Lines Matching defs:tree
15 * Each code tree is stored in a compressed form which is itself
89 /* The static literal tree. Since the bit lengths are imposed, there is no
91 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
96 /* The static distance tree. (Actually a trivial tree since all codes use
120 const ct_data *static_tree; /* static tree or NULL */
123 int elems; /* max number of elements in the tree */
197 * Generate the codes for a given tree and bit counts (which need not be
200 * the given tree and the field len is set for all tree elements.
201 * OUT assertion: the field code is set for all tree elements of non
204 local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
225 int len = tree[n].Len;
228 tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
230 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
231 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
240 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
241 /* Send a code of the given tree. c and tree must not have side effects */
244 # define send_code(s, c, tree) \
246 send_bits(s, tree[c].Code, tree[c].Len); }
299 int n; /* iterates over tree elements */
305 /* number of codes at each bit length for an optimal tree */
351 /* Construct the codes of the static literal tree */
359 * tree construction to get a canonical Huffman tree (longest code
364 /* The static distance tree is trivial: */
442 int n; /* iterates over tree elements */
455 * Initialize the tree data structures for a new zlib stream.
481 /* Index within the heap array of least frequent node in the Huffman tree */
488 #define pqremove(s, tree, top) \
492 pqdownheap(s, tree, SMALLEST); \
496 tree depth as tie breaker when
499 #define smaller(tree, n, m, depth) \
500 (tree[n].Freq < tree[m].Freq || \
501 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
504 * Restore the heap property by moving down the tree starting at node k,
509 local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
515 smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
519 if (smaller(tree, v, s->heap[j], s->depth)) break;
524 /* And continue down the tree, setting j to the left son of k */
531 * Compute the optimal bit lengths for a tree and update the total bit length
534 * above are the tree nodes sorted by increasing frequency.
541 ct_data *tree = desc->dyn_tree;
548 int n, m; /* iterate over the tree elements */
557 * overflow in the case of the bit length tree).
559 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
563 bits = tree[tree[n].Dad].Len + 1;
565 tree[n].Len = (ush)bits;
566 /* We overwrite tree[n].Dad which is no longer needed */
573 f = tree[n].Freq;
586 s->bl_count[bits]--; /* move one leaf down the tree */
605 if ((unsigned) tree[m].Len != (unsigned) bits) {
606 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
607 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
608 tree[m].Len = (ush)bits;
620 * Construct one Huffman tree and assigns the code bit strings and lengths.
622 * IN assertion: the field freq is set for all tree elements.
628 ct_data *tree = desc->dyn_tree;
642 if (tree[n].Freq != 0) {
646 tree[n].Len = 0;
657 tree[node].Freq = 1;
664 /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
667 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
669 /* Construct the Huffman tree by repeatedly combining the least two
672 node = elems; /* next internal node of the tree */
674 pqremove(s, tree, n); /* n = node of least frequency */
681 tree[node].Freq = tree[n].Freq + tree[m].Freq;
684 tree[n].Dad = tree[m].Dad = (ush)node;
686 if (tree == s->bl_tree) {
688 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
693 pqdownheap(s, tree, SMALLEST);
705 gen_codes ((ct_data *)tree, max_code, s->bl_count);
709 * Scan a literal or distance tree to determine the frequencies of the codes
710 * in the bit length tree.
712 local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
713 int n; /* iterates over all tree elements */
716 int nextlen = tree[0].Len; /* length of next code */
722 tree[max_code + 1].Len = (ush)0xffff; /* guard */
725 curlen = nextlen; nextlen = tree[n + 1].Len;
750 * Send a literal or distance tree in compressed form, using the codes in
753 local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
754 int n; /* iterates over all tree elements */
757 int nextlen = tree[0].Len; /* length of next code */
762 /* tree[max_code + 1].Len = -1; */ /* guard already set */
766 curlen = nextlen; nextlen = tree[n + 1].Len;
797 * Construct the Huffman tree for the bit lengths and return the index in
807 /* Build the bit length tree: */
809 /* opt_len now includes the length of the tree representations, except the
820 /* Update opt_len to include the bit length tree and counts */
830 * lengths of the bit length codes, the literal tree and the distance tree.
848 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
850 send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */
851 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
853 send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */
854 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
1018 * the compressed block data, excluding the tree representations.
1021 /* Build the bit length tree for the above two trees, and get the index