clock, 718fe5e51b7Smrg pReg->DacClk[0], pReg->DacClk[1], pReg->DacClk[2], pReg->DacClk[3], pReg->DacClk[4], pReg->DacClk[5], pReg->Option); 719fe5e51b7Smrg for (i=0; i<sizeof(MGADACregs); i++) ErrorF("%02X ", pReg->DacRegs[i]); 720fe5e51b7Smrg for (i=0; i<6; i++) ErrorF(" %02X", pReg->ExtVga[i]); 721fe5e51b7Smrg ErrorF("\n"); 722fe5e51b7Smrg#endif 723fe5e51b7Smrg 724fe5e51b7Smrg /* This disables the VGA memory aperture */ 725fe5e51b7Smrg pVga->MiscOutReg &= ~0x02; 726fe5e51b7Smrg return(TRUE); 727fe5e51b7Smrg} 728fe5e51b7Smrg 729fe5e51b7Smrg/* 730fe5e51b7Smrg * MGA3026Restore -- for mga2064 with ti3026 731fe5e51b7Smrg * 732fe5e51b7Smrg * This function restores a video mode. It basically writes out all of 733fe5e51b7Smrg * the registers that have previously been saved in the vgaMGARec data 734fe5e51b7Smrg * structure. 735fe5e51b7Smrg */ 736fe5e51b7Smrgstatic void 737fe5e51b7SmrgMGA3026Restore(ScrnInfoPtr pScrn, vgaRegPtr vgaReg, MGARegPtr mgaReg, 738fe5e51b7Smrg Bool restoreFonts) 739fe5e51b7Smrg{ 740fe5e51b7Smrg int i; 741fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 742fe5e51b7Smrg 743fe5e51b7Smrg /* 744fe5e51b7Smrg * Code is needed to get things back to bank zero. 745fe5e51b7Smrg */ 746fe5e51b7Smrg for (i = 0; i < 6; i++) 747fe5e51b7Smrg OUTREG16(0x1FDE, (mgaReg->ExtVga[i] << 8) | i); 748fe5e51b7Smrg 749fe5e51b7Smrg#ifdef XSERVER_LIBPCIACCESS 750fe5e51b7Smrg pci_device_cfg_write_bits(pMga->PciInfo, OPTION_MASK, mgaReg->Option, 751fe5e51b7Smrg PCI_OPTION_REG); 752fe5e51b7Smrg#else 753fe5e51b7Smrg pciSetBitsLong(pMga->PciTag, PCI_OPTION_REG, OPTION_MASK, 754fe5e51b7Smrg mgaReg->Option); 755fe5e51b7Smrg#endif 756fe5e51b7Smrg 757fe5e51b7Smrg MGA_NOT_HAL( 758fe5e51b7Smrg /* select pixel clock PLL as clock source */ 759fe5e51b7Smrg outTi3026(TVP3026_CLK_SEL, 0, mgaReg->DacRegs[3]); 760fe5e51b7Smrg 761fe5e51b7Smrg /* set loop and pixel clock PLL PLLEN bits to 0 */ 762fe5e51b7Smrg outTi3026(TVP3026_PLL_ADDR, 0, 0x2A); 763fe5e51b7Smrg outTi3026(TVP3026_LOAD_CLK_DATA, 0, 0); 764fe5e51b7Smrg outTi3026(TVP3026_PIX_CLK_DATA, 0, 0); 765fe5e51b7Smrg ); /* MGA_NOT_HAL */ 766fe5e51b7Smrg 767fe5e51b7Smrg /* 768fe5e51b7Smrg * This function handles restoring the generic VGA registers. 769fe5e51b7Smrg */ 770fe5e51b7Smrg vgaHWRestore(pScrn, vgaReg, 771fe5e51b7Smrg VGA_SR_MODE | (restoreFonts ? VGA_SR_FONTS : 0)); 772fe5e51b7Smrg MGA3026RestorePalette(pScrn, vgaReg->DAC); 773fe5e51b7Smrg 774fe5e51b7Smrg /* 775fe5e51b7Smrg * Code to restore SVGA registers that have been saved/modified 776fe5e51b7Smrg * goes here. 777fe5e51b7Smrg */ 778fe5e51b7Smrg 779fe5e51b7Smrg MGA_NOT_HAL( 780fe5e51b7Smrg /* program pixel clock PLL */ 781fe5e51b7Smrg outTi3026(TVP3026_PLL_ADDR, 0, 0x00); 782fe5e51b7Smrg for (i = 0; i < 3; i++) 783fe5e51b7Smrg outTi3026(TVP3026_PIX_CLK_DATA, 0, mgaReg->DacClk[i]); 784fe5e51b7Smrg 785fe5e51b7Smrg if (vgaReg->MiscOutReg & 0x08) { 786fe5e51b7Smrg /* poll until pixel clock PLL LOCK bit is set */ 787fe5e51b7Smrg outTi3026(TVP3026_PLL_ADDR, 0, 0x3F); 788fe5e51b7Smrg while ( ! (inTi3026(TVP3026_PIX_CLK_DATA) & 0x40) ); 789fe5e51b7Smrg } 790fe5e51b7Smrg 791fe5e51b7Smrg /* set Q divider for loop clock PLL */ 792fe5e51b7Smrg outTi3026(TVP3026_MCLK_CTL, 0, mgaReg->DacRegs[18]); 793fe5e51b7Smrg ); /* MGA_NOT_HAL */ 794fe5e51b7Smrg 795fe5e51b7Smrg /* program loop PLL */ 796fe5e51b7Smrg outTi3026(TVP3026_PLL_ADDR, 0, 0x00); 797fe5e51b7Smrg for (i = 3; i < 6; i++) 798fe5e51b7Smrg outTi3026(TVP3026_LOAD_CLK_DATA, 0, mgaReg->DacClk[i]); 799fe5e51b7Smrg 800fe5e51b7Smrg MGA_NOT_HAL( 801fe5e51b7Smrg if ((vgaReg->MiscOutReg & 0x08) && ((mgaReg->DacClk[3] & 0xC0) == 0xC0) ) { 802fe5e51b7Smrg /* poll until loop PLL LOCK bit is set */ 803fe5e51b7Smrg outTi3026(TVP3026_PLL_ADDR, 0, 0x3F); 804fe5e51b7Smrg while ( ! (inTi3026(TVP3026_LOAD_CLK_DATA) & 0x40) ); 805fe5e51b7Smrg } 806fe5e51b7Smrg ); /* MGA_NOT_HAL */ 807fe5e51b7Smrg 808fe5e51b7Smrg /* 809fe5e51b7Smrg * restore other DAC registers 810fe5e51b7Smrg */ 811fe5e51b7Smrg for (i = 0; i < DACREGSIZE; i++) 812fe5e51b7Smrg outTi3026(MGADACregs[i], 0, mgaReg->DacRegs[i]); 813fe5e51b7Smrg 814fe5e51b7Smrg#ifdef DEBUG 815fe5e51b7Smrg ErrorF("PCI retry (0-enabled / 1-disabled): %d\n", 816fe5e51b7Smrg !!(mgaReg->Option & 0x20000000)); 817fe5e51b7Smrg#endif 818fe5e51b7Smrg} 819fe5e51b7Smrg 820fe5e51b7Smrg/* 821fe5e51b7Smrg * MGA3026Save -- for mga2064 with ti3026 822fe5e51b7Smrg * 823fe5e51b7Smrg * This function saves the video state. 824fe5e51b7Smrg */ 825fe5e51b7Smrgstatic void 826fe5e51b7SmrgMGA3026Save(ScrnInfoPtr pScrn, vgaRegPtr vgaReg, MGARegPtr mgaReg, 827fe5e51b7Smrg Bool saveFonts) 828fe5e51b7Smrg{ 829fe5e51b7Smrg int i; 830fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 831fe5e51b7Smrg 832fe5e51b7Smrg /* Allocate the DacRegs space if not done already */ 833fe5e51b7Smrg if (mgaReg->DacRegs == NULL) { 834fe5e51b7Smrg mgaReg->DacRegs = xnfcalloc(DACREGSIZE, 1); 835fe5e51b7Smrg } 836fe5e51b7Smrg 837fe5e51b7Smrg /* 838fe5e51b7Smrg * Code is needed to get back to bank zero. 839fe5e51b7Smrg */ 840fe5e51b7Smrg OUTREG16(0x1FDE, 0x0004); 841fe5e51b7Smrg 842fe5e51b7Smrg /* 843fe5e51b7Smrg * This function will handle creating the data structure and filling 844fe5e51b7Smrg * in the generic VGA portion. 845fe5e51b7Smrg */ 846fe5e51b7Smrg vgaHWSave(pScrn, vgaReg, VGA_SR_MODE | (saveFonts ? VGA_SR_FONTS : 0)); 847fe5e51b7Smrg MGA3026SavePalette(pScrn, vgaReg->DAC); 848fe5e51b7Smrg 849fe5e51b7Smrg /* 850fe5e51b7Smrg * The port I/O code necessary to read in the extended registers 851fe5e51b7Smrg * into the fields of the vgaMGARec structure. 852fe5e51b7Smrg */ 853fe5e51b7Smrg for (i = 0; i < 6; i++) 854fe5e51b7Smrg { 855fe5e51b7Smrg OUTREG8(0x1FDE, i); 856fe5e51b7Smrg mgaReg->ExtVga[i] = INREG8(0x1FDF); 857fe5e51b7Smrg } 858fe5e51b7Smrg 859fe5e51b7Smrg MGA_NOT_HAL( 860fe5e51b7Smrg outTi3026(TVP3026_PLL_ADDR, 0, 0x00); 861fe5e51b7Smrg for (i = 0; i < 3; i++) 862fe5e51b7Smrg outTi3026(TVP3026_PIX_CLK_DATA, 0, mgaReg->DacClk[i] = 863fe5e51b7Smrg inTi3026(TVP3026_PIX_CLK_DATA)); 864fe5e51b7Smrg 865fe5e51b7Smrg outTi3026(TVP3026_PLL_ADDR, 0, 0x00); 866fe5e51b7Smrg for (i = 3; i < 6; i++) 867fe5e51b7Smrg outTi3026(TVP3026_LOAD_CLK_DATA, 0, mgaReg->DacClk[i] = 868fe5e51b7Smrg inTi3026(TVP3026_LOAD_CLK_DATA)); 869fe5e51b7Smrg ); /* MGA_NOT_HAL */ 870fe5e51b7Smrg 871fe5e51b7Smrg for (i = 0; i < DACREGSIZE; i++) 872fe5e51b7Smrg mgaReg->DacRegs[i] = inTi3026(MGADACregs[i]); 873fe5e51b7Smrg 874fe5e51b7Smrg#ifdef XSERVER_LIBPCIACCESS 875fe5e51b7Smrg pci_device_cfg_read_u32(pMga->PciInfo, & mgaReg->Option, 876fe5e51b7Smrg PCI_OPTION_REG); 877fe5e51b7Smrg#else 878fe5e51b7Smrg mgaReg->Option = pciReadLong(pMga->PciTag, PCI_OPTION_REG); 879fe5e51b7Smrg#endif 880fe5e51b7Smrg 881fe5e51b7Smrg#ifdef DEBUG 882fe5e51b7Smrg ErrorF("read: %02X %02X %02X %02X %02X %02X %08lX\n", 883fe5e51b7Smrg mgaReg->DacClk[0], mgaReg->DacClk[1], mgaReg->DacClk[2], mgaReg->DacClk[3], mgaReg->DacClk[4], mgaReg->DacClk[5], mgaReg->Option); 884fe5e51b7Smrg for (i=0; i<sizeof(MGADACregs); i++) ErrorF("%02X ", mgaReg->DacRegs[i]); 885fe5e51b7Smrg for (i=0; i<6; i++) ErrorF(" %02X", mgaReg->ExtVga[i]); 886fe5e51b7Smrg ErrorF("\n"); 887fe5e51b7Smrg#endif 888fe5e51b7Smrg} 889fe5e51b7Smrg 890fe5e51b7Smrg 891fe5e51b7Smrgstatic void 892fe5e51b7SmrgMGA3026LoadCursorImage( 893fe5e51b7Smrg ScrnInfoPtr pScrn, 894fe5e51b7Smrg unsigned char *src 895fe5e51b7Smrg) 896fe5e51b7Smrg{ 897fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 898fe5e51b7Smrg int i = 1024; 899fe5e51b7Smrg 900fe5e51b7Smrg outTi3026(TVP3026_CURSOR_CTL, 0xf3, 0x00); /* reset A9,A8 */ 901fe5e51b7Smrg /* reset cursor RAM load address A7..A0 */ 902fe5e51b7Smrg outTi3026dreg(TVP3026_WADR_PAL, 0x00); 903fe5e51b7Smrg 904fe5e51b7Smrg while(i--) { 905fe5e51b7Smrg while (INREG8(0x1FDA) & 0x01); 906fe5e51b7Smrg while (!(INREG8(0x1FDA) & 0x01)); 907fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_RAM, *(src++)); 908fe5e51b7Smrg } 909fe5e51b7Smrg} 910fe5e51b7Smrg 911fe5e51b7Smrg 912fe5e51b7Smrgstatic void 913fe5e51b7SmrgMGA3026ShowCursor(ScrnInfoPtr pScrn) 914fe5e51b7Smrg{ 915fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 916fe5e51b7Smrg /* Enable cursor - X11 mode */ 917fe5e51b7Smrg outTi3026(TVP3026_CURSOR_CTL, 0x6c, 0x13); 918fe5e51b7Smrg} 919fe5e51b7Smrg 920fe5e51b7Smrgstatic void 921fe5e51b7SmrgMGA3026HideCursor(ScrnInfoPtr pScrn) 922fe5e51b7Smrg{ 923fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 924fe5e51b7Smrg /* Disable cursor */ 925fe5e51b7Smrg outTi3026(TVP3026_CURSOR_CTL, 0xfc, 0x00); 926fe5e51b7Smrg} 927fe5e51b7Smrg 928fe5e51b7Smrgstatic void 929fe5e51b7SmrgMGA3026SetCursorPosition( 930fe5e51b7Smrg ScrnInfoPtr pScrn, 931fe5e51b7Smrg int x, int y 932fe5e51b7Smrg) 933fe5e51b7Smrg{ 934fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 935fe5e51b7Smrg x += 64; 936fe5e51b7Smrg y += 64; 937fe5e51b7Smrg 938fe5e51b7Smrg /* Output position - "only" 12 bits of location documented */ 939fe5e51b7Smrg 940fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_XLOW, x & 0xFF); 941fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_XHI, (x >> 8) & 0x0F); 942fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_YLOW, y & 0xFF); 943fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_YHI, (y >> 8) & 0x0F); 944fe5e51b7Smrg} 945fe5e51b7Smrg 946fe5e51b7Smrgstatic void 947fe5e51b7SmrgMGA3026SetCursorColors( 948fe5e51b7Smrg ScrnInfoPtr pScrn, 949fe5e51b7Smrg int bg, int fg 950fe5e51b7Smrg) 951fe5e51b7Smrg{ 952fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 953fe5e51b7Smrg /* The TI 3026 cursor is always 8 bits so shift 8, not 10 */ 954fe5e51b7Smrg 955fe5e51b7Smrg /* Background color */ 956fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_ADDR, 1); 957fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_DATA, (bg & 0x00FF0000) >> 16); 958fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_DATA, (bg & 0x0000FF00) >> 8); 959fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_DATA, (bg & 0x000000FF)); 960fe5e51b7Smrg 961fe5e51b7Smrg /* Foreground color */ 962fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_ADDR, 2); 963fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_DATA, (fg & 0x00FF0000) >> 16); 964fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_DATA, (fg & 0x0000FF00) >> 8); 965fe5e51b7Smrg outTi3026dreg(TVP3026_CUR_COL_DATA, (fg & 0x000000FF)); 966fe5e51b7Smrg} 967fe5e51b7Smrg 968fe5e51b7Smrgstatic Bool 969fe5e51b7SmrgMGA3026UseHWCursor(ScreenPtr pScrn, CursorPtr pCurs) 970fe5e51b7Smrg{ 971fe5e51b7Smrg if( XF86SCRNINFO(pScrn)->currentMode->Flags & V_DBLSCAN ) 972fe5e51b7Smrg return FALSE; 973fe5e51b7Smrg return TRUE; 974fe5e51b7Smrg} 975fe5e51b7Smrg 976fe5e51b7Smrgstatic const int DDC_SDA_MASK = 1 << 2; 977fe5e51b7Smrgstatic const int DDC_SCL_MASK = 1 << 4; 978fe5e51b7Smrg 979fe5e51b7Smrgstatic unsigned int 980fe5e51b7SmrgMGA3026_ddc1Read(ScrnInfoPtr pScrn) 981fe5e51b7Smrg{ 982fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 983fe5e51b7Smrg 984fe5e51b7Smrg /* Define the SDA as an input */ 985fe5e51b7Smrg outTi3026(TVP3026_GEN_IO_CTL, 0xfb, 0); 986fe5e51b7Smrg 987fe5e51b7Smrg /* wait for Vsync */ 988fe5e51b7Smrg while( INREG( MGAREG_Status ) & 0x08 ); 989fe5e51b7Smrg while( ! (INREG( MGAREG_Status ) & 0x08) ); 990fe5e51b7Smrg 991fe5e51b7Smrg /* Get the result */ 992fe5e51b7Smrg return (inTi3026(TVP3026_GEN_IO_DATA) & DDC_SDA_MASK) >> 2 ; 993fe5e51b7Smrg} 994fe5e51b7Smrg 995fe5e51b7Smrgstatic void 996fe5e51b7SmrgMGA3026_I2CGetBits(I2CBusPtr b, int *clock, int *data) 997fe5e51b7Smrg{ 998fe5e51b7Smrg ScrnInfoPtr pScrn = xf86Screens[b->scrnIndex]; 999fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 1000fe5e51b7Smrg unsigned char val; 1001fe5e51b7Smrg 1002fe5e51b7Smrg /* Get the result. */ 1003fe5e51b7Smrg val = inTi3026(TVP3026_GEN_IO_DATA); 1004fe5e51b7Smrg *clock = (val & DDC_SCL_MASK) != 0; 1005fe5e51b7Smrg *data = (val & DDC_SDA_MASK) != 0; 1006fe5e51b7Smrg 1007fe5e51b7Smrg#ifdef DEBUG 1008fe5e51b7Smrg ErrorF("MGA3026_I2CGetBits(%p,...) val=0x%x, returns clock %d, data %d\n", b, val, *clock, *data); 1009fe5e51b7Smrg#endif 1010fe5e51b7Smrg} 1011fe5e51b7Smrg 1012fe5e51b7Smrg/* 1013fe5e51b7Smrg * ATTENTION! - the DATA and CLOCK lines need to be tri-stated when 1014fe5e51b7Smrg * high. Therefore turn off output driver for the line to set line 1015fe5e51b7Smrg * to high. High signal is maintained by a 15k Ohm pll-up resistor. 1016fe5e51b7Smrg */ 1017fe5e51b7Smrgstatic void 1018fe5e51b7SmrgMGA3026_I2CPutBits(I2CBusPtr b, int clock, int data) 1019fe5e51b7Smrg{ 1020fe5e51b7Smrg ScrnInfoPtr pScrn = xf86Screens[b->scrnIndex]; 1021fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 1022fe5e51b7Smrg unsigned char val,drv; 1023fe5e51b7Smrg 1024fe5e51b7Smrg /* Write the values */ 1025fe5e51b7Smrg val = (clock ? DDC_SCL_MASK : 0) | (data ? DDC_SDA_MASK : 0); 1026fe5e51b7Smrg drv = ((!clock) ? DDC_SCL_MASK : 0) | ((!data) ? DDC_SDA_MASK : 0); 1027fe5e51b7Smrg /* Define the SDA (Data) and SCL (clock) as outputs */ 1028fe5e51b7Smrg outTi3026(TVP3026_GEN_IO_CTL, ~(DDC_SDA_MASK | DDC_SCL_MASK), drv); 1029fe5e51b7Smrg outTi3026(TVP3026_GEN_IO_DATA, ~(DDC_SDA_MASK | DDC_SCL_MASK), val); 1030fe5e51b7Smrg 1031fe5e51b7Smrg#ifdef DEBUG 1032fe5e51b7Smrg ErrorF("MGA3026_I2CPutBits(%p, %d, %d) val=0x%x\n", b, clock, data, val); 1033fe5e51b7Smrg#endif 1034fe5e51b7Smrg 1035fe5e51b7Smrg} 1036fe5e51b7Smrg 1037fe5e51b7Smrg 1038fe5e51b7SmrgBool 1039fe5e51b7SmrgMGA3026_i2cInit(ScrnInfoPtr pScrn) 1040fe5e51b7Smrg{ 1041fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 1042fe5e51b7Smrg I2CBusPtr I2CPtr; 1043fe5e51b7Smrg 1044fe5e51b7Smrg I2CPtr = xf86CreateI2CBusRec(); 1045fe5e51b7Smrg if(!I2CPtr) return FALSE; 1046fe5e51b7Smrg 1047fe5e51b7Smrg pMga->DDC_Bus1 = I2CPtr; 1048fe5e51b7Smrg 1049fe5e51b7Smrg I2CPtr->BusName = "DDC"; 1050fe5e51b7Smrg I2CPtr->scrnIndex = pScrn->scrnIndex; 1051fe5e51b7Smrg I2CPtr->I2CPutBits = MGA3026_I2CPutBits; 1052fe5e51b7Smrg I2CPtr->I2CGetBits = MGA3026_I2CGetBits; 1053fe5e51b7Smrg 1054fe5e51b7Smrg /* I2CPutByte is timing out, experimenting with AcknTimeout 1055fe5e51b7Smrg * default is 2CPtr->AcknTimeout = 5; 1056fe5e51b7Smrg */ 1057fe5e51b7Smrg /* I2CPtr->AcknTimeout = 10; */ 1058fe5e51b7Smrg 1059fe5e51b7Smrg if (!xf86I2CBusInit(I2CPtr)) { 1060fe5e51b7Smrg return FALSE; 1061fe5e51b7Smrg } 1062fe5e51b7Smrg return TRUE; 1063fe5e51b7Smrg} 1064fe5e51b7Smrg 1065fe5e51b7Smrgstatic void 1066fe5e51b7SmrgMGA3026RamdacInit(ScrnInfoPtr pScrn) 1067fe5e51b7Smrg{ 1068fe5e51b7Smrg MGAPtr pMga; 1069fe5e51b7Smrg MGARamdacPtr MGAdac; 1070fe5e51b7Smrg 1071fe5e51b7Smrg pMga = MGAPTR(pScrn); 1072fe5e51b7Smrg MGAdac = &pMga->Dac; 1073fe5e51b7Smrg 1074fe5e51b7Smrg MGAdac->isHwCursor = TRUE; 1075fe5e51b7Smrg MGAdac->CursorMaxWidth = 64; 1076fe5e51b7Smrg MGAdac->CursorMaxHeight = 64; 1077fe5e51b7Smrg MGAdac->SetCursorColors = MGA3026SetCursorColors; 1078fe5e51b7Smrg MGAdac->SetCursorPosition = MGA3026SetCursorPosition; 1079fe5e51b7Smrg MGAdac->LoadCursorImage = MGA3026LoadCursorImage; 1080fe5e51b7Smrg MGAdac->HideCursor = MGA3026HideCursor; 1081fe5e51b7Smrg MGAdac->ShowCursor = MGA3026ShowCursor; 1082fe5e51b7Smrg MGAdac->UseHWCursor = MGA3026UseHWCursor; 1083fe5e51b7Smrg MGAdac->CursorFlags = 1084fe5e51b7Smrg#if X_BYTE_ORDER == X_LITTLE_ENDIAN 1085fe5e51b7Smrg HARDWARE_CURSOR_BIT_ORDER_MSBFIRST | 1086fe5e51b7Smrg#endif 1087fe5e51b7Smrg HARDWARE_CURSOR_TRUECOLOR_AT_8BPP | 1088fe5e51b7Smrg HARDWARE_CURSOR_SOURCE_MASK_NOT_INTERLEAVED; 1089fe5e51b7Smrg 1090fe5e51b7Smrg MGAdac->LoadPalette = MGA3026LoadPalette; 1091fe5e51b7Smrg MGAdac->RestorePalette = MGA3026RestorePalette; 1092fe5e51b7Smrg 1093fe5e51b7Smrg MGAdac->maxPixelClock = pMga->bios.pixel.max_freq; 1094fe5e51b7Smrg MGAdac->ClockFrom = X_PROBED; 1095fe5e51b7Smrg 1096fe5e51b7Smrg MGAdac->MemoryClock = pMga->bios.mem_clock; 1097fe5e51b7Smrg MGAdac->MemClkFrom = X_PROBED; 1098fe5e51b7Smrg MGAdac->SetMemClk = TRUE; 1099fe5e51b7Smrg 1100fe5e51b7Smrg 1101fe5e51b7Smrg /* safety check */ 1102fe5e51b7Smrg if ( (MGAdac->MemoryClock < 40000) || 1103fe5e51b7Smrg (MGAdac->MemoryClock > 70000) ) 1104fe5e51b7Smrg MGAdac->MemoryClock = 50000; 1105fe5e51b7Smrg 1106fe5e51b7Smrg /* 1107fe5e51b7Smrg * Should initialise a sane default when the probed value is 1108fe5e51b7Smrg * obviously garbage. 1109fe5e51b7Smrg */ 1110fe5e51b7Smrg 1111fe5e51b7Smrg /* Check if interleaving can be used and set the rounding value */ 1112fe5e51b7Smrg if (pScrn->videoRam > 2048) 1113fe5e51b7Smrg pMga->Interleave = TRUE; 1114fe5e51b7Smrg else { 1115fe5e51b7Smrg pMga->Interleave = FALSE; 1116fe5e51b7Smrg pMga->BppShifts[0]++; 1117fe5e51b7Smrg pMga->BppShifts[1]++; 1118fe5e51b7Smrg pMga->BppShifts[2]++; 1119fe5e51b7Smrg pMga->BppShifts[3]++; 1120fe5e51b7Smrg } 1121fe5e51b7Smrg 1122fe5e51b7Smrg pMga->Roundings[0] = 128 >> pMga->BppShifts[0]; 1123fe5e51b7Smrg pMga->Roundings[1] = 128 >> pMga->BppShifts[1]; 1124fe5e51b7Smrg pMga->Roundings[2] = 128 >> pMga->BppShifts[2]; 1125fe5e51b7Smrg pMga->Roundings[3] = 128 >> pMga->BppShifts[3]; 1126fe5e51b7Smrg 1127fe5e51b7Smrg /* Set Fast bitblt flag */ 1128fe5e51b7Smrg pMga->HasFBitBlt = pMga->bios.fast_bitblt; 1129fe5e51b7Smrg} 1130fe5e51b7Smrg 1131fe5e51b7Smrgvoid MGA3026LoadPalette( 1132fe5e51b7Smrg ScrnInfoPtr pScrn, 1133fe5e51b7Smrg int numColors, 1134fe5e51b7Smrg int *indices, 1135fe5e51b7Smrg LOCO *colors, 1136fe5e51b7Smrg VisualPtr pVisual 1137fe5e51b7Smrg){ 1138fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 1139fe5e51b7Smrg int i, index; 1140fe5e51b7Smrg 1141fe5e51b7Smrg if(pMga->CurrentLayout.Overlay8Plus24 && (pVisual->nplanes != 8)) 1142fe5e51b7Smrg return; 1143fe5e51b7Smrg 1144fe5e51b7Smrg if (pVisual->nplanes == 16) { 1145fe5e51b7Smrg for(i = 0; i < numColors; i++) { 1146fe5e51b7Smrg index = indices[i]; 1147fe5e51b7Smrg outTi3026dreg(MGA1064_WADR_PAL, index << 2); 1148fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index >> 1].red); 1149fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index].green); 1150fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index >> 1].blue); 1151fe5e51b7Smrg 1152fe5e51b7Smrg /* we have to write 2 indices since the pixel X on the 1153fe5e51b7Smrg TVP3026 has green colors at different locations from 1154fe5e51b7Smrg the red and blue colors */ 1155fe5e51b7Smrg if(index <= 31) { 1156fe5e51b7Smrg outTi3026dreg(MGA1064_WADR_PAL, index << 3); 1157fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index].red); 1158fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[(index << 1) + 1].green); 1159fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index].blue); 1160fe5e51b7Smrg } 1161fe5e51b7Smrg } 1162fe5e51b7Smrg } else { 1163fe5e51b7Smrg int shift = (pVisual->nplanes == 15) ? 3 : 0; 1164fe5e51b7Smrg 1165fe5e51b7Smrg for(i = 0; i < numColors; i++) { 1166fe5e51b7Smrg index = indices[i]; 1167fe5e51b7Smrg outTi3026dreg(MGA1064_WADR_PAL, index << shift); 1168fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index].red); 1169fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index].green); 1170fe5e51b7Smrg outTi3026dreg(MGA1064_COL_PAL, colors[index].blue); 1171fe5e51b7Smrg } 1172fe5e51b7Smrg } 1173fe5e51b7Smrg} 1174fe5e51b7Smrg 1175fe5e51b7Smrg 1176fe5e51b7Smrgstatic void 1177fe5e51b7SmrgMGA3026SavePalette(ScrnInfoPtr pScrn, unsigned char* pntr) 1178fe5e51b7Smrg{ 1179fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 1180fe5e51b7Smrg int i = 768; 1181fe5e51b7Smrg 1182fe5e51b7Smrg outTi3026dreg(TVP3026_RADR_PAL, 0x00); 1183fe5e51b7Smrg while(i--) 1184fe5e51b7Smrg *(pntr++) = inTi3026dreg(TVP3026_COL_PAL); 1185fe5e51b7Smrg} 1186fe5e51b7Smrg 1187fe5e51b7Smrgstatic void 1188fe5e51b7SmrgMGA3026RestorePalette(ScrnInfoPtr pScrn, unsigned char* pntr) 1189fe5e51b7Smrg{ 1190fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 1191fe5e51b7Smrg int i = 768; 1192fe5e51b7Smrg 1193fe5e51b7Smrg outTi3026dreg(TVP3026_WADR_PAL, 0x00); 1194fe5e51b7Smrg while(i--) 1195fe5e51b7Smrg outTi3026dreg(TVP3026_COL_PAL, *(pntr++)); 1196fe5e51b7Smrg} 1197fe5e51b7Smrg 1198fe5e51b7Smrg 1199fe5e51b7Smrgvoid MGA2064SetupFuncs(ScrnInfoPtr pScrn) 1200fe5e51b7Smrg{ 1201fe5e51b7Smrg MGAPtr pMga = MGAPTR(pScrn); 1202fe5e51b7Smrg 1203fe5e51b7Smrg pMga->PreInit = MGA3026RamdacInit; 1204fe5e51b7Smrg pMga->Save = MGA3026Save; 1205fe5e51b7Smrg pMga->Restore = MGA3026Restore; 1206fe5e51b7Smrg pMga->ModeInit = MGA3026Init; 1207fe5e51b7Smrg pMga->ddc1Read = MGA3026_ddc1Read; 1208fe5e51b7Smrg /* vgaHWddc1SetSpeed will only work if the card is in VGA mode */ 1209fe5e51b7Smrg pMga->DDC1SetSpeed = vgaHWddc1SetSpeedWeak(); 1210fe5e51b7Smrg pMga->i2cInit = MGA3026_i2cInit; 1211fe5e51b7Smrg} 1212