Home | History | Annotate | Line # | Download | only in dev
      1 /* $NetBSD: if_ae.c,v 1.45 2024/07/05 04:31:49 rin Exp $ */
      2 /*-
      3  * Copyright (c) 2006 Urbana-Champaign Independent Media Center.
      4  * Copyright (c) 2006 Garrett D'Amore.
      5  * All rights reserved.
      6  *
      7  * This code was written by Garrett D'Amore for the Champaign-Urbana
      8  * Community Wireless Network Project.
      9  *
     10  * Redistribution and use in source and binary forms, with or
     11  * without modification, are permitted provided that the following
     12  * conditions are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above
     16  *    copyright notice, this list of conditions and the following
     17  *    disclaimer in the documentation and/or other materials provided
     18  *    with the distribution.
     19  * 3. All advertising materials mentioning features or use of this
     20  *    software must display the following acknowledgements:
     21  *      This product includes software developed by the Urbana-Champaign
     22  *      Independent Media Center.
     23  *	This product includes software developed by Garrett D'Amore.
     24  * 4. Urbana-Champaign Independent Media Center's name and Garrett
     25  *    D'Amore's name may not be used to endorse or promote products
     26  *    derived from this software without specific prior written permission.
     27  *
     28  * THIS SOFTWARE IS PROVIDED BY THE URBANA-CHAMPAIGN INDEPENDENT
     29  * MEDIA CENTER AND GARRETT D'AMORE ``AS IS'' AND ANY EXPRESS OR
     30  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     31  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE URBANA-CHAMPAIGN INDEPENDENT
     33  * MEDIA CENTER OR GARRETT D'AMORE BE LIABLE FOR ANY DIRECT, INDIRECT,
     34  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     35  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     36  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     37  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     38  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     39  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     40  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     41  */
     42 /*-
     43  * Copyright (c) 1998, 1999, 2000, 2002 The NetBSD Foundation, Inc.
     44  * All rights reserved.
     45  *
     46  * This code is derived from software contributed to The NetBSD Foundation
     47  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
     48  * NASA Ames Research Center; and by Charles M. Hannum.
     49  *
     50  * Redistribution and use in source and binary forms, with or without
     51  * modification, are permitted provided that the following conditions
     52  * are met:
     53  * 1. Redistributions of source code must retain the above copyright
     54  *    notice, this list of conditions and the following disclaimer.
     55  * 2. Redistributions in binary form must reproduce the above copyright
     56  *    notice, this list of conditions and the following disclaimer in the
     57  *    documentation and/or other materials provided with the distribution.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     60  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  * POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 /*
     73  * Device driver for the onboard ethernet MAC found on the AR5312
     74  * chip's AHB bus.
     75  *
     76  * This device is very simliar to the tulip in most regards, and
     77  * the code is directly derived from NetBSD's tulip.c.  However, it
     78  * is different enough that it did not seem to be a good idea to
     79  * add further complexity to the tulip driver, so we have our own.
     80  *
     81  * Also tulip has a lot of complexity in it for various parts/options
     82  * that we don't need, and on these little boxes with only ~8MB RAM, we
     83  * don't want any extra bloat.
     84  */
     85 
     86 /*
     87  * TODO:
     88  *
     89  * 1) Find out about BUS_MODE_ALIGN16B.  This chip can apparently align
     90  *    inbound packets on a half-word boundary, which would make life easier
     91  *    for TCP/IP.  (Aligning IP headers on a word.)
     92  *
     93  * 2) There is stuff in original tulip to shut down the device when reacting
     94  *    to a change in link status.  Is that needed.
     95  *
     96  * 3) Test with variety of 10/100 HDX/FDX scenarios.
     97  *
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: if_ae.c,v 1.45 2024/07/05 04:31:49 rin Exp $");
    102 
    103 
    104 #include <sys/param.h>
    105 #include <sys/bus.h>
    106 #include <sys/callout.h>
    107 #include <sys/device.h>
    108 #include <sys/endian.h>
    109 #include <sys/errno.h>
    110 #include <sys/intr.h>
    111 #include <sys/ioctl.h>
    112 #include <sys/kernel.h>
    113 #include <sys/mbuf.h>
    114 #include <sys/socket.h>
    115 
    116 #include <uvm/uvm_extern.h>
    117 
    118 #include <net/if.h>
    119 #include <net/if_dl.h>
    120 #include <net/if_media.h>
    121 #include <net/if_ether.h>
    122 
    123 #include <net/bpf.h>
    124 
    125 #include <dev/mii/mii.h>
    126 #include <dev/mii/miivar.h>
    127 #include <dev/mii/mii_bitbang.h>
    128 
    129 #include <mips/atheros/include/arbusvar.h>
    130 #include <mips/atheros/dev/aereg.h>
    131 #include <mips/atheros/dev/aevar.h>
    132 
    133 static const struct {
    134 	uint32_t txth_opmode;		/* OPMODE bits */
    135 	const char *txth_name;		/* name of mode */
    136 } ae_txthresh[] = {
    137 	{ OPMODE_TR_32,		"32 words" },
    138 	{ OPMODE_TR_64,		"64 words" },
    139 	{ OPMODE_TR_128,	"128 words" },
    140 	{ OPMODE_TR_256,	"256 words" },
    141 	{ OPMODE_SF,		"store and forward mode" },
    142 	{ 0,			NULL },
    143 };
    144 
    145 static int	ae_match(device_t, struct cfdata *, void *);
    146 static void	ae_attach(device_t, device_t, void *);
    147 static int	ae_detach(device_t, int);
    148 static int	ae_activate(device_t, enum devact);
    149 
    150 static int	ae_ifflags_cb(struct ethercom *);
    151 static void	ae_reset(struct ae_softc *);
    152 static void	ae_idle(struct ae_softc *, uint32_t);
    153 
    154 static void	ae_start(struct ifnet *);
    155 static void	ae_watchdog(struct ifnet *);
    156 static int	ae_ioctl(struct ifnet *, u_long, void *);
    157 static int	ae_init(struct ifnet *);
    158 static void	ae_stop(struct ifnet *, int);
    159 
    160 static void	ae_shutdown(void *);
    161 
    162 static void	ae_rxdrain(struct ae_softc *);
    163 static int	ae_add_rxbuf(struct ae_softc *, int);
    164 
    165 static int	ae_enable(struct ae_softc *);
    166 static void	ae_disable(struct ae_softc *);
    167 static void	ae_power(int, void *);
    168 
    169 static void	ae_filter_setup(struct ae_softc *);
    170 
    171 static int	ae_intr(void *);
    172 static void	ae_rxintr(struct ae_softc *);
    173 static void	ae_txintr(struct ae_softc *);
    174 
    175 static void	ae_mii_tick(void *);
    176 static void	ae_mii_statchg(struct ifnet *);
    177 
    178 static int	ae_mii_readreg(device_t, int, int, uint16_t *);
    179 static int	ae_mii_writereg(device_t, int, int, uint16_t);
    180 
    181 #ifdef AE_DEBUG
    182 #define	DPRINTF(sc, x)	if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
    183 				printf x
    184 #else
    185 #define	DPRINTF(sc, x)	/* nothing */
    186 #endif
    187 
    188 #ifdef AE_STATS
    189 static void	ae_print_stats(struct ae_softc *);
    190 #endif
    191 
    192 CFATTACH_DECL_NEW(ae, sizeof(struct ae_softc),
    193     ae_match, ae_attach, ae_detach, ae_activate);
    194 
    195 /*
    196  * ae_match:
    197  *
    198  *	Check for a device match.
    199  */
    200 int
    201 ae_match(device_t parent, struct cfdata *cf, void *aux)
    202 {
    203 	struct arbus_attach_args *aa = aux;
    204 
    205 	if (strcmp(aa->aa_name, cf->cf_name) == 0)
    206 		return 1;
    207 
    208 	return 0;
    209 
    210 }
    211 
    212 /*
    213  * ae_attach:
    214  *
    215  *	Attach an ae interface to the system.
    216  */
    217 void
    218 ae_attach(device_t parent, device_t self, void *aux)
    219 {
    220 	const uint8_t *enaddr;
    221 	prop_data_t ea;
    222 	struct ae_softc *sc = device_private(self);
    223 	struct arbus_attach_args *aa = aux;
    224 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    225 	struct mii_data * const mii = &sc->sc_mii;
    226 	int i, error;
    227 
    228 	sc->sc_dev = self;
    229 
    230 	callout_init(&sc->sc_tick_callout, 0);
    231 
    232 	printf(": Atheros AR531X 10/100 Ethernet\n");
    233 
    234 	/*
    235 	 * Try to get MAC address.
    236 	 */
    237 	ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-address");
    238 	if (ea == NULL) {
    239 		printf("%s: unable to get mac-addr property\n",
    240 		    device_xname(sc->sc_dev));
    241 		return;
    242 	}
    243 	KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
    244 	KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
    245 	enaddr = prop_data_data_nocopy(ea);
    246 
    247 	/* Announce ourselves. */
    248 	printf("%s: Ethernet address %s\n", device_xname(sc->sc_dev),
    249 	    ether_sprintf(enaddr));
    250 
    251 	sc->sc_cirq = aa->aa_cirq;
    252 	sc->sc_mirq = aa->aa_mirq;
    253 	sc->sc_st = aa->aa_bst;
    254 	sc->sc_dmat = aa->aa_dmat;
    255 
    256 	SIMPLEQ_INIT(&sc->sc_txfreeq);
    257 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
    258 
    259 	/*
    260 	 * Map registers.
    261 	 */
    262 	sc->sc_size = aa->aa_size;
    263 	if ((error = bus_space_map(sc->sc_st, aa->aa_addr, sc->sc_size, 0,
    264 	    &sc->sc_sh)) != 0) {
    265 		printf("%s: unable to map registers, error = %d\n",
    266 		    device_xname(sc->sc_dev), error);
    267 		goto fail_0;
    268 	}
    269 
    270 	/*
    271 	 * Allocate the control data structures, and create and load the
    272 	 * DMA map for it.
    273 	 */
    274 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    275 	    sizeof(struct ae_control_data), PAGE_SIZE, 0, &sc->sc_cdseg,
    276 	    1, &sc->sc_cdnseg, 0)) != 0) {
    277 		printf("%s: unable to allocate control data, error = %d\n",
    278 		    device_xname(sc->sc_dev), error);
    279 		goto fail_1;
    280 	}
    281 
    282 	if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg,
    283 	    sizeof(struct ae_control_data), (void **)&sc->sc_control_data,
    284 	    BUS_DMA_COHERENT)) != 0) {
    285 		printf("%s: unable to map control data, error = %d\n",
    286 		    device_xname(sc->sc_dev), error);
    287 		goto fail_2;
    288 	}
    289 
    290 	if ((error = bus_dmamap_create(sc->sc_dmat,
    291 	    sizeof(struct ae_control_data), 1,
    292 	    sizeof(struct ae_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    293 		printf("%s: unable to create control data DMA map, "
    294 		    "error = %d\n", device_xname(sc->sc_dev), error);
    295 		goto fail_3;
    296 	}
    297 
    298 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    299 	    sc->sc_control_data, sizeof(struct ae_control_data), NULL,
    300 	    0)) != 0) {
    301 		printf("%s: unable to load control data DMA map, error = %d\n",
    302 		    device_xname(sc->sc_dev), error);
    303 		goto fail_4;
    304 	}
    305 
    306 	/*
    307 	 * Create the transmit buffer DMA maps.
    308 	 */
    309 	for (i = 0; i < AE_TXQUEUELEN; i++) {
    310 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
    311 		    AE_NTXSEGS, MCLBYTES, 0, 0,
    312 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    313 			printf("%s: unable to create tx DMA map %d, "
    314 			    "error = %d\n", device_xname(sc->sc_dev), i, error);
    315 			goto fail_5;
    316 		}
    317 	}
    318 
    319 	/*
    320 	 * Create the receive buffer DMA maps.
    321 	 */
    322 	for (i = 0; i < AE_NRXDESC; i++) {
    323 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    324 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    325 			printf("%s: unable to create rx DMA map %d, "
    326 			    "error = %d\n", device_xname(sc->sc_dev), i, error);
    327 			goto fail_6;
    328 		}
    329 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    330 	}
    331 
    332 	/*
    333 	 * Reset the chip to a known state.
    334 	 */
    335 	ae_reset(sc);
    336 
    337 	/*
    338 	 * From this point forward, the attachment cannot fail.  A failure
    339 	 * before this point releases all resources that may have been
    340 	 * allocated.
    341 	 */
    342 	sc->sc_flags |= AE_ATTACHED;
    343 
    344 	/*
    345 	 * Initialize our media structures.  This may probe the MII, if
    346 	 * present.
    347 	 */
    348 	mii->mii_ifp = ifp;
    349 	mii->mii_readreg = ae_mii_readreg;
    350 	mii->mii_writereg = ae_mii_writereg;
    351 	mii->mii_statchg = ae_mii_statchg;
    352 	sc->sc_ethercom.ec_mii = mii;
    353 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
    354 	mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
    355 	    MII_OFFSET_ANY, 0);
    356 
    357 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
    358 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
    359 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
    360 	} else
    361 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    362 
    363 	sc->sc_tick = ae_mii_tick;
    364 
    365 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
    366 	ifp->if_softc = sc;
    367 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    368 	sc->sc_if_flags = ifp->if_flags;
    369 	ifp->if_ioctl = ae_ioctl;
    370 	ifp->if_start = ae_start;
    371 	ifp->if_watchdog = ae_watchdog;
    372 	ifp->if_init = ae_init;
    373 	ifp->if_stop = ae_stop;
    374 	IFQ_SET_READY(&ifp->if_snd);
    375 
    376 	/*
    377 	 * We can support 802.1Q VLAN-sized frames.
    378 	 */
    379 	sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
    380 
    381 	/*
    382 	 * Attach the interface.
    383 	 */
    384 	if_attach(ifp);
    385 	if_deferred_start_init(ifp, NULL);
    386 	ether_ifattach(ifp, enaddr);
    387 	ether_set_ifflags_cb(&sc->sc_ethercom, ae_ifflags_cb);
    388 
    389 	rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
    390 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    391 
    392 	/*
    393 	 * Make sure the interface is shutdown during reboot.
    394 	 */
    395 	sc->sc_sdhook = shutdownhook_establish(ae_shutdown, sc);
    396 	if (sc->sc_sdhook == NULL)
    397 		printf("%s: WARNING: unable to establish shutdown hook\n",
    398 		    device_xname(sc->sc_dev));
    399 
    400 	/*
    401 	 * Add a suspend hook to make sure we come back up after a
    402 	 * resume.
    403 	 */
    404 	sc->sc_powerhook = powerhook_establish(device_xname(sc->sc_dev),
    405 	    ae_power, sc);
    406 	if (sc->sc_powerhook == NULL)
    407 		printf("%s: WARNING: unable to establish power hook\n",
    408 		    device_xname(sc->sc_dev));
    409 	return;
    410 
    411 	/*
    412 	 * Free any resources we've allocated during the failed attach
    413 	 * attempt.  Do this in reverse order and fall through.
    414 	 */
    415  fail_6:
    416 	for (i = 0; i < AE_NRXDESC; i++) {
    417 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    418 			bus_dmamap_destroy(sc->sc_dmat,
    419 			    sc->sc_rxsoft[i].rxs_dmamap);
    420 	}
    421  fail_5:
    422 	for (i = 0; i < AE_TXQUEUELEN; i++) {
    423 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    424 			bus_dmamap_destroy(sc->sc_dmat,
    425 			    sc->sc_txsoft[i].txs_dmamap);
    426 	}
    427 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    428  fail_4:
    429 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    430  fail_3:
    431 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    432 	    sizeof(struct ae_control_data));
    433  fail_2:
    434 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    435  fail_1:
    436 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
    437  fail_0:
    438 	return;
    439 }
    440 
    441 /*
    442  * ae_activate:
    443  *
    444  *	Handle device activation/deactivation requests.
    445  */
    446 int
    447 ae_activate(device_t self, enum devact act)
    448 {
    449 	struct ae_softc *sc = device_private(self);
    450 
    451 	switch (act) {
    452 	case DVACT_DEACTIVATE:
    453 		if_deactivate(&sc->sc_ethercom.ec_if);
    454 		return 0;
    455 	default:
    456 		return EOPNOTSUPP;
    457 	}
    458 }
    459 
    460 /*
    461  * ae_detach:
    462  *
    463  *	Detach a device interface.
    464  */
    465 int
    466 ae_detach(device_t self, int flags)
    467 {
    468 	struct ae_softc *sc = device_private(self);
    469 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    470 	struct ae_rxsoft *rxs;
    471 	struct ae_txsoft *txs;
    472 	int i;
    473 
    474 	/*
    475 	 * Succeed now if there isn't any work to do.
    476 	 */
    477 	if ((sc->sc_flags & AE_ATTACHED) == 0)
    478 		return (0);
    479 
    480 	/* Unhook our tick handler. */
    481 	if (sc->sc_tick)
    482 		callout_stop(&sc->sc_tick_callout);
    483 
    484 	/* Detach all PHYs */
    485 	mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    486 
    487 	rnd_detach_source(&sc->sc_rnd_source);
    488 	ether_ifdetach(ifp);
    489 	if_detach(ifp);
    490 
    491 	/* Delete all remaining media. */
    492 	ifmedia_fini(&sc->sc_mii.mii_media);
    493 
    494 	for (i = 0; i < AE_NRXDESC; i++) {
    495 		rxs = &sc->sc_rxsoft[i];
    496 		if (rxs->rxs_mbuf != NULL) {
    497 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
    498 			m_freem(rxs->rxs_mbuf);
    499 			rxs->rxs_mbuf = NULL;
    500 		}
    501 		bus_dmamap_destroy(sc->sc_dmat, rxs->rxs_dmamap);
    502 	}
    503 	for (i = 0; i < AE_TXQUEUELEN; i++) {
    504 		txs = &sc->sc_txsoft[i];
    505 		if (txs->txs_mbuf != NULL) {
    506 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
    507 			m_freem(txs->txs_mbuf);
    508 			txs->txs_mbuf = NULL;
    509 		}
    510 		bus_dmamap_destroy(sc->sc_dmat, txs->txs_dmamap);
    511 	}
    512 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    513 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    514 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    515 	    sizeof(struct ae_control_data));
    516 	bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
    517 
    518 	shutdownhook_disestablish(sc->sc_sdhook);
    519 	powerhook_disestablish(sc->sc_powerhook);
    520 
    521 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_size);
    522 
    523 
    524 	return (0);
    525 }
    526 
    527 /*
    528  * ae_shutdown:
    529  *
    530  *	Make sure the interface is stopped at reboot time.
    531  */
    532 static void
    533 ae_shutdown(void *arg)
    534 {
    535 	struct ae_softc *sc = arg;
    536 
    537 	ae_stop(&sc->sc_ethercom.ec_if, 1);
    538 }
    539 
    540 /*
    541  * ae_start:		[ifnet interface function]
    542  *
    543  *	Start packet transmission on the interface.
    544  */
    545 static void
    546 ae_start(struct ifnet *ifp)
    547 {
    548 	struct ae_softc *sc = ifp->if_softc;
    549 	struct mbuf *m0, *m;
    550 	struct ae_txsoft *txs;
    551 	bus_dmamap_t dmamap;
    552 	int error, firsttx, nexttx, lasttx = 1, ofree, seg;
    553 
    554 	DPRINTF(sc, ("%s: ae_start: sc_flags 0x%08x, if_flags 0x%08x\n",
    555 	    device_xname(sc->sc_dev), sc->sc_flags, ifp->if_flags));
    556 
    557 
    558 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    559 		return;
    560 
    561 	/*
    562 	 * Remember the previous number of free descriptors and
    563 	 * the first descriptor we'll use.
    564 	 */
    565 	ofree = sc->sc_txfree;
    566 	firsttx = sc->sc_txnext;
    567 
    568 	DPRINTF(sc, ("%s: ae_start: txfree %d, txnext %d\n",
    569 	    device_xname(sc->sc_dev), ofree, firsttx));
    570 
    571 	/*
    572 	 * Loop through the send queue, setting up transmit descriptors
    573 	 * until we drain the queue, or use up all available transmit
    574 	 * descriptors.
    575 	 */
    576 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
    577 	       sc->sc_txfree != 0) {
    578 		/*
    579 		 * Grab a packet off the queue.
    580 		 */
    581 		IFQ_POLL(&ifp->if_snd, m0);
    582 		if (m0 == NULL)
    583 			break;
    584 		m = NULL;
    585 
    586 		dmamap = txs->txs_dmamap;
    587 
    588 		/*
    589 		 * Load the DMA map.  If this fails, the packet either
    590 		 * didn't fit in the allotted number of segments, or we were
    591 		 * short on resources.  In this case, we'll copy and try
    592 		 * again.
    593 		 */
    594 		if (((mtod(m0, uintptr_t) & 3) != 0) ||
    595 		    bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
    596 		      BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0) {
    597 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    598 			if (m == NULL) {
    599 				printf("%s: unable to allocate Tx mbuf\n",
    600 				    device_xname(sc->sc_dev));
    601 				break;
    602 			}
    603 			MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
    604 			if (m0->m_pkthdr.len > MHLEN) {
    605 				MCLGET(m, M_DONTWAIT);
    606 				if ((m->m_flags & M_EXT) == 0) {
    607 					printf("%s: unable to allocate Tx "
    608 					    "cluster\n", device_xname(sc->sc_dev));
    609 					m_freem(m);
    610 					break;
    611 				}
    612 			}
    613 			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
    614 			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
    615 			error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
    616 			    m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
    617 			if (error) {
    618 				printf("%s: unable to load Tx buffer, "
    619 				    "error = %d\n", device_xname(sc->sc_dev),
    620 				    error);
    621 				break;
    622 			}
    623 		}
    624 
    625 		/*
    626 		 * Ensure we have enough descriptors free to describe
    627 		 * the packet.
    628 		 */
    629 		if (dmamap->dm_nsegs > sc->sc_txfree) {
    630 			/*
    631 			 * Not enough free descriptors to transmit this
    632 			 * packet.  We haven't committed to anything yet,
    633 			 * so just unload the DMA map, put the packet
    634 			 * back on the queue, and punt.  Notify the upper
    635 			 * layer that there are no more slots left.
    636 			 *
    637 			 * XXX We could allocate an mbuf and copy, but
    638 			 * XXX it is worth it?
    639 			 */
    640 			bus_dmamap_unload(sc->sc_dmat, dmamap);
    641 			m_freem(m);
    642 			break;
    643 		}
    644 
    645 		IFQ_DEQUEUE(&ifp->if_snd, m0);
    646 		if (m != NULL) {
    647 			m_freem(m0);
    648 			m0 = m;
    649 		}
    650 
    651 		/*
    652 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
    653 		 */
    654 
    655 		/* Sync the DMA map. */
    656 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
    657 		    BUS_DMASYNC_PREWRITE);
    658 
    659 		/*
    660 		 * Initialize the transmit descriptors.
    661 		 */
    662 		for (nexttx = sc->sc_txnext, seg = 0;
    663 		     seg < dmamap->dm_nsegs;
    664 		     seg++, nexttx = AE_NEXTTX(nexttx)) {
    665 			/*
    666 			 * If this is the first descriptor we're
    667 			 * enqueueing, don't set the OWN bit just
    668 			 * yet.  That could cause a race condition.
    669 			 * We'll do it below.
    670 			 */
    671 			sc->sc_txdescs[nexttx].ad_status =
    672 			    (nexttx == firsttx) ? 0 : ADSTAT_OWN;
    673 			sc->sc_txdescs[nexttx].ad_bufaddr1 =
    674 			    dmamap->dm_segs[seg].ds_addr;
    675 			sc->sc_txdescs[nexttx].ad_ctl =
    676 			    (dmamap->dm_segs[seg].ds_len <<
    677 				ADCTL_SIZE1_SHIFT) |
    678 				(nexttx == (AE_NTXDESC - 1) ?
    679 				    ADCTL_ER : 0);
    680 			lasttx = nexttx;
    681 		}
    682 
    683 		KASSERT(lasttx != -1);
    684 
    685 		/* Set `first segment' and `last segment' appropriately. */
    686 		sc->sc_txdescs[sc->sc_txnext].ad_ctl |= ADCTL_Tx_FS;
    687 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_LS;
    688 
    689 #ifdef AE_DEBUG
    690 		if (ifp->if_flags & IFF_DEBUG) {
    691 			printf("     txsoft %p transmit chain:\n", txs);
    692 			for (seg = sc->sc_txnext;; seg = AE_NEXTTX(seg)) {
    693 				printf("     descriptor %d:\n", seg);
    694 				printf("       ad_status:   0x%08x\n",
    695 				    sc->sc_txdescs[seg].ad_status);
    696 				printf("       ad_ctl:      0x%08x\n",
    697 				    sc->sc_txdescs[seg].ad_ctl);
    698 				printf("       ad_bufaddr1: 0x%08x\n",
    699 				    sc->sc_txdescs[seg].ad_bufaddr1);
    700 				printf("       ad_bufaddr2: 0x%08x\n",
    701 				    sc->sc_txdescs[seg].ad_bufaddr2);
    702 				if (seg == lasttx)
    703 					break;
    704 			}
    705 		}
    706 #endif
    707 
    708 		/* Sync the descriptors we're using. */
    709 		AE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
    710 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    711 
    712 		/*
    713 		 * Store a pointer to the packet so we can free it later,
    714 		 * and remember what txdirty will be once the packet is
    715 		 * done.
    716 		 */
    717 		txs->txs_mbuf = m0;
    718 		txs->txs_firstdesc = sc->sc_txnext;
    719 		txs->txs_lastdesc = lasttx;
    720 		txs->txs_ndescs = dmamap->dm_nsegs;
    721 
    722 		/* Advance the tx pointer. */
    723 		sc->sc_txfree -= dmamap->dm_nsegs;
    724 		sc->sc_txnext = nexttx;
    725 
    726 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
    727 		SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
    728 
    729 		/*
    730 		 * Pass the packet to any BPF listeners.
    731 		 */
    732 		bpf_mtap(ifp, m0, BPF_D_OUT);
    733 	}
    734 
    735 	if (sc->sc_txfree != ofree) {
    736 		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
    737 		    device_xname(sc->sc_dev), lasttx, firsttx));
    738 		/*
    739 		 * Cause a transmit interrupt to happen on the
    740 		 * last packet we enqueued.
    741 		 */
    742 		sc->sc_txdescs[lasttx].ad_ctl |= ADCTL_Tx_IC;
    743 		AE_CDTXSYNC(sc, lasttx, 1,
    744 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    745 
    746 		/*
    747 		 * The entire packet chain is set up.  Give the
    748 		 * first descriptor to the chip now.
    749 		 */
    750 		sc->sc_txdescs[firsttx].ad_status |= ADSTAT_OWN;
    751 		AE_CDTXSYNC(sc, firsttx, 1,
    752 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    753 
    754 		/* Wake up the transmitter. */
    755 		/* XXX USE AUTOPOLLING? */
    756 		AE_WRITE(sc, CSR_TXPOLL, TXPOLL_TPD);
    757 		AE_BARRIER(sc);
    758 
    759 		/* Set a watchdog timer in case the chip flakes out. */
    760 		ifp->if_timer = 5;
    761 	}
    762 }
    763 
    764 /*
    765  * ae_watchdog:	[ifnet interface function]
    766  *
    767  *	Watchdog timer handler.
    768  */
    769 static void
    770 ae_watchdog(struct ifnet *ifp)
    771 {
    772 	struct ae_softc *sc = ifp->if_softc;
    773 	int doing_transmit;
    774 
    775 	doing_transmit = (! SIMPLEQ_EMPTY(&sc->sc_txdirtyq));
    776 
    777 	if (doing_transmit) {
    778 		printf("%s: transmit timeout\n", device_xname(sc->sc_dev));
    779 		if_statinc(ifp, if_oerrors);
    780 	}
    781 	else
    782 		printf("%s: spurious watchdog timeout\n", device_xname(sc->sc_dev));
    783 
    784 	(void) ae_init(ifp);
    785 
    786 	/* Try to get more packets going. */
    787 	ae_start(ifp);
    788 }
    789 
    790 /* If the interface is up and running, only modify the receive
    791  * filter when changing to/from promiscuous mode.  Otherwise return
    792  * ENETRESET so that ether_ioctl will reset the chip.
    793  */
    794 static int
    795 ae_ifflags_cb(struct ethercom *ec)
    796 {
    797 	struct ifnet *ifp = &ec->ec_if;
    798 	struct ae_softc *sc = ifp->if_softc;
    799 	u_short change = ifp->if_flags ^ sc->sc_if_flags;
    800 
    801 	if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
    802 		return ENETRESET;
    803 	else if ((change & IFF_PROMISC) != 0)
    804 		ae_filter_setup(sc);
    805 	return 0;
    806 }
    807 
    808 /*
    809  * ae_ioctl:		[ifnet interface function]
    810  *
    811  *	Handle control requests from the operator.
    812  */
    813 static int
    814 ae_ioctl(struct ifnet *ifp, u_long cmd, void *data)
    815 {
    816 	struct ae_softc *sc = ifp->if_softc;
    817 	int s, error;
    818 
    819 	s = splnet();
    820 
    821 	error = ether_ioctl(ifp, cmd, data);
    822 	if (error == ENETRESET) {
    823 		if (ifp->if_flags & IFF_RUNNING) {
    824 			/*
    825 			 * Multicast list has changed.  Set the
    826 			 * hardware filter accordingly.
    827 			 */
    828 			ae_filter_setup(sc);
    829 		}
    830 		error = 0;
    831 	}
    832 
    833 	/* Try to get more packets going. */
    834 	if (AE_IS_ENABLED(sc))
    835 		ae_start(ifp);
    836 
    837 	sc->sc_if_flags = ifp->if_flags;
    838 	splx(s);
    839 	return (error);
    840 }
    841 
    842 /*
    843  * ae_intr:
    844  *
    845  *	Interrupt service routine.
    846  */
    847 int
    848 ae_intr(void *arg)
    849 {
    850 	struct ae_softc *sc = arg;
    851 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    852 	uint32_t status, rxstatus, txstatus;
    853 	int handled = 0, txthresh;
    854 
    855 	DPRINTF(sc, ("%s: ae_intr\n", device_xname(sc->sc_dev)));
    856 
    857 #ifdef DEBUG
    858 	if (AE_IS_ENABLED(sc) == 0)
    859 		panic("%s: ae_intr: not enabled", device_xname(sc->sc_dev));
    860 #endif
    861 
    862 	/*
    863 	 * If the interface isn't running, the interrupt couldn't
    864 	 * possibly have come from us.
    865 	 */
    866 	if ((ifp->if_flags & IFF_RUNNING) == 0 ||
    867 	    !device_is_active(sc->sc_dev)) {
    868 		printf("spurious?!?\n");
    869 		return (0);
    870 	}
    871 
    872 	for (;;) {
    873 		status = AE_READ(sc, CSR_STATUS);
    874 		if (status) {
    875 			AE_WRITE(sc, CSR_STATUS, status);
    876 			AE_BARRIER(sc);
    877 		}
    878 
    879 		if ((status & sc->sc_inten) == 0)
    880 			break;
    881 
    882 		handled = 1;
    883 
    884 		rxstatus = status & sc->sc_rxint_mask;
    885 		txstatus = status & sc->sc_txint_mask;
    886 
    887 		if (rxstatus) {
    888 			/* Grab new any new packets. */
    889 			ae_rxintr(sc);
    890 
    891 			if (rxstatus & STATUS_RU) {
    892 				printf("%s: receive ring overrun\n",
    893 				    device_xname(sc->sc_dev));
    894 				/* Get the receive process going again. */
    895 				AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
    896 				AE_BARRIER(sc);
    897 				break;
    898 			}
    899 		}
    900 
    901 		if (txstatus) {
    902 			/* Sweep up transmit descriptors. */
    903 			ae_txintr(sc);
    904 
    905 			if (txstatus & STATUS_TJT)
    906 				printf("%s: transmit jabber timeout\n",
    907 				    device_xname(sc->sc_dev));
    908 
    909 			if (txstatus & STATUS_UNF) {
    910 				/*
    911 				 * Increase our transmit threshold if
    912 				 * another is available.
    913 				 */
    914 				txthresh = sc->sc_txthresh + 1;
    915 				if (ae_txthresh[txthresh].txth_name != NULL) {
    916 					uint32_t opmode;
    917 					/* Idle the transmit process. */
    918 					opmode = AE_READ(sc, CSR_OPMODE);
    919 					ae_idle(sc, OPMODE_ST);
    920 
    921 					sc->sc_txthresh = txthresh;
    922 					opmode &= ~(OPMODE_TR | OPMODE_SF);
    923 					opmode |=
    924 					    ae_txthresh[txthresh].txth_opmode;
    925 					printf("%s: transmit underrun; new "
    926 					    "threshold: %s\n",
    927 					    device_xname(sc->sc_dev),
    928 					    ae_txthresh[txthresh].txth_name);
    929 
    930 					/*
    931 					 * Set the new threshold and restart
    932 					 * the transmit process.
    933 					 */
    934 					AE_WRITE(sc, CSR_OPMODE, opmode);
    935 					AE_BARRIER(sc);
    936 				}
    937 					/*
    938 					 * XXX Log every Nth underrun from
    939 					 * XXX now on?
    940 					 */
    941 			}
    942 		}
    943 
    944 		if (status & (STATUS_TPS | STATUS_RPS)) {
    945 			if (status & STATUS_TPS)
    946 				printf("%s: transmit process stopped\n",
    947 				    device_xname(sc->sc_dev));
    948 			if (status & STATUS_RPS)
    949 				printf("%s: receive process stopped\n",
    950 				    device_xname(sc->sc_dev));
    951 			(void) ae_init(ifp);
    952 			break;
    953 		}
    954 
    955 		if (status & STATUS_SE) {
    956 			const char *str;
    957 
    958 			if (status & STATUS_TX_ABORT)
    959 				str = "tx abort";
    960 			else if (status & STATUS_RX_ABORT)
    961 				str = "rx abort";
    962 			else
    963 				str = "unknown error";
    964 
    965 			printf("%s: fatal system error: %s\n",
    966 			    device_xname(sc->sc_dev), str);
    967 			(void) ae_init(ifp);
    968 			break;
    969 		}
    970 
    971 		/*
    972 		 * Not handled:
    973 		 *
    974 		 *	Transmit buffer unavailable -- normal
    975 		 *	condition, nothing to do, really.
    976 		 *
    977 		 *	General purpose timer experied -- we don't
    978 		 *	use the general purpose timer.
    979 		 *
    980 		 *	Early receive interrupt -- not available on
    981 		 *	all chips, we just use RI.  We also only
    982 		 *	use single-segment receive DMA, so this
    983 		 *	is mostly useless.
    984 		 */
    985 	}
    986 
    987 	/* Try to get more packets going. */
    988 	if_schedule_deferred_start(ifp);
    989 
    990 	if (handled)
    991 		rnd_add_uint32(&sc->sc_rnd_source, status);
    992 	return (handled);
    993 }
    994 
    995 /*
    996  * ae_rxintr:
    997  *
    998  *	Helper; handle receive interrupts.
    999  */
   1000 static void
   1001 ae_rxintr(struct ae_softc *sc)
   1002 {
   1003 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1004 	struct ae_rxsoft *rxs;
   1005 	struct mbuf *m;
   1006 	uint32_t rxstat;
   1007 	int i, len;
   1008 
   1009 	for (i = sc->sc_rxptr;; i = AE_NEXTRX(i)) {
   1010 		rxs = &sc->sc_rxsoft[i];
   1011 
   1012 		AE_CDRXSYNC(sc, i,
   1013 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1014 
   1015 		rxstat = sc->sc_rxdescs[i].ad_status;
   1016 
   1017 		if (rxstat & ADSTAT_OWN) {
   1018 			/*
   1019 			 * We have processed all of the receive buffers.
   1020 			 */
   1021 			break;
   1022 		}
   1023 
   1024 		/*
   1025 		 * If any collisions were seen on the wire, count one.
   1026 		 */
   1027 		if (rxstat & ADSTAT_Rx_CS)
   1028 			if_statinc(ifp, if_collisions);
   1029 
   1030 		/*
   1031 		 * If an error occurred, update stats, clear the status
   1032 		 * word, and leave the packet buffer in place.  It will
   1033 		 * simply be reused the next time the ring comes around.
   1034 	 	 * If 802.1Q VLAN MTU is enabled, ignore the Frame Too Long
   1035 		 * error.
   1036 		 */
   1037 		if (rxstat & ADSTAT_ES &&
   1038 		    ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) == 0 ||
   1039 		     (rxstat & (ADSTAT_Rx_DE | ADSTAT_Rx_RF |
   1040 				ADSTAT_Rx_DB | ADSTAT_Rx_CE)) != 0)) {
   1041 #define	PRINTERR(bit, str)						\
   1042 			if (rxstat & (bit))				\
   1043 				printf("%s: receive error: %s\n",	\
   1044 				    device_xname(sc->sc_dev), str)
   1045 			if_statinc(ifp, if_ierrors);
   1046 			PRINTERR(ADSTAT_Rx_DE, "descriptor error");
   1047 			PRINTERR(ADSTAT_Rx_RF, "runt frame");
   1048 			PRINTERR(ADSTAT_Rx_TL, "frame too long");
   1049 			PRINTERR(ADSTAT_Rx_RE, "MII error");
   1050 			PRINTERR(ADSTAT_Rx_DB, "dribbling bit");
   1051 			PRINTERR(ADSTAT_Rx_CE, "CRC error");
   1052 #undef PRINTERR
   1053 			AE_INIT_RXDESC(sc, i);
   1054 			continue;
   1055 		}
   1056 
   1057 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1058 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1059 
   1060 		/*
   1061 		 * No errors; receive the packet.  Note the chip
   1062 		 * includes the CRC with every packet.
   1063 		 */
   1064 		len = ADSTAT_Rx_LENGTH(rxstat) - ETHER_CRC_LEN;
   1065 
   1066 		/*
   1067 		 * XXX: the Atheros part can align on half words.  what
   1068 		 * is the performance implication of this?  Probably
   1069 		 * minimal, and we should use it...
   1070 		 */
   1071 #ifdef __NO_STRICT_ALIGNMENT
   1072 		/*
   1073 		 * Allocate a new mbuf cluster.  If that fails, we are
   1074 		 * out of memory, and must drop the packet and recycle
   1075 		 * the buffer that's already attached to this descriptor.
   1076 		 */
   1077 		m = rxs->rxs_mbuf;
   1078 		if (ae_add_rxbuf(sc, i) != 0) {
   1079 			if_statinc(ifp, if_ierrors);
   1080 			AE_INIT_RXDESC(sc, i);
   1081 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1082 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1083 			continue;
   1084 		}
   1085 #else
   1086 		/*
   1087 		 * The chip's receive buffers must be 4-byte aligned.
   1088 		 * But this means that the data after the Ethernet header
   1089 		 * is misaligned.  We must allocate a new buffer and
   1090 		 * copy the data, shifted forward 2 bytes.
   1091 		 */
   1092 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   1093 		if (m == NULL) {
   1094  dropit:
   1095 			if_statinc(ifp, if_ierrors);
   1096 			AE_INIT_RXDESC(sc, i);
   1097 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1098 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1099 			continue;
   1100 		}
   1101 		MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1102 		if (len > (MHLEN - 2)) {
   1103 			MCLGET(m, M_DONTWAIT);
   1104 			if ((m->m_flags & M_EXT) == 0) {
   1105 				m_freem(m);
   1106 				goto dropit;
   1107 			}
   1108 		}
   1109 		m->m_data += 2;
   1110 
   1111 		/*
   1112 		 * Note that we use clusters for incoming frames, so the
   1113 		 * buffer is virtually contiguous.
   1114 		 */
   1115 		memcpy(mtod(m, void *), mtod(rxs->rxs_mbuf, void *), len);
   1116 
   1117 		/* Allow the receive descriptor to continue using its mbuf. */
   1118 		AE_INIT_RXDESC(sc, i);
   1119 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1120 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1121 #endif /* __NO_STRICT_ALIGNMENT */
   1122 
   1123 		m_set_rcvif(m, ifp);
   1124 		m->m_pkthdr.len = m->m_len = len;
   1125 
   1126 		/* Pass it on. */
   1127 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1128 	}
   1129 
   1130 	/* Update the receive pointer. */
   1131 	sc->sc_rxptr = i;
   1132 }
   1133 
   1134 /*
   1135  * ae_txintr:
   1136  *
   1137  *	Helper; handle transmit interrupts.
   1138  */
   1139 static void
   1140 ae_txintr(struct ae_softc *sc)
   1141 {
   1142 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1143 	struct ae_txsoft *txs;
   1144 	uint32_t txstat;
   1145 
   1146 	DPRINTF(sc, ("%s: ae_txintr: sc_flags 0x%08x\n",
   1147 	    device_xname(sc->sc_dev), sc->sc_flags));
   1148 
   1149 	/*
   1150 	 * Go through our Tx list and free mbufs for those
   1151 	 * frames that have been transmitted.
   1152 	 */
   1153 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1154 		AE_CDTXSYNC(sc, txs->txs_lastdesc,
   1155 		    txs->txs_ndescs,
   1156 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1157 
   1158 #ifdef AE_DEBUG
   1159 		if (ifp->if_flags & IFF_DEBUG) {
   1160 			int i;
   1161 			printf("    txsoft %p transmit chain:\n", txs);
   1162 			for (i = txs->txs_firstdesc;; i = AE_NEXTTX(i)) {
   1163 				printf("     descriptor %d:\n", i);
   1164 				printf("       ad_status:   0x%08x\n",
   1165 				    sc->sc_txdescs[i].ad_status);
   1166 				printf("       ad_ctl:      0x%08x\n",
   1167 				    sc->sc_txdescs[i].ad_ctl);
   1168 				printf("       ad_bufaddr1: 0x%08x\n",
   1169 				    sc->sc_txdescs[i].ad_bufaddr1);
   1170 				printf("       ad_bufaddr2: 0x%08x\n",
   1171 				    sc->sc_txdescs[i].ad_bufaddr2);
   1172 				if (i == txs->txs_lastdesc)
   1173 					break;
   1174 			}
   1175 		}
   1176 #endif
   1177 
   1178 		txstat = sc->sc_txdescs[txs->txs_lastdesc].ad_status;
   1179 		if (txstat & ADSTAT_OWN)
   1180 			break;
   1181 
   1182 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1183 
   1184 		sc->sc_txfree += txs->txs_ndescs;
   1185 
   1186 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1187 		    0, txs->txs_dmamap->dm_mapsize,
   1188 		    BUS_DMASYNC_POSTWRITE);
   1189 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1190 		m_freem(txs->txs_mbuf);
   1191 		txs->txs_mbuf = NULL;
   1192 
   1193 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1194 
   1195 		/*
   1196 		 * Check for errors and collisions.
   1197 		 */
   1198 #ifdef AE_STATS
   1199 		if (txstat & ADSTAT_Tx_UF)
   1200 			sc->sc_stats.ts_tx_uf++;
   1201 		if (txstat & ADSTAT_Tx_TO)
   1202 			sc->sc_stats.ts_tx_to++;
   1203 		if (txstat & ADSTAT_Tx_EC)
   1204 			sc->sc_stats.ts_tx_ec++;
   1205 		if (txstat & ADSTAT_Tx_LC)
   1206 			sc->sc_stats.ts_tx_lc++;
   1207 #endif
   1208 
   1209 		net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   1210 		if (txstat & (ADSTAT_Tx_UF | ADSTAT_Tx_TO))
   1211 			if_statinc_ref(ifp, nsr, if_oerrors);
   1212 
   1213 		if (txstat & ADSTAT_Tx_EC)
   1214 			if_statadd_ref(ifp, nsr, if_collisions, 16);
   1215 		else if (ADSTAT_Tx_COLLISIONS(txstat))
   1216 			if_statadd_ref(ifp, nsr, if_collisions,
   1217 			    ADSTAT_Tx_COLLISIONS(txstat));
   1218 		if (txstat & ADSTAT_Tx_LC)
   1219 			if_statinc_ref(ifp, nsr, if_collisions);
   1220 
   1221 		if_statinc_ref(ifp, nsr, if_opackets);
   1222 		IF_STAT_PUTREF(ifp);
   1223 	}
   1224 
   1225 	/*
   1226 	 * If there are no more pending transmissions, cancel the watchdog
   1227 	 * timer.
   1228 	 */
   1229 	if (txs == NULL)
   1230 		ifp->if_timer = 0;
   1231 }
   1232 
   1233 #ifdef AE_STATS
   1234 void
   1235 ae_print_stats(struct ae_softc *sc)
   1236 {
   1237 
   1238 	printf("%s: tx_uf %lu, tx_to %lu, tx_ec %lu, tx_lc %lu\n",
   1239 	    device_xname(sc->sc_dev),
   1240 	    sc->sc_stats.ts_tx_uf, sc->sc_stats.ts_tx_to,
   1241 	    sc->sc_stats.ts_tx_ec, sc->sc_stats.ts_tx_lc);
   1242 }
   1243 #endif
   1244 
   1245 /*
   1246  * ae_reset:
   1247  *
   1248  *	Perform a soft reset on the chip.
   1249  */
   1250 void
   1251 ae_reset(struct ae_softc *sc)
   1252 {
   1253 	int i;
   1254 
   1255 	AE_WRITE(sc, CSR_BUSMODE, BUSMODE_SWR);
   1256 	AE_BARRIER(sc);
   1257 
   1258 	/*
   1259 	 * The chip doesn't take itself out of reset automatically.
   1260 	 * We need to do so after 2us.
   1261 	 */
   1262 	delay(10);
   1263 	AE_WRITE(sc, CSR_BUSMODE, 0);
   1264 	AE_BARRIER(sc);
   1265 
   1266 	for (i = 0; i < 1000; i++) {
   1267 		/*
   1268 		 * Wait a bit for the reset to complete before peeking
   1269 		 * at the chip again.
   1270 		 */
   1271 		delay(10);
   1272 		if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR) == 0)
   1273 			break;
   1274 	}
   1275 
   1276 	if (AE_ISSET(sc, CSR_BUSMODE, BUSMODE_SWR))
   1277 		printf("%s: reset failed to complete\n", device_xname(sc->sc_dev));
   1278 
   1279 	delay(1000);
   1280 }
   1281 
   1282 /*
   1283  * ae_init:		[ ifnet interface function ]
   1284  *
   1285  *	Initialize the interface.  Must be called at splnet().
   1286  */
   1287 static int
   1288 ae_init(struct ifnet *ifp)
   1289 {
   1290 	struct ae_softc *sc = ifp->if_softc;
   1291 	struct ae_txsoft *txs;
   1292 	struct ae_rxsoft *rxs;
   1293 	const uint8_t *enaddr;
   1294 	int i, error = 0;
   1295 
   1296 	if ((error = ae_enable(sc)) != 0)
   1297 		goto out;
   1298 
   1299 	/*
   1300 	 * Cancel any pending I/O.
   1301 	 */
   1302 	ae_stop(ifp, 0);
   1303 
   1304 	/*
   1305 	 * Reset the chip to a known state.
   1306 	 */
   1307 	ae_reset(sc);
   1308 
   1309 	/*
   1310 	 * Initialize the BUSMODE register.
   1311 	 */
   1312 	AE_WRITE(sc, CSR_BUSMODE,
   1313 	    /* XXX: not sure if this is a good thing or not... */
   1314 	    //BUSMODE_ALIGN_16B |
   1315 	    BUSMODE_BAR | BUSMODE_BLE | BUSMODE_PBL_4LW);
   1316 	AE_BARRIER(sc);
   1317 
   1318 	/*
   1319 	 * Initialize the transmit descriptor ring.
   1320 	 */
   1321 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1322 	for (i = 0; i < AE_NTXDESC; i++) {
   1323 		sc->sc_txdescs[i].ad_ctl = 0;
   1324 		sc->sc_txdescs[i].ad_bufaddr2 =
   1325 		    AE_CDTXADDR(sc, AE_NEXTTX(i));
   1326 	}
   1327 	sc->sc_txdescs[AE_NTXDESC - 1].ad_ctl |= ADCTL_ER;
   1328 	AE_CDTXSYNC(sc, 0, AE_NTXDESC,
   1329 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1330 	sc->sc_txfree = AE_NTXDESC;
   1331 	sc->sc_txnext = 0;
   1332 
   1333 	/*
   1334 	 * Initialize the transmit job descriptors.
   1335 	 */
   1336 	SIMPLEQ_INIT(&sc->sc_txfreeq);
   1337 	SIMPLEQ_INIT(&sc->sc_txdirtyq);
   1338 	for (i = 0; i < AE_TXQUEUELEN; i++) {
   1339 		txs = &sc->sc_txsoft[i];
   1340 		txs->txs_mbuf = NULL;
   1341 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1342 	}
   1343 
   1344 	/*
   1345 	 * Initialize the receive descriptor and receive job
   1346 	 * descriptor rings.
   1347 	 */
   1348 	for (i = 0; i < AE_NRXDESC; i++) {
   1349 		rxs = &sc->sc_rxsoft[i];
   1350 		if (rxs->rxs_mbuf == NULL) {
   1351 			if ((error = ae_add_rxbuf(sc, i)) != 0) {
   1352 				printf("%s: unable to allocate or map rx "
   1353 				    "buffer %d, error = %d\n",
   1354 				    device_xname(sc->sc_dev), i, error);
   1355 				/*
   1356 				 * XXX Should attempt to run with fewer receive
   1357 				 * XXX buffers instead of just failing.
   1358 				 */
   1359 				ae_rxdrain(sc);
   1360 				goto out;
   1361 			}
   1362 		} else
   1363 			AE_INIT_RXDESC(sc, i);
   1364 	}
   1365 	sc->sc_rxptr = 0;
   1366 
   1367 	/*
   1368 	 * Initialize the interrupt mask and enable interrupts.
   1369 	 */
   1370 	/* normal interrupts */
   1371 	sc->sc_inten = STATUS_TI | STATUS_TU | STATUS_RI | STATUS_NIS;
   1372 
   1373 	/* abnormal interrupts */
   1374 	sc->sc_inten |= STATUS_TPS | STATUS_TJT | STATUS_UNF |
   1375 	    STATUS_RU | STATUS_RPS | STATUS_SE | STATUS_AIS;
   1376 
   1377 	sc->sc_rxint_mask = STATUS_RI | STATUS_RU;
   1378 	sc->sc_txint_mask = STATUS_TI | STATUS_UNF | STATUS_TJT;
   1379 
   1380 	sc->sc_rxint_mask &= sc->sc_inten;
   1381 	sc->sc_txint_mask &= sc->sc_inten;
   1382 
   1383 	AE_WRITE(sc, CSR_INTEN, sc->sc_inten);
   1384 	AE_WRITE(sc, CSR_STATUS, 0xffffffff);
   1385 
   1386 	/*
   1387 	 * Give the transmit and receive rings to the chip.
   1388 	 */
   1389 	AE_WRITE(sc, CSR_TXLIST, AE_CDTXADDR(sc, sc->sc_txnext));
   1390 	AE_WRITE(sc, CSR_RXLIST, AE_CDRXADDR(sc, sc->sc_rxptr));
   1391 	AE_BARRIER(sc);
   1392 
   1393 	/*
   1394 	 * Set the station address.
   1395 	 */
   1396 	enaddr = CLLADDR(ifp->if_sadl);
   1397 	AE_WRITE(sc, CSR_MACHI, enaddr[5] << 16 | enaddr[4]);
   1398 	AE_WRITE(sc, CSR_MACLO, enaddr[3] << 24 | enaddr[2] << 16 |
   1399 		enaddr[1] << 8 | enaddr[0]);
   1400 	AE_BARRIER(sc);
   1401 
   1402 	/*
   1403 	 * Set the receive filter.  This will start the transmit and
   1404 	 * receive processes.
   1405 	 */
   1406 	ae_filter_setup(sc);
   1407 
   1408 	/*
   1409 	 * Set the current media.
   1410 	 */
   1411 	if ((error = ether_mediachange(ifp)) != 0)
   1412 		goto out;
   1413 
   1414 	/*
   1415 	 * Start the mac.
   1416 	 */
   1417 	AE_SET(sc, CSR_MACCTL, MACCTL_RE | MACCTL_TE);
   1418 	AE_BARRIER(sc);
   1419 
   1420 	/*
   1421 	 * Write out the opmode.
   1422 	 */
   1423 	AE_WRITE(sc, CSR_OPMODE, OPMODE_SR | OPMODE_ST |
   1424 	    ae_txthresh[sc->sc_txthresh].txth_opmode);
   1425 	/*
   1426 	 * Start the receive process.
   1427 	 */
   1428 	AE_WRITE(sc, CSR_RXPOLL, RXPOLL_RPD);
   1429 	AE_BARRIER(sc);
   1430 
   1431 	if (sc->sc_tick != NULL) {
   1432 		/* Start the one second clock. */
   1433 		callout_reset(&sc->sc_tick_callout, hz >> 3, sc->sc_tick, sc);
   1434 	}
   1435 
   1436 	/*
   1437 	 * Note that the interface is now running.
   1438 	 */
   1439 	ifp->if_flags |= IFF_RUNNING;
   1440 	sc->sc_if_flags = ifp->if_flags;
   1441 
   1442  out:
   1443 	if (error) {
   1444 		ifp->if_flags &= ~IFF_RUNNING;
   1445 		ifp->if_timer = 0;
   1446 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   1447 	}
   1448 	return (error);
   1449 }
   1450 
   1451 /*
   1452  * ae_enable:
   1453  *
   1454  *	Enable the chip.
   1455  */
   1456 static int
   1457 ae_enable(struct ae_softc *sc)
   1458 {
   1459 
   1460 	if (AE_IS_ENABLED(sc) == 0) {
   1461 		sc->sc_ih = arbus_intr_establish(sc->sc_cirq, sc->sc_mirq,
   1462 		    ae_intr, sc);
   1463 		if (sc->sc_ih == NULL) {
   1464 			printf("%s: unable to establish interrupt\n",
   1465 			    device_xname(sc->sc_dev));
   1466 			return (EIO);
   1467 		}
   1468 		sc->sc_flags |= AE_ENABLED;
   1469 	}
   1470 	return (0);
   1471 }
   1472 
   1473 /*
   1474  * ae_disable:
   1475  *
   1476  *	Disable the chip.
   1477  */
   1478 static void
   1479 ae_disable(struct ae_softc *sc)
   1480 {
   1481 
   1482 	if (AE_IS_ENABLED(sc)) {
   1483 		arbus_intr_disestablish(sc->sc_ih);
   1484 		sc->sc_flags &= ~AE_ENABLED;
   1485 	}
   1486 }
   1487 
   1488 /*
   1489  * ae_power:
   1490  *
   1491  *	Power management (suspend/resume) hook.
   1492  */
   1493 static void
   1494 ae_power(int why, void *arg)
   1495 {
   1496 	struct ae_softc *sc = arg;
   1497 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1498 	int s;
   1499 
   1500 	printf("power called: %d, %x\n", why, (uint32_t)arg);
   1501 	s = splnet();
   1502 	switch (why) {
   1503 	case PWR_STANDBY:
   1504 		/* do nothing! */
   1505 		break;
   1506 	case PWR_SUSPEND:
   1507 		ae_stop(ifp, 0);
   1508 		ae_disable(sc);
   1509 		break;
   1510 	case PWR_RESUME:
   1511 		if (ifp->if_flags & IFF_UP) {
   1512 			ae_enable(sc);
   1513 			ae_init(ifp);
   1514 		}
   1515 		break;
   1516 	case PWR_SOFTSUSPEND:
   1517 	case PWR_SOFTSTANDBY:
   1518 	case PWR_SOFTRESUME:
   1519 		break;
   1520 	}
   1521 	splx(s);
   1522 }
   1523 
   1524 /*
   1525  * ae_rxdrain:
   1526  *
   1527  *	Drain the receive queue.
   1528  */
   1529 static void
   1530 ae_rxdrain(struct ae_softc *sc)
   1531 {
   1532 	struct ae_rxsoft *rxs;
   1533 	int i;
   1534 
   1535 	for (i = 0; i < AE_NRXDESC; i++) {
   1536 		rxs = &sc->sc_rxsoft[i];
   1537 		if (rxs->rxs_mbuf != NULL) {
   1538 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1539 			m_freem(rxs->rxs_mbuf);
   1540 			rxs->rxs_mbuf = NULL;
   1541 		}
   1542 	}
   1543 }
   1544 
   1545 /*
   1546  * ae_stop:		[ ifnet interface function ]
   1547  *
   1548  *	Stop transmission on the interface.
   1549  */
   1550 static void
   1551 ae_stop(struct ifnet *ifp, int disable)
   1552 {
   1553 	struct ae_softc *sc = ifp->if_softc;
   1554 	struct ae_txsoft *txs;
   1555 
   1556 	if (sc->sc_tick != NULL) {
   1557 		/* Stop the one second clock. */
   1558 		callout_stop(&sc->sc_tick_callout);
   1559 	}
   1560 
   1561 	/* Down the MII. */
   1562 	mii_down(&sc->sc_mii);
   1563 
   1564 	/* Disable interrupts. */
   1565 	AE_WRITE(sc, CSR_INTEN, 0);
   1566 
   1567 	/* Stop the transmit and receive processes. */
   1568 	AE_WRITE(sc, CSR_OPMODE, 0);
   1569 	AE_WRITE(sc, CSR_RXLIST, 0);
   1570 	AE_WRITE(sc, CSR_TXLIST, 0);
   1571 	AE_CLR(sc, CSR_MACCTL, MACCTL_TE | MACCTL_RE);
   1572 	AE_BARRIER(sc);
   1573 
   1574 	/*
   1575 	 * Release any queued transmit buffers.
   1576 	 */
   1577 	while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
   1578 		SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
   1579 		if (txs->txs_mbuf != NULL) {
   1580 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1581 			m_freem(txs->txs_mbuf);
   1582 			txs->txs_mbuf = NULL;
   1583 		}
   1584 		SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
   1585 	}
   1586 
   1587 	/*
   1588 	 * Mark the interface down and cancel the watchdog timer.
   1589 	 */
   1590 	ifp->if_flags &= ~IFF_RUNNING;
   1591 	sc->sc_if_flags = ifp->if_flags;
   1592 	ifp->if_timer = 0;
   1593 
   1594 	if (disable) {
   1595 		ae_rxdrain(sc);
   1596 		ae_disable(sc);
   1597 	}
   1598 
   1599 	/*
   1600 	 * Reset the chip (needed on some flavors to actually disable it).
   1601 	 */
   1602 	ae_reset(sc);
   1603 }
   1604 
   1605 /*
   1606  * ae_add_rxbuf:
   1607  *
   1608  *	Add a receive buffer to the indicated descriptor.
   1609  */
   1610 static int
   1611 ae_add_rxbuf(struct ae_softc *sc, int idx)
   1612 {
   1613 	struct ae_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1614 	struct mbuf *m;
   1615 	int error;
   1616 
   1617 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1618 	if (m == NULL)
   1619 		return (ENOBUFS);
   1620 
   1621 	MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
   1622 	MCLGET(m, M_DONTWAIT);
   1623 	if ((m->m_flags & M_EXT) == 0) {
   1624 		m_freem(m);
   1625 		return (ENOBUFS);
   1626 	}
   1627 
   1628 	if (rxs->rxs_mbuf != NULL)
   1629 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1630 
   1631 	rxs->rxs_mbuf = m;
   1632 
   1633 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap,
   1634 	    m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
   1635 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   1636 	if (error) {
   1637 		printf("%s: can't load rx DMA map %d, error = %d\n",
   1638 		    device_xname(sc->sc_dev), idx, error);
   1639 		panic("ae_add_rxbuf");	/* XXX */
   1640 	}
   1641 
   1642 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1643 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1644 
   1645 	AE_INIT_RXDESC(sc, idx);
   1646 
   1647 	return (0);
   1648 }
   1649 
   1650 /*
   1651  * ae_filter_setup:
   1652  *
   1653  *	Set the chip's receive filter.
   1654  */
   1655 static void
   1656 ae_filter_setup(struct ae_softc *sc)
   1657 {
   1658 	struct ethercom *ec = &sc->sc_ethercom;
   1659 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1660 	struct ether_multi *enm;
   1661 	struct ether_multistep step;
   1662 	uint32_t hash, mchash[2];
   1663 	uint32_t macctl = 0;
   1664 
   1665 	/*
   1666 	 * If the chip is running, we need to reset the interface,
   1667 	 * and will revisit here (with IFF_RUNNING) clear.  The
   1668 	 * chip seems to really not like to have its multicast
   1669 	 * filter programmed without a reset.
   1670 	 */
   1671 	if (ifp->if_flags & IFF_RUNNING) {
   1672 		(void) ae_init(ifp);
   1673 		return;
   1674 	}
   1675 
   1676 	DPRINTF(sc, ("%s: ae_filter_setup: sc_flags 0x%08x\n",
   1677 	    device_xname(sc->sc_dev), sc->sc_flags));
   1678 
   1679 	macctl = AE_READ(sc, CSR_MACCTL);
   1680 	macctl &= ~(MACCTL_PR | MACCTL_PM);
   1681 	macctl |= MACCTL_HASH;
   1682 	macctl |= MACCTL_HBD;
   1683 	macctl |= MACCTL_PR;
   1684 
   1685 	if (ifp->if_flags & IFF_PROMISC) {
   1686 		macctl |= MACCTL_PR;
   1687 		goto allmulti;
   1688 	}
   1689 
   1690 	mchash[0] = mchash[1] = 0;
   1691 
   1692 	ETHER_LOCK(ec);
   1693 	ETHER_FIRST_MULTI(step, ec, enm);
   1694 	while (enm != NULL) {
   1695 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   1696 			/*
   1697 			 * We must listen to a range of multicast addresses.
   1698 			 * For now, just accept all multicasts, rather than
   1699 			 * trying to set only those filter bits needed to match
   1700 			 * the range.  (At this time, the only use of address
   1701 			 * ranges is for IP multicast routing, for which the
   1702 			 * range is big enough to require all bits set.)
   1703 			 */
   1704 			ETHER_UNLOCK(ec);
   1705 			goto allmulti;
   1706 		}
   1707 
   1708 		/* Verify whether we use big or little endian hashes */
   1709 		hash = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
   1710 		mchash[hash >> 5] |= 1 << (hash & 0x1f);
   1711 		ETHER_NEXT_MULTI(step, enm);
   1712 	}
   1713 	ETHER_UNLOCK(ec);
   1714 	ifp->if_flags &= ~IFF_ALLMULTI;
   1715 	goto setit;
   1716 
   1717  allmulti:
   1718 	ifp->if_flags |= IFF_ALLMULTI;
   1719 	mchash[0] = mchash[1] = 0xffffffff;
   1720 	macctl |= MACCTL_PM;
   1721 
   1722  setit:
   1723 	AE_WRITE(sc, CSR_HTHI, mchash[0]);
   1724 	AE_WRITE(sc, CSR_HTHI, mchash[1]);
   1725 
   1726 	AE_WRITE(sc, CSR_MACCTL, macctl);
   1727 	AE_BARRIER(sc);
   1728 
   1729 	DPRINTF(sc, ("%s: ae_filter_setup: returning %x\n",
   1730 		    device_xname(sc->sc_dev), macctl));
   1731 }
   1732 
   1733 /*
   1734  * ae_idle:
   1735  *
   1736  *	Cause the transmit and/or receive processes to go idle.
   1737  */
   1738 void
   1739 ae_idle(struct ae_softc *sc, uint32_t bits)
   1740 {
   1741 	static const char * const txstate_names[] = {
   1742 		"STOPPED",
   1743 		"RUNNING - FETCH",
   1744 		"RUNNING - WAIT",
   1745 		"RUNNING - READING",
   1746 		"-- RESERVED --",
   1747 		"RUNNING - SETUP",
   1748 		"SUSPENDED",
   1749 		"RUNNING - CLOSE",
   1750 	};
   1751 	static const char * const rxstate_names[] = {
   1752 		"STOPPED",
   1753 		"RUNNING - FETCH",
   1754 		"RUNNING - CHECK",
   1755 		"RUNNING - WAIT",
   1756 		"SUSPENDED",
   1757 		"RUNNING - CLOSE",
   1758 		"RUNNING - FLUSH",
   1759 		"RUNNING - QUEUE",
   1760 	};
   1761 
   1762 	uint32_t csr, ackmask = 0;
   1763 	int i;
   1764 
   1765 	if (bits & OPMODE_ST)
   1766 		ackmask |= STATUS_TPS;
   1767 
   1768 	if (bits & OPMODE_SR)
   1769 		ackmask |= STATUS_RPS;
   1770 
   1771 	AE_CLR(sc, CSR_OPMODE, bits);
   1772 
   1773 	for (i = 0; i < 1000; i++) {
   1774 		if (AE_ISSET(sc, CSR_STATUS, ackmask) == ackmask)
   1775 			break;
   1776 		delay(10);
   1777 	}
   1778 
   1779 	csr = AE_READ(sc, CSR_STATUS);
   1780 	if ((csr & ackmask) != ackmask) {
   1781 		if ((bits & OPMODE_ST) != 0 && (csr & STATUS_TPS) == 0 &&
   1782 		    (csr & STATUS_TS) != STATUS_TS_STOPPED) {
   1783 			printf("%s: transmit process failed to idle: "
   1784 			    "state %s\n", device_xname(sc->sc_dev),
   1785 			    txstate_names[(csr & STATUS_TS) >> 20]);
   1786 		}
   1787 		if ((bits & OPMODE_SR) != 0 && (csr & STATUS_RPS) == 0 &&
   1788 		    (csr & STATUS_RS) != STATUS_RS_STOPPED) {
   1789 			printf("%s: receive process failed to idle: "
   1790 			    "state %s\n", device_xname(sc->sc_dev),
   1791 			    rxstate_names[(csr & STATUS_RS) >> 17]);
   1792 		}
   1793 	}
   1794 }
   1795 
   1796 /*****************************************************************************
   1797  * Support functions for MII-attached media.
   1798  *****************************************************************************/
   1799 
   1800 /*
   1801  * ae_mii_tick:
   1802  *
   1803  *	One second timer, used to tick the MII.
   1804  */
   1805 static void
   1806 ae_mii_tick(void *arg)
   1807 {
   1808 	struct ae_softc *sc = arg;
   1809 	int s;
   1810 
   1811 	if (!device_is_active(sc->sc_dev))
   1812 		return;
   1813 
   1814 	s = splnet();
   1815 	mii_tick(&sc->sc_mii);
   1816 	splx(s);
   1817 
   1818 	callout_reset(&sc->sc_tick_callout, hz, sc->sc_tick, sc);
   1819 }
   1820 
   1821 /*
   1822  * ae_mii_statchg:	[mii interface function]
   1823  *
   1824  *	Callback from PHY when media changes.
   1825  */
   1826 static void
   1827 ae_mii_statchg(struct ifnet *ifp)
   1828 {
   1829 	struct ae_softc *sc = ifp->if_softc;
   1830 	uint32_t	macctl, flowc;
   1831 
   1832 	//opmode = AE_READ(sc, CSR_OPMODE);
   1833 	macctl = AE_READ(sc, CSR_MACCTL);
   1834 
   1835 	/* XXX: do we need to do this? */
   1836 	/* Idle the transmit and receive processes. */
   1837 	//ae_idle(sc, OPMODE_ST | OPMODE_SR);
   1838 
   1839 	if (sc->sc_mii.mii_media_active & IFM_FDX) {
   1840 		flowc = FLOWC_FCE;
   1841 		macctl &= ~MACCTL_DRO;
   1842 		macctl |= MACCTL_FDX;
   1843 	} else {
   1844 		flowc = 0;	/* cannot do flow control in HDX */
   1845 		macctl |= MACCTL_DRO;
   1846 		macctl &= ~MACCTL_FDX;
   1847 	}
   1848 
   1849 	AE_WRITE(sc, CSR_FLOWC, flowc);
   1850 	AE_WRITE(sc, CSR_MACCTL, macctl);
   1851 
   1852 	/* restore operational mode */
   1853 	//AE_WRITE(sc, CSR_OPMODE, opmode);
   1854 	AE_BARRIER(sc);
   1855 }
   1856 
   1857 /*
   1858  * ae_mii_readreg:
   1859  *
   1860  *	Read a PHY register.
   1861  */
   1862 static int
   1863 ae_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
   1864 {
   1865 	struct ae_softc	*sc = device_private(self);
   1866 	uint32_t	addr;
   1867 	int		i;
   1868 
   1869 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT);
   1870 	AE_WRITE(sc, CSR_MIIADDR, addr);
   1871 	AE_BARRIER(sc);
   1872 	for (i = 0; i < 100000000; i++) {
   1873 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
   1874 			break;
   1875 	}
   1876 
   1877 	if (i >= 100000000)
   1878 		return ETIMEDOUT;
   1879 
   1880 	*val = AE_READ(sc, CSR_MIIDATA) & 0xffff;
   1881 	return 0;
   1882 }
   1883 
   1884 /*
   1885  * ae_mii_writereg:
   1886  *
   1887  *	Write a PHY register.
   1888  */
   1889 static int
   1890 ae_mii_writereg(device_t self, int phy, int reg, uint16_t val)
   1891 {
   1892 	struct ae_softc *sc = device_private(self);
   1893 	uint32_t	addr;
   1894 	int		i;
   1895 
   1896 	/* write the data register */
   1897 	AE_WRITE(sc, CSR_MIIDATA, val);
   1898 
   1899 	/* write the address to latch it in */
   1900 	addr = (phy << MIIADDR_PHY_SHIFT) | (reg << MIIADDR_REG_SHIFT) |
   1901 	    MIIADDR_WRITE;
   1902 	AE_WRITE(sc, CSR_MIIADDR, addr);
   1903 	AE_BARRIER(sc);
   1904 
   1905 	for (i = 0; i < 100000000; i++) {
   1906 		if ((AE_READ(sc, CSR_MIIADDR) & MIIADDR_BUSY) == 0)
   1907 			break;
   1908 	}
   1909 
   1910 	if (i >= 100000000)
   1911 		return ETIMEDOUT;
   1912 
   1913 	return 0;
   1914 }
   1915