Home | History | Annotate | Line # | Download | only in i2c
      1 /* $NetBSD: axppmic.c,v 1.42 2025/09/17 13:42:42 thorpej Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2014-2018 Jared McNeill <jmcneill (at) invisible.ca>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: axppmic.c,v 1.42 2025/09/17 13:42:42 thorpej Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/systm.h>
     34 #include <sys/kernel.h>
     35 #include <sys/device.h>
     36 #include <sys/conf.h>
     37 #include <sys/bus.h>
     38 #include <sys/kmem.h>
     39 #include <sys/workqueue.h>
     40 
     41 #include <dev/i2c/i2cvar.h>
     42 
     43 #include <dev/sysmon/sysmonvar.h>
     44 #include <dev/sysmon/sysmon_taskq.h>
     45 
     46 #include <dev/fdt/fdtvar.h>
     47 
     48 #define	AXP_POWER_SOURCE_REG	0x00
     49 #define	 AXP_POWER_SOURCE_ACIN_PRESENT	__BIT(7)
     50 #define	 AXP_POWER_SOURCE_VBUS_PRESENT	__BIT(5)
     51 #define	 AXP_POWER_SOURCE_CHARGE_DIRECTION __BIT(2)
     52 
     53 #define	AXP_POWER_MODE_REG	0x01
     54 #define	 AXP_POWER_MODE_BATT_VALID	__BIT(4)
     55 #define	 AXP_POWER_MODE_BATT_PRESENT	__BIT(5)
     56 #define	 AXP_POWER_MODE_BATT_CHARGING	__BIT(6)
     57 
     58 #define	AXP_CHIP_ID_REG		0x03
     59 
     60 #define AXP_POWER_DISABLE_REG	0x32
     61 #define	 AXP_POWER_DISABLE_CTRL	__BIT(7)
     62 
     63 #define AXP_IRQ_ENABLE_REG(n)	(0x40 + (n) - 1)
     64 #define	 AXP_IRQ1_ACIN_RAISE	__BIT(6)
     65 #define	 AXP_IRQ1_ACIN_LOWER	__BIT(5)
     66 #define	 AXP_IRQ1_VBUS_RAISE	__BIT(3)
     67 #define	 AXP_IRQ1_VBUS_LOWER	__BIT(2)
     68 #define AXP_IRQ_STATUS_REG(n)	(0x48 + (n) - 1)
     69 
     70 #define	AXP_BATSENSE_HI_REG	0x78
     71 #define	AXP_BATSENSE_LO_REG	0x79
     72 
     73 #define	AXP_BATTCHG_HI_REG	0x7a
     74 #define	AXP_BATTCHG_LO_REG	0x7b
     75 
     76 #define	AXP_BATTDISCHG_HI_REG	0x7c
     77 #define	AXP_BATTDISCHG_LO_REG	0x7d
     78 
     79 #define	AXP_ADC_RAW(_hi, _lo)	\
     80 	(((u_int)(_hi) << 4) | ((_lo) & 0xf))
     81 
     82 #define	AXP_GPIO_CTRL_REG(pin)	(0x90 + (pin) * 2)
     83 #define	 AXP_GPIO_CTRL_FUNC_MASK 	__BITS(2,0)
     84 #define	 AXP_GPIO_CTRL_FUNC_LOW	 	0
     85 #define	 AXP_GPIO_CTRL_FUNC_HIGH	1
     86 #define	 AXP_GPIO_CTRL_FUNC_INPUT	2
     87 #define	AXP_GPIO_SIGNAL_REG	0x94
     88 
     89 #define	AXP_FUEL_GAUGE_CTRL_REG	0xb8
     90 #define	 AXP_FUEL_GAUGE_CTRL_EN	__BIT(7)
     91 
     92 #define	AXP_BATT_CAP_REG	0xb9
     93 #define	 AXP_BATT_CAP_VALID	__BIT(7)
     94 #define	 AXP_BATT_CAP_PERCENT	__BITS(6,0)
     95 
     96 #define	AXP_BATT_MAX_CAP_HI_REG	0xe0
     97 #define	 AXP_BATT_MAX_CAP_VALID	__BIT(7)
     98 #define	AXP_BATT_MAX_CAP_LO_REG	0xe1
     99 
    100 #define	AXP_BATT_COULOMB_HI_REG	0xe2
    101 #define	 AXP_BATT_COULOMB_VALID	__BIT(7)
    102 #define	AXP_BATT_COULOMB_LO_REG	0xe3
    103 
    104 #define	AXP_COULOMB_RAW(_hi, _lo)	\
    105 	(((u_int)(_hi & ~__BIT(7)) << 8) | (_lo))
    106 
    107 #define	AXP_BATT_CAP_WARN_REG	0xe6
    108 #define	 AXP_BATT_CAP_WARN_LV1	__BITS(7,4)
    109 #define	 AXP_BATT_CAP_WARN_LV2	__BITS(3,0)
    110 
    111 #define	AXP_ADDR_EXT_REG	0xff	/* AXP806 */
    112 #define	 AXP_ADDR_EXT_MASTER	0
    113 #define	 AXP_ADDR_EXT_SLAVE	__BIT(4)
    114 
    115 struct axppmic_ctrl {
    116 	device_t	c_dev;
    117 
    118 	const char *	c_name;
    119 	u_int		c_min;
    120 	u_int		c_max;
    121 	u_int		c_step1;
    122 	u_int		c_step1cnt;
    123 	u_int		c_step2;
    124 	u_int		c_step2cnt;
    125 	u_int		c_step2start;
    126 
    127 	uint8_t		c_enable_reg;
    128 	uint8_t		c_enable_mask;
    129 	uint8_t		c_enable_val;
    130 	uint8_t		c_disable_val;
    131 
    132 	uint8_t		c_voltage_reg;
    133 	uint8_t		c_voltage_mask;
    134 };
    135 
    136 #define AXP_CTRL(name, min, max, step, ereg, emask, vreg, vmask)	\
    137 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    138 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
    139 	  .c_step2 = 0, .c_step2cnt = 0,				\
    140 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    141 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    142 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    143 
    144 #define AXP_CTRL2(name, min, max, step1, step1cnt, step2, step2cnt, ereg, emask, vreg, vmask) \
    145 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    146 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
    147 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
    148 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    149 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    150 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    151 
    152 #define AXP_CTRL2_RANGE(name, min, max, step1, step1cnt, step2start, step2, step2cnt, ereg, emask, vreg, vmask) \
    153 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    154 	  .c_step1 = (step1), .c_step1cnt = (step1cnt),			\
    155 	  .c_step2start = (step2start),					\
    156 	  .c_step2 = (step2), .c_step2cnt = (step2cnt),			\
    157 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    158 	  .c_enable_val = (emask), .c_disable_val = 0,			\
    159 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    160 
    161 #define AXP_CTRL_IO(name, min, max, step, ereg, emask, eval, dval, vreg, vmask)	\
    162 	{ .c_name = (name), .c_min = (min), .c_max = (max),		\
    163 	  .c_step1 = (step), .c_step1cnt = (((max) - (min)) / (step)) + 1, \
    164 	  .c_step2 = 0, .c_step2cnt = 0,				\
    165 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    166 	  .c_enable_val = (eval), .c_disable_val = (dval),		\
    167 	  .c_voltage_reg = (vreg), .c_voltage_mask = (vmask) }
    168 
    169 #define AXP_CTRL_SW(name, ereg, emask)					\
    170 	{ .c_name = (name), 						\
    171 	  .c_enable_reg = (ereg), .c_enable_mask = (emask),		\
    172 	  .c_enable_val = (emask), .c_disable_val = 0 }
    173 
    174 static const struct axppmic_ctrl axp803_ctrls[] = {
    175 	AXP_CTRL("dldo1", 700, 3300, 100,
    176 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    177 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    178 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    179 	AXP_CTRL("dldo3", 700, 3300, 100,
    180 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    181 	AXP_CTRL("dldo4", 700, 3300, 100,
    182 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    183 	AXP_CTRL("eldo1", 700, 1900, 50,
    184 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    185 	AXP_CTRL("eldo2", 700, 1900, 50,
    186 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    187 	AXP_CTRL("eldo3", 700, 1900, 50,
    188 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    189 	AXP_CTRL("fldo1", 700, 1450, 50,
    190 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    191 	AXP_CTRL("fldo2", 700, 1450, 50,
    192 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    193 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    194 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    195 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    196 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    197 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    198 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    199 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    200 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    201 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    202 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    203 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    204 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    205 	AXP_CTRL("aldo1", 700, 3300, 100,
    206 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    207 	AXP_CTRL("aldo2", 700, 3300, 100,
    208 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    209 	AXP_CTRL("aldo3", 700, 3300, 100,
    210 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    211 };
    212 
    213 static const struct axppmic_ctrl axp805_ctrls[] = {
    214 	AXP_CTRL2("dcdca", 600, 1520, 10, 51, 20, 21,
    215 		0x10, __BIT(0), 0x12, __BITS(6,0)),
    216 	AXP_CTRL("dcdcb", 1000, 2550, 50,
    217 		0x10, __BIT(1), 0x13, __BITS(4,0)),
    218 	AXP_CTRL2("dcdcc", 600, 1520, 10, 51, 20, 21,
    219 		0x10, __BIT(2), 0x14, __BITS(6,0)),
    220 	AXP_CTRL2("dcdcd", 600, 3300, 20, 46, 100, 18,
    221 		0x10, __BIT(3), 0x15, __BITS(5,0)),
    222 	AXP_CTRL("dcdce", 1100, 3400, 100,
    223 		0x10, __BIT(4), 0x16, __BITS(4,0)),
    224 	AXP_CTRL("aldo1", 700, 3300, 100,
    225 		0x10, __BIT(5), 0x17, __BITS(4,0)),
    226 	AXP_CTRL("aldo2", 700, 3400, 100,
    227 		0x10, __BIT(6), 0x18, __BITS(4,0)),
    228 	AXP_CTRL("aldo3", 700, 3300, 100,
    229 		0x10, __BIT(7), 0x19, __BITS(4,0)),
    230 	AXP_CTRL("bldo1", 700, 1900, 100,
    231 		0x11, __BIT(0), 0x20, __BITS(3,0)),
    232 	AXP_CTRL("bldo2", 700, 1900, 100,
    233 		0x11, __BIT(1), 0x21, __BITS(3,0)),
    234 	AXP_CTRL("bldo3", 700, 1900, 100,
    235 		0x11, __BIT(2), 0x22, __BITS(3,0)),
    236 	AXP_CTRL("bldo4", 700, 1900, 100,
    237 		0x11, __BIT(3), 0x23, __BITS(3,0)),
    238 	AXP_CTRL("cldo1", 700, 3300, 100,
    239 		0x11, __BIT(4), 0x24, __BITS(4,0)),
    240 	AXP_CTRL2("cldo2", 700, 4200, 100, 28, 200, 4,
    241 		0x11, __BIT(5), 0x25, __BITS(4,0)),
    242 	AXP_CTRL("cldo3", 700, 3300, 100,
    243 		0x11, __BIT(6), 0x26, __BITS(4,0)),
    244 };
    245 
    246 static const struct axppmic_ctrl axp809_ctrls[] = {
    247 	AXP_CTRL("dc5ldo", 700, 1400, 100,
    248 		0x10, __BIT(0), 0x1c, __BITS(2,0)),
    249 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    250 		0x10, __BIT(1), 0x21, __BITS(4,0)),
    251 	AXP_CTRL("dcdc2", 600, 1540, 20,
    252 		0x10, __BIT(2), 0x22, __BITS(5,0)),
    253 	AXP_CTRL("dcdc3", 600, 1860, 20,
    254 		0x10, __BIT(3), 0x23, __BITS(5,0)),
    255 	AXP_CTRL2_RANGE("dcdc4", 600, 2600, 20, 47, 1800, 100, 9,
    256 		0x10, __BIT(4), 0x24, __BITS(5,0)),
    257 	AXP_CTRL("dcdc5", 1000, 2550, 50,
    258 		0x10, __BIT(5), 0x25, __BITS(4,0)),
    259 	AXP_CTRL("aldo1", 700, 3300, 100,
    260 		0x10, __BIT(6), 0x28, __BITS(4,0)),
    261 	AXP_CTRL("aldo2", 700, 3300, 100,
    262 		0x10, __BIT(7), 0x29, __BITS(4,0)),
    263 	AXP_CTRL("eldo1", 700, 3300, 100,
    264 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    265 	AXP_CTRL("eldo2", 700, 3300, 100,
    266 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    267 	AXP_CTRL("eldo3", 700, 3300, 100,
    268 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    269 	AXP_CTRL2_RANGE("dldo1", 700, 4000, 100, 26, 3400, 200, 4,
    270 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    271 	AXP_CTRL("dldo2", 700, 3300, 100,
    272 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    273 	AXP_CTRL("aldo3", 700, 3300, 100,
    274 		0x12, __BIT(5), 0x2a, __BITS(4,0)),
    275 	AXP_CTRL_SW("sw",
    276 		0x12, __BIT(6)),
    277 	/* dc1sw is another switch for dcdc1 */
    278 	AXP_CTRL("dc1sw", 1600, 3400, 100,
    279 		0x12, __BIT(7), 0x21, __BITS(4,0)),
    280 	AXP_CTRL_IO("ldo_io0", 700, 3300, 100,
    281 		0x90, __BITS(3,0), 0x3, 0x7, 0x91, __BITS(4,0)),
    282 	AXP_CTRL_IO("ldo_io1", 700, 3300, 100,
    283 		0x92, __BITS(3,0), 0x3, 0x7, 0x93, __BITS(4,0)),
    284 };
    285 
    286 static const struct axppmic_ctrl axp813_ctrls[] = {
    287 	AXP_CTRL("dldo1", 700, 3300, 100,
    288 		0x12, __BIT(3), 0x15, __BITS(4,0)),
    289 	AXP_CTRL2("dldo2", 700, 4200, 100, 28, 200, 4,
    290 		0x12, __BIT(4), 0x16, __BITS(4,0)),
    291 	AXP_CTRL("dldo3", 700, 3300, 100,
    292 	 	0x12, __BIT(5), 0x17, __BITS(4,0)),
    293 	AXP_CTRL("dldo4", 700, 3300, 100,
    294 		0x12, __BIT(6), 0x18, __BITS(4,0)),
    295 	AXP_CTRL("eldo1", 700, 1900, 50,
    296 		0x12, __BIT(0), 0x19, __BITS(4,0)),
    297 	AXP_CTRL("eldo2", 700, 1900, 50,
    298 		0x12, __BIT(1), 0x1a, __BITS(4,0)),
    299 	AXP_CTRL("eldo3", 700, 1900, 50,
    300 		0x12, __BIT(2), 0x1b, __BITS(4,0)),
    301 	AXP_CTRL("fldo1", 700, 1450, 50,
    302 		0x13, __BIT(2), 0x1c, __BITS(3,0)),
    303 	AXP_CTRL("fldo2", 700, 1450, 50,
    304 		0x13, __BIT(3), 0x1d, __BITS(3,0)),
    305 	AXP_CTRL("dcdc1", 1600, 3400, 100,
    306 		0x10, __BIT(0), 0x20, __BITS(4,0)),
    307 	AXP_CTRL2("dcdc2", 500, 1300, 10, 70, 20, 5,
    308 		0x10, __BIT(1), 0x21, __BITS(6,0)),
    309 	AXP_CTRL2("dcdc3", 500, 1300, 10, 70, 20, 5,
    310 		0x10, __BIT(2), 0x22, __BITS(6,0)),
    311 	AXP_CTRL2("dcdc4", 500, 1300, 10, 70, 20, 5,
    312 		0x10, __BIT(3), 0x23, __BITS(6,0)),
    313 	AXP_CTRL2("dcdc5", 800, 1840, 10, 33, 20, 36,
    314 		0x10, __BIT(4), 0x24, __BITS(6,0)),
    315 	AXP_CTRL2("dcdc6", 600, 1520, 10, 51, 20, 21,
    316 		0x10, __BIT(5), 0x25, __BITS(6,0)),
    317 	AXP_CTRL2("dcdc7", 600, 1520, 10, 51, 20, 21,
    318 		0x10, __BIT(6), 0x26, __BITS(6,0)),
    319 	AXP_CTRL("aldo1", 700, 3300, 100,
    320 		0x13, __BIT(5), 0x28, __BITS(4,0)),
    321 	AXP_CTRL("aldo2", 700, 3300, 100,
    322 		0x13, __BIT(6), 0x29, __BITS(4,0)),
    323 	AXP_CTRL("aldo3", 700, 3300, 100,
    324 		0x13, __BIT(7), 0x2a, __BITS(4,0)),
    325 };
    326 
    327 static const struct axppmic_ctrl axp15060_ctrls[] = {
    328 	AXP_CTRL( "dcdc1",  1500, 3400, 100,
    329 		 0x13, __BITS(4, 0),
    330 		 0x10, __BIT(0)),
    331 	// DCDC2: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
    332 	AXP_CTRL2_RANGE("dcdc2",
    333 			500, 1540, 70, 10, 1220, 16 , 20,
    334 			0x14, __BITS(6, 0),
    335 			0x10, __BIT(1)),
    336 	// DCDC3: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
    337 	AXP_CTRL2_RANGE("dcdc3",
    338 			500, 1540, 70, 10, 1220, 16 , 20,
    339 			0x15, __BITS(6, 0),
    340 			0x10, __BIT(2)),
    341 	// DCDC4: 0.5~1.2V, 10mV/step, 1.22~1.54V, 20mV/step, IMAX=3.5A, DVM
    342 	AXP_CTRL2_RANGE("dcdc4",
    343 			500, 1540, 70, 10, 1220, 16 , 20,
    344 			0x16, __BITS(6, 0),
    345 			0x10, __BIT(3)),
    346 	// DCDC5: 0.8~1.12V, 10mV/step, 1.14~1.84V, 20mV/step, IMAX=2.5A, DVM
    347 	AXP_CTRL2_RANGE("dcdc5",
    348 			800, 1840,
    349 			32, 10,
    350 			1140, 35, 20,
    351 			0x17, __BITS(6, 0),
    352 			0x10, __BIT(4)),
    353 	AXP_CTRL("dcdc6", 500, 3400, 100,
    354 		 0x18, __BITS(4, 0),
    355 		 0x10, __BIT(5)),
    356 	AXP_CTRL("aldo1", 700, 3300, 100,
    357 		 0x19, __BITS(4, 0),
    358 		 0x11, __BIT(0)),
    359 	AXP_CTRL("aldo2", 700, 3300, 100,
    360 		 0x20, __BITS(4, 0),
    361 		 0x11, __BIT(1)),
    362 	AXP_CTRL("aldo3", 700, 3300, 100,
    363 		 0x21, __BITS(4, 0),
    364 		 0x11, __BIT(2)),
    365 	AXP_CTRL("aldo4", 700, 3300, 100,
    366 		 0x22, __BITS(4, 0),
    367 		 0x11, __BIT(3)),
    368 	AXP_CTRL("aldo5", 700, 3300, 100,
    369 		 0x23, __BITS(4, 0),
    370 		 0x11, __BIT(4)),
    371 	AXP_CTRL("bldo1", 700, 3300, 100,
    372 		 0x24, __BITS(4, 0),
    373 		 0x11, __BIT(5)),
    374 	AXP_CTRL("bldo2", 700, 3300, 100,
    375 		 0x25, __BITS(4, 0),
    376 		 0x11, __BIT(6)),
    377 	AXP_CTRL("bldo3", 700, 3300, 100,
    378 		 0x26, __BITS(4, 0),
    379 		 0x11, __BIT(7)),
    380 	AXP_CTRL("bldo4", 700, 3300, 100,
    381 		 0x27, __BITS(4, 0),
    382 		 0x12, __BIT(0)),
    383 	AXP_CTRL("bldo5", 700, 3300, 100,
    384 		 0x28, __BITS(4, 0),
    385 		 0x12, __BIT(1)),
    386 	AXP_CTRL("cldo1", 700, 3300, 100,
    387 		 0x29, __BITS(4, 0),
    388 		 0x12, __BIT(2)),
    389 	AXP_CTRL("cldo2", 700, 3300, 100,
    390 		 0x2a, __BITS(4, 0),
    391 		 0x12, __BIT(3)),
    392 	AXP_CTRL("cldo3", 700, 3300, 100,
    393 		 0x2b, __BITS(4, 0),
    394 		 0x12, __BIT(4)),
    395 	AXP_CTRL("cldo4", 700, 4200, 100,
    396 		 0x2d, __BITS(5, 0),
    397 		 0x12, __BIT(5)),
    398 	AXP_CTRL("cpusldo", 700, 1400, 50,
    399 		 0x2e, __BITS(3, 0),
    400 		 0x12, __BIT(6)),
    401 };
    402 
    403 
    404 struct axppmic_irq {
    405 	u_int reg;
    406 	uint8_t mask;
    407 };
    408 
    409 #define	AXPPMIC_IRQ(_reg, _mask)	\
    410 	{ .reg = (_reg), .mask = (_mask) }
    411 
    412 struct axppmic_config {
    413 	const char *name;
    414 	const char *gpio_compat;
    415 	u_int gpio_npins;
    416 	const struct axppmic_ctrl *controls;
    417 	u_int ncontrols;
    418 	u_int irq_regs;
    419 	bool has_battery;
    420 	bool has_fuel_gauge;
    421 	bool has_mode_set;
    422 	struct axppmic_irq poklirq;
    423 	struct axppmic_irq acinirq;
    424 	struct axppmic_irq vbusirq;
    425 	struct axppmic_irq battirq;
    426 	struct axppmic_irq chargeirq;
    427 	struct axppmic_irq chargestirq;
    428 	u_int batsense_step;	/* uV */
    429 	u_int charge_step;	/* uA */
    430 	u_int discharge_step;	/* uA */
    431 	u_int maxcap_step;	/* uAh */
    432 	u_int coulomb_step;	/* uAh */
    433 };
    434 
    435 enum axppmic_sensor {
    436 	AXP_SENSOR_ACIN_PRESENT,
    437 	AXP_SENSOR_VBUS_PRESENT,
    438 	AXP_SENSOR_BATT_PRESENT,
    439 	AXP_SENSOR_BATT_CHARGING,
    440 	AXP_SENSOR_BATT_CHARGE_STATE,
    441 	AXP_SENSOR_BATT_VOLTAGE,
    442 	AXP_SENSOR_BATT_CHARGE_CURRENT,
    443 	AXP_SENSOR_BATT_DISCHARGE_CURRENT,
    444 	AXP_SENSOR_BATT_CAPACITY_PERCENT,
    445 	AXP_SENSOR_BATT_MAXIMUM_CAPACITY,
    446 	AXP_SENSOR_BATT_CURRENT_CAPACITY,
    447 	AXP_NSENSORS
    448 };
    449 
    450 struct axppmic_softc {
    451 	device_t	sc_dev;
    452 	i2c_tag_t	sc_i2c;
    453 	i2c_addr_t	sc_addr;
    454 	int		sc_phandle;
    455 
    456 	void		*sc_ih;
    457 	struct workqueue *sc_wq;
    458 
    459 	kmutex_t	sc_intr_lock;
    460 	struct work	sc_work;
    461 	bool		sc_work_scheduled;
    462 
    463 	const struct axppmic_config *sc_conf;
    464 
    465 	struct sysmon_pswitch sc_smpsw;
    466 
    467 	struct sysmon_envsys *sc_sme;
    468 
    469 	envsys_data_t	sc_sensor[AXP_NSENSORS];
    470 
    471 	u_int		sc_warn_thres;
    472 	u_int		sc_shut_thres;
    473 };
    474 
    475 struct axppmic_gpio_pin {
    476 	struct axppmic_softc *pin_sc;
    477 	u_int pin_nr;
    478 	int pin_flags;
    479 	bool pin_actlo;
    480 };
    481 
    482 struct axpreg_softc {
    483 	device_t	sc_dev;
    484 	i2c_tag_t	sc_i2c;
    485 	i2c_addr_t	sc_addr;
    486 	const struct axppmic_ctrl *sc_ctrl;
    487 };
    488 
    489 struct axpreg_attach_args {
    490 	const struct axppmic_ctrl *reg_ctrl;
    491 	int		reg_phandle;
    492 	i2c_tag_t	reg_i2c;
    493 	i2c_addr_t	reg_addr;
    494 };
    495 
    496 static const struct axppmic_config axp803_config = {
    497 	.name = "AXP803",
    498 	.gpio_compat = "x-powers,axp803-gpio",
    499 	.gpio_npins = 2,
    500 	.controls = axp803_ctrls,
    501 	.ncontrols = __arraycount(axp803_ctrls),
    502 	.irq_regs = 6,
    503 	.has_battery = true,
    504 	.has_fuel_gauge = true,
    505 	.batsense_step = 1100,
    506 	.charge_step = 1000,
    507 	.discharge_step = 1000,
    508 	.maxcap_step = 1456,
    509 	.coulomb_step = 1456,
    510 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    511 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    512 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    513 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    514 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    515 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    516 };
    517 
    518 static const struct axppmic_config axp805_config = {
    519 	.name = "AXP805",
    520 	.controls = axp805_ctrls,
    521 	.ncontrols = __arraycount(axp805_ctrls),
    522 	.irq_regs = 2,
    523 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
    524 };
    525 
    526 static const struct axppmic_config axp806_config = {
    527 	.name = "AXP806",
    528 	.controls = axp805_ctrls,
    529 	.ncontrols = __arraycount(axp805_ctrls),
    530 #if notyet
    531 	.irq_regs = 2,
    532 	.poklirq = AXPPMIC_IRQ(2, __BIT(0)),
    533 #endif
    534 	.has_mode_set = true,
    535 };
    536 
    537 static const struct axppmic_config axp809_config = {
    538 	.name = "AXP809",
    539 	.controls = axp809_ctrls,
    540 	.ncontrols = __arraycount(axp809_ctrls),
    541 };
    542 
    543 static const struct axppmic_config axp813_config = {
    544 	.name = "AXP813",
    545 	.gpio_compat = "x-powers,axp813-gpio",
    546 	.gpio_npins = 2,
    547 	.controls = axp813_ctrls,
    548 	.ncontrols = __arraycount(axp813_ctrls),
    549 	.irq_regs = 6,
    550 	.has_battery = true,
    551 	.has_fuel_gauge = true,
    552 	.batsense_step = 1100,
    553 	.charge_step = 1000,
    554 	.discharge_step = 1000,
    555 	.maxcap_step = 1456,
    556 	.coulomb_step = 1456,
    557 	.poklirq = AXPPMIC_IRQ(5, __BIT(3)),
    558 	.acinirq = AXPPMIC_IRQ(1, __BITS(6,5)),
    559 	.vbusirq = AXPPMIC_IRQ(1, __BITS(3,2)),
    560 	.battirq = AXPPMIC_IRQ(2, __BITS(7,6)),
    561 	.chargeirq = AXPPMIC_IRQ(2, __BITS(3,2)),
    562 	.chargestirq = AXPPMIC_IRQ(4, __BITS(1,0)),
    563 };
    564 
    565 static const struct axppmic_config axp15060_config = {
    566 	.name = "AXP15060",
    567 	.controls = axp15060_ctrls,
    568 	.ncontrols = __arraycount(axp15060_ctrls),
    569 };
    570 
    571 static const struct device_compatible_entry compat_data[] = {
    572 	{ .compat = "x-powers,axp803",		.data = &axp803_config },
    573 	{ .compat = "x-powers,axp805",		.data = &axp805_config },
    574 	{ .compat = "x-powers,axp806",		.data = &axp806_config },
    575 	{ .compat = "x-powers,axp809",		.data = &axp809_config },
    576 	{ .compat = "x-powers,axp813",		.data = &axp813_config },
    577 	{ .compat = "x-powers,axp15060",	.data = &axp15060_config },
    578 	DEVICE_COMPAT_EOL
    579 };
    580 
    581 static int
    582 axppmic_read(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t *val, int flags)
    583 {
    584 	return iic_smbus_read_byte(tag, addr, reg, val, flags);
    585 }
    586 
    587 static int
    588 axppmic_write(i2c_tag_t tag, i2c_addr_t addr, uint8_t reg, uint8_t val, int flags)
    589 {
    590 	return iic_smbus_write_byte(tag, addr, reg, val, flags);
    591 }
    592 
    593 static int
    594 axppmic_set_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int min, u_int max)
    595 {
    596 	u_int vol, reg_val;
    597 	int nstep, error;
    598 	uint8_t val;
    599 
    600 	if (!c->c_voltage_mask)
    601 		return EINVAL;
    602 
    603 	if (min < c->c_min || min > c->c_max)
    604 		return EINVAL;
    605 
    606 	reg_val = 0;
    607 	nstep = 1;
    608 	vol = c->c_min;
    609 
    610 	for (nstep = 0; nstep < c->c_step1cnt && vol < min; nstep++) {
    611 		++reg_val;
    612 		vol += c->c_step1;
    613 	}
    614 
    615 	if (c->c_step2start)
    616 		vol = c->c_step2start;
    617 
    618 	for (nstep = 0; nstep < c->c_step2cnt && vol < min; nstep++) {
    619 		++reg_val;
    620 		vol += c->c_step2;
    621 	}
    622 
    623 	if (vol > max)
    624 		return EINVAL;
    625 
    626 	iic_acquire_bus(tag, 0);
    627 	if ((error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0)) == 0) {
    628 		val &= ~c->c_voltage_mask;
    629 		val |= __SHIFTIN(reg_val, c->c_voltage_mask);
    630 		error = axppmic_write(tag, addr, c->c_voltage_reg, val, 0);
    631 	}
    632 	iic_release_bus(tag, 0);
    633 
    634 	return error;
    635 }
    636 
    637 static int
    638 axppmic_get_voltage(i2c_tag_t tag, i2c_addr_t addr, const struct axppmic_ctrl *c, u_int *pvol)
    639 {
    640 	int reg_val, error;
    641 	uint8_t val;
    642 
    643 	if (!c->c_voltage_mask)
    644 		return EINVAL;
    645 
    646 	iic_acquire_bus(tag, 0);
    647 	error = axppmic_read(tag, addr, c->c_voltage_reg, &val, 0);
    648 	iic_release_bus(tag, 0);
    649 	if (error)
    650 		return error;
    651 
    652 	reg_val = __SHIFTOUT(val, c->c_voltage_mask);
    653 	if (reg_val < c->c_step1cnt) {
    654 		*pvol = c->c_min + reg_val * c->c_step1;
    655 	} else if (c->c_step2start) {
    656 		*pvol = c->c_step2start +
    657 		    ((reg_val - c->c_step1cnt) * c->c_step2);
    658 	} else {
    659 		*pvol = c->c_min + (c->c_step1cnt * c->c_step1) +
    660 		    ((reg_val - c->c_step1cnt) * c->c_step2);
    661 	}
    662 
    663 	return 0;
    664 }
    665 
    666 static void
    667 axppmic_power_poweroff(device_t dev)
    668 {
    669 	struct axppmic_softc *sc = device_private(dev);
    670 	int error;
    671 
    672 	delay(1000000);
    673 
    674 	error = iic_acquire_bus(sc->sc_i2c, 0);
    675 	if (error == 0) {
    676 		error = axppmic_write(sc->sc_i2c, sc->sc_addr,
    677 		    AXP_POWER_DISABLE_REG, AXP_POWER_DISABLE_CTRL, 0);
    678 		iic_release_bus(sc->sc_i2c, 0);
    679 	}
    680 	if (error) {
    681 		device_printf(dev, "WARNING: unable to power off, error %d\n",
    682 		    error);
    683 	}
    684 }
    685 
    686 static struct fdtbus_power_controller_func axppmic_power_funcs = {
    687 	.poweroff = axppmic_power_poweroff,
    688 };
    689 
    690 static int
    691 axppmic_gpio_ctl(struct axppmic_softc *sc, uint8_t pin, uint8_t func)
    692 {
    693 	uint8_t val;
    694 	int error;
    695 
    696 	KASSERT(pin < sc->sc_conf->gpio_npins);
    697 	KASSERT((func & ~AXP_GPIO_CTRL_FUNC_MASK) == 0);
    698 
    699 	iic_acquire_bus(sc->sc_i2c, 0);
    700 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_CTRL_REG(pin),
    701 	    &val, 0);
    702 	if (error == 0) {
    703 		val &= ~AXP_GPIO_CTRL_FUNC_MASK;
    704 		val |= func;
    705 		error = axppmic_write(sc->sc_i2c, sc->sc_addr,
    706 		    AXP_GPIO_CTRL_REG(pin), val, 0);
    707 	}
    708 	iic_release_bus(sc->sc_i2c, 0);
    709 
    710 	return error;
    711 }
    712 
    713 static void *
    714 axppmic_gpio_acquire(device_t dev, const void *data, size_t len, int flags)
    715 {
    716 	struct axppmic_softc *sc = device_private(dev);
    717 	struct axppmic_gpio_pin *gpin;
    718 	const u_int *gpio = data;
    719 	int error;
    720 
    721 	if (len != 12) {
    722 		return NULL;
    723 	}
    724 
    725 	const uint8_t pin = be32toh(gpio[1]) & 0xff;
    726 	const bool actlo = be32toh(gpio[2]) & 1;
    727 
    728 	if (pin >= sc->sc_conf->gpio_npins) {
    729 		return NULL;
    730 	}
    731 
    732 	if ((flags & GPIO_PIN_INPUT) != 0) {
    733 		error = axppmic_gpio_ctl(sc, pin, AXP_GPIO_CTRL_FUNC_INPUT);
    734 		if (error != 0) {
    735 			return NULL;
    736 		}
    737 	}
    738 
    739 	gpin = kmem_zalloc(sizeof(*gpin), KM_SLEEP);
    740 	gpin->pin_sc = sc;
    741 	gpin->pin_nr = pin;
    742 	gpin->pin_flags = flags;
    743 	gpin->pin_actlo = actlo;
    744 
    745 	return gpin;
    746 }
    747 
    748 static void
    749 axppmic_gpio_release(device_t dev, void *priv)
    750 {
    751 	struct axppmic_softc *sc = device_private(dev);
    752 	struct axppmic_gpio_pin *gpin = priv;
    753 
    754 	axppmic_gpio_ctl(sc, gpin->pin_nr, AXP_GPIO_CTRL_FUNC_INPUT);
    755 
    756 	kmem_free(gpin, sizeof(*gpin));
    757 }
    758 
    759 static int
    760 axppmic_gpio_read(device_t dev, void *priv, bool raw)
    761 {
    762 	struct axppmic_softc *sc = device_private(dev);
    763 	struct axppmic_gpio_pin *gpin = priv;
    764 	uint8_t data;
    765 	int error, val;
    766 
    767 	KASSERT(sc == gpin->pin_sc);
    768 
    769 	const uint8_t data_mask = __BIT(gpin->pin_nr);
    770 
    771 	iic_acquire_bus(sc->sc_i2c, 0);
    772 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_GPIO_SIGNAL_REG,
    773 	    &data, 0);
    774 	iic_release_bus(sc->sc_i2c, 0);
    775 
    776 	if (error != 0) {
    777 		device_printf(dev, "WARNING: failed to read pin %d: %d\n",
    778 		    gpin->pin_nr, error);
    779 		val = 0;
    780 	} else {
    781 		val = __SHIFTOUT(data, data_mask);
    782 	}
    783 	if (!raw && gpin->pin_actlo) {
    784 		val = !val;
    785 	}
    786 
    787 	return val;
    788 }
    789 
    790 static void
    791 axppmic_gpio_write(device_t dev, void *priv, int val, bool raw)
    792 {
    793 	struct axppmic_softc *sc = device_private(dev);
    794 	struct axppmic_gpio_pin *gpin = priv;
    795 	int error;
    796 
    797 	if (!raw && gpin->pin_actlo) {
    798 		val = !val;
    799 	}
    800 
    801 	error = axppmic_gpio_ctl(sc, gpin->pin_nr,
    802 	    val == 0 ? AXP_GPIO_CTRL_FUNC_LOW : AXP_GPIO_CTRL_FUNC_HIGH);
    803 	if (error != 0) {
    804 		device_printf(dev, "WARNING: failed to write pin %d: %d\n",
    805 		    gpin->pin_nr, error);
    806 	}
    807 }
    808 
    809 static struct fdtbus_gpio_controller_func axppmic_gpio_funcs = {
    810 	.acquire = axppmic_gpio_acquire,
    811 	.release = axppmic_gpio_release,
    812 	.read = axppmic_gpio_read,
    813 	.write = axppmic_gpio_write,
    814 };
    815 
    816 static void
    817 axppmic_task_shut(void *priv)
    818 {
    819 	struct axppmic_softc *sc = priv;
    820 
    821 	sysmon_pswitch_event(&sc->sc_smpsw, PSWITCH_EVENT_PRESSED);
    822 }
    823 
    824 static void
    825 axppmic_sensor_update(struct sysmon_envsys *sme, envsys_data_t *e)
    826 {
    827 	struct axppmic_softc *sc = sme->sme_cookie;
    828 	const struct axppmic_config *c = sc->sc_conf;
    829 	uint8_t val, lo, hi;
    830 
    831 	e->state = ENVSYS_SINVALID;
    832 
    833 	const bool battery_present =
    834 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].state == ENVSYS_SVALID &&
    835 	    sc->sc_sensor[AXP_SENSOR_BATT_PRESENT].value_cur == 1;
    836 
    837 	switch (e->private) {
    838 	case AXP_SENSOR_ACIN_PRESENT:
    839 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
    840 			e->state = ENVSYS_SVALID;
    841 			e->value_cur = !!(val & AXP_POWER_SOURCE_ACIN_PRESENT);
    842 		}
    843 		break;
    844 	case AXP_SENSOR_VBUS_PRESENT:
    845 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0) {
    846 			e->state = ENVSYS_SVALID;
    847 			e->value_cur = !!(val & AXP_POWER_SOURCE_VBUS_PRESENT);
    848 		}
    849 		break;
    850 	case AXP_SENSOR_BATT_PRESENT:
    851 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
    852 			if (val & AXP_POWER_MODE_BATT_VALID) {
    853 				e->state = ENVSYS_SVALID;
    854 				e->value_cur = !!(val & AXP_POWER_MODE_BATT_PRESENT);
    855 			}
    856 		}
    857 		break;
    858 	case AXP_SENSOR_BATT_CHARGING:
    859 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_MODE_REG, &val, 0) == 0) {
    860 			e->state = ENVSYS_SVALID;
    861 			e->value_cur = !!(val & AXP_POWER_MODE_BATT_CHARGING);
    862 		}
    863 		break;
    864 	case AXP_SENSOR_BATT_CHARGE_STATE:
    865 		if (battery_present &&
    866 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
    867 		    (val & AXP_BATT_CAP_VALID) != 0) {
    868 			const u_int batt_val = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    869 			if (batt_val <= sc->sc_shut_thres) {
    870 				e->state = ENVSYS_SCRITICAL;
    871 				e->value_cur = ENVSYS_BATTERY_CAPACITY_CRITICAL;
    872 			} else if (batt_val <= sc->sc_warn_thres) {
    873 				e->state = ENVSYS_SWARNUNDER;
    874 				e->value_cur = ENVSYS_BATTERY_CAPACITY_WARNING;
    875 			} else {
    876 				e->state = ENVSYS_SVALID;
    877 				e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
    878 			}
    879 		}
    880 		break;
    881 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    882 		if (battery_present &&
    883 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_REG, &val, 0) == 0 &&
    884 		    (val & AXP_BATT_CAP_VALID) != 0) {
    885 			e->state = ENVSYS_SVALID;
    886 			e->value_cur = __SHIFTOUT(val, AXP_BATT_CAP_PERCENT);
    887 		}
    888 		break;
    889 	case AXP_SENSOR_BATT_VOLTAGE:
    890 		if (battery_present &&
    891 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_HI_REG, &hi, 0) == 0 &&
    892 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATSENSE_LO_REG, &lo, 0) == 0) {
    893 			e->state = ENVSYS_SVALID;
    894 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->batsense_step;
    895 		}
    896 		break;
    897 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    898 		if (battery_present &&
    899 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
    900 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) != 0 &&
    901 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_HI_REG, &hi, 0) == 0 &&
    902 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTCHG_LO_REG, &lo, 0) == 0) {
    903 			e->state = ENVSYS_SVALID;
    904 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->charge_step;
    905 		}
    906 		break;
    907 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    908 		if (battery_present &&
    909 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_POWER_SOURCE_REG, &val, 0) == 0 &&
    910 		    (val & AXP_POWER_SOURCE_CHARGE_DIRECTION) == 0 &&
    911 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_HI_REG, &hi, 0) == 0 &&
    912 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATTDISCHG_LO_REG, &lo, 0) == 0) {
    913 			e->state = ENVSYS_SVALID;
    914 			e->value_cur = AXP_ADC_RAW(hi, lo) * c->discharge_step;
    915 		}
    916 		break;
    917 	case AXP_SENSOR_BATT_MAXIMUM_CAPACITY:
    918 		if (battery_present &&
    919 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_HI_REG, &hi, 0) == 0 &&
    920 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_MAX_CAP_LO_REG, &lo, 0) == 0) {
    921 			e->state = (hi & AXP_BATT_MAX_CAP_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    922 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->maxcap_step;
    923 		}
    924 		break;
    925 	case AXP_SENSOR_BATT_CURRENT_CAPACITY:
    926 		if (battery_present &&
    927 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_HI_REG, &hi, 0) == 0 &&
    928 		    axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_COULOMB_LO_REG, &lo, 0) == 0) {
    929 			e->state = (hi & AXP_BATT_COULOMB_VALID) ? ENVSYS_SVALID : ENVSYS_SINVALID;
    930 			e->value_cur = AXP_COULOMB_RAW(hi, lo) * c->coulomb_step;
    931 		}
    932 		break;
    933 	}
    934 }
    935 
    936 static void
    937 axppmic_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *e)
    938 {
    939 	struct axppmic_softc *sc = sme->sme_cookie;
    940 
    941 	switch (e->private) {
    942 	case AXP_SENSOR_BATT_CAPACITY_PERCENT:
    943 	case AXP_SENSOR_BATT_VOLTAGE:
    944 	case AXP_SENSOR_BATT_CHARGE_CURRENT:
    945 	case AXP_SENSOR_BATT_DISCHARGE_CURRENT:
    946 		/* Always update battery capacity and ADCs */
    947 		iic_acquire_bus(sc->sc_i2c, 0);
    948 		axppmic_sensor_update(sme, e);
    949 		iic_release_bus(sc->sc_i2c, 0);
    950 		break;
    951 	default:
    952 		/* Refresh if the sensor is not in valid state */
    953 		if (e->state != ENVSYS_SVALID) {
    954 			iic_acquire_bus(sc->sc_i2c, 0);
    955 			axppmic_sensor_update(sme, e);
    956 			iic_release_bus(sc->sc_i2c, 0);
    957 		}
    958 		break;
    959 	}
    960 }
    961 
    962 static int
    963 axppmic_intr(void *priv)
    964 {
    965 	struct axppmic_softc * const sc = priv;
    966 
    967 	mutex_enter(&sc->sc_intr_lock);
    968 
    969 	fdtbus_intr_mask(sc->sc_phandle, sc->sc_ih);
    970 
    971 	/* Interrupt is always masked when work is scheduled! */
    972 	KASSERT(!sc->sc_work_scheduled);
    973 	sc->sc_work_scheduled = true;
    974 	workqueue_enqueue(sc->sc_wq, &sc->sc_work, NULL);
    975 
    976 	mutex_exit(&sc->sc_intr_lock);
    977 
    978 	return 1;
    979 }
    980 
    981 static void
    982 axppmic_work(struct work *work, void *arg)
    983 {
    984 	struct axppmic_softc * const sc =
    985 	    container_of(work, struct axppmic_softc, sc_work);
    986 	const struct axppmic_config * const c = sc->sc_conf;
    987 	const int flags = 0;
    988 	uint8_t stat;
    989 	u_int n;
    990 
    991 	KASSERT(sc->sc_work_scheduled);
    992 
    993 	iic_acquire_bus(sc->sc_i2c, flags);
    994 	for (n = 1; n <= c->irq_regs; n++) {
    995 		if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_IRQ_STATUS_REG(n), &stat, flags) == 0) {
    996 			if (stat != 0) {
    997 				axppmic_write(sc->sc_i2c, sc->sc_addr,
    998 				    AXP_IRQ_STATUS_REG(n), stat, flags);
    999 			}
   1000 
   1001 			if (n == c->poklirq.reg && (stat & c->poklirq.mask) != 0)
   1002 				sysmon_task_queue_sched(0, axppmic_task_shut, sc);
   1003 			if (n == c->acinirq.reg && (stat & c->acinirq.mask) != 0)
   1004 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT]);
   1005 			if (n == c->vbusirq.reg && (stat & c->vbusirq.mask) != 0)
   1006 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT]);
   1007 			if (n == c->battirq.reg && (stat & c->battirq.mask) != 0)
   1008 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT]);
   1009 			if (n == c->chargeirq.reg && (stat & c->chargeirq.mask) != 0)
   1010 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING]);
   1011 			if (n == c->chargestirq.reg && (stat & c->chargestirq.mask) != 0)
   1012 				axppmic_sensor_update(sc->sc_sme, &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE]);
   1013 		}
   1014 	}
   1015 	iic_release_bus(sc->sc_i2c, flags);
   1016 
   1017 	mutex_enter(&sc->sc_intr_lock);
   1018 	sc->sc_work_scheduled = false;
   1019 	fdtbus_intr_unmask(sc->sc_phandle, sc->sc_ih);
   1020 	mutex_exit(&sc->sc_intr_lock);
   1021 }
   1022 
   1023 static void
   1024 axppmic_attach_acadapter(struct axppmic_softc *sc)
   1025 {
   1026 	envsys_data_t *e;
   1027 
   1028 	e = &sc->sc_sensor[AXP_SENSOR_ACIN_PRESENT];
   1029 	e->private = AXP_SENSOR_ACIN_PRESENT;
   1030 	e->units = ENVSYS_INDICATOR;
   1031 	e->state = ENVSYS_SINVALID;
   1032 	strlcpy(e->desc, "ACIN present", sizeof(e->desc));
   1033 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1034 
   1035 	e = &sc->sc_sensor[AXP_SENSOR_VBUS_PRESENT];
   1036 	e->private = AXP_SENSOR_VBUS_PRESENT;
   1037 	e->units = ENVSYS_INDICATOR;
   1038 	e->state = ENVSYS_SINVALID;
   1039 	strlcpy(e->desc, "VBUS present", sizeof(e->desc));
   1040 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1041 }
   1042 
   1043 static void
   1044 axppmic_attach_battery(struct axppmic_softc *sc)
   1045 {
   1046 	const struct axppmic_config *c = sc->sc_conf;
   1047 	envsys_data_t *e;
   1048 	uint8_t val;
   1049 
   1050 	iic_acquire_bus(sc->sc_i2c, 0);
   1051 	if (axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_BATT_CAP_WARN_REG, &val, 0) == 0) {
   1052 		sc->sc_warn_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV1) + 5;
   1053 		sc->sc_shut_thres = __SHIFTOUT(val, AXP_BATT_CAP_WARN_LV2);
   1054 	}
   1055 	iic_release_bus(sc->sc_i2c, 0);
   1056 
   1057 	e = &sc->sc_sensor[AXP_SENSOR_BATT_PRESENT];
   1058 	e->private = AXP_SENSOR_BATT_PRESENT;
   1059 	e->units = ENVSYS_INDICATOR;
   1060 	e->state = ENVSYS_SINVALID;
   1061 	strlcpy(e->desc, "battery present", sizeof(e->desc));
   1062 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1063 
   1064 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGING];
   1065 	e->private = AXP_SENSOR_BATT_CHARGING;
   1066 	e->units = ENVSYS_BATTERY_CHARGE;
   1067 	e->state = ENVSYS_SINVALID;
   1068 	strlcpy(e->desc, "charging", sizeof(e->desc));
   1069 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1070 
   1071 	e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_STATE];
   1072 	e->private = AXP_SENSOR_BATT_CHARGE_STATE;
   1073 	e->units = ENVSYS_BATTERY_CAPACITY;
   1074 	e->flags = ENVSYS_FMONSTCHANGED;
   1075 	e->state = ENVSYS_SINVALID;
   1076 	e->value_cur = ENVSYS_BATTERY_CAPACITY_NORMAL;
   1077 	strlcpy(e->desc, "charge state", sizeof(e->desc));
   1078 	sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1079 
   1080 	if (c->batsense_step) {
   1081 		e = &sc->sc_sensor[AXP_SENSOR_BATT_VOLTAGE];
   1082 		e->private = AXP_SENSOR_BATT_VOLTAGE;
   1083 		e->units = ENVSYS_SVOLTS_DC;
   1084 		e->state = ENVSYS_SINVALID;
   1085 		strlcpy(e->desc, "battery voltage", sizeof(e->desc));
   1086 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1087 	}
   1088 
   1089 	if (c->charge_step) {
   1090 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CHARGE_CURRENT];
   1091 		e->private = AXP_SENSOR_BATT_CHARGE_CURRENT;
   1092 		e->units = ENVSYS_SAMPS;
   1093 		e->state = ENVSYS_SINVALID;
   1094 		strlcpy(e->desc, "battery charge current", sizeof(e->desc));
   1095 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1096 	}
   1097 
   1098 	if (c->discharge_step) {
   1099 		e = &sc->sc_sensor[AXP_SENSOR_BATT_DISCHARGE_CURRENT];
   1100 		e->private = AXP_SENSOR_BATT_DISCHARGE_CURRENT;
   1101 		e->units = ENVSYS_SAMPS;
   1102 		e->state = ENVSYS_SINVALID;
   1103 		strlcpy(e->desc, "battery discharge current", sizeof(e->desc));
   1104 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1105 	}
   1106 
   1107 	if (c->has_fuel_gauge) {
   1108 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CAPACITY_PERCENT];
   1109 		e->private = AXP_SENSOR_BATT_CAPACITY_PERCENT;
   1110 		e->units = ENVSYS_INTEGER;
   1111 		e->state = ENVSYS_SINVALID;
   1112 		e->flags = ENVSYS_FPERCENT;
   1113 		strlcpy(e->desc, "battery percent", sizeof(e->desc));
   1114 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1115 	}
   1116 
   1117 	if (c->maxcap_step) {
   1118 		e = &sc->sc_sensor[AXP_SENSOR_BATT_MAXIMUM_CAPACITY];
   1119 		e->private = AXP_SENSOR_BATT_MAXIMUM_CAPACITY;
   1120 		e->units = ENVSYS_SAMPHOUR;
   1121 		e->state = ENVSYS_SINVALID;
   1122 		strlcpy(e->desc, "battery maximum capacity", sizeof(e->desc));
   1123 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1124 	}
   1125 
   1126 	if (c->coulomb_step) {
   1127 		e = &sc->sc_sensor[AXP_SENSOR_BATT_CURRENT_CAPACITY];
   1128 		e->private = AXP_SENSOR_BATT_CURRENT_CAPACITY;
   1129 		e->units = ENVSYS_SAMPHOUR;
   1130 		e->state = ENVSYS_SINVALID;
   1131 		strlcpy(e->desc, "battery current capacity", sizeof(e->desc));
   1132 		sysmon_envsys_sensor_attach(sc->sc_sme, e);
   1133 	}
   1134 }
   1135 
   1136 static void
   1137 axppmic_attach_sensors(struct axppmic_softc *sc)
   1138 {
   1139 	if (sc->sc_conf->has_battery) {
   1140 		sc->sc_sme = sysmon_envsys_create();
   1141 		sc->sc_sme->sme_name = device_xname(sc->sc_dev);
   1142 		sc->sc_sme->sme_cookie = sc;
   1143 		sc->sc_sme->sme_refresh = axppmic_sensor_refresh;
   1144 		sc->sc_sme->sme_class = SME_CLASS_BATTERY;
   1145 		sc->sc_sme->sme_flags = SME_INIT_REFRESH;
   1146 
   1147 		axppmic_attach_acadapter(sc);
   1148 		axppmic_attach_battery(sc);
   1149 
   1150 		sysmon_envsys_register(sc->sc_sme);
   1151 	}
   1152 }
   1153 
   1154 
   1155 static int
   1156 axppmic_match(device_t parent, cfdata_t match, void *aux)
   1157 {
   1158 	struct i2c_attach_args *ia = aux;
   1159 	int match_result;
   1160 
   1161 	if (iic_use_direct_match(ia, match, compat_data, &match_result))
   1162 		return match_result;
   1163 
   1164 	/* This device is direct-config only. */
   1165 
   1166 	return 0;
   1167 }
   1168 
   1169 static void
   1170 axppmic_attach(device_t parent, device_t self, void *aux)
   1171 {
   1172 	struct axppmic_softc *sc = device_private(self);
   1173 	const struct device_compatible_entry *dce = NULL;
   1174 	const struct axppmic_config *c;
   1175 	struct axpreg_attach_args aaa;
   1176 	struct i2c_attach_args *ia = aux;
   1177 	int phandle, child, i;
   1178 	uint8_t irq_mask, val;
   1179 	int error;
   1180 
   1181 	dce = iic_compatible_lookup(ia, compat_data);
   1182 	KASSERT(dce != NULL);
   1183 	c = dce->data;
   1184 
   1185 	sc->sc_dev = self;
   1186 	sc->sc_i2c = ia->ia_tag;
   1187 	sc->sc_addr = ia->ia_addr;
   1188 	sc->sc_phandle = devhandle_to_of(device_handle(self));
   1189 	sc->sc_conf = c;
   1190 
   1191 	aprint_naive("\n");
   1192 	aprint_normal(": %s\n", c->name);
   1193 
   1194 	if (c->has_mode_set) {
   1195 		const bool master_mode =
   1196 		    of_hasprop(sc->sc_phandle, "x-powers,self-working-mode") ||
   1197 		    of_hasprop(sc->sc_phandle, "x-powers,master-mode");
   1198 
   1199 		iic_acquire_bus(sc->sc_i2c, 0);
   1200 		axppmic_write(sc->sc_i2c, sc->sc_addr, AXP_ADDR_EXT_REG,
   1201 		    master_mode ? AXP_ADDR_EXT_MASTER : AXP_ADDR_EXT_SLAVE, 0);
   1202 		iic_release_bus(sc->sc_i2c, 0);
   1203 	}
   1204 
   1205 	iic_acquire_bus(sc->sc_i2c, 0);
   1206 	error = axppmic_read(sc->sc_i2c, sc->sc_addr, AXP_CHIP_ID_REG, &val, 0);
   1207 	iic_release_bus(sc->sc_i2c, 0);
   1208 	if (error != 0) {
   1209 		aprint_error_dev(self, "couldn't read chipid\n");
   1210 		return;
   1211 	}
   1212 	aprint_debug_dev(self, "chipid %#x\n", val);
   1213 
   1214 	sc->sc_smpsw.smpsw_name = device_xname(self);
   1215 	sc->sc_smpsw.smpsw_type = PSWITCH_TYPE_POWER;
   1216 	sysmon_pswitch_register(&sc->sc_smpsw);
   1217 
   1218 	mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_VM);
   1219 
   1220 	if (c->irq_regs > 0) {
   1221 		char intrstr[128];
   1222 
   1223 		if (!fdtbus_intr_str(sc->sc_phandle, 0,
   1224 				     intrstr, sizeof(intrstr))) {
   1225 			aprint_error_dev(self,
   1226 			    "WARNING: failed to decode interrupt\n");
   1227 		}
   1228 
   1229 		sc->sc_ih = fdtbus_intr_establish(sc->sc_phandle, 0, IPL_VM,
   1230 						  FDT_INTR_MPSAFE,
   1231 						  axppmic_intr, sc);
   1232 		if (sc->sc_ih == NULL) {
   1233 			aprint_error_dev(self,
   1234 			    "WARNING: couldn't establish interrupt handler\n");
   1235 		}
   1236 
   1237 		error = workqueue_create(&sc->sc_wq, device_xname(self),
   1238 					 axppmic_work, NULL,
   1239 					 PRI_SOFTSERIAL, IPL_VM,
   1240 					 WQ_MPSAFE);
   1241 		if (error) {
   1242 			sc->sc_wq = NULL;
   1243 			aprint_error_dev(self,
   1244 			    "WARNING: couldn't create work queue: error %d\n",
   1245 			    error);
   1246 		}
   1247 
   1248 		if (sc->sc_ih != NULL && sc->sc_wq != NULL) {
   1249 			iic_acquire_bus(sc->sc_i2c, 0);
   1250 			for (i = 1; i <= c->irq_regs; i++) {
   1251 				irq_mask = 0;
   1252 				if (i == c->poklirq.reg)
   1253 					irq_mask |= c->poklirq.mask;
   1254 				if (i == c->acinirq.reg)
   1255 					irq_mask |= c->acinirq.mask;
   1256 				if (i == c->vbusirq.reg)
   1257 					irq_mask |= c->vbusirq.mask;
   1258 				if (i == c->battirq.reg)
   1259 					irq_mask |= c->battirq.mask;
   1260 				if (i == c->chargeirq.reg)
   1261 					irq_mask |= c->chargeirq.mask;
   1262 				if (i == c->chargestirq.reg)
   1263 					irq_mask |= c->chargestirq.mask;
   1264 				axppmic_write(sc->sc_i2c, sc->sc_addr,
   1265 					      AXP_IRQ_ENABLE_REG(i),
   1266 					      irq_mask, 0);
   1267 			}
   1268 			iic_release_bus(sc->sc_i2c, 0);
   1269 		}
   1270 	}
   1271 
   1272 	fdtbus_register_power_controller(sc->sc_dev, sc->sc_phandle,
   1273 	    &axppmic_power_funcs);
   1274 
   1275 	if (c->gpio_compat != NULL) {
   1276 		phandle = of_find_bycompat(sc->sc_phandle, c->gpio_compat);
   1277 		if (phandle > 0) {
   1278 			fdtbus_register_gpio_controller(self, phandle,
   1279 			    &axppmic_gpio_funcs);
   1280 		}
   1281 	}
   1282 
   1283 	phandle = of_find_firstchild_byname(sc->sc_phandle, "regulators");
   1284 	if (phandle > 0) {
   1285 		aaa.reg_i2c = sc->sc_i2c;
   1286 		aaa.reg_addr = sc->sc_addr;
   1287 		for (i = 0; i < c->ncontrols; i++) {
   1288 			const struct axppmic_ctrl *ctrl = &c->controls[i];
   1289 			child = of_find_firstchild_byname(phandle, ctrl->c_name);
   1290 			if (child <= 0)
   1291 				continue;
   1292 			aaa.reg_ctrl = ctrl;
   1293 			aaa.reg_phandle = child;
   1294 			config_found(sc->sc_dev, &aaa, NULL, CFARGS_NONE);
   1295 		}
   1296 	}
   1297 
   1298 	if (c->has_battery)
   1299 		axppmic_attach_sensors(sc);
   1300 }
   1301 
   1302 static int
   1303 axpreg_acquire(device_t dev)
   1304 {
   1305 	return 0;
   1306 }
   1307 
   1308 static void
   1309 axpreg_release(device_t dev)
   1310 {
   1311 }
   1312 
   1313 static int
   1314 axpreg_enable(device_t dev, bool enable)
   1315 {
   1316 	struct axpreg_softc *sc = device_private(dev);
   1317 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1318 	const int flags = 0;
   1319 	uint8_t val;
   1320 	int error;
   1321 
   1322 	if (!c->c_enable_mask)
   1323 		return EINVAL;
   1324 
   1325 	iic_acquire_bus(sc->sc_i2c, flags);
   1326 	if ((error = axppmic_read(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, &val, flags)) == 0) {
   1327 		val &= ~c->c_enable_mask;
   1328 		if (enable)
   1329 			val |= c->c_enable_val;
   1330 		else
   1331 			val |= c->c_disable_val;
   1332 		error = axppmic_write(sc->sc_i2c, sc->sc_addr, c->c_enable_reg, val, flags);
   1333 	}
   1334 	iic_release_bus(sc->sc_i2c, flags);
   1335 
   1336 	return error;
   1337 }
   1338 
   1339 static int
   1340 axpreg_set_voltage(device_t dev, u_int min_uvol, u_int max_uvol)
   1341 {
   1342 	struct axpreg_softc *sc = device_private(dev);
   1343 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1344 
   1345 	return axppmic_set_voltage(sc->sc_i2c, sc->sc_addr, c,
   1346 	    min_uvol / 1000, max_uvol / 1000);
   1347 }
   1348 
   1349 static int
   1350 axpreg_get_voltage(device_t dev, u_int *puvol)
   1351 {
   1352 	struct axpreg_softc *sc = device_private(dev);
   1353 	const struct axppmic_ctrl *c = sc->sc_ctrl;
   1354 	int error;
   1355 	u_int vol;
   1356 
   1357 	error = axppmic_get_voltage(sc->sc_i2c, sc->sc_addr, c, &vol);
   1358 	if (error)
   1359 		return error;
   1360 
   1361 	*puvol = vol * 1000;
   1362 	return 0;
   1363 }
   1364 
   1365 static struct fdtbus_regulator_controller_func axpreg_funcs = {
   1366 	.acquire = axpreg_acquire,
   1367 	.release = axpreg_release,
   1368 	.enable = axpreg_enable,
   1369 	.set_voltage = axpreg_set_voltage,
   1370 	.get_voltage = axpreg_get_voltage,
   1371 };
   1372 
   1373 static int
   1374 axpreg_match(device_t parent, cfdata_t match, void *aux)
   1375 {
   1376 	return 1;
   1377 }
   1378 
   1379 static void
   1380 axpreg_attach(device_t parent, device_t self, void *aux)
   1381 {
   1382 	struct axpreg_softc *sc = device_private(self);
   1383 	struct axpreg_attach_args *aaa = aux;
   1384 	const int phandle = aaa->reg_phandle;
   1385 	const char *name;
   1386 	u_int uvol, min_uvol, max_uvol;
   1387 
   1388 	sc->sc_dev = self;
   1389 	sc->sc_i2c = aaa->reg_i2c;
   1390 	sc->sc_addr = aaa->reg_addr;
   1391 	sc->sc_ctrl = aaa->reg_ctrl;
   1392 
   1393 	fdtbus_register_regulator_controller(self, phandle,
   1394 	    &axpreg_funcs);
   1395 
   1396 	aprint_naive("\n");
   1397 	name = fdtbus_get_string(phandle, "regulator-name");
   1398 	if (name)
   1399 		aprint_normal(": %s\n", name);
   1400 	else
   1401 		aprint_normal("\n");
   1402 
   1403 	int error = axpreg_get_voltage(self, &uvol);
   1404 	if (error)
   1405 		return;
   1406 
   1407 	if (of_getprop_uint32(phandle, "regulator-min-microvolt", &min_uvol) == 0 &&
   1408 	    of_getprop_uint32(phandle, "regulator-max-microvolt", &max_uvol) == 0) {
   1409 		if (uvol < min_uvol || uvol > max_uvol) {
   1410 			aprint_debug_dev(self, "fix voltage %u uV -> %u/%u uV\n",
   1411 			    uvol, min_uvol, max_uvol);
   1412 			axpreg_set_voltage(self, min_uvol, max_uvol);
   1413 		}
   1414 	}
   1415 
   1416 	if (of_hasprop(phandle, "regulator-always-on") ||
   1417 	    of_hasprop(phandle, "regulator-boot-on")) {
   1418 		axpreg_enable(self, true);
   1419 	}
   1420 }
   1421 
   1422 CFATTACH_DECL_NEW(axppmic, sizeof(struct axppmic_softc),
   1423     axppmic_match, axppmic_attach, NULL, NULL);
   1424 
   1425 CFATTACH_DECL_NEW(axpreg, sizeof(struct axpreg_softc),
   1426     axpreg_match, axpreg_attach, NULL, NULL);
   1427