Home | History | Annotate | Line # | Download | only in kern
      1 /*	$NetBSD: kern_timeout.c,v 1.79 2023/10/08 13:23:05 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2003, 2006, 2007, 2008, 2009, 2019, 2023
      5  *     The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by Jason R. Thorpe, and by Andrew Doran.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 2001 Thomas Nordin <nordin (at) openbsd.org>
     35  * Copyright (c) 2000-2001 Artur Grabowski <art (at) openbsd.org>
     36  * All rights reserved.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  *
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. The name of the author may not be used to endorse or promote products
     48  *    derived from this software without specific prior written permission.
     49  *
     50  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
     51  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
     52  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
     53  * THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     54  * EXEMPLARY, OR CONSEQUENTIAL  DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     55  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
     56  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
     57  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
     58  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
     59  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     60  */
     61 
     62 #include <sys/cdefs.h>
     63 __KERNEL_RCSID(0, "$NetBSD: kern_timeout.c,v 1.79 2023/10/08 13:23:05 ad Exp $");
     64 
     65 /*
     66  * Timeouts are kept in a hierarchical timing wheel.  The c_time is the
     67  * value of c_cpu->cc_ticks when the timeout should be called.  There are
     68  * four levels with 256 buckets each. See 'Scheme 7' in "Hashed and
     69  * Hierarchical Timing Wheels: Efficient Data Structures for Implementing
     70  * a Timer Facility" by George Varghese and Tony Lauck.
     71  *
     72  * Some of the "math" in here is a bit tricky.  We have to beware of
     73  * wrapping ints.
     74  *
     75  * We use the fact that any element added to the queue must be added with
     76  * a positive time.  That means that any element `to' on the queue cannot
     77  * be scheduled to timeout further in time than INT_MAX, but c->c_time can
     78  * be positive or negative so comparing it with anything is dangerous.
     79  * The only way we can use the c->c_time value in any predictable way is
     80  * when we calculate how far in the future `to' will timeout - "c->c_time
     81  * - c->c_cpu->cc_ticks".  The result will always be positive for future
     82  * timeouts and 0 or negative for due timeouts.
     83  */
     84 
     85 #define	_CALLOUT_PRIVATE
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/kernel.h>
     90 #include <sys/callout.h>
     91 #include <sys/lwp.h>
     92 #include <sys/mutex.h>
     93 #include <sys/proc.h>
     94 #include <sys/sleepq.h>
     95 #include <sys/syncobj.h>
     96 #include <sys/evcnt.h>
     97 #include <sys/intr.h>
     98 #include <sys/cpu.h>
     99 #include <sys/kmem.h>
    100 #include <sys/sdt.h>
    101 
    102 #ifdef DDB
    103 #include <machine/db_machdep.h>
    104 #include <ddb/db_interface.h>
    105 #include <ddb/db_access.h>
    106 #include <ddb/db_cpu.h>
    107 #include <ddb/db_sym.h>
    108 #include <ddb/db_output.h>
    109 #endif
    110 
    111 #define BUCKETS		1024
    112 #define WHEELSIZE	256
    113 #define WHEELMASK	255
    114 #define WHEELBITS	8
    115 
    116 #define MASKWHEEL(wheel, time) (((time) >> ((wheel)*WHEELBITS)) & WHEELMASK)
    117 
    118 #define BUCKET(cc, rel, abs)						\
    119     (((rel) <= (1 << (2*WHEELBITS)))					\
    120     	? ((rel) <= (1 << WHEELBITS))					\
    121             ? &(cc)->cc_wheel[MASKWHEEL(0, (abs))]			\
    122             : &(cc)->cc_wheel[MASKWHEEL(1, (abs)) + WHEELSIZE]		\
    123         : ((rel) <= (1 << (3*WHEELBITS)))				\
    124             ? &(cc)->cc_wheel[MASKWHEEL(2, (abs)) + 2*WHEELSIZE]	\
    125             : &(cc)->cc_wheel[MASKWHEEL(3, (abs)) + 3*WHEELSIZE])
    126 
    127 #define MOVEBUCKET(cc, wheel, time)					\
    128     CIRCQ_APPEND(&(cc)->cc_todo,					\
    129         &(cc)->cc_wheel[MASKWHEEL((wheel), (time)) + (wheel)*WHEELSIZE])
    130 
    131 /*
    132  * Circular queue definitions.
    133  */
    134 
    135 #define CIRCQ_INIT(list)						\
    136 do {									\
    137         (list)->cq_next_l = (list);					\
    138         (list)->cq_prev_l = (list);					\
    139 } while (/*CONSTCOND*/0)
    140 
    141 #define CIRCQ_INSERT(elem, list)					\
    142 do {									\
    143         (elem)->cq_prev_e = (list)->cq_prev_e;				\
    144         (elem)->cq_next_l = (list);					\
    145         (list)->cq_prev_l->cq_next_l = (elem);				\
    146         (list)->cq_prev_l = (elem);					\
    147 } while (/*CONSTCOND*/0)
    148 
    149 #define CIRCQ_APPEND(fst, snd)						\
    150 do {									\
    151         if (!CIRCQ_EMPTY(snd)) {					\
    152                 (fst)->cq_prev_l->cq_next_l = (snd)->cq_next_l;		\
    153                 (snd)->cq_next_l->cq_prev_l = (fst)->cq_prev_l;		\
    154                 (snd)->cq_prev_l->cq_next_l = (fst);			\
    155                 (fst)->cq_prev_l = (snd)->cq_prev_l;			\
    156                 CIRCQ_INIT(snd);					\
    157         }								\
    158 } while (/*CONSTCOND*/0)
    159 
    160 #define CIRCQ_REMOVE(elem)						\
    161 do {									\
    162         (elem)->cq_next_l->cq_prev_e = (elem)->cq_prev_e;		\
    163         (elem)->cq_prev_l->cq_next_e = (elem)->cq_next_e;		\
    164 } while (/*CONSTCOND*/0)
    165 
    166 #define CIRCQ_FIRST(list)	((list)->cq_next_e)
    167 #define CIRCQ_NEXT(elem)	((elem)->cq_next_e)
    168 #define CIRCQ_LAST(elem,list)	((elem)->cq_next_l == (list))
    169 #define CIRCQ_EMPTY(list)	((list)->cq_next_l == (list))
    170 
    171 struct callout_cpu {
    172 	kmutex_t	*cc_lock;
    173 	sleepq_t	cc_sleepq;
    174 	u_int		cc_nwait;
    175 	u_int		cc_ticks;
    176 	lwp_t		*cc_lwp;
    177 	callout_impl_t	*cc_active;
    178 	struct evcnt	cc_ev_late;
    179 	struct evcnt	cc_ev_block;
    180 	struct callout_circq cc_todo;		/* Worklist */
    181 	struct callout_circq cc_wheel[BUCKETS];	/* Queues of timeouts */
    182 	char		cc_name1[12];
    183 	char		cc_name2[12];
    184 	struct cpu_info	*cc_cpu;
    185 };
    186 
    187 #ifdef DDB
    188 static struct callout_cpu ccb;
    189 #endif
    190 
    191 #ifndef CRASH /* _KERNEL */
    192 static void	callout_softclock(void *);
    193 static void	callout_wait(callout_impl_t *, void *, kmutex_t *);
    194 
    195 static struct callout_cpu callout_cpu0 __cacheline_aligned;
    196 static void *callout_sih __read_mostly;
    197 
    198 SDT_PROBE_DEFINE2(sdt, kernel, callout, init,
    199     "struct callout *"/*ch*/,
    200     "unsigned"/*flags*/);
    201 SDT_PROBE_DEFINE1(sdt, kernel, callout, destroy,
    202     "struct callout *"/*ch*/);
    203 SDT_PROBE_DEFINE4(sdt, kernel, callout, setfunc,
    204     "struct callout *"/*ch*/,
    205     "void (*)(void *)"/*func*/,
    206     "void *"/*arg*/,
    207     "unsigned"/*flags*/);
    208 SDT_PROBE_DEFINE5(sdt, kernel, callout, schedule,
    209     "struct callout *"/*ch*/,
    210     "void (*)(void *)"/*func*/,
    211     "void *"/*arg*/,
    212     "unsigned"/*flags*/,
    213     "int"/*ticks*/);
    214 SDT_PROBE_DEFINE6(sdt, kernel, callout, migrate,
    215     "struct callout *"/*ch*/,
    216     "void (*)(void *)"/*func*/,
    217     "void *"/*arg*/,
    218     "unsigned"/*flags*/,
    219     "struct cpu_info *"/*ocpu*/,
    220     "struct cpu_info *"/*ncpu*/);
    221 SDT_PROBE_DEFINE4(sdt, kernel, callout, entry,
    222     "struct callout *"/*ch*/,
    223     "void (*)(void *)"/*func*/,
    224     "void *"/*arg*/,
    225     "unsigned"/*flags*/);
    226 SDT_PROBE_DEFINE4(sdt, kernel, callout, return,
    227     "struct callout *"/*ch*/,
    228     "void (*)(void *)"/*func*/,
    229     "void *"/*arg*/,
    230     "unsigned"/*flags*/);
    231 SDT_PROBE_DEFINE5(sdt, kernel, callout, stop,
    232     "struct callout *"/*ch*/,
    233     "void (*)(void *)"/*func*/,
    234     "void *"/*arg*/,
    235     "unsigned"/*flags*/,
    236     "bool"/*expired*/);
    237 SDT_PROBE_DEFINE4(sdt, kernel, callout, halt,
    238     "struct callout *"/*ch*/,
    239     "void (*)(void *)"/*func*/,
    240     "void *"/*arg*/,
    241     "unsigned"/*flags*/);
    242 SDT_PROBE_DEFINE5(sdt, kernel, callout, halt__done,
    243     "struct callout *"/*ch*/,
    244     "void (*)(void *)"/*func*/,
    245     "void *"/*arg*/,
    246     "unsigned"/*flags*/,
    247     "bool"/*expired*/);
    248 
    249 syncobj_t callout_syncobj = {
    250 	.sobj_name	= "callout",
    251 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
    252 	.sobj_boostpri  = PRI_KERNEL,
    253 	.sobj_unsleep	= sleepq_unsleep,
    254 	.sobj_changepri	= sleepq_changepri,
    255 	.sobj_lendpri	= sleepq_lendpri,
    256 	.sobj_owner	= syncobj_noowner,
    257 };
    258 
    259 static inline kmutex_t *
    260 callout_lock(callout_impl_t *c)
    261 {
    262 	struct callout_cpu *cc;
    263 	kmutex_t *lock;
    264 
    265 	for (;;) {
    266 		cc = c->c_cpu;
    267 		lock = cc->cc_lock;
    268 		mutex_spin_enter(lock);
    269 		if (__predict_true(cc == c->c_cpu))
    270 			return lock;
    271 		mutex_spin_exit(lock);
    272 	}
    273 }
    274 
    275 /*
    276  * Check if the callout is currently running on an LWP that isn't curlwp.
    277  */
    278 static inline bool
    279 callout_running_somewhere_else(callout_impl_t *c, struct callout_cpu *cc)
    280 {
    281 	KASSERT(c->c_cpu == cc);
    282 
    283 	return cc->cc_active == c && cc->cc_lwp != curlwp;
    284 }
    285 
    286 /*
    287  * callout_startup:
    288  *
    289  *	Initialize the callout facility, called at system startup time.
    290  *	Do just enough to allow callouts to be safely registered.
    291  */
    292 void
    293 callout_startup(void)
    294 {
    295 	struct callout_cpu *cc;
    296 	int b;
    297 
    298 	KASSERT(curcpu()->ci_data.cpu_callout == NULL);
    299 
    300 	cc = &callout_cpu0;
    301 	cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    302 	CIRCQ_INIT(&cc->cc_todo);
    303 	for (b = 0; b < BUCKETS; b++)
    304 		CIRCQ_INIT(&cc->cc_wheel[b]);
    305 	curcpu()->ci_data.cpu_callout = cc;
    306 }
    307 
    308 /*
    309  * callout_init_cpu:
    310  *
    311  *	Per-CPU initialization.
    312  */
    313 CTASSERT(sizeof(callout_impl_t) <= sizeof(callout_t));
    314 
    315 void
    316 callout_init_cpu(struct cpu_info *ci)
    317 {
    318 	struct callout_cpu *cc;
    319 	int b;
    320 
    321 	if ((cc = ci->ci_data.cpu_callout) == NULL) {
    322 		cc = kmem_zalloc(sizeof(*cc), KM_SLEEP);
    323 		cc->cc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
    324 		CIRCQ_INIT(&cc->cc_todo);
    325 		for (b = 0; b < BUCKETS; b++)
    326 			CIRCQ_INIT(&cc->cc_wheel[b]);
    327 	} else {
    328 		/* Boot CPU, one time only. */
    329 		callout_sih = softint_establish(SOFTINT_CLOCK | SOFTINT_MPSAFE,
    330 		    callout_softclock, NULL);
    331 		if (callout_sih == NULL)
    332 			panic("callout_init_cpu (2)");
    333 	}
    334 
    335 	sleepq_init(&cc->cc_sleepq);
    336 
    337 	snprintf(cc->cc_name1, sizeof(cc->cc_name1), "late/%u",
    338 	    cpu_index(ci));
    339 	evcnt_attach_dynamic(&cc->cc_ev_late, EVCNT_TYPE_MISC,
    340 	    NULL, "callout", cc->cc_name1);
    341 
    342 	snprintf(cc->cc_name2, sizeof(cc->cc_name2), "wait/%u",
    343 	    cpu_index(ci));
    344 	evcnt_attach_dynamic(&cc->cc_ev_block, EVCNT_TYPE_MISC,
    345 	    NULL, "callout", cc->cc_name2);
    346 
    347 	cc->cc_cpu = ci;
    348 	ci->ci_data.cpu_callout = cc;
    349 }
    350 
    351 /*
    352  * callout_init:
    353  *
    354  *	Initialize a callout structure.  This must be quick, so we fill
    355  *	only the minimum number of fields.
    356  */
    357 void
    358 callout_init(callout_t *cs, u_int flags)
    359 {
    360 	callout_impl_t *c = (callout_impl_t *)cs;
    361 	struct callout_cpu *cc;
    362 
    363 	KASSERT((flags & ~CALLOUT_FLAGMASK) == 0);
    364 
    365 	SDT_PROBE2(sdt, kernel, callout, init,  cs, flags);
    366 
    367 	cc = curcpu()->ci_data.cpu_callout;
    368 	c->c_func = NULL;
    369 	c->c_magic = CALLOUT_MAGIC;
    370 	if (__predict_true((flags & CALLOUT_MPSAFE) != 0 && cc != NULL)) {
    371 		c->c_flags = flags;
    372 		c->c_cpu = cc;
    373 		return;
    374 	}
    375 	c->c_flags = flags | CALLOUT_BOUND;
    376 	c->c_cpu = &callout_cpu0;
    377 }
    378 
    379 /*
    380  * callout_destroy:
    381  *
    382  *	Destroy a callout structure.  The callout must be stopped.
    383  */
    384 void
    385 callout_destroy(callout_t *cs)
    386 {
    387 	callout_impl_t *c = (callout_impl_t *)cs;
    388 
    389 	SDT_PROBE1(sdt, kernel, callout, destroy,  cs);
    390 
    391 	KASSERTMSG(c->c_magic == CALLOUT_MAGIC,
    392 	    "callout %p: c_magic (%#x) != CALLOUT_MAGIC (%#x)",
    393 	    c, c->c_magic, CALLOUT_MAGIC);
    394 	/*
    395 	 * It's not necessary to lock in order to see the correct value
    396 	 * of c->c_flags.  If the callout could potentially have been
    397 	 * running, the current thread should have stopped it.
    398 	 */
    399 	KASSERTMSG((c->c_flags & CALLOUT_PENDING) == 0,
    400 	    "pending callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    401 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    402 	KASSERTMSG(!callout_running_somewhere_else(c, c->c_cpu),
    403 	    "running callout %p: c_func (%p) c_flags (%#x) destroyed from %p",
    404 	    c, c->c_func, c->c_flags, __builtin_return_address(0));
    405 	c->c_magic = 0;
    406 }
    407 
    408 /*
    409  * callout_schedule_locked:
    410  *
    411  *	Schedule a callout to run.  The function and argument must
    412  *	already be set in the callout structure.  Must be called with
    413  *	callout_lock.
    414  */
    415 static void
    416 callout_schedule_locked(callout_impl_t *c, kmutex_t *lock, int to_ticks)
    417 {
    418 	struct callout_cpu *cc, *occ;
    419 	int old_time;
    420 
    421 	SDT_PROBE5(sdt, kernel, callout, schedule,
    422 	    c, c->c_func, c->c_arg, c->c_flags, to_ticks);
    423 
    424 	KASSERT(to_ticks >= 0);
    425 	KASSERT(c->c_func != NULL);
    426 
    427 	/* Initialize the time here, it won't change. */
    428 	occ = c->c_cpu;
    429 	c->c_flags &= ~(CALLOUT_FIRED | CALLOUT_INVOKING);
    430 
    431 	/*
    432 	 * If this timeout is already scheduled and now is moved
    433 	 * earlier, reschedule it now.  Otherwise leave it in place
    434 	 * and let it be rescheduled later.
    435 	 */
    436 	if ((c->c_flags & CALLOUT_PENDING) != 0) {
    437 		/* Leave on existing CPU. */
    438 		old_time = c->c_time;
    439 		c->c_time = to_ticks + occ->cc_ticks;
    440 		if (c->c_time - old_time < 0) {
    441 			CIRCQ_REMOVE(&c->c_list);
    442 			CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    443 		}
    444 		mutex_spin_exit(lock);
    445 		return;
    446 	}
    447 
    448 	cc = curcpu()->ci_data.cpu_callout;
    449 	if ((c->c_flags & CALLOUT_BOUND) != 0 || cc == occ ||
    450 	    !mutex_tryenter(cc->cc_lock)) {
    451 		/* Leave on existing CPU. */
    452 		c->c_time = to_ticks + occ->cc_ticks;
    453 		c->c_flags |= CALLOUT_PENDING;
    454 		CIRCQ_INSERT(&c->c_list, &occ->cc_todo);
    455 	} else {
    456 		/* Move to this CPU. */
    457 		c->c_cpu = cc;
    458 		c->c_time = to_ticks + cc->cc_ticks;
    459 		c->c_flags |= CALLOUT_PENDING;
    460 		CIRCQ_INSERT(&c->c_list, &cc->cc_todo);
    461 		mutex_spin_exit(cc->cc_lock);
    462 		SDT_PROBE6(sdt, kernel, callout, migrate,
    463 		    c, c->c_func, c->c_arg, c->c_flags,
    464 		    occ->cc_cpu, cc->cc_cpu);
    465 	}
    466 	mutex_spin_exit(lock);
    467 }
    468 
    469 /*
    470  * callout_reset:
    471  *
    472  *	Reset a callout structure with a new function and argument, and
    473  *	schedule it to run.
    474  */
    475 void
    476 callout_reset(callout_t *cs, int to_ticks, void (*func)(void *), void *arg)
    477 {
    478 	callout_impl_t *c = (callout_impl_t *)cs;
    479 	kmutex_t *lock;
    480 
    481 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    482 	KASSERT(func != NULL);
    483 
    484 	lock = callout_lock(c);
    485 	SDT_PROBE4(sdt, kernel, callout, setfunc,  cs, func, arg, c->c_flags);
    486 	c->c_func = func;
    487 	c->c_arg = arg;
    488 	callout_schedule_locked(c, lock, to_ticks);
    489 }
    490 
    491 /*
    492  * callout_schedule:
    493  *
    494  *	Schedule a callout to run.  The function and argument must
    495  *	already be set in the callout structure.
    496  */
    497 void
    498 callout_schedule(callout_t *cs, int to_ticks)
    499 {
    500 	callout_impl_t *c = (callout_impl_t *)cs;
    501 	kmutex_t *lock;
    502 
    503 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    504 
    505 	lock = callout_lock(c);
    506 	callout_schedule_locked(c, lock, to_ticks);
    507 }
    508 
    509 /*
    510  * callout_stop:
    511  *
    512  *	Try to cancel a pending callout.  It may be too late: the callout
    513  *	could be running on another CPU.  If called from interrupt context,
    514  *	the callout could already be in progress at a lower priority.
    515  */
    516 bool
    517 callout_stop(callout_t *cs)
    518 {
    519 	callout_impl_t *c = (callout_impl_t *)cs;
    520 	kmutex_t *lock;
    521 	bool expired;
    522 
    523 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    524 
    525 	lock = callout_lock(c);
    526 
    527 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    528 		CIRCQ_REMOVE(&c->c_list);
    529 	expired = ((c->c_flags & CALLOUT_FIRED) != 0);
    530 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    531 
    532 	SDT_PROBE5(sdt, kernel, callout, stop,
    533 	    c, c->c_func, c->c_arg, c->c_flags, expired);
    534 
    535 	mutex_spin_exit(lock);
    536 
    537 	return expired;
    538 }
    539 
    540 /*
    541  * callout_halt:
    542  *
    543  *	Cancel a pending callout.  If in-flight, block until it completes.
    544  *	May not be called from a hard interrupt handler.  If the callout
    545  * 	can take locks, the caller of callout_halt() must not hold any of
    546  *	those locks, otherwise the two could deadlock.  If 'interlock' is
    547  *	non-NULL and we must wait for the callout to complete, it will be
    548  *	released and re-acquired before returning.
    549  */
    550 bool
    551 callout_halt(callout_t *cs, void *interlock)
    552 {
    553 	callout_impl_t *c = (callout_impl_t *)cs;
    554 	kmutex_t *lock;
    555 
    556 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    557 	KASSERT(!cpu_intr_p());
    558 	KASSERT(interlock == NULL || mutex_owned(interlock));
    559 
    560 	/* Fast path. */
    561 	lock = callout_lock(c);
    562 	SDT_PROBE4(sdt, kernel, callout, halt,
    563 	    c, c->c_func, c->c_arg, c->c_flags);
    564 	if ((c->c_flags & CALLOUT_PENDING) != 0)
    565 		CIRCQ_REMOVE(&c->c_list);
    566 	c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    567 	if (__predict_false(callout_running_somewhere_else(c, c->c_cpu))) {
    568 		callout_wait(c, interlock, lock);
    569 		return true;
    570 	}
    571 	SDT_PROBE5(sdt, kernel, callout, halt__done,
    572 	    c, c->c_func, c->c_arg, c->c_flags, /*expired*/false);
    573 	mutex_spin_exit(lock);
    574 	return false;
    575 }
    576 
    577 /*
    578  * callout_wait:
    579  *
    580  *	Slow path for callout_halt().  Deliberately marked __noinline to
    581  *	prevent unneeded overhead in the caller.
    582  */
    583 static void __noinline
    584 callout_wait(callout_impl_t *c, void *interlock, kmutex_t *lock)
    585 {
    586 	struct callout_cpu *cc;
    587 	struct lwp *l;
    588 	kmutex_t *relock;
    589 	int nlocks;
    590 
    591 	l = curlwp;
    592 	relock = NULL;
    593 	for (;;) {
    594 		/*
    595 		 * At this point we know the callout is not pending, but it
    596 		 * could be running on a CPU somewhere.  That can be curcpu
    597 		 * in a few cases:
    598 		 *
    599 		 * - curlwp is a higher priority soft interrupt
    600 		 * - the callout blocked on a lock and is currently asleep
    601 		 * - the callout itself has called callout_halt() (nice!)
    602 		 */
    603 		cc = c->c_cpu;
    604 		if (__predict_true(!callout_running_somewhere_else(c, cc)))
    605 			break;
    606 
    607 		/* It's running - need to wait for it to complete. */
    608 		if (interlock != NULL) {
    609 			/*
    610 			 * Avoid potential scheduler lock order problems by
    611 			 * dropping the interlock without the callout lock
    612 			 * held; then retry.
    613 			 */
    614 			mutex_spin_exit(lock);
    615 			mutex_exit(interlock);
    616 			relock = interlock;
    617 			interlock = NULL;
    618 		} else {
    619 			/* XXX Better to do priority inheritance. */
    620 			KASSERT(l->l_wchan == NULL);
    621 			cc->cc_nwait++;
    622 			cc->cc_ev_block.ev_count++;
    623 			nlocks = sleepq_enter(&cc->cc_sleepq, l, cc->cc_lock);
    624 			sleepq_enqueue(&cc->cc_sleepq, cc, "callout",
    625 			    &callout_syncobj, false);
    626 			sleepq_block(0, false, &callout_syncobj, nlocks);
    627 		}
    628 
    629 		/*
    630 		 * Re-lock the callout and check the state of play again.
    631 		 * It's a common design pattern for callouts to re-schedule
    632 		 * themselves so put a stop to it again if needed.
    633 		 */
    634 		lock = callout_lock(c);
    635 		if ((c->c_flags & CALLOUT_PENDING) != 0)
    636 			CIRCQ_REMOVE(&c->c_list);
    637 		c->c_flags &= ~(CALLOUT_PENDING|CALLOUT_FIRED);
    638 	}
    639 
    640 	SDT_PROBE5(sdt, kernel, callout, halt__done,
    641 	    c, c->c_func, c->c_arg, c->c_flags, /*expired*/true);
    642 
    643 	mutex_spin_exit(lock);
    644 	if (__predict_false(relock != NULL))
    645 		mutex_enter(relock);
    646 }
    647 
    648 #ifdef notyet
    649 /*
    650  * callout_bind:
    651  *
    652  *	Bind a callout so that it will only execute on one CPU.
    653  *	The callout must be stopped, and must be MPSAFE.
    654  *
    655  *	XXX Disabled for now until it is decided how to handle
    656  *	offlined CPUs.  We may want weak+strong binding.
    657  */
    658 void
    659 callout_bind(callout_t *cs, struct cpu_info *ci)
    660 {
    661 	callout_impl_t *c = (callout_impl_t *)cs;
    662 	struct callout_cpu *cc;
    663 	kmutex_t *lock;
    664 
    665 	KASSERT((c->c_flags & CALLOUT_PENDING) == 0);
    666 	KASSERT(c->c_cpu->cc_active != c);
    667 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    668 	KASSERT((c->c_flags & CALLOUT_MPSAFE) != 0);
    669 
    670 	lock = callout_lock(c);
    671 	cc = ci->ci_data.cpu_callout;
    672 	c->c_flags |= CALLOUT_BOUND;
    673 	if (c->c_cpu != cc) {
    674 		/*
    675 		 * Assigning c_cpu effectively unlocks the callout
    676 		 * structure, as we don't hold the new CPU's lock.
    677 		 * Issue memory barrier to prevent accesses being
    678 		 * reordered.
    679 		 */
    680 		membar_exit();
    681 		c->c_cpu = cc;
    682 	}
    683 	mutex_spin_exit(lock);
    684 }
    685 #endif
    686 
    687 void
    688 callout_setfunc(callout_t *cs, void (*func)(void *), void *arg)
    689 {
    690 	callout_impl_t *c = (callout_impl_t *)cs;
    691 	kmutex_t *lock;
    692 
    693 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    694 	KASSERT(func != NULL);
    695 
    696 	lock = callout_lock(c);
    697 	SDT_PROBE4(sdt, kernel, callout, setfunc,  cs, func, arg, c->c_flags);
    698 	c->c_func = func;
    699 	c->c_arg = arg;
    700 	mutex_spin_exit(lock);
    701 }
    702 
    703 bool
    704 callout_expired(callout_t *cs)
    705 {
    706 	callout_impl_t *c = (callout_impl_t *)cs;
    707 	kmutex_t *lock;
    708 	bool rv;
    709 
    710 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    711 
    712 	lock = callout_lock(c);
    713 	rv = ((c->c_flags & CALLOUT_FIRED) != 0);
    714 	mutex_spin_exit(lock);
    715 
    716 	return rv;
    717 }
    718 
    719 bool
    720 callout_active(callout_t *cs)
    721 {
    722 	callout_impl_t *c = (callout_impl_t *)cs;
    723 	kmutex_t *lock;
    724 	bool rv;
    725 
    726 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    727 
    728 	lock = callout_lock(c);
    729 	rv = ((c->c_flags & (CALLOUT_PENDING|CALLOUT_FIRED)) != 0);
    730 	mutex_spin_exit(lock);
    731 
    732 	return rv;
    733 }
    734 
    735 bool
    736 callout_pending(callout_t *cs)
    737 {
    738 	callout_impl_t *c = (callout_impl_t *)cs;
    739 	kmutex_t *lock;
    740 	bool rv;
    741 
    742 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    743 
    744 	lock = callout_lock(c);
    745 	rv = ((c->c_flags & CALLOUT_PENDING) != 0);
    746 	mutex_spin_exit(lock);
    747 
    748 	return rv;
    749 }
    750 
    751 bool
    752 callout_invoking(callout_t *cs)
    753 {
    754 	callout_impl_t *c = (callout_impl_t *)cs;
    755 	kmutex_t *lock;
    756 	bool rv;
    757 
    758 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    759 
    760 	lock = callout_lock(c);
    761 	rv = ((c->c_flags & CALLOUT_INVOKING) != 0);
    762 	mutex_spin_exit(lock);
    763 
    764 	return rv;
    765 }
    766 
    767 void
    768 callout_ack(callout_t *cs)
    769 {
    770 	callout_impl_t *c = (callout_impl_t *)cs;
    771 	kmutex_t *lock;
    772 
    773 	KASSERT(c->c_magic == CALLOUT_MAGIC);
    774 
    775 	lock = callout_lock(c);
    776 	c->c_flags &= ~CALLOUT_INVOKING;
    777 	mutex_spin_exit(lock);
    778 }
    779 
    780 /*
    781  * callout_hardclock:
    782  *
    783  *	Called from hardclock() once every tick.  We schedule a soft
    784  *	interrupt if there is work to be done.
    785  */
    786 void
    787 callout_hardclock(void)
    788 {
    789 	struct callout_cpu *cc;
    790 	int needsoftclock, ticks;
    791 
    792 	cc = curcpu()->ci_data.cpu_callout;
    793 	mutex_spin_enter(cc->cc_lock);
    794 
    795 	ticks = ++cc->cc_ticks;
    796 
    797 	MOVEBUCKET(cc, 0, ticks);
    798 	if (MASKWHEEL(0, ticks) == 0) {
    799 		MOVEBUCKET(cc, 1, ticks);
    800 		if (MASKWHEEL(1, ticks) == 0) {
    801 			MOVEBUCKET(cc, 2, ticks);
    802 			if (MASKWHEEL(2, ticks) == 0)
    803 				MOVEBUCKET(cc, 3, ticks);
    804 		}
    805 	}
    806 
    807 	needsoftclock = !CIRCQ_EMPTY(&cc->cc_todo);
    808 	mutex_spin_exit(cc->cc_lock);
    809 
    810 	if (needsoftclock)
    811 		softint_schedule(callout_sih);
    812 }
    813 
    814 /*
    815  * callout_softclock:
    816  *
    817  *	Soft interrupt handler, scheduled above if there is work to
    818  * 	be done.  Callouts are made in soft interrupt context.
    819  */
    820 static void
    821 callout_softclock(void *v)
    822 {
    823 	callout_impl_t *c;
    824 	struct callout_cpu *cc;
    825 	void (*func)(void *);
    826 	void *arg;
    827 	int mpsafe, count, ticks, delta;
    828 	u_int flags __unused;
    829 	lwp_t *l;
    830 
    831 	l = curlwp;
    832 	KASSERT(l->l_cpu == curcpu());
    833 	cc = l->l_cpu->ci_data.cpu_callout;
    834 
    835 	mutex_spin_enter(cc->cc_lock);
    836 	cc->cc_lwp = l;
    837 	while (!CIRCQ_EMPTY(&cc->cc_todo)) {
    838 		c = CIRCQ_FIRST(&cc->cc_todo);
    839 		KASSERT(c->c_magic == CALLOUT_MAGIC);
    840 		KASSERT(c->c_func != NULL);
    841 		KASSERT(c->c_cpu == cc);
    842 		KASSERT((c->c_flags & CALLOUT_PENDING) != 0);
    843 		KASSERT((c->c_flags & CALLOUT_FIRED) == 0);
    844 		CIRCQ_REMOVE(&c->c_list);
    845 
    846 		/* If due run it, otherwise insert it into the right bucket. */
    847 		ticks = cc->cc_ticks;
    848 		delta = (int)((unsigned)c->c_time - (unsigned)ticks);
    849 		if (delta > 0) {
    850 			CIRCQ_INSERT(&c->c_list, BUCKET(cc, delta, c->c_time));
    851 			continue;
    852 		}
    853 		if (delta < 0)
    854 			cc->cc_ev_late.ev_count++;
    855 
    856 		c->c_flags = (c->c_flags & ~CALLOUT_PENDING) |
    857 		    (CALLOUT_FIRED | CALLOUT_INVOKING);
    858 		mpsafe = (c->c_flags & CALLOUT_MPSAFE);
    859 		func = c->c_func;
    860 		arg = c->c_arg;
    861 		cc->cc_active = c;
    862 		flags = c->c_flags;
    863 
    864 		mutex_spin_exit(cc->cc_lock);
    865 		KASSERT(func != NULL);
    866 		SDT_PROBE4(sdt, kernel, callout, entry,  c, func, arg, flags);
    867 		if (__predict_false(!mpsafe)) {
    868 			KERNEL_LOCK(1, NULL);
    869 			(*func)(arg);
    870 			KERNEL_UNLOCK_ONE(NULL);
    871 		} else
    872 			(*func)(arg);
    873 		SDT_PROBE4(sdt, kernel, callout, return,  c, func, arg, flags);
    874 		KASSERTMSG(l->l_blcnt == 0,
    875 		    "callout %p func %p leaked %d biglocks",
    876 		    c, func, l->l_blcnt);
    877 		mutex_spin_enter(cc->cc_lock);
    878 
    879 		/*
    880 		 * We can't touch 'c' here because it might be
    881 		 * freed already.  If LWPs waiting for callout
    882 		 * to complete, awaken them.
    883 		 */
    884 		cc->cc_active = NULL;
    885 		if ((count = cc->cc_nwait) != 0) {
    886 			cc->cc_nwait = 0;
    887 			/* sleepq_wake() drops the lock. */
    888 			sleepq_wake(&cc->cc_sleepq, cc, count, cc->cc_lock);
    889 			mutex_spin_enter(cc->cc_lock);
    890 		}
    891 	}
    892 	cc->cc_lwp = NULL;
    893 	mutex_spin_exit(cc->cc_lock);
    894 }
    895 #endif /* !CRASH */
    896 
    897 #ifdef DDB
    898 static void
    899 db_show_callout_bucket(struct callout_cpu *cc, struct callout_circq *kbucket,
    900     struct callout_circq *bucket)
    901 {
    902 	callout_impl_t *c, ci;
    903 	db_expr_t offset;
    904 	const char *name;
    905 	static char question[] = "?";
    906 	int b;
    907 
    908 	if (CIRCQ_LAST(bucket, kbucket))
    909 		return;
    910 
    911 	for (c = CIRCQ_FIRST(bucket); /*nothing*/; c = CIRCQ_NEXT(&c->c_list)) {
    912 		db_read_bytes((db_addr_t)c, sizeof(ci), (char *)&ci);
    913 		c = &ci;
    914 		db_find_sym_and_offset((db_addr_t)(intptr_t)c->c_func, &name,
    915 		    &offset);
    916 		name = name ? name : question;
    917 		b = (bucket - cc->cc_wheel);
    918 		if (b < 0)
    919 			b = -WHEELSIZE;
    920 		db_printf("%9d %2d/%-4d %16lx  %s\n",
    921 		    c->c_time - cc->cc_ticks, b / WHEELSIZE, b,
    922 		    (u_long)c->c_arg, name);
    923 		if (CIRCQ_LAST(&c->c_list, kbucket))
    924 			break;
    925 	}
    926 }
    927 
    928 void
    929 db_show_callout(db_expr_t addr, bool haddr, db_expr_t count, const char *modif)
    930 {
    931 	struct callout_cpu *cc;
    932 	struct cpu_info *ci;
    933 	int b;
    934 
    935 #ifndef CRASH
    936 	db_printf("hardclock_ticks now: %d\n", getticks());
    937 #endif
    938 	db_printf("    ticks  wheel               arg  func\n");
    939 
    940 	/*
    941 	 * Don't lock the callwheel; all the other CPUs are paused
    942 	 * anyhow, and we might be called in a circumstance where
    943 	 * some other CPU was paused while holding the lock.
    944 	 */
    945 	for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    946 		db_read_bytes((db_addr_t)ci +
    947 		    offsetof(struct cpu_info, ci_data.cpu_callout),
    948 		    sizeof(cc), (char *)&cc);
    949 		db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    950 		db_show_callout_bucket(&ccb, &cc->cc_todo, &ccb.cc_todo);
    951 	}
    952 	for (b = 0; b < BUCKETS; b++) {
    953 		for (ci = db_cpu_first(); ci != NULL; ci = db_cpu_next(ci)) {
    954 			db_read_bytes((db_addr_t)ci +
    955 			    offsetof(struct cpu_info, ci_data.cpu_callout),
    956 			    sizeof(cc), (char *)&cc);
    957 			db_read_bytes((db_addr_t)cc, sizeof(ccb), (char *)&ccb);
    958 			db_show_callout_bucket(&ccb, &cc->cc_wheel[b],
    959 			    &ccb.cc_wheel[b]);
    960 		}
    961 	}
    962 }
    963 #endif /* DDB */
    964