Home | History | Annotate | Line # | Download | only in zlib
      1 /*	$NetBSD: trees.c,v 1.7 2024/09/22 19:12:27 christos Exp $	*/
      2 
      3 /* trees.c -- output deflated data using Huffman coding
      4  * Copyright (C) 1995-2024 Jean-loup Gailly
      5  * detect_data_type() function provided freely by Cosmin Truta, 2006
      6  * For conditions of distribution and use, see copyright notice in zlib.h
      7  */
      8 
      9 /*
     10  *  ALGORITHM
     11  *
     12  *      The "deflation" process uses several Huffman trees. The more
     13  *      common source values are represented by shorter bit sequences.
     14  *
     15  *      Each code tree is stored in a compressed form which is itself
     16  * a Huffman encoding of the lengths of all the code strings (in
     17  * ascending order by source values).  The actual code strings are
     18  * reconstructed from the lengths in the inflate process, as described
     19  * in the deflate specification.
     20  *
     21  *  REFERENCES
     22  *
     23  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
     24  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
     25  *
     26  *      Storer, James A.
     27  *          Data Compression:  Methods and Theory, pp. 49-50.
     28  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
     29  *
     30  *      Sedgewick, R.
     31  *          Algorithms, p290.
     32  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
     33  */
     34 
     35 /* @(#) Id */
     36 
     37 /* #define GEN_TREES_H */
     38 
     39 #include "deflate.h"
     40 
     41 #ifdef ZLIB_DEBUG
     42 #  include <ctype.h>
     43 #endif
     44 
     45 /* ===========================================================================
     46  * Constants
     47  */
     48 
     49 #define MAX_BL_BITS 7
     50 /* Bit length codes must not exceed MAX_BL_BITS bits */
     51 
     52 #define END_BLOCK 256
     53 /* end of block literal code */
     54 
     55 #define REP_3_6      16
     56 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
     57 
     58 #define REPZ_3_10    17
     59 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
     60 
     61 #define REPZ_11_138  18
     62 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
     63 
     64 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
     65    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
     66 
     67 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
     68    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
     69 
     70 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
     71    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
     72 
     73 local const uch bl_order[BL_CODES]
     74    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
     75 /* The lengths of the bit length codes are sent in order of decreasing
     76  * probability, to avoid transmitting the lengths for unused bit length codes.
     77  */
     78 
     79 /* ===========================================================================
     80  * Local data. These are initialized only once.
     81  */
     82 
     83 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
     84 
     85 #if defined(GEN_TREES_H) || !defined(STDC)
     86 /* non ANSI compilers may not accept trees.h */
     87 
     88 local ct_data static_ltree[L_CODES+2];
     89 /* The static literal tree. Since the bit lengths are imposed, there is no
     90  * need for the L_CODES extra codes used during heap construction. However
     91  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
     92  * below).
     93  */
     94 
     95 local ct_data static_dtree[D_CODES];
     96 /* The static distance tree. (Actually a trivial tree since all codes use
     97  * 5 bits.)
     98  */
     99 
    100 uch _dist_code[DIST_CODE_LEN];
    101 /* Distance codes. The first 256 values correspond to the distances
    102  * 3 .. 258, the last 256 values correspond to the top 8 bits of
    103  * the 15 bit distances.
    104  */
    105 
    106 uch _length_code[MAX_MATCH-MIN_MATCH+1];
    107 /* length code for each normalized match length (0 == MIN_MATCH) */
    108 
    109 local int base_length[LENGTH_CODES];
    110 /* First normalized length for each code (0 = MIN_MATCH) */
    111 
    112 local int base_dist[D_CODES];
    113 /* First normalized distance for each code (0 = distance of 1) */
    114 
    115 #else
    116 #  include "trees.h"
    117 #endif /* GEN_TREES_H */
    118 
    119 struct static_tree_desc_s {
    120     const ct_data *static_tree;  /* static tree or NULL */
    121     const intf *extra_bits;      /* extra bits for each code or NULL */
    122     int     extra_base;          /* base index for extra_bits */
    123     int     elems;               /* max number of elements in the tree */
    124     int     max_length;          /* max bit length for the codes */
    125 };
    126 
    127 #ifdef NO_INIT_GLOBAL_POINTERS
    128 #  define TCONST
    129 #else
    130 #  define TCONST const
    131 #endif
    132 
    133 local TCONST static_tree_desc static_l_desc =
    134 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
    135 
    136 local TCONST static_tree_desc static_d_desc =
    137 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
    138 
    139 local TCONST static_tree_desc static_bl_desc =
    140 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
    141 
    142 /* ===========================================================================
    143  * Output a short LSB first on the stream.
    144  * IN assertion: there is enough room in pendingBuf.
    145  */
    146 #define put_short(s, w) { \
    147     put_byte(s, (uch)((w) & 0xff)); \
    148     put_byte(s, (uch)((ush)(w) >> 8)); \
    149 }
    150 
    151 /* ===========================================================================
    152  * Reverse the first len bits of a code, using straightforward code (a faster
    153  * method would use a table)
    154  * IN assertion: 1 <= len <= 15
    155  */
    156 local unsigned bi_reverse(unsigned code, int len) {
    157     register unsigned res = 0;
    158     do {
    159         res |= code & 1;
    160         code >>= 1, res <<= 1;
    161     } while (--len > 0);
    162     return res >> 1;
    163 }
    164 
    165 /* ===========================================================================
    166  * Flush the bit buffer, keeping at most 7 bits in it.
    167  */
    168 local void bi_flush(deflate_state *s) {
    169     if (s->bi_valid == 16) {
    170         put_short(s, s->bi_buf);
    171         s->bi_buf = 0;
    172         s->bi_valid = 0;
    173     } else if (s->bi_valid >= 8) {
    174         put_byte(s, (Byte)s->bi_buf);
    175         s->bi_buf >>= 8;
    176         s->bi_valid -= 8;
    177     }
    178 }
    179 
    180 /* ===========================================================================
    181  * Flush the bit buffer and align the output on a byte boundary
    182  */
    183 local void bi_windup(deflate_state *s) {
    184     if (s->bi_valid > 8) {
    185         put_short(s, s->bi_buf);
    186     } else if (s->bi_valid > 0) {
    187         put_byte(s, (Byte)s->bi_buf);
    188     }
    189     s->bi_buf = 0;
    190     s->bi_valid = 0;
    191 #ifdef ZLIB_DEBUG
    192     s->bits_sent = (s->bits_sent + 7) & ~7;
    193 #endif
    194 }
    195 
    196 /* ===========================================================================
    197  * Generate the codes for a given tree and bit counts (which need not be
    198  * optimal).
    199  * IN assertion: the array bl_count contains the bit length statistics for
    200  * the given tree and the field len is set for all tree elements.
    201  * OUT assertion: the field code is set for all tree elements of non
    202  *     zero code length.
    203  */
    204 local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) {
    205     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
    206     unsigned code = 0;         /* running code value */
    207     int bits;                  /* bit index */
    208     int n;                     /* code index */
    209 
    210     /* The distribution counts are first used to generate the code values
    211      * without bit reversal.
    212      */
    213     for (bits = 1; bits <= MAX_BITS; bits++) {
    214         code = (code + bl_count[bits - 1]) << 1;
    215         next_code[bits] = (ush)code;
    216     }
    217     /* Check that the bit counts in bl_count are consistent. The last code
    218      * must be all ones.
    219      */
    220     Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
    221             "inconsistent bit counts");
    222     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
    223 
    224     for (n = 0;  n <= max_code; n++) {
    225         int len = tree[n].Len;
    226         if (len == 0) continue;
    227         /* Now reverse the bits */
    228         tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
    229 
    230         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
    231             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
    232     }
    233 }
    234 
    235 #ifdef GEN_TREES_H
    236 local void gen_trees_header(void);
    237 #endif
    238 
    239 #ifndef ZLIB_DEBUG
    240 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
    241    /* Send a code of the given tree. c and tree must not have side effects */
    242 
    243 #else /* !ZLIB_DEBUG */
    244 #  define send_code(s, c, tree) \
    245      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
    246        send_bits(s, tree[c].Code, tree[c].Len); }
    247 #endif
    248 
    249 /* ===========================================================================
    250  * Send a value on a given number of bits.
    251  * IN assertion: length <= 16 and value fits in length bits.
    252  */
    253 #ifdef ZLIB_DEBUG
    254 local void send_bits(deflate_state *s, int value, int length) {
    255     Tracevv((stderr," l %2d v %4x ", length, value));
    256     Assert(length > 0 && length <= 15, "invalid length");
    257     s->bits_sent += (ulg)length;
    258 
    259     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
    260      * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
    261      * unused bits in value.
    262      */
    263     if (s->bi_valid > (int)Buf_size - length) {
    264         s->bi_buf |= (ush)value << s->bi_valid;
    265         put_short(s, s->bi_buf);
    266         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
    267         s->bi_valid += length - Buf_size;
    268     } else {
    269         s->bi_buf |= (ush)value << s->bi_valid;
    270         s->bi_valid += length;
    271     }
    272 }
    273 #else /* !ZLIB_DEBUG */
    274 
    275 #define send_bits(s, value, length) \
    276 { int len = length;\
    277   if (s->bi_valid > (int)Buf_size - len) {\
    278     int val = (int)value;\
    279     s->bi_buf |= (ush)val << s->bi_valid;\
    280     put_short(s, s->bi_buf);\
    281     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
    282     s->bi_valid += len - Buf_size;\
    283   } else {\
    284     s->bi_buf |= (ush)(value) << s->bi_valid;\
    285     s->bi_valid += len;\
    286   }\
    287 }
    288 #endif /* ZLIB_DEBUG */
    289 
    290 
    291 /* the arguments must not have side effects */
    292 
    293 /* ===========================================================================
    294  * Initialize the various 'constant' tables.
    295  */
    296 local void tr_static_init(void) {
    297 #if defined(GEN_TREES_H) || !defined(STDC)
    298     static int static_init_done = 0;
    299     int n;        /* iterates over tree elements */
    300     int bits;     /* bit counter */
    301     int length;   /* length value */
    302     int code;     /* code value */
    303     int dist;     /* distance index */
    304     ush bl_count[MAX_BITS+1];
    305     /* number of codes at each bit length for an optimal tree */
    306 
    307     if (static_init_done) return;
    308 
    309     /* For some embedded targets, global variables are not initialized: */
    310 #ifdef NO_INIT_GLOBAL_POINTERS
    311     static_l_desc.static_tree = static_ltree;
    312     static_l_desc.extra_bits = extra_lbits;
    313     static_d_desc.static_tree = static_dtree;
    314     static_d_desc.extra_bits = extra_dbits;
    315     static_bl_desc.extra_bits = extra_blbits;
    316 #endif
    317 
    318     /* Initialize the mapping length (0..255) -> length code (0..28) */
    319     length = 0;
    320     for (code = 0; code < LENGTH_CODES-1; code++) {
    321         base_length[code] = length;
    322         for (n = 0; n < (1 << extra_lbits[code]); n++) {
    323             _length_code[length++] = (uch)code;
    324         }
    325     }
    326     Assert (length == 256, "tr_static_init: length != 256");
    327     /* Note that the length 255 (match length 258) can be represented
    328      * in two different ways: code 284 + 5 bits or code 285, so we
    329      * overwrite length_code[255] to use the best encoding:
    330      */
    331     _length_code[length - 1] = (uch)code;
    332 
    333     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
    334     dist = 0;
    335     for (code = 0 ; code < 16; code++) {
    336         base_dist[code] = dist;
    337         for (n = 0; n < (1 << extra_dbits[code]); n++) {
    338             _dist_code[dist++] = (uch)code;
    339         }
    340     }
    341     Assert (dist == 256, "tr_static_init: dist != 256");
    342     dist >>= 7; /* from now on, all distances are divided by 128 */
    343     for ( ; code < D_CODES; code++) {
    344         base_dist[code] = dist << 7;
    345         for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
    346             _dist_code[256 + dist++] = (uch)code;
    347         }
    348     }
    349     Assert (dist == 256, "tr_static_init: 256 + dist != 512");
    350 
    351     /* Construct the codes of the static literal tree */
    352     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
    353     n = 0;
    354     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
    355     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
    356     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
    357     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
    358     /* Codes 286 and 287 do not exist, but we must include them in the
    359      * tree construction to get a canonical Huffman tree (longest code
    360      * all ones)
    361      */
    362     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
    363 
    364     /* The static distance tree is trivial: */
    365     for (n = 0; n < D_CODES; n++) {
    366         static_dtree[n].Len = 5;
    367         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
    368     }
    369     static_init_done = 1;
    370 
    371 #  ifdef GEN_TREES_H
    372     gen_trees_header();
    373 #  endif
    374 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
    375 }
    376 
    377 /* ===========================================================================
    378  * Generate the file trees.h describing the static trees.
    379  */
    380 #ifdef GEN_TREES_H
    381 #  ifndef ZLIB_DEBUG
    382 #    include <stdio.h>
    383 #  endif
    384 
    385 #  define SEPARATOR(i, last, width) \
    386       ((i) == (last)? "\n};\n\n" :    \
    387        ((i) % (width) == (width) - 1 ? ",\n" : ", "))
    388 
    389 void gen_trees_header(void) {
    390     FILE *header = fopen("trees.h", "w");
    391     int i;
    392 
    393     Assert (header != NULL, "Can't open trees.h");
    394     fprintf(header,
    395             "/* header created automatically with -DGEN_TREES_H */\n\n");
    396 
    397     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
    398     for (i = 0; i < L_CODES+2; i++) {
    399         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
    400                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
    401     }
    402 
    403     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
    404     for (i = 0; i < D_CODES; i++) {
    405         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
    406                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
    407     }
    408 
    409     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
    410     for (i = 0; i < DIST_CODE_LEN; i++) {
    411         fprintf(header, "%2u%s", _dist_code[i],
    412                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
    413     }
    414 
    415     fprintf(header,
    416         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
    417     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
    418         fprintf(header, "%2u%s", _length_code[i],
    419                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
    420     }
    421 
    422     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
    423     for (i = 0; i < LENGTH_CODES; i++) {
    424         fprintf(header, "%1u%s", base_length[i],
    425                 SEPARATOR(i, LENGTH_CODES-1, 20));
    426     }
    427 
    428     fprintf(header, "local const int base_dist[D_CODES] = {\n");
    429     for (i = 0; i < D_CODES; i++) {
    430         fprintf(header, "%5u%s", base_dist[i],
    431                 SEPARATOR(i, D_CODES-1, 10));
    432     }
    433 
    434     fclose(header);
    435 }
    436 #endif /* GEN_TREES_H */
    437 
    438 /* ===========================================================================
    439  * Initialize a new block.
    440  */
    441 local void init_block(deflate_state *s) {
    442     int n; /* iterates over tree elements */
    443 
    444     /* Initialize the trees. */
    445     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
    446     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
    447     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
    448 
    449     s->dyn_ltree[END_BLOCK].Freq = 1;
    450     s->opt_len = s->static_len = 0L;
    451     s->sym_next = s->matches = 0;
    452 }
    453 
    454 /* ===========================================================================
    455  * Initialize the tree data structures for a new zlib stream.
    456  */
    457 void ZLIB_INTERNAL _tr_init(deflate_state *s) {
    458     tr_static_init();
    459 
    460     s->l_desc.dyn_tree = s->dyn_ltree;
    461     s->l_desc.stat_desc = &static_l_desc;
    462 
    463     s->d_desc.dyn_tree = s->dyn_dtree;
    464     s->d_desc.stat_desc = &static_d_desc;
    465 
    466     s->bl_desc.dyn_tree = s->bl_tree;
    467     s->bl_desc.stat_desc = &static_bl_desc;
    468 
    469     s->bi_buf = 0;
    470     s->bi_valid = 0;
    471 #ifdef ZLIB_DEBUG
    472     s->compressed_len = 0L;
    473     s->bits_sent = 0L;
    474 #endif
    475 
    476     /* Initialize the first block of the first file: */
    477     init_block(s);
    478 }
    479 
    480 #define SMALLEST 1
    481 /* Index within the heap array of least frequent node in the Huffman tree */
    482 
    483 
    484 /* ===========================================================================
    485  * Remove the smallest element from the heap and recreate the heap with
    486  * one less element. Updates heap and heap_len.
    487  */
    488 #define pqremove(s, tree, top) \
    489 {\
    490     top = s->heap[SMALLEST]; \
    491     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
    492     pqdownheap(s, tree, SMALLEST); \
    493 }
    494 
    495 /* ===========================================================================
    496  * Compares to subtrees, using the tree depth as tie breaker when
    497  * the subtrees have equal frequency. This minimizes the worst case length.
    498  */
    499 #define smaller(tree, n, m, depth) \
    500    (tree[n].Freq < tree[m].Freq || \
    501    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
    502 
    503 /* ===========================================================================
    504  * Restore the heap property by moving down the tree starting at node k,
    505  * exchanging a node with the smallest of its two sons if necessary, stopping
    506  * when the heap property is re-established (each father smaller than its
    507  * two sons).
    508  */
    509 local void pqdownheap(deflate_state *s, ct_data *tree, int k) {
    510     int v = s->heap[k];
    511     int j = k << 1;  /* left son of k */
    512     while (j <= s->heap_len) {
    513         /* Set j to the smallest of the two sons: */
    514         if (j < s->heap_len &&
    515             smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
    516             j++;
    517         }
    518         /* Exit if v is smaller than both sons */
    519         if (smaller(tree, v, s->heap[j], s->depth)) break;
    520 
    521         /* Exchange v with the smallest son */
    522         s->heap[k] = s->heap[j];  k = j;
    523 
    524         /* And continue down the tree, setting j to the left son of k */
    525         j <<= 1;
    526     }
    527     s->heap[k] = v;
    528 }
    529 
    530 /* ===========================================================================
    531  * Compute the optimal bit lengths for a tree and update the total bit length
    532  * for the current block.
    533  * IN assertion: the fields freq and dad are set, heap[heap_max] and
    534  *    above are the tree nodes sorted by increasing frequency.
    535  * OUT assertions: the field len is set to the optimal bit length, the
    536  *     array bl_count contains the frequencies for each bit length.
    537  *     The length opt_len is updated; static_len is also updated if stree is
    538  *     not null.
    539  */
    540 local void gen_bitlen(deflate_state *s, tree_desc *desc) {
    541     ct_data *tree        = desc->dyn_tree;
    542     int max_code         = desc->max_code;
    543     const ct_data *stree = desc->stat_desc->static_tree;
    544     const intf *extra    = desc->stat_desc->extra_bits;
    545     int base             = desc->stat_desc->extra_base;
    546     int max_length       = desc->stat_desc->max_length;
    547     int h;              /* heap index */
    548     int n, m;           /* iterate over the tree elements */
    549     int bits;           /* bit length */
    550     int xbits;          /* extra bits */
    551     ush f;              /* frequency */
    552     int overflow = 0;   /* number of elements with bit length too large */
    553 
    554     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
    555 
    556     /* In a first pass, compute the optimal bit lengths (which may
    557      * overflow in the case of the bit length tree).
    558      */
    559     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
    560 
    561     for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
    562         n = s->heap[h];
    563         bits = tree[tree[n].Dad].Len + 1;
    564         if (bits > max_length) bits = max_length, overflow++;
    565         tree[n].Len = (ush)bits;
    566         /* We overwrite tree[n].Dad which is no longer needed */
    567 
    568         if (n > max_code) continue; /* not a leaf node */
    569 
    570         s->bl_count[bits]++;
    571         xbits = 0;
    572         if (n >= base) xbits = extra[n - base];
    573         f = tree[n].Freq;
    574         s->opt_len += (ulg)f * (unsigned)(bits + xbits);
    575         if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
    576     }
    577     if (overflow == 0) return;
    578 
    579     Tracev((stderr,"\nbit length overflow\n"));
    580     /* This happens for example on obj2 and pic of the Calgary corpus */
    581 
    582     /* Find the first bit length which could increase: */
    583     do {
    584         bits = max_length - 1;
    585         while (s->bl_count[bits] == 0) bits--;
    586         s->bl_count[bits]--;        /* move one leaf down the tree */
    587         s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
    588         s->bl_count[max_length]--;
    589         /* The brother of the overflow item also moves one step up,
    590          * but this does not affect bl_count[max_length]
    591          */
    592         overflow -= 2;
    593     } while (overflow > 0);
    594 
    595     /* Now recompute all bit lengths, scanning in increasing frequency.
    596      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
    597      * lengths instead of fixing only the wrong ones. This idea is taken
    598      * from 'ar' written by Haruhiko Okumura.)
    599      */
    600     for (bits = max_length; bits != 0; bits--) {
    601         n = s->bl_count[bits];
    602         while (n != 0) {
    603             m = s->heap[--h];
    604             if (m > max_code) continue;
    605             if ((unsigned) tree[m].Len != (unsigned) bits) {
    606                 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
    607                 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
    608                 tree[m].Len = (ush)bits;
    609             }
    610             n--;
    611         }
    612     }
    613 }
    614 
    615 #ifdef DUMP_BL_TREE
    616 #  include <stdio.h>
    617 #endif
    618 
    619 /* ===========================================================================
    620  * Construct one Huffman tree and assigns the code bit strings and lengths.
    621  * Update the total bit length for the current block.
    622  * IN assertion: the field freq is set for all tree elements.
    623  * OUT assertions: the fields len and code are set to the optimal bit length
    624  *     and corresponding code. The length opt_len is updated; static_len is
    625  *     also updated if stree is not null. The field max_code is set.
    626  */
    627 local void build_tree(deflate_state *s, tree_desc *desc) {
    628     ct_data *tree         = desc->dyn_tree;
    629     const ct_data *stree  = desc->stat_desc->static_tree;
    630     int elems             = desc->stat_desc->elems;
    631     int n, m;          /* iterate over heap elements */
    632     int max_code = -1; /* largest code with non zero frequency */
    633     int node;          /* new node being created */
    634 
    635     /* Construct the initial heap, with least frequent element in
    636      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
    637      * heap[0] is not used.
    638      */
    639     s->heap_len = 0, s->heap_max = HEAP_SIZE;
    640 
    641     for (n = 0; n < elems; n++) {
    642         if (tree[n].Freq != 0) {
    643             s->heap[++(s->heap_len)] = max_code = n;
    644             s->depth[n] = 0;
    645         } else {
    646             tree[n].Len = 0;
    647         }
    648     }
    649 
    650     /* The pkzip format requires that at least one distance code exists,
    651      * and that at least one bit should be sent even if there is only one
    652      * possible code. So to avoid special checks later on we force at least
    653      * two codes of non zero frequency.
    654      */
    655     while (s->heap_len < 2) {
    656         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
    657         tree[node].Freq = 1;
    658         s->depth[node] = 0;
    659         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
    660         /* node is 0 or 1 so it does not have extra bits */
    661     }
    662     desc->max_code = max_code;
    663 
    664     /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
    665      * establish sub-heaps of increasing lengths:
    666      */
    667     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
    668 
    669     /* Construct the Huffman tree by repeatedly combining the least two
    670      * frequent nodes.
    671      */
    672     node = elems;              /* next internal node of the tree */
    673     do {
    674         pqremove(s, tree, n);  /* n = node of least frequency */
    675         m = s->heap[SMALLEST]; /* m = node of next least frequency */
    676 
    677         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
    678         s->heap[--(s->heap_max)] = m;
    679 
    680         /* Create a new node father of n and m */
    681         tree[node].Freq = tree[n].Freq + tree[m].Freq;
    682         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
    683                                 s->depth[n] : s->depth[m]) + 1);
    684         tree[n].Dad = tree[m].Dad = (ush)node;
    685 #ifdef DUMP_BL_TREE
    686         if (tree == s->bl_tree) {
    687             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
    688                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
    689         }
    690 #endif
    691         /* and insert the new node in the heap */
    692         s->heap[SMALLEST] = node++;
    693         pqdownheap(s, tree, SMALLEST);
    694 
    695     } while (s->heap_len >= 2);
    696 
    697     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
    698 
    699     /* At this point, the fields freq and dad are set. We can now
    700      * generate the bit lengths.
    701      */
    702     gen_bitlen(s, (tree_desc *)desc);
    703 
    704     /* The field len is now set, we can generate the bit codes */
    705     gen_codes ((ct_data *)tree, max_code, s->bl_count);
    706 }
    707 
    708 /* ===========================================================================
    709  * Scan a literal or distance tree to determine the frequencies of the codes
    710  * in the bit length tree.
    711  */
    712 local void scan_tree(deflate_state *s, ct_data *tree, int max_code) {
    713     int n;                     /* iterates over all tree elements */
    714     int prevlen = -1;          /* last emitted length */
    715     int curlen;                /* length of current code */
    716     int nextlen = tree[0].Len; /* length of next code */
    717     int count = 0;             /* repeat count of the current code */
    718     int max_count = 7;         /* max repeat count */
    719     int min_count = 4;         /* min repeat count */
    720 
    721     if (nextlen == 0) max_count = 138, min_count = 3;
    722     tree[max_code + 1].Len = (ush)0xffff; /* guard */
    723 
    724     for (n = 0; n <= max_code; n++) {
    725         curlen = nextlen; nextlen = tree[n + 1].Len;
    726         if (++count < max_count && curlen == nextlen) {
    727             continue;
    728         } else if (count < min_count) {
    729             s->bl_tree[curlen].Freq += count;
    730         } else if (curlen != 0) {
    731             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
    732             s->bl_tree[REP_3_6].Freq++;
    733         } else if (count <= 10) {
    734             s->bl_tree[REPZ_3_10].Freq++;
    735         } else {
    736             s->bl_tree[REPZ_11_138].Freq++;
    737         }
    738         count = 0; prevlen = curlen;
    739         if (nextlen == 0) {
    740             max_count = 138, min_count = 3;
    741         } else if (curlen == nextlen) {
    742             max_count = 6, min_count = 3;
    743         } else {
    744             max_count = 7, min_count = 4;
    745         }
    746     }
    747 }
    748 
    749 /* ===========================================================================
    750  * Send a literal or distance tree in compressed form, using the codes in
    751  * bl_tree.
    752  */
    753 local void send_tree(deflate_state *s, ct_data *tree, int max_code) {
    754     int n;                     /* iterates over all tree elements */
    755     int prevlen = -1;          /* last emitted length */
    756     int curlen;                /* length of current code */
    757     int nextlen = tree[0].Len; /* length of next code */
    758     int count = 0;             /* repeat count of the current code */
    759     int max_count = 7;         /* max repeat count */
    760     int min_count = 4;         /* min repeat count */
    761 
    762     /* tree[max_code + 1].Len = -1; */  /* guard already set */
    763     if (nextlen == 0) max_count = 138, min_count = 3;
    764 
    765     for (n = 0; n <= max_code; n++) {
    766         curlen = nextlen; nextlen = tree[n + 1].Len;
    767         if (++count < max_count && curlen == nextlen) {
    768             continue;
    769         } else if (count < min_count) {
    770             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
    771 
    772         } else if (curlen != 0) {
    773             if (curlen != prevlen) {
    774                 send_code(s, curlen, s->bl_tree); count--;
    775             }
    776             Assert(count >= 3 && count <= 6, " 3_6?");
    777             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
    778 
    779         } else if (count <= 10) {
    780             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
    781 
    782         } else {
    783             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
    784         }
    785         count = 0; prevlen = curlen;
    786         if (nextlen == 0) {
    787             max_count = 138, min_count = 3;
    788         } else if (curlen == nextlen) {
    789             max_count = 6, min_count = 3;
    790         } else {
    791             max_count = 7, min_count = 4;
    792         }
    793     }
    794 }
    795 
    796 /* ===========================================================================
    797  * Construct the Huffman tree for the bit lengths and return the index in
    798  * bl_order of the last bit length code to send.
    799  */
    800 local int build_bl_tree(deflate_state *s) {
    801     int max_blindex;  /* index of last bit length code of non zero freq */
    802 
    803     /* Determine the bit length frequencies for literal and distance trees */
    804     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
    805     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
    806 
    807     /* Build the bit length tree: */
    808     build_tree(s, (tree_desc *)(&(s->bl_desc)));
    809     /* opt_len now includes the length of the tree representations, except the
    810      * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
    811      */
    812 
    813     /* Determine the number of bit length codes to send. The pkzip format
    814      * requires that at least 4 bit length codes be sent. (appnote.txt says
    815      * 3 but the actual value used is 4.)
    816      */
    817     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
    818         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
    819     }
    820     /* Update opt_len to include the bit length tree and counts */
    821     s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
    822     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
    823             s->opt_len, s->static_len));
    824 
    825     return max_blindex;
    826 }
    827 
    828 /* ===========================================================================
    829  * Send the header for a block using dynamic Huffman trees: the counts, the
    830  * lengths of the bit length codes, the literal tree and the distance tree.
    831  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
    832  */
    833 local void send_all_trees(deflate_state *s, int lcodes, int dcodes,
    834                           int blcodes) {
    835     int rank;                    /* index in bl_order */
    836 
    837     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
    838     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
    839             "too many codes");
    840     Tracev((stderr, "\nbl counts: "));
    841     send_bits(s, lcodes - 257, 5);  /* not +255 as stated in appnote.txt */
    842     send_bits(s, dcodes - 1,   5);
    843     send_bits(s, blcodes - 4,  4);  /* not -3 as stated in appnote.txt */
    844     for (rank = 0; rank < blcodes; rank++) {
    845         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
    846         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
    847     }
    848     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
    849 
    850     send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1);  /* literal tree */
    851     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
    852 
    853     send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1);  /* distance tree */
    854     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
    855 }
    856 
    857 /* ===========================================================================
    858  * Send a stored block
    859  */
    860 void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf,
    861                                     ulg stored_len, int last) {
    862     send_bits(s, (STORED_BLOCK<<1) + last, 3);  /* send block type */
    863     bi_windup(s);        /* align on byte boundary */
    864     put_short(s, (ush)stored_len);
    865     put_short(s, (ush)~stored_len);
    866     if (stored_len)
    867         zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
    868     s->pending += stored_len;
    869 #ifdef ZLIB_DEBUG
    870     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
    871     s->compressed_len += (stored_len + 4) << 3;
    872     s->bits_sent += 2*16;
    873     s->bits_sent += stored_len << 3;
    874 #endif
    875 }
    876 
    877 /* ===========================================================================
    878  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
    879  */
    880 void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) {
    881     bi_flush(s);
    882 }
    883 
    884 /* ===========================================================================
    885  * Send one empty static block to give enough lookahead for inflate.
    886  * This takes 10 bits, of which 7 may remain in the bit buffer.
    887  */
    888 void ZLIB_INTERNAL _tr_align(deflate_state *s) {
    889     send_bits(s, STATIC_TREES<<1, 3);
    890     send_code(s, END_BLOCK, static_ltree);
    891 #ifdef ZLIB_DEBUG
    892     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
    893 #endif
    894     bi_flush(s);
    895 }
    896 
    897 /* ===========================================================================
    898  * Send the block data compressed using the given Huffman trees
    899  */
    900 local void compress_block(deflate_state *s, const ct_data *ltree,
    901                           const ct_data *dtree) {
    902     unsigned dist;      /* distance of matched string */
    903     int lc;             /* match length or unmatched char (if dist == 0) */
    904     unsigned sx = 0;    /* running index in symbol buffers */
    905     unsigned code;      /* the code to send */
    906     int extra;          /* number of extra bits to send */
    907 
    908     if (s->sym_next != 0) do {
    909 #ifdef LIT_MEM
    910         dist = s->d_buf[sx];
    911         lc = s->l_buf[sx++];
    912 #else
    913         dist = s->sym_buf[sx++] & 0xff;
    914         dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
    915         lc = s->sym_buf[sx++];
    916 #endif
    917         if (dist == 0) {
    918             send_code(s, lc, ltree); /* send a literal byte */
    919             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
    920         } else {
    921             /* Here, lc is the match length - MIN_MATCH */
    922             code = _length_code[lc];
    923             send_code(s, code + LITERALS + 1, ltree);   /* send length code */
    924             extra = extra_lbits[code];
    925             if (extra != 0) {
    926                 lc -= base_length[code];
    927                 send_bits(s, lc, extra);       /* send the extra length bits */
    928             }
    929             dist--; /* dist is now the match distance - 1 */
    930             code = d_code(dist);
    931             Assert (code < D_CODES, "bad d_code");
    932 
    933             send_code(s, code, dtree);       /* send the distance code */
    934             extra = extra_dbits[code];
    935             if (extra != 0) {
    936                 dist -= (unsigned)base_dist[code];
    937                 send_bits(s, dist, extra);   /* send the extra distance bits */
    938             }
    939         } /* literal or match pair ? */
    940 
    941         /* Check for no overlay of pending_buf on needed symbols */
    942 #ifdef LIT_MEM
    943         Assert(s->pending < 2 * (s->lit_bufsize + sx), "pendingBuf overflow");
    944 #else
    945         Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
    946 #endif
    947 
    948     } while (sx < s->sym_next);
    949 
    950     send_code(s, END_BLOCK, ltree);
    951 }
    952 
    953 /* ===========================================================================
    954  * Check if the data type is TEXT or BINARY, using the following algorithm:
    955  * - TEXT if the two conditions below are satisfied:
    956  *    a) There are no non-portable control characters belonging to the
    957  *       "block list" (0..6, 14..25, 28..31).
    958  *    b) There is at least one printable character belonging to the
    959  *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
    960  * - BINARY otherwise.
    961  * - The following partially-portable control characters form a
    962  *   "gray list" that is ignored in this detection algorithm:
    963  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
    964  * IN assertion: the fields Freq of dyn_ltree are set.
    965  */
    966 local int detect_data_type(deflate_state *s) {
    967     /* block_mask is the bit mask of block-listed bytes
    968      * set bits 0..6, 14..25, and 28..31
    969      * 0xf3ffc07f = binary 11110011111111111100000001111111
    970      */
    971     unsigned long block_mask = 0xf3ffc07fUL;
    972     int n;
    973 
    974     /* Check for non-textual ("block-listed") bytes. */
    975     for (n = 0; n <= 31; n++, block_mask >>= 1)
    976         if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
    977             return Z_BINARY;
    978 
    979     /* Check for textual ("allow-listed") bytes. */
    980     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
    981             || s->dyn_ltree[13].Freq != 0)
    982         return Z_TEXT;
    983     for (n = 32; n < LITERALS; n++)
    984         if (s->dyn_ltree[n].Freq != 0)
    985             return Z_TEXT;
    986 
    987     /* There are no "block-listed" or "allow-listed" bytes:
    988      * this stream either is empty or has tolerated ("gray-listed") bytes only.
    989      */
    990     return Z_BINARY;
    991 }
    992 
    993 /* ===========================================================================
    994  * Determine the best encoding for the current block: dynamic trees, static
    995  * trees or store, and write out the encoded block.
    996  */
    997 void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf,
    998                                    ulg stored_len, int last) {
    999     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
   1000     int max_blindex = 0;  /* index of last bit length code of non zero freq */
   1001 
   1002     /* Build the Huffman trees unless a stored block is forced */
   1003     if (s->level > 0) {
   1004 
   1005         /* Check if the file is binary or text */
   1006         if (s->strm->data_type == Z_UNKNOWN)
   1007             s->strm->data_type = detect_data_type(s);
   1008 
   1009         /* Construct the literal and distance trees */
   1010         build_tree(s, (tree_desc *)(&(s->l_desc)));
   1011         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
   1012                 s->static_len));
   1013 
   1014         build_tree(s, (tree_desc *)(&(s->d_desc)));
   1015         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
   1016                 s->static_len));
   1017         /* At this point, opt_len and static_len are the total bit lengths of
   1018          * the compressed block data, excluding the tree representations.
   1019          */
   1020 
   1021         /* Build the bit length tree for the above two trees, and get the index
   1022          * in bl_order of the last bit length code to send.
   1023          */
   1024         max_blindex = build_bl_tree(s);
   1025 
   1026         /* Determine the best encoding. Compute the block lengths in bytes. */
   1027         opt_lenb = (s->opt_len + 3 + 7) >> 3;
   1028         static_lenb = (s->static_len + 3 + 7) >> 3;
   1029 
   1030         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
   1031                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
   1032                 s->sym_next / 3));
   1033 
   1034 #ifndef FORCE_STATIC
   1035         if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
   1036 #endif
   1037             opt_lenb = static_lenb;
   1038 
   1039     } else {
   1040         Assert(buf != (char*)0, "lost buf");
   1041         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
   1042     }
   1043 
   1044 #ifdef FORCE_STORED
   1045     if (buf != (char*)0) { /* force stored block */
   1046 #else
   1047     if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
   1048                        /* 4: two words for the lengths */
   1049 #endif
   1050         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
   1051          * Otherwise we can't have processed more than WSIZE input bytes since
   1052          * the last block flush, because compression would have been
   1053          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
   1054          * transform a block into a stored block.
   1055          */
   1056         _tr_stored_block(s, buf, stored_len, last);
   1057 
   1058     } else if (static_lenb == opt_lenb) {
   1059         send_bits(s, (STATIC_TREES<<1) + last, 3);
   1060         compress_block(s, (const ct_data *)static_ltree,
   1061                        (const ct_data *)static_dtree);
   1062 #ifdef ZLIB_DEBUG
   1063         s->compressed_len += 3 + s->static_len;
   1064 #endif
   1065     } else {
   1066         send_bits(s, (DYN_TREES<<1) + last, 3);
   1067         send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
   1068                        max_blindex + 1);
   1069         compress_block(s, (const ct_data *)s->dyn_ltree,
   1070                        (const ct_data *)s->dyn_dtree);
   1071 #ifdef ZLIB_DEBUG
   1072         s->compressed_len += 3 + s->opt_len;
   1073 #endif
   1074     }
   1075     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
   1076     /* The above check is made mod 2^32, for files larger than 512 MB
   1077      * and uLong implemented on 32 bits.
   1078      */
   1079     init_block(s);
   1080 
   1081     if (last) {
   1082         bi_windup(s);
   1083 #ifdef ZLIB_DEBUG
   1084         s->compressed_len += 7;  /* align on byte boundary */
   1085 #endif
   1086     }
   1087     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
   1088            s->compressed_len - 7*last));
   1089 }
   1090 
   1091 /* ===========================================================================
   1092  * Save the match info and tally the frequency counts. Return true if
   1093  * the current block must be flushed.
   1094  */
   1095 int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) {
   1096 #ifdef LIT_MEM
   1097     s->d_buf[s->sym_next] = (ush)dist;
   1098     s->l_buf[s->sym_next++] = (uch)lc;
   1099 #else
   1100     s->sym_buf[s->sym_next++] = (uch)dist;
   1101     s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
   1102     s->sym_buf[s->sym_next++] = (uch)lc;
   1103 #endif
   1104     if (dist == 0) {
   1105         /* lc is the unmatched char */
   1106         s->dyn_ltree[lc].Freq++;
   1107     } else {
   1108         s->matches++;
   1109         /* Here, lc is the match length - MIN_MATCH */
   1110         dist--;             /* dist = match distance - 1 */
   1111         Assert((ush)dist < (ush)MAX_DIST(s) &&
   1112                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
   1113                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
   1114 
   1115         s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
   1116         s->dyn_dtree[d_code(dist)].Freq++;
   1117     }
   1118     return (s->sym_next == s->sym_end);
   1119 }
   1120