Home | History | Annotate | Line # | Download | only in libcrypt
      1 /*	$NetBSD: crypt.c,v 1.41 2024/07/23 22:37:11 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Tom Truscott.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 #if !defined(lint)
     37 #if 0
     38 static char sccsid[] = "@(#)crypt.c	8.1.1.1 (Berkeley) 8/18/93";
     39 #else
     40 __RCSID("$NetBSD: crypt.c,v 1.41 2024/07/23 22:37:11 riastradh Exp $");
     41 #endif
     42 #endif /* not lint */
     43 
     44 #include <limits.h>
     45 #include <pwd.h>
     46 #include <stdlib.h>
     47 #include <string.h> /* for strcmp */
     48 #include <unistd.h>
     49 #if defined(DEBUG) || defined(MAIN) || defined(UNIT_TEST)
     50 #include <stdio.h>
     51 #endif
     52 
     53 #include "crypt.h"
     54 
     55 /*
     56  * UNIX password, and DES, encryption.
     57  * By Tom Truscott, trt (at) rti.rti.org,
     58  * from algorithms by Robert W. Baldwin and James Gillogly.
     59  *
     60  * References:
     61  * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
     62  * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
     63  *
     64  * "Password Security: A Case History," R. Morris and Ken Thompson,
     65  * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
     66  *
     67  * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
     68  * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
     69  */
     70 
     71 /* =====  Configuration ==================== */
     72 
     73 /*
     74  * define "MUST_ALIGN" if your compiler cannot load/store
     75  * long integers at arbitrary (e.g. odd) memory locations.
     76  * (Either that or never pass unaligned addresses to des_cipher!)
     77  */
     78 #if !defined(__vax__) && !defined(__i386__)
     79 #define	MUST_ALIGN
     80 #endif
     81 
     82 #ifdef CHAR_BITS
     83 #if CHAR_BITS != 8
     84 	#error C_block structure assumes 8 bit characters
     85 #endif
     86 #endif
     87 
     88 /*
     89  * define "B64" to be the declaration for a 64 bit integer.
     90  * XXX this feature is currently unused, see "endian" comment below.
     91  */
     92 #if defined(cray)
     93 #define	B64	long
     94 #endif
     95 #if defined(convex)
     96 #define	B64	long long
     97 #endif
     98 
     99 /*
    100  * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
    101  * of lookup tables.  This speeds up des_setkey() and des_cipher(), but has
    102  * little effect on crypt().
    103  */
    104 #if defined(notdef)
    105 #define	LARGEDATA
    106 #endif
    107 
    108 /* compile with "-DSTATIC=void" when profiling */
    109 #ifndef STATIC
    110 #define	STATIC	static void
    111 #endif
    112 
    113 /* ==================================== */
    114 
    115 /*
    116  * Cipher-block representation (Bob Baldwin):
    117  *
    118  * DES operates on groups of 64 bits, numbered 1..64 (sigh).  One
    119  * representation is to store one bit per byte in an array of bytes.  Bit N of
    120  * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
    121  * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
    122  * first byte, 9..16 in the second, and so on.  The DES spec apparently has
    123  * bit 1 in the MSB of the first byte, but that is particularly noxious so we
    124  * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
    125  * the MSB of the first byte.  Specifically, the 64-bit input data and key are
    126  * converted to LSB format, and the output 64-bit block is converted back into
    127  * MSB format.
    128  *
    129  * DES operates internally on groups of 32 bits which are expanded to 48 bits
    130  * by permutation E and shrunk back to 32 bits by the S boxes.  To speed up
    131  * the computation, the expansion is applied only once, the expanded
    132  * representation is maintained during the encryption, and a compression
    133  * permutation is applied only at the end.  To speed up the S-box lookups,
    134  * the 48 bits are maintained as eight 6 bit groups, one per byte, which
    135  * directly feed the eight S-boxes.  Within each byte, the 6 bits are the
    136  * most significant ones.  The low two bits of each byte are zero.  (Thus,
    137  * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
    138  * first byte in the eight byte representation, bit 2 of the 48 bit value is
    139  * the "8"-valued bit, and so on.)  In fact, a combined "SPE"-box lookup is
    140  * used, in which the output is the 64 bit result of an S-box lookup which
    141  * has been permuted by P and expanded by E, and is ready for use in the next
    142  * iteration.  Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
    143  * lookup.  Since each byte in the 48 bit path is a multiple of four, indexed
    144  * lookup of SPE[0] and SPE[1] is simple and fast.  The key schedule and
    145  * "salt" are also converted to this 8*(6+2) format.  The SPE table size is
    146  * 8*64*8 = 4K bytes.
    147  *
    148  * To speed up bit-parallel operations (such as XOR), the 8 byte
    149  * representation is "union"ed with 32 bit values "i0" and "i1", and, on
    150  * machines which support it, a 64 bit value "b64".  This data structure,
    151  * "C_block", has two problems.  First, alignment restrictions must be
    152  * honored.  Second, the byte-order (e.g. little-endian or big-endian) of
    153  * the architecture becomes visible.
    154  *
    155  * The byte-order problem is unfortunate, since on the one hand it is good
    156  * to have a machine-independent C_block representation (bits 1..8 in the
    157  * first byte, etc.), and on the other hand it is good for the LSB of the
    158  * first byte to be the LSB of i0.  We cannot have both these things, so we
    159  * currently use the "little-endian" representation and avoid any multi-byte
    160  * operations that depend on byte order.  This largely precludes use of the
    161  * 64-bit datatype since the relative order of i0 and i1 are unknown.  It
    162  * also inhibits grouping the SPE table to look up 12 bits at a time.  (The
    163  * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
    164  * high-order zero, providing fast indexing into a 64-bit wide SPE.)  On the
    165  * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
    166  * requires a 128 kilobyte table, so perhaps this is not a big loss.
    167  *
    168  * Permutation representation (Jim Gillogly):
    169  *
    170  * A transformation is defined by its effect on each of the 8 bytes of the
    171  * 64-bit input.  For each byte we give a 64-bit output that has the bits in
    172  * the input distributed appropriately.  The transformation is then the OR
    173  * of the 8 sets of 64-bits.  This uses 8*256*8 = 16K bytes of storage for
    174  * each transformation.  Unless LARGEDATA is defined, however, a more compact
    175  * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
    176  * The smaller table uses 16*16*8 = 2K bytes for each transformation.  This
    177  * is slower but tolerable, particularly for password encryption in which
    178  * the SPE transformation is iterated many times.  The small tables total 9K
    179  * bytes, the large tables total 72K bytes.
    180  *
    181  * The transformations used are:
    182  * IE3264: MSB->LSB conversion, initial permutation, and expansion.
    183  *	This is done by collecting the 32 even-numbered bits and applying
    184  *	a 32->64 bit transformation, and then collecting the 32 odd-numbered
    185  *	bits and applying the same transformation.  Since there are only
    186  *	32 input bits, the IE3264 transformation table is half the size of
    187  *	the usual table.
    188  * CF6464: Compression, final permutation, and LSB->MSB conversion.
    189  *	This is done by two trivial 48->32 bit compressions to obtain
    190  *	a 64-bit block (the bit numbering is given in the "CIFP" table)
    191  *	followed by a 64->64 bit "cleanup" transformation.  (It would
    192  *	be possible to group the bits in the 64-bit block so that 2
    193  *	identical 32->32 bit transformations could be used instead,
    194  *	saving a factor of 4 in space and possibly 2 in time, but
    195  *	byte-ordering and other complications rear their ugly head.
    196  *	Similar opportunities/problems arise in the key schedule
    197  *	transforms.)
    198  * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
    199  *	This admittedly baroque 64->64 bit transformation is used to
    200  *	produce the first code (in 8*(6+2) format) of the key schedule.
    201  * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
    202  *	It would be possible to define 15 more transformations, each
    203  *	with a different rotation, to generate the entire key schedule.
    204  *	To save space, however, we instead permute each code into the
    205  *	next by using a transformation that "undoes" the PC2 permutation,
    206  *	rotates the code, and then applies PC2.  Unfortunately, PC2
    207  *	transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
    208  *	invertible.  We get around that problem by using a modified PC2
    209  *	which retains the 8 otherwise-lost bits in the unused low-order
    210  *	bits of each byte.  The low-order bits are cleared when the
    211  *	codes are stored into the key schedule.
    212  * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
    213  *	This is faster than applying PC2ROT[0] twice,
    214  *
    215  * The Bell Labs "salt" (Bob Baldwin):
    216  *
    217  * The salting is a simple permutation applied to the 48-bit result of E.
    218  * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
    219  * i+24 of the result are swapped.  The salt is thus a 24 bit number, with
    220  * 16777216 possible values.  (The original salt was 12 bits and could not
    221  * swap bits 13..24 with 36..48.)
    222  *
    223  * It is possible, but ugly, to warp the SPE table to account for the salt
    224  * permutation.  Fortunately, the conditional bit swapping requires only
    225  * about four machine instructions and can be done on-the-fly with about an
    226  * 8% performance penalty.
    227  */
    228 
    229 typedef union {
    230 	unsigned char b[8];
    231 	struct {
    232 		int32_t	i0;
    233 		int32_t	i1;
    234 	} b32;
    235 #if defined(B64)
    236 	B64	b64;
    237 #endif
    238 } C_block;
    239 
    240 /*
    241  * Convert twenty-four-bit long in host-order
    242  * to six bits (and 2 low-order zeroes) per char little-endian format.
    243  */
    244 #define	TO_SIX_BIT(rslt, src) {				\
    245 		C_block cvt;				\
    246 		cvt.b[0] = src; src >>= 6;		\
    247 		cvt.b[1] = src; src >>= 6;		\
    248 		cvt.b[2] = src; src >>= 6;		\
    249 		cvt.b[3] = src;				\
    250 		rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2;	\
    251 	}
    252 
    253 /*
    254  * These macros may someday permit efficient use of 64-bit integers.
    255  */
    256 #define	ZERO(d,d0,d1)			d0 = 0, d1 = 0
    257 #define	LOAD(d,d0,d1,bl)		d0 = (bl).b32.i0, d1 = (bl).b32.i1
    258 #define	LOADREG(d,d0,d1,s,s0,s1)	d0 = s0, d1 = s1
    259 #define	OR(d,d0,d1,bl)			d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
    260 #define	STORE(s,s0,s1,bl)		(bl).b32.i0 = s0, (bl).b32.i1 = s1
    261 #define	DCL_BLOCK(d,d0,d1)		int32_t d0, d1
    262 
    263 #if defined(LARGEDATA)
    264 	/* Waste memory like crazy.  Also, do permutations in line */
    265 #define	LGCHUNKBITS	3
    266 #define	CHUNKBITS	(1<<LGCHUNKBITS)
    267 #define	PERM6464(d,d0,d1,cpp,p)				\
    268 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    269 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    270 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    271 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);		\
    272 	OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]);		\
    273 	OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]);		\
    274 	OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]);		\
    275 	OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
    276 #define	PERM3264(d,d0,d1,cpp,p)				\
    277 	LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]);		\
    278 	OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]);		\
    279 	OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]);		\
    280 	OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
    281 #else
    282 	/* "small data" */
    283 #define	LGCHUNKBITS	2
    284 #define	CHUNKBITS	(1<<LGCHUNKBITS)
    285 #define	PERM6464(d,d0,d1,cpp,p)				\
    286 	{ C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
    287 #define	PERM3264(d,d0,d1,cpp,p)				\
    288 	{ C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
    289 #endif /* LARGEDATA */
    290 
    291 STATIC	init_des(void);
    292 STATIC	init_perm(C_block [64/CHUNKBITS][1<<CHUNKBITS],
    293 		       const unsigned char [64], int, int);
    294 #ifndef LARGEDATA
    295 STATIC	permute(const unsigned char *, C_block *, C_block *, int);
    296 #endif
    297 #ifdef DEBUG
    298 STATIC	prtab(const char *, unsigned char *, int);
    299 #endif
    300 
    301 
    302 #ifndef LARGEDATA
    303 STATIC
    304 permute(const unsigned char *cp, C_block *out, C_block *p, int chars_in)
    305 {
    306 	DCL_BLOCK(D,D0,D1);
    307 	C_block *tp;
    308 	int t;
    309 
    310 	ZERO(D,D0,D1);
    311 	do {
    312 		t = *cp++;
    313 		tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    314 		tp = &p[t>>4];  OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
    315 	} while (--chars_in > 0);
    316 	STORE(D,D0,D1,*out);
    317 }
    318 #endif /* LARGEDATA */
    319 
    320 
    321 /* =====  (mostly) Standard DES Tables ==================== */
    322 
    323 static const unsigned char IP[] = {	/* initial permutation */
    324 	58, 50, 42, 34, 26, 18, 10,  2,
    325 	60, 52, 44, 36, 28, 20, 12,  4,
    326 	62, 54, 46, 38, 30, 22, 14,  6,
    327 	64, 56, 48, 40, 32, 24, 16,  8,
    328 	57, 49, 41, 33, 25, 17,  9,  1,
    329 	59, 51, 43, 35, 27, 19, 11,  3,
    330 	61, 53, 45, 37, 29, 21, 13,  5,
    331 	63, 55, 47, 39, 31, 23, 15,  7,
    332 };
    333 
    334 /* The final permutation is the inverse of IP - no table is necessary */
    335 
    336 static const unsigned char ExpandTr[] = {	/* expansion operation */
    337 	32,  1,  2,  3,  4,  5,
    338 	 4,  5,  6,  7,  8,  9,
    339 	 8,  9, 10, 11, 12, 13,
    340 	12, 13, 14, 15, 16, 17,
    341 	16, 17, 18, 19, 20, 21,
    342 	20, 21, 22, 23, 24, 25,
    343 	24, 25, 26, 27, 28, 29,
    344 	28, 29, 30, 31, 32,  1,
    345 };
    346 
    347 static const unsigned char PC1[] = {	/* permuted choice table 1 */
    348 	57, 49, 41, 33, 25, 17,  9,
    349 	 1, 58, 50, 42, 34, 26, 18,
    350 	10,  2, 59, 51, 43, 35, 27,
    351 	19, 11,  3, 60, 52, 44, 36,
    352 
    353 	63, 55, 47, 39, 31, 23, 15,
    354 	 7, 62, 54, 46, 38, 30, 22,
    355 	14,  6, 61, 53, 45, 37, 29,
    356 	21, 13,  5, 28, 20, 12,  4,
    357 };
    358 
    359 static const unsigned char Rotates[] = {/* PC1 rotation schedule */
    360 	1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
    361 };
    362 
    363 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
    364 static const unsigned char PC2[] = {	/* permuted choice table 2 */
    365 	 9, 18,    14, 17, 11, 24,  1,  5,
    366 	22, 25,     3, 28, 15,  6, 21, 10,
    367 	35, 38,    23, 19, 12,  4, 26,  8,
    368 	43, 54,    16,  7, 27, 20, 13,  2,
    369 
    370 	 0,  0,    41, 52, 31, 37, 47, 55,
    371 	 0,  0,    30, 40, 51, 45, 33, 48,
    372 	 0,  0,    44, 49, 39, 56, 34, 53,
    373 	 0,  0,    46, 42, 50, 36, 29, 32,
    374 };
    375 
    376 static const unsigned char S[8][64] = {	/* 48->32 bit substitution tables */
    377 					/* S[1]			*/
    378 	{ 14,  4, 13,  1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
    379 	   0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
    380 	   4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
    381 	  15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13 },
    382 					/* S[2]			*/
    383 	{ 15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
    384 	   3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
    385 	   0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
    386 	  13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9 },
    387 					/* S[3]			*/
    388 	{ 10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
    389 	  13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
    390 	  13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
    391 	   1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12 },
    392 					/* S[4]			*/
    393 	{  7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
    394 	  13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
    395 	  10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
    396 	   3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14 },
    397 					/* S[5]			*/
    398 	{  2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
    399 	  14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
    400 	   4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
    401 	  11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3 },
    402 					/* S[6]			*/
    403 	{ 12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
    404 	  10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
    405 	   9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
    406 	   4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13 },
    407 					/* S[7]			*/
    408 	{  4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
    409 	  13,  0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
    410 	   1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
    411 	   6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12 },
    412 					/* S[8]			*/
    413 	{ 13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12,  7,
    414 	   1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
    415 	   7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
    416 	   2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11 }
    417 };
    418 
    419 static const unsigned char P32Tr[] = {	/* 32-bit permutation function */
    420 	16,  7, 20, 21,
    421 	29, 12, 28, 17,
    422 	 1, 15, 23, 26,
    423 	 5, 18, 31, 10,
    424 	 2,  8, 24, 14,
    425 	32, 27,  3,  9,
    426 	19, 13, 30,  6,
    427 	22, 11,  4, 25,
    428 };
    429 
    430 static const unsigned char CIFP[] = {	/* compressed/interleaved permutation */
    431 	 1,  2,  3,  4,   17, 18, 19, 20,
    432 	 5,  6,  7,  8,   21, 22, 23, 24,
    433 	 9, 10, 11, 12,   25, 26, 27, 28,
    434 	13, 14, 15, 16,   29, 30, 31, 32,
    435 
    436 	33, 34, 35, 36,   49, 50, 51, 52,
    437 	37, 38, 39, 40,   53, 54, 55, 56,
    438 	41, 42, 43, 44,   57, 58, 59, 60,
    439 	45, 46, 47, 48,   61, 62, 63, 64,
    440 };
    441 
    442 static const unsigned char itoa64[] =		/* 0..63 => ascii-64 */
    443 	"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
    444 
    445 
    446 /* =====  Tables that are initialized at run time  ==================== */
    447 
    448 
    449 /* Initial key schedule permutation */
    450 static C_block	PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
    451 
    452 /* Subsequent key schedule rotation permutations */
    453 static C_block	PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
    454 
    455 /* Initial permutation/expansion table */
    456 static C_block	IE3264[32/CHUNKBITS][1<<CHUNKBITS];
    457 
    458 /* Table that combines the S, P, and E operations.  */
    459 static int32_t SPE[2][8][64];
    460 
    461 /* compressed/interleaved => final permutation table */
    462 static C_block	CF6464[64/CHUNKBITS][1<<CHUNKBITS];
    463 
    464 
    465 /* ==================================== */
    466 
    467 
    468 static C_block	constdatablock;			/* encryption constant */
    469 static char	cryptresult[1+4+4+11+1];	/* encrypted result */
    470 
    471 /*
    472  * We match the behavior of UFC-crypt on systems where "char" is signed by
    473  * default (the majority), regardless of char's signedness on our system.
    474  */
    475 static inline int
    476 ascii_to_bin(char ch)
    477 {
    478 	signed char sch = ch;
    479 	int retval;
    480 
    481 	if (sch >= 'a')
    482 		retval = sch - ('a' - 38);
    483 	else if (sch >= 'A')
    484 		retval = sch - ('A' - 12);
    485 	else
    486 		retval = sch - '.';
    487 
    488 	return retval & 0x3f;
    489 }
    490 
    491 /*
    492  * When we choose to "support" invalid salts, nevertheless disallow those
    493  * containing characters that would violate the passwd file format.
    494  */
    495 static inline int
    496 ascii_is_unsafe(char ch)
    497 {
    498 	return !ch || ch == '\n' || ch == ':';
    499 }
    500 
    501 /*
    502  * We extract the scheme from setting str to allow for
    503  * full scheme name comparison
    504  * Updated to reflect alc suggestion(s)
    505  *
    506  * returns boolean 0 on failure, 1 on success,
    507  */
    508 static int
    509 nondes_scheme_substr(const char * setting,char * scheme, unsigned int len)
    510 {
    511 	const char * start;
    512 	const char * sep;
    513 
    514 	/* initialize head pointer */
    515 	start = setting;
    516 
    517 	/* clear out scheme buffer regardless of result */
    518 	memset(scheme, 0, len);
    519 
    520 	/* make sure we are working on non-des scheme string */
    521 	if (*start != _PASSWORD_NONDES) {
    522 		return 0;
    523 	}
    524 
    525 	/* increment passed initial _PASSWORD_NONDES */
    526 	start++;
    527 
    528 	if ((sep = memchr(start, _PASSWORD_NONDES,len-1)) == NULL) {
    529 		return 0;
    530 	}
    531 
    532 	/* if empty string, we are done */
    533 	if (sep == start) {
    534 		return 1;
    535 	}
    536 
    537 	/* copy scheme substr to buffer */
    538 	memcpy(scheme, start, (size_t)(sep - start));
    539 
    540 	return 1;
    541 }
    542 
    543 /*
    544  * Return a pointer to static data consisting of the "setting"
    545  * followed by an encryption produced by the "key" and "setting".
    546  */
    547 static char *
    548 __crypt(const char *key, const char *setting)
    549 {
    550 	char *encp;
    551 	char scheme[12];
    552 	int32_t i;
    553 	int t;
    554 	int r;
    555 	int32_t salt;
    556 	int num_iter, salt_size;
    557 	C_block keyblock, rsltblock;
    558 
    559 	/* Non-DES encryption schemes hook in here. */
    560 	if (setting[0] == _PASSWORD_NONDES) {
    561 		r = nondes_scheme_substr(
    562 			setting, scheme, sizeof(scheme));
    563 
    564 		/* return NULL if we are unable to extract substring */
    565 		if (!r) {
    566 			return NULL;
    567 		}
    568 
    569 		/* $2a$ found in bcrypt.c:encode_salt  */
    570 		if (strcmp(scheme, "2a") == 0) {
    571 			return (__bcrypt(key, setting));
    572 		} else if (strcmp(scheme, "sha1") == 0) {
    573 		     /* $sha1$ found in crypt.h:SHA1_MAGIC */
    574 			return (__crypt_sha1(key, setting));
    575 		} else if (strcmp(scheme, "1") == 0) {
    576 		     /* $1$ found in pw_gensalt.c:__gensalt_md5 */
    577 			return (__md5crypt(key, setting));
    578 #ifdef HAVE_ARGON2
    579 		/* explicit argon2 variant */
    580 		} else if (strcmp(scheme, "argon2id") == 0) {
    581 		     /* $argon2id$ found in pw_gensalt.c:__gensalt_argon2 */
    582 			return (__crypt_argon2(key, setting));
    583 		} else if (strcmp(scheme, "argon2i") == 0) {
    584 		     /* $argon2i$ found in pw_gensalt.c:__gensalt_argon2 */
    585 			return (__crypt_argon2(key, setting));
    586 		} else if (strcmp(scheme, "argon2d") == 0) {
    587 		     /* $argon2d$ found in pw_gensalt.c:__gensalt_argon2 */
    588 			return (__crypt_argon2(key, setting));
    589 #endif /* HAVE_ARGON2 */
    590 		} else {
    591 		     /* invalid scheme, including empty string */
    592 			return NULL;
    593 		}
    594 	}
    595 	/* End non-DES handling */
    596 
    597 	for (i = 0; i < 8; i++) {
    598 		if ((t = 2*(unsigned char)(*key)) != 0)
    599 			key++;
    600 		keyblock.b[i] = t;
    601 	}
    602 	if (des_setkey((char *)keyblock.b))
    603 		return (NULL);
    604 
    605 	encp = &cryptresult[0];
    606 	switch (*setting) {
    607 	case _PASSWORD_EFMT1:
    608 		/*
    609 		 * Involve the rest of the password 8 characters at a time.
    610 		 */
    611 		while (*key) {
    612 			if (des_cipher((char *)(void *)&keyblock,
    613 			    (char *)(void *)&keyblock, 0L, 1))
    614 				return (NULL);
    615 			for (i = 0; i < 8; i++) {
    616 				if ((t = 2*(unsigned char)(*key)) != 0)
    617 					key++;
    618 				keyblock.b[i] ^= t;
    619 			}
    620 			if (des_setkey((char *)keyblock.b))
    621 				return (NULL);
    622 		}
    623 
    624 		*encp++ = *setting++;
    625 
    626 		/* get iteration count */
    627 		num_iter = 0;
    628 		for (i = 4; --i >= 0; ) {
    629 			int value = ascii_to_bin(setting[i]);
    630 			if (itoa64[value] != setting[i])
    631 				return NULL;
    632 			encp[i] = setting[i];
    633 			num_iter = (num_iter << 6) | value;
    634 		}
    635 		if (num_iter == 0)
    636 			return NULL;
    637 		setting += 4;
    638 		encp += 4;
    639 		salt_size = 4;
    640 		break;
    641 	default:
    642 		num_iter = 25;
    643 		salt_size = 2;
    644 		if (ascii_is_unsafe(setting[0]) || ascii_is_unsafe(setting[1]))
    645 			return NULL;
    646 	}
    647 
    648 	salt = 0;
    649 	for (i = salt_size; --i >= 0; ) {
    650 		int value = ascii_to_bin(setting[i]);
    651 		if (salt_size > 2 && itoa64[value] != setting[i])
    652 			return NULL;
    653 		encp[i] = setting[i];
    654 		salt = (salt << 6) | value;
    655 	}
    656 	encp += salt_size;
    657 	if (des_cipher((char *)(void *)&constdatablock,
    658 	    (char *)(void *)&rsltblock, salt, num_iter))
    659 		return (NULL);
    660 
    661 	/*
    662 	 * Encode the 64 cipher bits as 11 ascii characters.
    663 	 */
    664 	i = ((int32_t)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) |
    665 	    rsltblock.b[2];
    666 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    667 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    668 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    669 	encp[0] = itoa64[i];		encp += 4;
    670 	i = ((int32_t)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) |
    671 	    rsltblock.b[5];
    672 	encp[3] = itoa64[i&0x3f];	i >>= 6;
    673 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    674 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    675 	encp[0] = itoa64[i];		encp += 4;
    676 	i = ((int32_t)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
    677 	encp[2] = itoa64[i&0x3f];	i >>= 6;
    678 	encp[1] = itoa64[i&0x3f];	i >>= 6;
    679 	encp[0] = itoa64[i];
    680 
    681 	encp[3] = 0;
    682 
    683 	return (cryptresult);
    684 }
    685 
    686 char *
    687 crypt(const char *key, const char *salt)
    688 {
    689 	char *res = __crypt(key, salt);
    690 
    691 	if (res)
    692 		return res;
    693 	/* How do I handle errors ? Return "*0" or "*1" */
    694 	return __UNCONST(salt[0] == '*' && salt[1] == '0' ? "*1" : "*0");
    695 }
    696 
    697 /*
    698  * The Key Schedule, filled in by des_setkey() or setkey().
    699  */
    700 #define	KS_SIZE	16
    701 static C_block	KS[KS_SIZE];
    702 
    703 /*
    704  * Set up the key schedule from the key.
    705  */
    706 int
    707 des_setkey(const char *key)
    708 {
    709 	DCL_BLOCK(K, K0, K1);
    710 	C_block *help, *ptabp;
    711 	int i;
    712 	static int des_ready = 0;
    713 
    714 	if (!des_ready) {
    715 		init_des();
    716 		des_ready = 1;
    717 	}
    718 
    719 	PERM6464(K,K0,K1,(const unsigned char *)key,(C_block *)PC1ROT);
    720 	help = &KS[0];
    721 	STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
    722 	for (i = 1; i < 16; i++) {
    723 		help++;
    724 		STORE(K,K0,K1,*help);
    725 		ptabp = (C_block *)PC2ROT[Rotates[i]-1];
    726 		PERM6464(K,K0,K1,(const unsigned char *)help,ptabp);
    727 		STORE(K&~0x03030303L, K0&~0x03030303L, K1, *help);
    728 	}
    729 	return (0);
    730 }
    731 
    732 /*
    733  * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
    734  * iterations of DES, using the given 24-bit salt and the pre-computed key
    735  * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
    736  *
    737  * NOTE: the performance of this routine is critically dependent on your
    738  * compiler and machine architecture.
    739  */
    740 int
    741 des_cipher(const char *in, char *out, long salt, int num_iter)
    742 {
    743 	/* variables that we want in registers, most important first */
    744 #if defined(pdp11)
    745 	int j;
    746 #endif
    747 	int32_t L0, L1, R0, R1, k;
    748 	C_block *kp;
    749 	int ks_inc, loop_count;
    750 	C_block B;
    751 
    752 	L0 = salt;
    753 	TO_SIX_BIT(salt, L0);	/* convert to 4*(6+2) format */
    754 
    755 #if defined(__vax__) || defined(pdp11)
    756 	salt = ~salt;	/* "x &~ y" is faster than "x & y". */
    757 #define	SALT (~salt)
    758 #else
    759 #define	SALT salt
    760 #endif
    761 
    762 #if defined(MUST_ALIGN)
    763 	B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
    764 	B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
    765 	LOAD(L,L0,L1,B);
    766 #else
    767 	LOAD(L,L0,L1,*(const C_block *)in);
    768 #endif
    769 	LOADREG(R,R0,R1,L,L0,L1);
    770 	L0 &= 0x55555555L;
    771 	L1 &= 0x55555555L;
    772 	L0 = ((uint32_t)L0 << 1) | L1;	/* L0 is the even-numbered input bits */
    773 	R0 &= 0xaaaaaaaaL;
    774 	R1 = ((uint32_t)R1 >> 1) & 0x55555555L;
    775 	L1 = R0 | R1;		/* L1 is the odd-numbered input bits */
    776 	STORE(L,L0,L1,B);
    777 	PERM3264(L,L0,L1,B.b,  (C_block *)IE3264);	/* even bits */
    778 	PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264);	/* odd bits */
    779 
    780 	if (num_iter >= 0)
    781 	{		/* encryption */
    782 		kp = &KS[0];
    783 		ks_inc  = sizeof(*kp);
    784 	}
    785 	else
    786 	{		/* decryption */
    787 		num_iter = -num_iter;
    788 		kp = &KS[KS_SIZE-1];
    789 		ks_inc  = -(long)sizeof(*kp);
    790 	}
    791 
    792 	while (--num_iter >= 0) {
    793 		loop_count = 8;
    794 		do {
    795 
    796 #define	SPTAB(t, i) \
    797 	    (*(int32_t *)((unsigned char *)t + i*(sizeof(int32_t)/4)))
    798 #if defined(gould)
    799 			/* use this if B.b[i] is evaluated just once ... */
    800 #define	DOXOR(x,y,i)	x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
    801 #else
    802 #if defined(pdp11)
    803 			/* use this if your "long" int indexing is slow */
    804 #define	DOXOR(x,y,i)	j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
    805 #else
    806 			/* use this if "k" is allocated to a register ... */
    807 #define	DOXOR(x,y,i)	k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
    808 #endif
    809 #endif
    810 
    811 #define	CRUNCH(p0, p1, q0, q1)	\
    812 			k = (q0 ^ q1) & SALT;	\
    813 			B.b32.i0 = k ^ q0 ^ kp->b32.i0;		\
    814 			B.b32.i1 = k ^ q1 ^ kp->b32.i1;		\
    815 			kp = (C_block *)((char *)kp+ks_inc);	\
    816 							\
    817 			DOXOR(p0, p1, 0);		\
    818 			DOXOR(p0, p1, 1);		\
    819 			DOXOR(p0, p1, 2);		\
    820 			DOXOR(p0, p1, 3);		\
    821 			DOXOR(p0, p1, 4);		\
    822 			DOXOR(p0, p1, 5);		\
    823 			DOXOR(p0, p1, 6);		\
    824 			DOXOR(p0, p1, 7);
    825 
    826 			CRUNCH(L0, L1, R0, R1);
    827 			CRUNCH(R0, R1, L0, L1);
    828 		} while (--loop_count != 0);
    829 		kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
    830 
    831 
    832 		/* swap L and R */
    833 		L0 ^= R0;  L1 ^= R1;
    834 		R0 ^= L0;  R1 ^= L1;
    835 		L0 ^= R0;  L1 ^= R1;
    836 	}
    837 
    838 	/* store the encrypted (or decrypted) result */
    839 	L0 = (((uint32_t)L0 >> 3) & 0x0f0f0f0fL) | (((uint32_t)L1 << 1) & 0xf0f0f0f0L);
    840 	L1 = (((uint32_t)R0 >> 3) & 0x0f0f0f0fL) | (((uint32_t)R1 << 1) & 0xf0f0f0f0L);
    841 	STORE(L,L0,L1,B);
    842 	PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
    843 #if defined(MUST_ALIGN)
    844 	STORE(L,L0,L1,B);
    845 	out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
    846 	out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
    847 #else
    848 	STORE(L,L0,L1,*(C_block *)out);
    849 #endif
    850 	return (0);
    851 }
    852 
    853 
    854 /*
    855  * Initialize various tables.  This need only be done once.  It could even be
    856  * done at compile time, if the compiler were capable of that sort of thing.
    857  */
    858 STATIC
    859 init_des(void)
    860 {
    861 	int i, j;
    862 	int32_t k;
    863 	int tableno;
    864 	static unsigned char perm[64], tmp32[32];	/* "static" for speed */
    865 
    866 	/*
    867 	 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
    868 	 */
    869 	for (i = 0; i < 64; i++)
    870 		perm[i] = 0;
    871 	for (i = 0; i < 64; i++) {
    872 		if ((k = PC2[i]) == 0)
    873 			continue;
    874 		k += Rotates[0]-1;
    875 		if ((k%28) < Rotates[0]) k -= 28;
    876 		k = PC1[k];
    877 		if (k > 0) {
    878 			k--;
    879 			k = (k|07) - (k&07);
    880 			k++;
    881 		}
    882 		perm[i] = k;
    883 	}
    884 #ifdef DEBUG
    885 	prtab("pc1tab", perm, 8);
    886 #endif
    887 	init_perm(PC1ROT, perm, 8, 8);
    888 
    889 	/*
    890 	 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
    891 	 */
    892 	for (j = 0; j < 2; j++) {
    893 		unsigned char pc2inv[64];
    894 		for (i = 0; i < 64; i++)
    895 			perm[i] = pc2inv[i] = 0;
    896 		for (i = 0; i < 64; i++) {
    897 			if ((k = PC2[i]) == 0)
    898 				continue;
    899 			pc2inv[k-1] = i+1;
    900 		}
    901 		for (i = 0; i < 64; i++) {
    902 			if ((k = PC2[i]) == 0)
    903 				continue;
    904 			k += j;
    905 			if ((k%28) <= j) k -= 28;
    906 			perm[i] = pc2inv[k];
    907 		}
    908 #ifdef DEBUG
    909 		prtab("pc2tab", perm, 8);
    910 #endif
    911 		init_perm(PC2ROT[j], perm, 8, 8);
    912 	}
    913 
    914 	/*
    915 	 * Bit reverse, then initial permutation, then expansion.
    916 	 */
    917 	for (i = 0; i < 8; i++) {
    918 		for (j = 0; j < 8; j++) {
    919 			k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
    920 			if (k > 32)
    921 				k -= 32;
    922 			else if (k > 0)
    923 				k--;
    924 			if (k > 0) {
    925 				k--;
    926 				k = (k|07) - (k&07);
    927 				k++;
    928 			}
    929 			perm[i*8+j] = k;
    930 		}
    931 	}
    932 #ifdef DEBUG
    933 	prtab("ietab", perm, 8);
    934 #endif
    935 	init_perm(IE3264, perm, 4, 8);
    936 
    937 	/*
    938 	 * Compression, then final permutation, then bit reverse.
    939 	 */
    940 	for (i = 0; i < 64; i++) {
    941 		k = IP[CIFP[i]-1];
    942 		if (k > 0) {
    943 			k--;
    944 			k = (k|07) - (k&07);
    945 			k++;
    946 		}
    947 		perm[k-1] = i+1;
    948 	}
    949 #ifdef DEBUG
    950 	prtab("cftab", perm, 8);
    951 #endif
    952 	init_perm(CF6464, perm, 8, 8);
    953 
    954 	/*
    955 	 * SPE table
    956 	 */
    957 	for (i = 0; i < 48; i++)
    958 		perm[i] = P32Tr[ExpandTr[i]-1];
    959 	for (tableno = 0; tableno < 8; tableno++) {
    960 		for (j = 0; j < 64; j++)  {
    961 			k = (((j >> 0) &01) << 5)|
    962 			    (((j >> 1) &01) << 3)|
    963 			    (((j >> 2) &01) << 2)|
    964 			    (((j >> 3) &01) << 1)|
    965 			    (((j >> 4) &01) << 0)|
    966 			    (((j >> 5) &01) << 4);
    967 			k = S[tableno][k];
    968 			k = (((k >> 3)&01) << 0)|
    969 			    (((k >> 2)&01) << 1)|
    970 			    (((k >> 1)&01) << 2)|
    971 			    (((k >> 0)&01) << 3);
    972 			for (i = 0; i < 32; i++)
    973 				tmp32[i] = 0;
    974 			for (i = 0; i < 4; i++)
    975 				tmp32[4 * tableno + i] = (k >> i) & 01;
    976 			k = 0;
    977 			for (i = 24; --i >= 0; )
    978 				k = (k<<1) | tmp32[perm[i]-1];
    979 			TO_SIX_BIT(SPE[0][tableno][j], k);
    980 			k = 0;
    981 			for (i = 24; --i >= 0; )
    982 				k = (k<<1) | tmp32[perm[i+24]-1];
    983 			TO_SIX_BIT(SPE[1][tableno][j], k);
    984 		}
    985 	}
    986 }
    987 
    988 /*
    989  * Initialize "perm" to represent transformation "p", which rearranges
    990  * (perhaps with expansion and/or contraction) one packed array of bits
    991  * (of size "chars_in" characters) into another array (of size "chars_out"
    992  * characters).
    993  *
    994  * "perm" must be all-zeroes on entry to this routine.
    995  */
    996 STATIC
    997 init_perm(C_block perm[64/CHUNKBITS][1<<CHUNKBITS], const unsigned char p[64],
    998     int chars_in, int chars_out)
    999 {
   1000 	int i, j, k, l;
   1001 
   1002 	for (k = 0; k < chars_out*8; k++) {	/* each output bit position */
   1003 		l = p[k] - 1;		/* where this bit comes from */
   1004 		if (l < 0)
   1005 			continue;	/* output bit is always 0 */
   1006 		i = l>>LGCHUNKBITS;	/* which chunk this bit comes from */
   1007 		l = 1<<(l&(CHUNKBITS-1));	/* mask for this bit */
   1008 		for (j = 0; j < (1<<CHUNKBITS); j++) {	/* each chunk value */
   1009 			if ((j & l) != 0)
   1010 				perm[i][j].b[k>>3] |= 1<<(k&07);
   1011 		}
   1012 	}
   1013 }
   1014 
   1015 /*
   1016  * "setkey" routine (for backwards compatibility)
   1017  */
   1018 int
   1019 setkey(const char *key)
   1020 {
   1021 	int i, j, k;
   1022 	C_block keyblock;
   1023 
   1024 	for (i = 0; i < 8; i++) {
   1025 		k = 0;
   1026 		for (j = 0; j < 8; j++) {
   1027 			k <<= 1;
   1028 			k |= (unsigned char)*key++;
   1029 		}
   1030 		keyblock.b[i] = k;
   1031 	}
   1032 	return (des_setkey((char *)keyblock.b));
   1033 }
   1034 
   1035 /*
   1036  * "encrypt" routine (for backwards compatibility)
   1037  */
   1038 int
   1039 encrypt(char *block, int flag)
   1040 {
   1041 	int i, j, k;
   1042 	C_block cblock;
   1043 
   1044 	for (i = 0; i < 8; i++) {
   1045 		k = 0;
   1046 		for (j = 0; j < 8; j++) {
   1047 			k <<= 1;
   1048 			k |= (unsigned char)*block++;
   1049 		}
   1050 		cblock.b[i] = k;
   1051 	}
   1052 	if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
   1053 		return (1);
   1054 	for (i = 7; i >= 0; i--) {
   1055 		k = cblock.b[i];
   1056 		for (j = 7; j >= 0; j--) {
   1057 			*--block = k&01;
   1058 			k >>= 1;
   1059 		}
   1060 	}
   1061 	return (0);
   1062 }
   1063 
   1064 #ifdef DEBUG
   1065 STATIC
   1066 prtab(const char *s, unsigned char *t, int num_rows)
   1067 {
   1068 	int i, j;
   1069 
   1070 	(void)printf("%s:\n", s);
   1071 	for (i = 0; i < num_rows; i++) {
   1072 		for (j = 0; j < 8; j++) {
   1073 			 (void)printf("%3d", t[i*8+j]);
   1074 		}
   1075 		(void)printf("\n");
   1076 	}
   1077 	(void)printf("\n");
   1078 }
   1079 #endif
   1080 
   1081 #if defined(MAIN) || defined(UNIT_TEST)
   1082 #include <err.h>
   1083 
   1084 int
   1085 main(int argc, char *argv[])
   1086 {
   1087 	if (argc < 2) {
   1088 		fprintf(stderr, "Usage: %s password [salt]\n", getprogname());
   1089 		return EXIT_FAILURE;
   1090 	}
   1091 
   1092 	printf("%s\n", crypt(argv[1], (argc > 2) ? argv[2] : argv[1]));
   1093 	return EXIT_SUCCESS;
   1094 }
   1095 #endif
   1096