Home | History | Annotate | Line # | Download | only in ar5212
      1 /*
      2  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
      3  * Copyright (c) 2002-2008 Atheros Communications, Inc.
      4  *
      5  * Permission to use, copy, modify, and/or distribute this software for any
      6  * purpose with or without fee is hereby granted, provided that the above
      7  * copyright notice and this permission notice appear in all copies.
      8  *
      9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     16  *
     17  * $Id: ar2317.c,v 1.4 2013/09/12 12:03:33 martin Exp $
     18  */
     19 #include "opt_ah.h"
     20 
     21 #include "ah.h"
     22 #include "ah_devid.h"
     23 #include "ah_internal.h"
     24 
     25 #include "ar5212/ar5212.h"
     26 #include "ar5212/ar5212reg.h"
     27 #include "ar5212/ar5212phy.h"
     28 
     29 #include "ah_eeprom_v3.h"
     30 
     31 #define AH_5212_2317
     32 #include "ar5212/ar5212.ini"
     33 
     34 #define	N(a)	(sizeof(a)/sizeof(a[0]))
     35 
     36 typedef	RAW_DATA_STRUCT_2413 RAW_DATA_STRUCT_2317;
     37 typedef RAW_DATA_PER_CHANNEL_2413 RAW_DATA_PER_CHANNEL_2317;
     38 #define PWR_TABLE_SIZE_2317 PWR_TABLE_SIZE_2413
     39 
     40 struct ar2317State {
     41 	RF_HAL_FUNCS	base;		/* public state, must be first */
     42 	uint16_t	pcdacTable[PWR_TABLE_SIZE_2317];
     43 
     44 	uint32_t	Bank1Data[N(ar5212Bank1_2317)];
     45 	uint32_t	Bank2Data[N(ar5212Bank2_2317)];
     46 	uint32_t	Bank3Data[N(ar5212Bank3_2317)];
     47 	uint32_t	Bank6Data[N(ar5212Bank6_2317)];
     48 	uint32_t	Bank7Data[N(ar5212Bank7_2317)];
     49 
     50 	/*
     51 	 * Private state for reduced stack usage.
     52 	 */
     53 	/* filled out Vpd table for all pdGains (chanL) */
     54 	uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
     55 			    [MAX_PWR_RANGE_IN_HALF_DB];
     56 	/* filled out Vpd table for all pdGains (chanR) */
     57 	uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
     58 			    [MAX_PWR_RANGE_IN_HALF_DB];
     59 	/* filled out Vpd table for all pdGains (interpolated) */
     60 	uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
     61 			    [MAX_PWR_RANGE_IN_HALF_DB];
     62 };
     63 #define	AR2317(ah)	((struct ar2317State *) AH5212(ah)->ah_rfHal)
     64 
     65 extern	void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
     66 		uint32_t numBits, uint32_t firstBit, uint32_t column);
     67 
     68 static void
     69 ar2317WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
     70 	int writes)
     71 {
     72 	HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2317, modesIndex, writes);
     73 	HAL_INI_WRITE_ARRAY(ah, ar5212Common_2317, 1, writes);
     74 	HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2317, freqIndex, writes);
     75 }
     76 
     77 /*
     78  * Take the MHz channel value and set the Channel value
     79  *
     80  * ASSUMES: Writes enabled to analog bus
     81  */
     82 static HAL_BOOL
     83 ar2317SetChannel(struct ath_hal *ah,  HAL_CHANNEL_INTERNAL *chan)
     84 {
     85 	uint32_t channelSel  = 0;
     86 	uint32_t bModeSynth  = 0;
     87 	uint32_t aModeRefSel = 0;
     88 	uint32_t reg32       = 0;
     89 
     90 	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->channel);
     91 
     92 	if (chan->channel < 4800) {
     93 		uint32_t txctl;
     94 		channelSel = chan->channel - 2272 ;
     95 		channelSel = ath_hal_reverseBits(channelSel, 8);
     96 
     97 		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
     98 		if (chan->channel == 2484) {
     99 			/* Enable channel spreading for channel 14 */
    100 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    101 				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
    102 		} else {
    103 			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
    104 				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
    105 		}
    106 	} else if ((chan->channel % 20) == 0 && chan->channel >= 5120) {
    107 		channelSel = ath_hal_reverseBits(
    108 			((chan->channel - 4800) / 20 << 2), 8);
    109 		aModeRefSel = ath_hal_reverseBits(3, 2);
    110 	} else if ((chan->channel % 10) == 0) {
    111 		channelSel = ath_hal_reverseBits(
    112 			((chan->channel - 4800) / 10 << 1), 8);
    113 		aModeRefSel = ath_hal_reverseBits(2, 2);
    114 	} else if ((chan->channel % 5) == 0) {
    115 		channelSel = ath_hal_reverseBits(
    116 			(chan->channel - 4800) / 5, 8);
    117 		aModeRefSel = ath_hal_reverseBits(1, 2);
    118 	} else {
    119 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
    120 		    __func__, chan->channel);
    121 		return AH_FALSE;
    122 	}
    123 
    124 	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
    125 			(1 << 12) | 0x1;
    126 	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
    127 
    128 	reg32 >>= 8;
    129 	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
    130 
    131 	AH_PRIVATE(ah)->ah_curchan = chan;
    132 	return AH_TRUE;
    133 }
    134 
    135 /*
    136  * Reads EEPROM header info from device structure and programs
    137  * all rf registers
    138  *
    139  * REQUIRES: Access to the analog rf device
    140  */
    141 static HAL_BOOL
    142 ar2317SetRfRegs(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, uint16_t modesIndex, uint16_t *rfXpdGain)
    143 {
    144 #define	RF_BANK_SETUP(_priv, _ix, _col) do {				    \
    145 	int i;								    \
    146 	for (i = 0; i < N(ar5212Bank##_ix##_2317); i++)			    \
    147 		(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2317[i][_col];\
    148 } while (0)
    149 	struct ath_hal_5212 *ahp = AH5212(ah);
    150 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    151 	uint16_t ob2GHz = 0, db2GHz = 0;
    152 	struct ar2317State *priv = AR2317(ah);
    153 	int regWrites = 0;
    154 
    155 	HALDEBUG(ah, HAL_DEBUG_RFPARAM,
    156 	    "%s: chan 0x%x flag 0x%x modesIndex 0x%x\n",
    157 	    __func__, chan->channel, chan->channelFlags, modesIndex);
    158 
    159 	HALASSERT(priv);
    160 
    161 	/* Setup rf parameters */
    162 	switch (chan->channelFlags & CHANNEL_ALL) {
    163 	case CHANNEL_B:
    164 		ob2GHz = ee->ee_obFor24;
    165 		db2GHz = ee->ee_dbFor24;
    166 		break;
    167 	case CHANNEL_G:
    168 	case CHANNEL_108G:
    169 		ob2GHz = ee->ee_obFor24g;
    170 		db2GHz = ee->ee_dbFor24g;
    171 		break;
    172 	default:
    173 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
    174 		    __func__, chan->channelFlags);
    175 		return AH_FALSE;
    176 	}
    177 
    178 	/* Bank 1 Write */
    179 	RF_BANK_SETUP(priv, 1, 1);
    180 
    181 	/* Bank 2 Write */
    182 	RF_BANK_SETUP(priv, 2, modesIndex);
    183 
    184 	/* Bank 3 Write */
    185 	RF_BANK_SETUP(priv, 3, modesIndex);
    186 
    187 	/* Bank 6 Write */
    188 	RF_BANK_SETUP(priv, 6, modesIndex);
    189 
    190 	ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz,   3, 193, 0);
    191 	ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz,   3, 190, 0);
    192 
    193 	/* Bank 7 Setup */
    194 	RF_BANK_SETUP(priv, 7, modesIndex);
    195 
    196 	/* Write Analog registers */
    197 	HAL_INI_WRITE_BANK(ah, ar5212Bank1_2317, priv->Bank1Data, regWrites);
    198 	HAL_INI_WRITE_BANK(ah, ar5212Bank2_2317, priv->Bank2Data, regWrites);
    199 	HAL_INI_WRITE_BANK(ah, ar5212Bank3_2317, priv->Bank3Data, regWrites);
    200 	HAL_INI_WRITE_BANK(ah, ar5212Bank6_2317, priv->Bank6Data, regWrites);
    201 	HAL_INI_WRITE_BANK(ah, ar5212Bank7_2317, priv->Bank7Data, regWrites);
    202 	/* Now that we have reprogrammed rfgain value, clear the flag. */
    203 	ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
    204 
    205 	return AH_TRUE;
    206 #undef	RF_BANK_SETUP
    207 }
    208 
    209 /*
    210  * Return a reference to the requested RF Bank.
    211  */
    212 static uint32_t *
    213 ar2317GetRfBank(struct ath_hal *ah, int bank)
    214 {
    215 	struct ar2317State *priv = AR2317(ah);
    216 
    217 	HALASSERT(priv != AH_NULL);
    218 	switch (bank) {
    219 	case 1: return priv->Bank1Data;
    220 	case 2: return priv->Bank2Data;
    221 	case 3: return priv->Bank3Data;
    222 	case 6: return priv->Bank6Data;
    223 	case 7: return priv->Bank7Data;
    224 	}
    225 	HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
    226 	    __func__, bank);
    227 	return AH_NULL;
    228 }
    229 
    230 /*
    231  * Return indices surrounding the value in sorted integer lists.
    232  *
    233  * NB: the input list is assumed to be sorted in ascending order
    234  */
    235 static void
    236 GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
    237                           uint32_t *vlo, uint32_t *vhi)
    238 {
    239 	int16_t target = v;
    240 	const int16_t *ep = lp+listSize;
    241 	const int16_t *tp;
    242 
    243 	/*
    244 	 * Check first and last elements for out-of-bounds conditions.
    245 	 */
    246 	if (target < lp[0]) {
    247 		*vlo = *vhi = 0;
    248 		return;
    249 	}
    250 	if (target >= ep[-1]) {
    251 		*vlo = *vhi = listSize - 1;
    252 		return;
    253 	}
    254 
    255 	/* look for value being near or between 2 values in list */
    256 	for (tp = lp; tp < ep; tp++) {
    257 		/*
    258 		 * If value is close to the current value of the list
    259 		 * then target is not between values, it is one of the values
    260 		 */
    261 		if (*tp == target) {
    262 			*vlo = *vhi = tp - (const int16_t *) lp;
    263 			return;
    264 		}
    265 		/*
    266 		 * Look for value being between current value and next value
    267 		 * if so return these 2 values
    268 		 */
    269 		if (target < tp[1]) {
    270 			*vlo = tp - (const int16_t *) lp;
    271 			*vhi = *vlo + 1;
    272 			return;
    273 		}
    274 	}
    275 }
    276 
    277 /*
    278  * Fill the Vpdlist for indices Pmax-Pmin
    279  */
    280 static HAL_BOOL
    281 ar2317FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t  Pmax,
    282 		   const int16_t *pwrList, const int16_t *VpdList,
    283 		   uint16_t numIntercepts, uint16_t retVpdList[][64])
    284 {
    285 	uint16_t ii, kk;
    286 	int16_t currPwr = (int16_t)(2*Pmin);
    287 	/* since Pmin is pwr*2 and pwrList is 4*pwr */
    288 	uint32_t  idxL = 0, idxR = 0;
    289 
    290 	ii = 0;
    291 
    292 	if (numIntercepts < 2)
    293 		return AH_FALSE;
    294 
    295 	while (ii <= (uint16_t)(Pmax - Pmin)) {
    296 		GetLowerUpperIndex(currPwr, pwrList, numIntercepts,
    297 					 &(idxL), &(idxR));
    298 		if (idxR < 1)
    299 			idxR = 1;			/* extrapolate below */
    300 		if (idxL == (uint32_t)(numIntercepts - 1))
    301 			idxL = numIntercepts - 2;	/* extrapolate above */
    302 		if (pwrList[idxL] == pwrList[idxR])
    303 			kk = VpdList[idxL];
    304 		else
    305 			kk = (uint16_t)
    306 				(((currPwr - pwrList[idxL])*VpdList[idxR]+
    307 				  (pwrList[idxR] - currPwr)*VpdList[idxL])/
    308 				 (pwrList[idxR] - pwrList[idxL]));
    309 		retVpdList[pdGainIdx][ii] = kk;
    310 		ii++;
    311 		currPwr += 2;				/* half dB steps */
    312 	}
    313 
    314 	return AH_TRUE;
    315 }
    316 
    317 /*
    318  * Returns interpolated or the scaled up interpolated value
    319  */
    320 static int16_t
    321 interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
    322 	int16_t targetLeft, int16_t targetRight)
    323 {
    324 	int16_t rv;
    325 
    326 	if (srcRight != srcLeft) {
    327 		rv = ((target - srcLeft)*targetRight +
    328 		      (srcRight - target)*targetLeft) / (srcRight - srcLeft);
    329 	} else {
    330 		rv = targetLeft;
    331 	}
    332 	return rv;
    333 }
    334 
    335 /*
    336  * Uses the data points read from EEPROM to reconstruct the pdadc power table
    337  * Called by ar2317SetPowerTable()
    338  */
    339 static int
    340 ar2317getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
    341 		const RAW_DATA_STRUCT_2317 *pRawDataset,
    342 		uint16_t pdGainOverlap_t2,
    343 		int16_t  *pMinCalPower, uint16_t pPdGainBoundaries[],
    344 		uint16_t pPdGainValues[], uint16_t pPDADCValues[])
    345 {
    346 	struct ar2317State *priv = AR2317(ah);
    347 #define	VpdTable_L	priv->vpdTable_L
    348 #define	VpdTable_R	priv->vpdTable_R
    349 #define	VpdTable_I	priv->vpdTable_I
    350 	/* XXX excessive stack usage? */
    351 	uint32_t ii, jj, kk;
    352 	int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
    353 	uint32_t idxL = 0, idxR = 0;
    354 	uint32_t numPdGainsUsed = 0;
    355 	/*
    356 	 * If desired to support -ve power levels in future, just
    357 	 * change pwr_I_0 to signed 5-bits.
    358 	 */
    359 	int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    360 	/* to accomodate -ve power levels later on. */
    361 	int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
    362 	/* to accomodate -ve power levels later on */
    363 	uint16_t numVpd = 0;
    364 	uint16_t Vpd_step;
    365 	int16_t tmpVal ;
    366 	uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
    367 
    368 	/* Get upper lower index */
    369 	GetLowerUpperIndex(channel, pRawDataset->pChannels,
    370 				 pRawDataset->numChannels, &(idxL), &(idxR));
    371 
    372 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    373 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    374 		/* work backwards 'cause highest pdGain for lowest power */
    375 		numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
    376 		if (numVpd > 0) {
    377 			pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
    378 			Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
    379 			if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
    380 				Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
    381 			}
    382 			Pmin_t2[numPdGainsUsed] = (int16_t)
    383 				(Pmin_t2[numPdGainsUsed] / 2);
    384 			Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    385 			if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
    386 				Pmax_t2[numPdGainsUsed] =
    387 					pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
    388 			Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
    389 			ar2317FillVpdTable(
    390 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    391 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
    392 					   &(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
    393 					   );
    394 			ar2317FillVpdTable(
    395 					   numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
    396 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
    397 					   &(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
    398 					   );
    399 			for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
    400 				VpdTable_I[numPdGainsUsed][kk] =
    401 					interpolate_signed(
    402 							   channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
    403 							   (int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
    404 			}
    405 			/* fill VpdTable_I for this pdGain */
    406 			numPdGainsUsed++;
    407 		}
    408 		/* if this pdGain is used */
    409 	}
    410 
    411 	*pMinCalPower = Pmin_t2[0];
    412 	kk = 0; /* index for the final table */
    413 	for (ii = 0; ii < numPdGainsUsed; ii++) {
    414 		if (ii == (numPdGainsUsed - 1))
    415 			pPdGainBoundaries[ii] = Pmax_t2[ii] +
    416 				PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
    417 		else
    418 			pPdGainBoundaries[ii] = (uint16_t)
    419 				((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
    420 		if (pPdGainBoundaries[ii] > 63) {
    421 			HALDEBUG(ah, HAL_DEBUG_ANY,
    422 			    "%s: clamp pPdGainBoundaries[%d] %d\n",
    423 			   __func__, ii, pPdGainBoundaries[ii]);/*XXX*/
    424 			pPdGainBoundaries[ii] = 63;
    425 		}
    426 
    427 		/* Find starting index for this pdGain */
    428 		if (ii == 0)
    429 			ss = 0; /* for the first pdGain, start from index 0 */
    430 		else
    431 			ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
    432 				pdGainOverlap_t2;
    433 		Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
    434 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    435 		/*
    436 		 *-ve ss indicates need to extrapolate data below for this pdGain
    437 		 */
    438 		while (ss < 0) {
    439 			tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
    440 			pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
    441 			ss++;
    442 		}
    443 
    444 		sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
    445 		tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
    446 		maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
    447 
    448 		while (ss < (int16_t)maxIndex)
    449 			pPDADCValues[kk++] = VpdTable_I[ii][ss++];
    450 
    451 		Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
    452 				       VpdTable_I[ii][sizeCurrVpdTable-2]);
    453 		Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
    454 		/*
    455 		 * for last gain, pdGainBoundary == Pmax_t2, so will
    456 		 * have to extrapolate
    457 		 */
    458 		if (tgtIndex > maxIndex) {	/* need to extrapolate above */
    459 			while(ss < (int16_t)tgtIndex) {
    460 				tmpVal = (uint16_t)
    461 					(VpdTable_I[ii][sizeCurrVpdTable-1] +
    462 					 (ss-maxIndex)*Vpd_step);
    463 				pPDADCValues[kk++] = (tmpVal > 127) ?
    464 					127 : tmpVal;
    465 				ss++;
    466 			}
    467 		}				/* extrapolated above */
    468 	}					/* for all pdGainUsed */
    469 
    470 	while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
    471 		pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
    472 		ii++;
    473 	}
    474 	while (kk < 128) {
    475 		pPDADCValues[kk] = pPDADCValues[kk-1];
    476 		kk++;
    477 	}
    478 
    479 	return numPdGainsUsed;
    480 #undef VpdTable_L
    481 #undef VpdTable_R
    482 #undef VpdTable_I
    483 }
    484 
    485 static HAL_BOOL
    486 ar2317SetPowerTable(struct ath_hal *ah,
    487 	int16_t *minPower, int16_t *maxPower, HAL_CHANNEL_INTERNAL *chan,
    488 	uint16_t *rfXpdGain)
    489 {
    490 	struct ath_hal_5212 *ahp = AH5212(ah);
    491 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    492 	const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
    493 	uint16_t pdGainOverlap_t2;
    494 	int16_t minCalPower2317_t2;
    495 	uint16_t *pdadcValues = ahp->ah_pcdacTable;
    496 	uint16_t gainBoundaries[4];
    497 	uint32_t reg32, regoffset;
    498 	int i, numPdGainsUsed;
    499 #ifndef AH_USE_INIPDGAIN
    500 	uint32_t tpcrg1;
    501 #endif
    502 
    503 	HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
    504 	    __func__, chan->channel,chan->channelFlags);
    505 
    506 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    507 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    508 	else if (IS_CHAN_B(chan))
    509 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    510 	else {
    511 		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: illegal mode\n", __func__);
    512 		return AH_FALSE;
    513 	}
    514 
    515 	pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
    516 					  AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
    517 
    518 	numPdGainsUsed = ar2317getGainBoundariesAndPdadcsForPowers(ah,
    519 		chan->channel, pRawDataset, pdGainOverlap_t2,
    520 		&minCalPower2317_t2,gainBoundaries, rfXpdGain, pdadcValues);
    521 	HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
    522 
    523 #ifdef AH_USE_INIPDGAIN
    524 	/*
    525 	 * Use pd_gains curve from eeprom; Atheros always uses
    526 	 * the default curve from the ini file but some vendors
    527 	 * (e.g. Zcomax) want to override this curve and not
    528 	 * honoring their settings results in tx power 5dBm low.
    529 	 */
    530 	OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
    531 			 (pRawDataset->pDataPerChannel[0].numPdGains - 1));
    532 #else
    533 	tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
    534 	tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
    535 		  | SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
    536 	switch (numPdGainsUsed) {
    537 	case 3:
    538 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
    539 		tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
    540 		/* fall thru... */
    541 	case 2:
    542 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
    543 		tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
    544 		/* fall thru... */
    545 	case 1:
    546 		tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
    547 		tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
    548 		break;
    549 	}
    550 #ifdef AH_DEBUG
    551 	if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
    552 		HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
    553 		    "pd_gains (default 0x%x, calculated 0x%x)\n",
    554 		    __func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
    555 #endif
    556 	OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
    557 #endif
    558 
    559 	/*
    560 	 * Note the pdadc table may not start at 0 dBm power, could be
    561 	 * negative or greater than 0.  Need to offset the power
    562 	 * values by the amount of minPower for griffin
    563 	 */
    564 	if (minCalPower2317_t2 != 0)
    565 		ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2317_t2);
    566 	else
    567 		ahp->ah_txPowerIndexOffset = 0;
    568 
    569 	/* Finally, write the power values into the baseband power table */
    570 	regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
    571 	for (i = 0; i < 32; i++) {
    572 		reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0)  |
    573 			((pdadcValues[4*i + 1] & 0xFF) << 8)  |
    574 			((pdadcValues[4*i + 2] & 0xFF) << 16) |
    575 			((pdadcValues[4*i + 3] & 0xFF) << 24) ;
    576 		OS_REG_WRITE(ah, regoffset, reg32);
    577 		regoffset += 4;
    578 	}
    579 
    580 	OS_REG_WRITE(ah, AR_PHY_TPCRG5,
    581 		     SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
    582 		     SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
    583 		     SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
    584 		     SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
    585 		     SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
    586 
    587 	return AH_TRUE;
    588 }
    589 
    590 static int16_t
    591 ar2317GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
    592 {
    593 	uint32_t ii,jj;
    594 	uint16_t Pmin=0,numVpd;
    595 
    596 	for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    597 		jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
    598 		/* work backwards 'cause highest pdGain for lowest power */
    599 		numVpd = data->pDataPerPDGain[jj].numVpd;
    600 		if (numVpd > 0) {
    601 			Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
    602 			return(Pmin);
    603 		}
    604 	}
    605 	return(Pmin);
    606 }
    607 
    608 static int16_t
    609 ar2317GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2317 *data)
    610 {
    611 	uint32_t ii;
    612 	uint16_t Pmax=0,numVpd;
    613 
    614 	for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
    615 		/* work forwards cuase lowest pdGain for highest power */
    616 		numVpd = data->pDataPerPDGain[ii].numVpd;
    617 		if (numVpd > 0) {
    618 			Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
    619 			return(Pmax);
    620 		}
    621 	}
    622 	return(Pmax);
    623 }
    624 
    625 static HAL_BOOL
    626 ar2317GetChannelMaxMinPower(struct ath_hal *ah, HAL_CHANNEL *chan,
    627 	int16_t *maxPow, int16_t *minPow)
    628 {
    629 	const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
    630 	const RAW_DATA_STRUCT_2317 *pRawDataset = AH_NULL;
    631 	const RAW_DATA_PER_CHANNEL_2317 *data=AH_NULL;
    632 	uint16_t numChannels;
    633 	int totalD,totalF, totalMin,last, i;
    634 
    635 	*maxPow = 0;
    636 
    637 	if (IS_CHAN_G(chan) || IS_CHAN_108G(chan))
    638 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
    639 	else if (IS_CHAN_B(chan))
    640 		pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
    641 	else
    642 		return(AH_FALSE);
    643 
    644 	numChannels = pRawDataset->numChannels;
    645 	data = pRawDataset->pDataPerChannel;
    646 
    647 	/* Make sure the channel is in the range of the TP values
    648 	 *  (freq piers)
    649 	 */
    650 	if (numChannels < 1)
    651 		return(AH_FALSE);
    652 
    653 	if ((chan->channel < data[0].channelValue) ||
    654 	    (chan->channel > data[numChannels-1].channelValue)) {
    655 		if (chan->channel < data[0].channelValue) {
    656 			*maxPow = ar2317GetMaxPower(ah, &data[0]);
    657 			*minPow = ar2317GetMinPower(ah, &data[0]);
    658 			return(AH_TRUE);
    659 		} else {
    660 			*maxPow = ar2317GetMaxPower(ah, &data[numChannels - 1]);
    661 			*minPow = ar2317GetMinPower(ah, &data[numChannels - 1]);
    662 			return(AH_TRUE);
    663 		}
    664 	}
    665 
    666 	/* Linearly interpolate the power value now */
    667 	for (last=0,i=0; (i<numChannels) && (chan->channel > data[i].channelValue);
    668 	     last = i++);
    669 	totalD = data[i].channelValue - data[last].channelValue;
    670 	if (totalD > 0) {
    671 		totalF = ar2317GetMaxPower(ah, &data[i]) - ar2317GetMaxPower(ah, &data[last]);
    672 		*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) +
    673 				     ar2317GetMaxPower(ah, &data[last])*totalD)/totalD);
    674 		totalMin = ar2317GetMinPower(ah, &data[i]) - ar2317GetMinPower(ah, &data[last]);
    675 		*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) +
    676 				     ar2317GetMinPower(ah, &data[last])*totalD)/totalD);
    677 		return(AH_TRUE);
    678 	} else {
    679 		if (chan->channel == data[i].channelValue) {
    680 			*maxPow = ar2317GetMaxPower(ah, &data[i]);
    681 			*minPow = ar2317GetMinPower(ah, &data[i]);
    682 			return(AH_TRUE);
    683 		} else
    684 			return(AH_FALSE);
    685 	}
    686 }
    687 
    688 /*
    689  * Free memory for analog bank scratch buffers
    690  */
    691 static void
    692 ar2317RfDetach(struct ath_hal *ah)
    693 {
    694 	struct ath_hal_5212 *ahp = AH5212(ah);
    695 
    696 	HALASSERT(ahp->ah_rfHal != AH_NULL);
    697 	ath_hal_free(ahp->ah_rfHal);
    698 	ahp->ah_rfHal = AH_NULL;
    699 }
    700 
    701 /*
    702  * Allocate memory for analog bank scratch buffers
    703  * Scratch Buffer will be reinitialized every reset so no need to zero now
    704  */
    705 static HAL_BOOL
    706 ar2317RfAttach(struct ath_hal *ah, HAL_STATUS *status)
    707 {
    708 	struct ath_hal_5212 *ahp = AH5212(ah);
    709 	struct ar2317State *priv;
    710 
    711 	HALASSERT(ah->ah_magic == AR5212_MAGIC);
    712 
    713 	HALASSERT(ahp->ah_rfHal == AH_NULL);
    714 	priv = ath_hal_malloc(sizeof(struct ar2317State));
    715 	if (priv == AH_NULL) {
    716 		HALDEBUG(ah, HAL_DEBUG_ANY,
    717 		    "%s: cannot allocate private state\n", __func__);
    718 		*status = HAL_ENOMEM;		/* XXX */
    719 		return AH_FALSE;
    720 	}
    721 	priv->base.rfDetach		= ar2317RfDetach;
    722 	priv->base.writeRegs		= ar2317WriteRegs;
    723 	priv->base.getRfBank		= ar2317GetRfBank;
    724 	priv->base.setChannel		= ar2317SetChannel;
    725 	priv->base.setRfRegs		= ar2317SetRfRegs;
    726 	priv->base.setPowerTable	= ar2317SetPowerTable;
    727 	priv->base.getChannelMaxMinPower = ar2317GetChannelMaxMinPower;
    728 	priv->base.getNfAdjust		= ar5212GetNfAdjust;
    729 
    730 	ahp->ah_pcdacTable = priv->pcdacTable;
    731 	ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
    732 	ahp->ah_rfHal = &priv->base;
    733 
    734 	return AH_TRUE;
    735 }
    736 
    737 static HAL_BOOL
    738 ar2317Probe(struct ath_hal *ah)
    739 {
    740 	return IS_2317(ah);
    741 }
    742 AH_RF(RF2317, ar2317Probe, ar2317RfAttach);
    743