Home | History | Annotate | Line # | Download | only in gen
      1 /*	$NetBSD: rb.c,v 1.16 2021/09/16 21:29:41 andvar Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Matt Thomas <matt (at) 3am-software.com>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 #if HAVE_NBTOOL_CONFIG_H
     33 #include "nbtool_config.h"
     34 #endif
     35 
     36 #if !defined(_KERNEL) && !defined(_STANDALONE)
     37 #include <sys/types.h>
     38 #include <stddef.h>
     39 #include <assert.h>
     40 #include <stdbool.h>
     41 #ifdef RBDEBUG
     42 #define	KASSERT(s)	assert(s)
     43 #define	__rbt_unused
     44 #else
     45 #define KASSERT(s)	do { } while (/*CONSTCOND*/ 0)
     46 #define	__rbt_unused	__unused
     47 #endif
     48 __RCSID("$NetBSD: rb.c,v 1.16 2021/09/16 21:29:41 andvar Exp $");
     49 #else
     50 #include <lib/libkern/libkern.h>
     51 __KERNEL_RCSID(0, "$NetBSD: rb.c,v 1.16 2021/09/16 21:29:41 andvar Exp $");
     52 #ifndef DIAGNOSTIC
     53 #define	__rbt_unused	__unused
     54 #else
     55 #define	__rbt_unused
     56 #endif
     57 #endif
     58 
     59 #ifdef _LIBC
     60 __weak_alias(rb_tree_init, _rb_tree_init)
     61 __weak_alias(rb_tree_find_node, _rb_tree_find_node)
     62 __weak_alias(rb_tree_find_node_geq, _rb_tree_find_node_geq)
     63 __weak_alias(rb_tree_find_node_leq, _rb_tree_find_node_leq)
     64 __weak_alias(rb_tree_insert_node, _rb_tree_insert_node)
     65 __weak_alias(rb_tree_remove_node, _rb_tree_remove_node)
     66 __weak_alias(rb_tree_iterate, _rb_tree_iterate)
     67 #ifdef RBDEBUG
     68 __weak_alias(rb_tree_check, _rb_tree_check)
     69 __weak_alias(rb_tree_depths, _rb_tree_depths)
     70 #endif
     71 
     72 #include "namespace.h"
     73 #endif
     74 
     75 #ifdef RBTEST
     76 #include "rbtree.h"
     77 #else
     78 #include <sys/rbtree.h>
     79 #endif
     80 
     81 static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
     82 static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
     83 	unsigned int);
     84 #ifdef RBDEBUG
     85 static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
     86 	const struct rb_node *, const unsigned int);
     87 static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
     88 	const struct rb_node *, bool);
     89 #else
     90 #define	rb_tree_check_node(a, b, c, d)	true
     91 #endif
     92 
     93 #define	RB_NODETOITEM(rbto, rbn)	\
     94     ((void *)((uintptr_t)(rbn) - (rbto)->rbto_node_offset))
     95 #define	RB_ITEMTONODE(rbto, rbn)	\
     96     ((rb_node_t *)((uintptr_t)(rbn) + (rbto)->rbto_node_offset))
     97 
     98 #define	RB_SENTINEL_NODE	NULL
     99 
    100 void
    101 rb_tree_init(struct rb_tree *rbt, const rb_tree_ops_t *ops)
    102 {
    103 
    104 	rbt->rbt_ops = ops;
    105 	rbt->rbt_root = RB_SENTINEL_NODE;
    106 	RB_TAILQ_INIT(&rbt->rbt_nodes);
    107 #ifndef RBSMALL
    108 	rbt->rbt_minmax[RB_DIR_LEFT] = rbt->rbt_root;	/* minimum node */
    109 	rbt->rbt_minmax[RB_DIR_RIGHT] = rbt->rbt_root;	/* maximum node */
    110 #endif
    111 #ifdef RBSTATS
    112 	rbt->rbt_count = 0;
    113 	rbt->rbt_insertions = 0;
    114 	rbt->rbt_removals = 0;
    115 	rbt->rbt_insertion_rebalance_calls = 0;
    116 	rbt->rbt_insertion_rebalance_passes = 0;
    117 	rbt->rbt_removal_rebalance_calls = 0;
    118 	rbt->rbt_removal_rebalance_passes = 0;
    119 #endif
    120 }
    121 
    122 void *
    123 rb_tree_find_node(struct rb_tree *rbt, const void *key)
    124 {
    125 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    126 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    127 	struct rb_node *parent = rbt->rbt_root;
    128 
    129 	while (!RB_SENTINEL_P(parent)) {
    130 		void *pobj = RB_NODETOITEM(rbto, parent);
    131 		const signed int diff = (*compare_key)(rbto->rbto_context,
    132 		    pobj, key);
    133 		if (diff == 0)
    134 			return pobj;
    135 		parent = parent->rb_nodes[diff < 0];
    136 	}
    137 
    138 	return NULL;
    139 }
    140 
    141 void *
    142 rb_tree_find_node_geq(struct rb_tree *rbt, const void *key)
    143 {
    144 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    145 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    146 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
    147 
    148 	while (!RB_SENTINEL_P(parent)) {
    149 		void *pobj = RB_NODETOITEM(rbto, parent);
    150 		const signed int diff = (*compare_key)(rbto->rbto_context,
    151 		    pobj, key);
    152 		if (diff == 0)
    153 			return pobj;
    154 		if (diff > 0)
    155 			last = parent;
    156 		parent = parent->rb_nodes[diff < 0];
    157 	}
    158 
    159 	return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
    160 }
    161 
    162 void *
    163 rb_tree_find_node_leq(struct rb_tree *rbt, const void *key)
    164 {
    165 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    166 	rbto_compare_key_fn compare_key = rbto->rbto_compare_key;
    167 	struct rb_node *parent = rbt->rbt_root, *last = NULL;
    168 
    169 	while (!RB_SENTINEL_P(parent)) {
    170 		void *pobj = RB_NODETOITEM(rbto, parent);
    171 		const signed int diff = (*compare_key)(rbto->rbto_context,
    172 		    pobj, key);
    173 		if (diff == 0)
    174 			return pobj;
    175 		if (diff < 0)
    176 			last = parent;
    177 		parent = parent->rb_nodes[diff < 0];
    178 	}
    179 
    180 	return last == NULL ? NULL : RB_NODETOITEM(rbto, last);
    181 }
    182 
    183 void *
    184 rb_tree_insert_node(struct rb_tree *rbt, void *object)
    185 {
    186 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    187 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
    188 	struct rb_node *parent, *tmp, *self = RB_ITEMTONODE(rbto, object);
    189 	unsigned int position;
    190 	bool rebalance;
    191 
    192 	RBSTAT_INC(rbt->rbt_insertions);
    193 
    194 	tmp = rbt->rbt_root;
    195 	/*
    196 	 * This is a hack.  Because rbt->rbt_root is just a struct rb_node *,
    197 	 * just like rb_node->rb_nodes[RB_DIR_LEFT], we can use this fact to
    198 	 * avoid a lot of tests for root and know that even at root,
    199 	 * updating RB_FATHER(rb_node)->rb_nodes[RB_POSITION(rb_node)] will
    200 	 * update rbt->rbt_root.
    201 	 */
    202 	parent = (struct rb_node *)(void *)&rbt->rbt_root;
    203 	position = RB_DIR_LEFT;
    204 
    205 	/*
    206 	 * Find out where to place this new leaf.
    207 	 */
    208 	while (!RB_SENTINEL_P(tmp)) {
    209 		void *tobj = RB_NODETOITEM(rbto, tmp);
    210 		const signed int diff = (*compare_nodes)(rbto->rbto_context,
    211 		    tobj, object);
    212 		if (__predict_false(diff == 0)) {
    213 			/*
    214 			 * Node already exists; return it.
    215 			 */
    216 			return tobj;
    217 		}
    218 		parent = tmp;
    219 		position = (diff < 0);
    220 		tmp = parent->rb_nodes[position];
    221 	}
    222 
    223 #ifdef RBDEBUG
    224 	{
    225 		struct rb_node *prev = NULL, *next = NULL;
    226 
    227 		if (position == RB_DIR_RIGHT)
    228 			prev = parent;
    229 		else if (tmp != rbt->rbt_root)
    230 			next = parent;
    231 
    232 		/*
    233 		 * Verify our sequential position
    234 		 */
    235 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
    236 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
    237 		if (prev != NULL && next == NULL)
    238 			next = TAILQ_NEXT(prev, rb_link);
    239 		if (prev == NULL && next != NULL)
    240 			prev = TAILQ_PREV(next, rb_node_qh, rb_link);
    241 		KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
    242 		KASSERT(next == NULL || !RB_SENTINEL_P(next));
    243 		KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
    244 		    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
    245 		KASSERT(next == NULL || (*compare_nodes)(rbto->rbto_context,
    246 		    RB_NODETOITEM(rbto, self), RB_NODETOITEM(rbto, next)) < 0);
    247 	}
    248 #endif
    249 
    250 	/*
    251 	 * Initialize the node and insert as a leaf into the tree.
    252 	 */
    253 	RB_SET_FATHER(self, parent);
    254 	RB_SET_POSITION(self, position);
    255 	if (__predict_false(parent == (struct rb_node *)(void *)&rbt->rbt_root)) {
    256 		RB_MARK_BLACK(self);		/* root is always black */
    257 #ifndef RBSMALL
    258 		rbt->rbt_minmax[RB_DIR_LEFT] = self;
    259 		rbt->rbt_minmax[RB_DIR_RIGHT] = self;
    260 #endif
    261 		rebalance = false;
    262 	} else {
    263 		KASSERT(position == RB_DIR_LEFT || position == RB_DIR_RIGHT);
    264 #ifndef RBSMALL
    265 		/*
    266 		 * Keep track of the minimum and maximum nodes.  If our
    267 		 * parent is a minmax node and we on their min/max side,
    268 		 * we must be the new min/max node.
    269 		 */
    270 		if (parent == rbt->rbt_minmax[position])
    271 			rbt->rbt_minmax[position] = self;
    272 #endif /* !RBSMALL */
    273 		/*
    274 		 * All new nodes are colored red.  We only need to rebalance
    275 		 * if our parent is also red.
    276 		 */
    277 		RB_MARK_RED(self);
    278 		rebalance = RB_RED_P(parent);
    279 	}
    280 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
    281 	self->rb_left = parent->rb_nodes[position];
    282 	self->rb_right = parent->rb_nodes[position];
    283 	parent->rb_nodes[position] = self;
    284 	KASSERT(RB_CHILDLESS_P(self));
    285 
    286 	/*
    287 	 * Insert the new node into a sorted list for easy sequential access
    288 	 */
    289 	RBSTAT_INC(rbt->rbt_count);
    290 #ifdef RBDEBUG
    291 	if (RB_ROOT_P(rbt, self)) {
    292 		RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
    293 	} else if (position == RB_DIR_LEFT) {
    294 		KASSERT((*compare_nodes)(rbto->rbto_context,
    295 		    RB_NODETOITEM(rbto, self),
    296 		    RB_NODETOITEM(rbto, RB_FATHER(self))) < 0);
    297 		RB_TAILQ_INSERT_BEFORE(RB_FATHER(self), self, rb_link);
    298 	} else {
    299 		KASSERT((*compare_nodes)(rbto->rbto_context,
    300 		    RB_NODETOITEM(rbto, RB_FATHER(self)),
    301 		    RB_NODETOITEM(rbto, self)) < 0);
    302 		RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, RB_FATHER(self),
    303 		    self, rb_link);
    304 	}
    305 #endif
    306 	KASSERT(rb_tree_check_node(rbt, self, NULL, !rebalance));
    307 
    308 	/*
    309 	 * Rebalance tree after insertion
    310 	 */
    311 	if (rebalance) {
    312 		rb_tree_insert_rebalance(rbt, self);
    313 		KASSERT(rb_tree_check_node(rbt, self, NULL, true));
    314 	}
    315 
    316 	/* Successfully inserted, return our node pointer. */
    317 	return object;
    318 }
    319 
    320 /*
    321  * Swap the location and colors of 'self' and its child @ which.  The child
    322  * can not be a sentinel node.  This is our rotation function.  However,
    323  * since it preserves coloring, it great simplifies both insertion and
    324  * removal since rotation almost always involves the exchanging of colors
    325  * as a separate step.
    326  */
    327 static void
    328 rb_tree_reparent_nodes(__rbt_unused struct rb_tree *rbt,
    329 	struct rb_node *old_father, const unsigned int which)
    330 {
    331 	const unsigned int other = which ^ RB_DIR_OTHER;
    332 	struct rb_node * const grandpa = RB_FATHER(old_father);
    333 	struct rb_node * const old_child = old_father->rb_nodes[which];
    334 	struct rb_node * const new_father = old_child;
    335 	struct rb_node * const new_child = old_father;
    336 
    337 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    338 
    339 	KASSERT(!RB_SENTINEL_P(old_child));
    340 	KASSERT(RB_FATHER(old_child) == old_father);
    341 
    342 	KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
    343 	KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
    344 	KASSERT(RB_ROOT_P(rbt, old_father) ||
    345 	    rb_tree_check_node(rbt, grandpa, NULL, false));
    346 
    347 	/*
    348 	 * Exchange descendant linkages.
    349 	 */
    350 	grandpa->rb_nodes[RB_POSITION(old_father)] = new_father;
    351 	new_child->rb_nodes[which] = old_child->rb_nodes[other];
    352 	new_father->rb_nodes[other] = new_child;
    353 
    354 	/*
    355 	 * Update ancestor linkages
    356 	 */
    357 	RB_SET_FATHER(new_father, grandpa);
    358 	RB_SET_FATHER(new_child, new_father);
    359 
    360 	/*
    361 	 * Exchange properties between new_father and new_child.  The only
    362 	 * change is that new_child's position is now on the other side.
    363 	 */
    364 #if 0
    365 	{
    366 		struct rb_node tmp;
    367 		tmp.rb_info = 0;
    368 		RB_COPY_PROPERTIES(&tmp, old_child);
    369 		RB_COPY_PROPERTIES(new_father, old_father);
    370 		RB_COPY_PROPERTIES(new_child, &tmp);
    371 	}
    372 #else
    373 	RB_SWAP_PROPERTIES(new_father, new_child);
    374 #endif
    375 	RB_SET_POSITION(new_child, other);
    376 
    377 	/*
    378 	 * Make sure to reparent the new child to ourself.
    379 	 */
    380 	if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
    381 		RB_SET_FATHER(new_child->rb_nodes[which], new_child);
    382 		RB_SET_POSITION(new_child->rb_nodes[which], which);
    383 	}
    384 
    385 	KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
    386 	KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
    387 	KASSERT(RB_ROOT_P(rbt, new_father) ||
    388 	    rb_tree_check_node(rbt, grandpa, NULL, false));
    389 }
    390 
    391 static void
    392 rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
    393 {
    394 	struct rb_node * father = RB_FATHER(self);
    395 	struct rb_node * grandpa = RB_FATHER(father);
    396 	struct rb_node * uncle;
    397 	unsigned int which;
    398 	unsigned int other;
    399 
    400 	KASSERT(!RB_ROOT_P(rbt, self));
    401 	KASSERT(RB_RED_P(self));
    402 	KASSERT(RB_RED_P(father));
    403 	RBSTAT_INC(rbt->rbt_insertion_rebalance_calls);
    404 
    405 	for (;;) {
    406 		KASSERT(!RB_SENTINEL_P(self));
    407 
    408 		KASSERT(RB_RED_P(self));
    409 		KASSERT(RB_RED_P(father));
    410 		/*
    411 		 * We are red and our parent is red, therefore we must have a
    412 		 * grandfather and he must be black.
    413 		 */
    414 		grandpa = RB_FATHER(father);
    415 		KASSERT(RB_BLACK_P(grandpa));
    416 		KASSERT(RB_DIR_RIGHT == 1 && RB_DIR_LEFT == 0);
    417 		which = (father == grandpa->rb_right);
    418 		other = which ^ RB_DIR_OTHER;
    419 		uncle = grandpa->rb_nodes[other];
    420 
    421 		if (RB_BLACK_P(uncle))
    422 			break;
    423 
    424 		RBSTAT_INC(rbt->rbt_insertion_rebalance_passes);
    425 		/*
    426 		 * Case 1: our uncle is red
    427 		 *   Simply invert the colors of our parent and
    428 		 *   uncle and make our grandparent red.  And
    429 		 *   then solve the problem up at his level.
    430 		 */
    431 		RB_MARK_BLACK(uncle);
    432 		RB_MARK_BLACK(father);
    433 		if (__predict_false(RB_ROOT_P(rbt, grandpa))) {
    434 			/*
    435 			 * If our grandpa is root, don't bother
    436 			 * setting him to red, just return.
    437 			 */
    438 			KASSERT(RB_BLACK_P(grandpa));
    439 			return;
    440 		}
    441 		RB_MARK_RED(grandpa);
    442 		self = grandpa;
    443 		father = RB_FATHER(self);
    444 		KASSERT(RB_RED_P(self));
    445 		if (RB_BLACK_P(father)) {
    446 			/*
    447 			 * If our greatgrandpa is black, we're done.
    448 			 */
    449 			KASSERT(RB_BLACK_P(rbt->rbt_root));
    450 			return;
    451 		}
    452 	}
    453 
    454 	KASSERT(!RB_ROOT_P(rbt, self));
    455 	KASSERT(RB_RED_P(self));
    456 	KASSERT(RB_RED_P(father));
    457 	KASSERT(RB_BLACK_P(uncle));
    458 	KASSERT(RB_BLACK_P(grandpa));
    459 	/*
    460 	 * Case 2&3: our uncle is black.
    461 	 */
    462 	if (self == father->rb_nodes[other]) {
    463 		/*
    464 		 * Case 2: we are on the same side as our uncle
    465 		 *   Swap ourselves with our parent so this case
    466 		 *   becomes case 3.  Basically our parent becomes our
    467 		 *   child.
    468 		 */
    469 		rb_tree_reparent_nodes(rbt, father, other);
    470 		KASSERT(RB_FATHER(father) == self);
    471 		KASSERT(self->rb_nodes[which] == father);
    472 		KASSERT(RB_FATHER(self) == grandpa);
    473 		self = father;
    474 		father = RB_FATHER(self);
    475 	}
    476 	KASSERT(RB_RED_P(self) && RB_RED_P(father));
    477 	KASSERT(grandpa->rb_nodes[which] == father);
    478 	/*
    479 	 * Case 3: we are opposite a child of a black uncle.
    480 	 *   Swap our parent and grandparent.  Since our grandfather
    481 	 *   is black, our father will become black and our new sibling
    482 	 *   (former grandparent) will become red.
    483 	 */
    484 	rb_tree_reparent_nodes(rbt, grandpa, which);
    485 	KASSERT(RB_FATHER(self) == father);
    486 	KASSERT(RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER] == grandpa);
    487 	KASSERT(RB_RED_P(self));
    488 	KASSERT(RB_BLACK_P(father));
    489 	KASSERT(RB_RED_P(grandpa));
    490 
    491 	/*
    492 	 * Final step: Set the root to black.
    493 	 */
    494 	RB_MARK_BLACK(rbt->rbt_root);
    495 }
    496 
    497 static void
    498 rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, bool rebalance)
    499 {
    500 	const unsigned int which = RB_POSITION(self);
    501 	struct rb_node *father = RB_FATHER(self);
    502 #ifndef RBSMALL
    503 	const bool was_root = RB_ROOT_P(rbt, self);
    504 #endif
    505 
    506 	KASSERT(rebalance || (RB_ROOT_P(rbt, self) || RB_RED_P(self)));
    507 	KASSERT(!rebalance || RB_BLACK_P(self));
    508 	KASSERT(RB_CHILDLESS_P(self));
    509 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    510 
    511 	/*
    512 	 * Since we are childless, we know that self->rb_left is pointing
    513 	 * to the sentinel node.
    514 	 */
    515 	father->rb_nodes[which] = self->rb_left;
    516 
    517 	/*
    518 	 * Remove ourselves from the node list, decrement the count,
    519 	 * and update min/max.
    520 	 */
    521 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    522 	RBSTAT_DEC(rbt->rbt_count);
    523 #ifndef RBSMALL
    524 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self)) {
    525 		rbt->rbt_minmax[RB_POSITION(self)] = father;
    526 		/*
    527 		 * When removing the root, rbt->rbt_minmax[RB_DIR_LEFT] is
    528 		 * updated automatically, but we also need to update
    529 		 * rbt->rbt_minmax[RB_DIR_RIGHT];
    530 		 */
    531 		if (__predict_false(was_root)) {
    532 			rbt->rbt_minmax[RB_DIR_RIGHT] = father;
    533 		}
    534 	}
    535 	RB_SET_FATHER(self, NULL);
    536 #endif
    537 
    538 	/*
    539 	 * Rebalance if requested.
    540 	 */
    541 	if (rebalance)
    542 		rb_tree_removal_rebalance(rbt, father, which);
    543 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
    544 }
    545 
    546 /*
    547  * When deleting an interior node
    548  */
    549 static void
    550 rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
    551 	struct rb_node *standin)
    552 {
    553 	const unsigned int standin_which = RB_POSITION(standin);
    554 	unsigned int standin_other = standin_which ^ RB_DIR_OTHER;
    555 	struct rb_node *standin_son;
    556 	struct rb_node *standin_father = RB_FATHER(standin);
    557 	bool rebalance = RB_BLACK_P(standin);
    558 
    559 	if (standin_father == self) {
    560 		/*
    561 		 * As a child of self, any childen would be opposite of
    562 		 * our parent.
    563 		 */
    564 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
    565 		standin_son = standin->rb_nodes[standin_which];
    566 	} else {
    567 		/*
    568 		 * Since we aren't a child of self, any childen would be
    569 		 * on the same side as our parent.
    570 		 */
    571 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
    572 		standin_son = standin->rb_nodes[standin_other];
    573 	}
    574 
    575 	/*
    576 	 * the node we are removing must have two children.
    577 	 */
    578 	KASSERT(RB_TWOCHILDREN_P(self));
    579 	/*
    580 	 * If standin has a child, it must be red.
    581 	 */
    582 	KASSERT(RB_SENTINEL_P(standin_son) || RB_RED_P(standin_son));
    583 
    584 	/*
    585 	 * Verify things are sane.
    586 	 */
    587 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    588 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
    589 
    590 	if (__predict_false(RB_RED_P(standin_son))) {
    591 		/*
    592 		 * We know we have a red child so if we flip it to black
    593 		 * we don't have to rebalance.
    594 		 */
    595 		KASSERT(rb_tree_check_node(rbt, standin_son, NULL, true));
    596 		RB_MARK_BLACK(standin_son);
    597 		rebalance = false;
    598 
    599 		if (standin_father == self) {
    600 			KASSERT(RB_POSITION(standin_son) == standin_which);
    601 		} else {
    602 			KASSERT(RB_POSITION(standin_son) == standin_other);
    603 			/*
    604 			 * Change the son's parentage to point to his grandpa.
    605 			 */
    606 			RB_SET_FATHER(standin_son, standin_father);
    607 			RB_SET_POSITION(standin_son, standin_which);
    608 		}
    609 	}
    610 
    611 	if (standin_father == self) {
    612 		/*
    613 		 * If we are about to delete the standin's father, then when
    614 		 * we call rebalance, we need to use ourselves as our father.
    615 		 * Otherwise remember our original father.  Also, sincef we are
    616 		 * our standin's father we only need to reparent the standin's
    617 		 * brother.
    618 		 *
    619 		 * |    R      -->     S    |
    620 		 * |  Q   S    -->   Q   T  |
    621 		 * |        t  -->          |
    622 		 */
    623 		KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
    624 		KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
    625 		KASSERT(self->rb_nodes[standin_which] == standin);
    626 		/*
    627 		 * Have our son/standin adopt his brother as his new son.
    628 		 */
    629 		standin_father = standin;
    630 	} else {
    631 		/*
    632 		 * |    R          -->    S       .  |
    633 		 * |   / \  |   T  -->   / \  |  /   |
    634 		 * |  ..... | S    -->  ..... | T    |
    635 		 *
    636 		 * Sever standin's connection to his father.
    637 		 */
    638 		standin_father->rb_nodes[standin_which] = standin_son;
    639 		/*
    640 		 * Adopt the far son.
    641 		 */
    642 		standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
    643 		RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
    644 		KASSERT(RB_POSITION(self->rb_nodes[standin_other]) == standin_other);
    645 		/*
    646 		 * Use standin_other because we need to preserve standin_which
    647 		 * for the removal_rebalance.
    648 		 */
    649 		standin_other = standin_which;
    650 	}
    651 
    652 	/*
    653 	 * Move the only remaining son to our standin.  If our standin is our
    654 	 * son, this will be the only son needed to be moved.
    655 	 */
    656 	KASSERT(standin->rb_nodes[standin_other] != self->rb_nodes[standin_other]);
    657 	standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
    658 	RB_SET_FATHER(standin->rb_nodes[standin_other], standin);
    659 
    660 	/*
    661 	 * Now copy the result of self to standin and then replace
    662 	 * self with standin in the tree.
    663 	 */
    664 	RB_COPY_PROPERTIES(standin, self);
    665 	RB_SET_FATHER(standin, RB_FATHER(self));
    666 	RB_FATHER(standin)->rb_nodes[RB_POSITION(standin)] = standin;
    667 
    668 	/*
    669 	 * Remove ourselves from the node list, decrement the count,
    670 	 * and update min/max.
    671 	 */
    672 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    673 	RBSTAT_DEC(rbt->rbt_count);
    674 #ifndef RBSMALL
    675 	if (__predict_false(rbt->rbt_minmax[RB_POSITION(self)] == self))
    676 		rbt->rbt_minmax[RB_POSITION(self)] = RB_FATHER(self);
    677 	RB_SET_FATHER(self, NULL);
    678 #endif
    679 
    680 	KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
    681 	KASSERT(RB_FATHER_SENTINEL_P(standin)
    682 		|| rb_tree_check_node(rbt, standin_father, NULL, false));
    683 	KASSERT(RB_LEFT_SENTINEL_P(standin)
    684 		|| rb_tree_check_node(rbt, standin->rb_left, NULL, false));
    685 	KASSERT(RB_RIGHT_SENTINEL_P(standin)
    686 		|| rb_tree_check_node(rbt, standin->rb_right, NULL, false));
    687 
    688 	if (!rebalance)
    689 		return;
    690 
    691 	rb_tree_removal_rebalance(rbt, standin_father, standin_which);
    692 	KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
    693 }
    694 
    695 /*
    696  * We could do this by doing
    697  *	rb_tree_node_swap(rbt, self, which);
    698  *	rb_tree_prune_node(rbt, self, false);
    699  *
    700  * But it's more efficient to just evalate and recolor the child.
    701  */
    702 static void
    703 rb_tree_prune_blackred_branch(struct rb_tree *rbt, struct rb_node *self,
    704 	unsigned int which)
    705 {
    706 	struct rb_node *father = RB_FATHER(self);
    707 	struct rb_node *son = self->rb_nodes[which];
    708 #ifndef RBSMALL
    709 	const bool was_root = RB_ROOT_P(rbt, self);
    710 #endif
    711 
    712 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    713 	KASSERT(RB_BLACK_P(self) && RB_RED_P(son));
    714 	KASSERT(!RB_TWOCHILDREN_P(son));
    715 	KASSERT(RB_CHILDLESS_P(son));
    716 	KASSERT(rb_tree_check_node(rbt, self, NULL, false));
    717 	KASSERT(rb_tree_check_node(rbt, son, NULL, false));
    718 
    719 	/*
    720 	 * Remove ourselves from the tree and give our former child our
    721 	 * properties (position, color, root).
    722 	 */
    723 	RB_COPY_PROPERTIES(son, self);
    724 	father->rb_nodes[RB_POSITION(son)] = son;
    725 	RB_SET_FATHER(son, father);
    726 
    727 	/*
    728 	 * Remove ourselves from the node list, decrement the count,
    729 	 * and update minmax.
    730 	 */
    731 	RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
    732 	RBSTAT_DEC(rbt->rbt_count);
    733 #ifndef RBSMALL
    734 	if (__predict_false(was_root)) {
    735 		KASSERT(rbt->rbt_minmax[which] == son);
    736 		rbt->rbt_minmax[which ^ RB_DIR_OTHER] = son;
    737 	} else if (rbt->rbt_minmax[RB_POSITION(self)] == self) {
    738 		rbt->rbt_minmax[RB_POSITION(self)] = son;
    739 	}
    740 	RB_SET_FATHER(self, NULL);
    741 #endif
    742 
    743 	KASSERT(was_root || rb_tree_check_node(rbt, father, NULL, true));
    744 	KASSERT(rb_tree_check_node(rbt, son, NULL, true));
    745 }
    746 
    747 void
    748 rb_tree_remove_node(struct rb_tree *rbt, void *object)
    749 {
    750 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    751 	struct rb_node *standin, *self = RB_ITEMTONODE(rbto, object);
    752 	unsigned int which;
    753 
    754 	KASSERT(!RB_SENTINEL_P(self));
    755 	RBSTAT_INC(rbt->rbt_removals);
    756 
    757 	/*
    758 	 * In the following diagrams, we (the node to be removed) are S.  Red
    759 	 * nodes are lowercase.  T could be either red or black.
    760 	 *
    761 	 * Remember the major axiom of the red-black tree: the number of
    762 	 * black nodes from the root to each leaf is constant across all
    763 	 * leaves, only the number of red nodes varies.
    764 	 *
    765 	 * Thus removing a red leaf doesn't require any other changes to a
    766 	 * red-black tree.  So if we must remove a node, attempt to rearrange
    767 	 * the tree so we can remove a red node.
    768 	 *
    769 	 * The simpliest case is a childless red node or a childless root node:
    770 	 *
    771 	 * |    T  -->    T  |    or    |  R  -->  *  |
    772 	 * |  s    -->  *    |
    773 	 */
    774 	if (RB_CHILDLESS_P(self)) {
    775 		const bool rebalance = RB_BLACK_P(self) && !RB_ROOT_P(rbt, self);
    776 		rb_tree_prune_node(rbt, self, rebalance);
    777 		return;
    778 	}
    779 	KASSERT(!RB_CHILDLESS_P(self));
    780 	if (!RB_TWOCHILDREN_P(self)) {
    781 		/*
    782 		 * The next simpliest case is the node we are deleting is
    783 		 * black and has one red child.
    784 		 *
    785 		 * |      T  -->      T  -->      T  |
    786 		 * |    S    -->  R      -->  R      |
    787 		 * |  r      -->    s    -->    *    |
    788 		 */
    789 		which = RB_LEFT_SENTINEL_P(self) ? RB_DIR_RIGHT : RB_DIR_LEFT;
    790 		KASSERT(RB_BLACK_P(self));
    791 		KASSERT(RB_RED_P(self->rb_nodes[which]));
    792 		KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
    793 		rb_tree_prune_blackred_branch(rbt, self, which);
    794 		return;
    795 	}
    796 	KASSERT(RB_TWOCHILDREN_P(self));
    797 
    798 	/*
    799 	 * We invert these because we prefer to remove from the inside of
    800 	 * the tree.
    801 	 */
    802 	which = RB_POSITION(self) ^ RB_DIR_OTHER;
    803 
    804 	/*
    805 	 * Let's find the node closes to us opposite of our parent
    806 	 * Now swap it with ourself, "prune" it, and rebalance, if needed.
    807 	 */
    808 	standin = RB_ITEMTONODE(rbto, rb_tree_iterate(rbt, object, which));
    809 	rb_tree_swap_prune_and_rebalance(rbt, self, standin);
    810 }
    811 
    812 static void
    813 rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
    814 	unsigned int which)
    815 {
    816 	KASSERT(!RB_SENTINEL_P(parent));
    817 	KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
    818 	KASSERT(which == RB_DIR_LEFT || which == RB_DIR_RIGHT);
    819 	RBSTAT_INC(rbt->rbt_removal_rebalance_calls);
    820 
    821 	while (RB_BLACK_P(parent->rb_nodes[which])) {
    822 		unsigned int other = which ^ RB_DIR_OTHER;
    823 		struct rb_node *brother = parent->rb_nodes[other];
    824 
    825 		RBSTAT_INC(rbt->rbt_removal_rebalance_passes);
    826 
    827 		KASSERT(!RB_SENTINEL_P(brother));
    828 		/*
    829 		 * For cases 1, 2a, and 2b, our brother's children must
    830 		 * be black and our father must be black
    831 		 */
    832 		if (RB_BLACK_P(parent)
    833 		    && RB_BLACK_P(brother->rb_left)
    834 		    && RB_BLACK_P(brother->rb_right)) {
    835 			if (RB_RED_P(brother)) {
    836 				/*
    837 				 * Case 1: Our brother is red, swap its
    838 				 * position (and colors) with our parent.
    839 				 * This should now be case 2b (unless C or E
    840 				 * has a red child which is case 3; thus no
    841 				 * explicit branch to case 2b).
    842 				 *
    843 				 *    B         ->        D
    844 				 *  A     d     ->    b     E
    845 				 *      C   E   ->  A   C
    846 				 */
    847 				KASSERT(RB_BLACK_P(parent));
    848 				rb_tree_reparent_nodes(rbt, parent, other);
    849 				brother = parent->rb_nodes[other];
    850 				KASSERT(!RB_SENTINEL_P(brother));
    851 				KASSERT(RB_RED_P(parent));
    852 				KASSERT(RB_BLACK_P(brother));
    853 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
    854 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
    855 			} else {
    856 				/*
    857 				 * Both our parent and brother are black.
    858 				 * Change our brother to red, advance up rank
    859 				 * and go through the loop again.
    860 				 *
    861 				 *    B         ->   *B
    862 				 * *A     D     ->  A     d
    863 				 *      C   E   ->      C   E
    864 				 */
    865 				RB_MARK_RED(brother);
    866 				KASSERT(RB_BLACK_P(brother->rb_left));
    867 				KASSERT(RB_BLACK_P(brother->rb_right));
    868 				if (RB_ROOT_P(rbt, parent))
    869 					return;	/* root == parent == black */
    870 				KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
    871 				KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
    872 				which = RB_POSITION(parent);
    873 				parent = RB_FATHER(parent);
    874 				continue;
    875 			}
    876 		}
    877 		/*
    878 		 * Avoid an else here so that case 2a above can hit either
    879 		 * case 2b, 3, or 4.
    880 		 */
    881 		if (RB_RED_P(parent)
    882 		    && RB_BLACK_P(brother)
    883 		    && RB_BLACK_P(brother->rb_left)
    884 		    && RB_BLACK_P(brother->rb_right)) {
    885 			KASSERT(RB_RED_P(parent));
    886 			KASSERT(RB_BLACK_P(brother));
    887 			KASSERT(RB_BLACK_P(brother->rb_left));
    888 			KASSERT(RB_BLACK_P(brother->rb_right));
    889 			/*
    890 			 * We are black, our father is red, our brother and
    891 			 * both nephews are black.  Simply invert/exchange the
    892 			 * colors of our father and brother (to black and red
    893 			 * respectively).
    894 			 *
    895 			 *	|    f        -->    F        |
    896 			 *	|  *     B    -->  *     b    |
    897 			 *	|      N   N  -->      N   N  |
    898 			 */
    899 			RB_MARK_BLACK(parent);
    900 			RB_MARK_RED(brother);
    901 			KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
    902 			break;		/* We're done! */
    903 		} else {
    904 			/*
    905 			 * Our brother must be black and have at least one
    906 			 * red child (it may have two).
    907 			 */
    908 			KASSERT(RB_BLACK_P(brother));
    909 			KASSERT(RB_RED_P(brother->rb_nodes[which]) ||
    910 				RB_RED_P(brother->rb_nodes[other]));
    911 			if (RB_BLACK_P(brother->rb_nodes[other])) {
    912 				/*
    913 				 * Case 3: our brother is black, our near
    914 				 * nephew is red, and our far nephew is black.
    915 				 * Swap our brother with our near nephew.
    916 				 * This result in a tree that matches case 4.
    917 				 * (Our father could be red or black).
    918 				 *
    919 				 *	|    F      -->    F      |
    920 				 *	|  x     B  -->  x   B    |
    921 				 *	|      n    -->        n  |
    922 				 */
    923 				KASSERT(RB_RED_P(brother->rb_nodes[which]));
    924 				rb_tree_reparent_nodes(rbt, brother, which);
    925 				KASSERT(RB_FATHER(brother) == parent->rb_nodes[other]);
    926 				brother = parent->rb_nodes[other];
    927 				KASSERT(RB_RED_P(brother->rb_nodes[other]));
    928 			}
    929 			/*
    930 			 * Case 4: our brother is black and our far nephew
    931 			 * is red.  Swap our father and brother locations and
    932 			 * change our far nephew to black.  (these can be
    933 			 * done in either order so we change the color first).
    934 			 * The result is a valid red-black tree and is a
    935 			 * terminal case.  (again we don't care about the
    936 			 * father's color)
    937 			 *
    938 			 * If the father is red, we will get a red-black-black
    939 			 * tree:
    940 			 *	|  f      ->  f      -->    b    |
    941 			 *	|    B    ->    B    -->  F   N  |
    942 			 *	|      n  ->      N  -->         |
    943 			 *
    944 			 * If the father is black, we will get an all black
    945 			 * tree:
    946 			 *	|  F      ->  F      -->    B    |
    947 			 *	|    B    ->    B    -->  F   N  |
    948 			 *	|      n  ->      N  -->         |
    949 			 *
    950 			 * If we had two red nephews, then after the swap,
    951 			 * our former father would have a red grandson.
    952 			 */
    953 			KASSERT(RB_BLACK_P(brother));
    954 			KASSERT(RB_RED_P(brother->rb_nodes[other]));
    955 			RB_MARK_BLACK(brother->rb_nodes[other]);
    956 			rb_tree_reparent_nodes(rbt, parent, other);
    957 			break;		/* We're done! */
    958 		}
    959 	}
    960 	KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
    961 }
    962 
    963 void *
    964 rb_tree_iterate(struct rb_tree *rbt, void *object, const unsigned int direction)
    965 {
    966 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
    967 	const unsigned int other = direction ^ RB_DIR_OTHER;
    968 	struct rb_node *self;
    969 
    970 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
    971 
    972 	if (object == NULL) {
    973 #ifndef RBSMALL
    974 		if (RB_SENTINEL_P(rbt->rbt_root))
    975 			return NULL;
    976 		return RB_NODETOITEM(rbto, rbt->rbt_minmax[direction]);
    977 #else
    978 		self = rbt->rbt_root;
    979 		if (RB_SENTINEL_P(self))
    980 			return NULL;
    981 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
    982 			self = self->rb_nodes[direction];
    983 		return RB_NODETOITEM(rbto, self);
    984 #endif /* !RBSMALL */
    985 	}
    986 	self = RB_ITEMTONODE(rbto, object);
    987 	KASSERT(!RB_SENTINEL_P(self));
    988 	/*
    989 	 * We can't go any further in this direction.  We proceed up in the
    990 	 * opposite direction until our parent is in direction we want to go.
    991 	 */
    992 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
    993 		while (!RB_ROOT_P(rbt, self)) {
    994 			if (other == RB_POSITION(self))
    995 				return RB_NODETOITEM(rbto, RB_FATHER(self));
    996 			self = RB_FATHER(self);
    997 		}
    998 		return NULL;
    999 	}
   1000 
   1001 	/*
   1002 	 * Advance down one in current direction and go down as far as possible
   1003 	 * in the opposite direction.
   1004 	 */
   1005 	self = self->rb_nodes[direction];
   1006 	KASSERT(!RB_SENTINEL_P(self));
   1007 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
   1008 		self = self->rb_nodes[other];
   1009 	return RB_NODETOITEM(rbto, self);
   1010 }
   1011 
   1012 #ifdef RBDEBUG
   1013 static const struct rb_node *
   1014 rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
   1015 	const unsigned int direction)
   1016 {
   1017 	const unsigned int other = direction ^ RB_DIR_OTHER;
   1018 	KASSERT(direction == RB_DIR_LEFT || direction == RB_DIR_RIGHT);
   1019 
   1020 	if (self == NULL) {
   1021 #ifndef RBSMALL
   1022 		if (RB_SENTINEL_P(rbt->rbt_root))
   1023 			return NULL;
   1024 		return rbt->rbt_minmax[direction];
   1025 #else
   1026 		self = rbt->rbt_root;
   1027 		if (RB_SENTINEL_P(self))
   1028 			return NULL;
   1029 		while (!RB_SENTINEL_P(self->rb_nodes[direction]))
   1030 			self = self->rb_nodes[direction];
   1031 		return self;
   1032 #endif /* !RBSMALL */
   1033 	}
   1034 	KASSERT(!RB_SENTINEL_P(self));
   1035 	/*
   1036 	 * We can't go any further in this direction.  We proceed up in the
   1037 	 * opposite direction until our parent is in direction we want to go.
   1038 	 */
   1039 	if (RB_SENTINEL_P(self->rb_nodes[direction])) {
   1040 		while (!RB_ROOT_P(rbt, self)) {
   1041 			if (other == RB_POSITION(self))
   1042 				return RB_FATHER(self);
   1043 			self = RB_FATHER(self);
   1044 		}
   1045 		return NULL;
   1046 	}
   1047 
   1048 	/*
   1049 	 * Advance down one in current direction and go down as far as possible
   1050 	 * in the opposite direction.
   1051 	 */
   1052 	self = self->rb_nodes[direction];
   1053 	KASSERT(!RB_SENTINEL_P(self));
   1054 	while (!RB_SENTINEL_P(self->rb_nodes[other]))
   1055 		self = self->rb_nodes[other];
   1056 	return self;
   1057 }
   1058 
   1059 static unsigned int
   1060 rb_tree_count_black(const struct rb_node *self)
   1061 {
   1062 	unsigned int left, right;
   1063 
   1064 	if (RB_SENTINEL_P(self))
   1065 		return 0;
   1066 
   1067 	left = rb_tree_count_black(self->rb_left);
   1068 	right = rb_tree_count_black(self->rb_right);
   1069 
   1070 	KASSERT(left == right);
   1071 
   1072 	return left + RB_BLACK_P(self);
   1073 }
   1074 
   1075 static bool
   1076 rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
   1077 	const struct rb_node *prev, bool red_check)
   1078 {
   1079 	const rb_tree_ops_t *rbto = rbt->rbt_ops;
   1080 	rbto_compare_nodes_fn compare_nodes = rbto->rbto_compare_nodes;
   1081 
   1082 	KASSERT(!RB_SENTINEL_P(self));
   1083 	KASSERT(prev == NULL || (*compare_nodes)(rbto->rbto_context,
   1084 	    RB_NODETOITEM(rbto, prev), RB_NODETOITEM(rbto, self)) < 0);
   1085 
   1086 	/*
   1087 	 * Verify our relationship to our parent.
   1088 	 */
   1089 	if (RB_ROOT_P(rbt, self)) {
   1090 		KASSERT(self == rbt->rbt_root);
   1091 		KASSERT(RB_POSITION(self) == RB_DIR_LEFT);
   1092 		KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
   1093 		KASSERT(RB_FATHER(self) == (const struct rb_node *) &rbt->rbt_root);
   1094 	} else {
   1095 		int diff = (*compare_nodes)(rbto->rbto_context,
   1096 		    RB_NODETOITEM(rbto, self),
   1097 		    RB_NODETOITEM(rbto, RB_FATHER(self)));
   1098 
   1099 		KASSERT(self != rbt->rbt_root);
   1100 		KASSERT(!RB_FATHER_SENTINEL_P(self));
   1101 		if (RB_POSITION(self) == RB_DIR_LEFT) {
   1102 			KASSERT(diff < 0);
   1103 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_LEFT] == self);
   1104 		} else {
   1105 			KASSERT(diff > 0);
   1106 			KASSERT(RB_FATHER(self)->rb_nodes[RB_DIR_RIGHT] == self);
   1107 		}
   1108 	}
   1109 
   1110 	/*
   1111 	 * Verify our position in the linked list against the tree itself.
   1112 	 */
   1113 	{
   1114 		const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
   1115 		const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
   1116 		KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
   1117 		KASSERT(next0 == TAILQ_NEXT(self, rb_link));
   1118 #ifndef RBSMALL
   1119 		KASSERT(prev0 != NULL || self == rbt->rbt_minmax[RB_DIR_LEFT]);
   1120 		KASSERT(next0 != NULL || self == rbt->rbt_minmax[RB_DIR_RIGHT]);
   1121 #endif
   1122 	}
   1123 
   1124 	/*
   1125 	 * The root must be black.
   1126 	 * There can never be two adjacent red nodes.
   1127 	 */
   1128 	if (red_check) {
   1129 		KASSERT(!RB_ROOT_P(rbt, self) || RB_BLACK_P(self));
   1130 		(void) rb_tree_count_black(self);
   1131 		if (RB_RED_P(self)) {
   1132 			const struct rb_node *brother;
   1133 			KASSERT(!RB_ROOT_P(rbt, self));
   1134 			brother = RB_FATHER(self)->rb_nodes[RB_POSITION(self) ^ RB_DIR_OTHER];
   1135 			KASSERT(RB_BLACK_P(RB_FATHER(self)));
   1136 			/*
   1137 			 * I'm red and have no children, then I must either
   1138 			 * have no brother or my brother also be red and
   1139 			 * also have no children.  (black count == 0)
   1140 			 */
   1141 			KASSERT(!RB_CHILDLESS_P(self)
   1142 				|| RB_SENTINEL_P(brother)
   1143 				|| RB_RED_P(brother)
   1144 				|| RB_CHILDLESS_P(brother));
   1145 			/*
   1146 			 * If I'm not childless, I must have two children
   1147 			 * and they must be both be black.
   1148 			 */
   1149 			KASSERT(RB_CHILDLESS_P(self)
   1150 				|| (RB_TWOCHILDREN_P(self)
   1151 				    && RB_BLACK_P(self->rb_left)
   1152 				    && RB_BLACK_P(self->rb_right)));
   1153 			/*
   1154 			 * If I'm not childless, thus I have black children,
   1155 			 * then my brother must either be black or have two
   1156 			 * black children.
   1157 			 */
   1158 			KASSERT(RB_CHILDLESS_P(self)
   1159 				|| RB_BLACK_P(brother)
   1160 				|| (RB_TWOCHILDREN_P(brother)
   1161 				    && RB_BLACK_P(brother->rb_left)
   1162 				    && RB_BLACK_P(brother->rb_right)));
   1163 		} else {
   1164 			/*
   1165 			 * If I'm black and have one child, that child must
   1166 			 * be red and childless.
   1167 			 */
   1168 			KASSERT(RB_CHILDLESS_P(self)
   1169 				|| RB_TWOCHILDREN_P(self)
   1170 				|| (!RB_LEFT_SENTINEL_P(self)
   1171 				    && RB_RIGHT_SENTINEL_P(self)
   1172 				    && RB_RED_P(self->rb_left)
   1173 				    && RB_CHILDLESS_P(self->rb_left))
   1174 				|| (!RB_RIGHT_SENTINEL_P(self)
   1175 				    && RB_LEFT_SENTINEL_P(self)
   1176 				    && RB_RED_P(self->rb_right)
   1177 				    && RB_CHILDLESS_P(self->rb_right)));
   1178 
   1179 			/*
   1180 			 * If I'm a childless black node and my parent is
   1181 			 * black, my 2nd closet relative away from my parent
   1182 			 * is either red or has a red parent or red children.
   1183 			 */
   1184 			if (!RB_ROOT_P(rbt, self)
   1185 			    && RB_CHILDLESS_P(self)
   1186 			    && RB_BLACK_P(RB_FATHER(self))) {
   1187 				const unsigned int which = RB_POSITION(self);
   1188 				const unsigned int other = which ^ RB_DIR_OTHER;
   1189 				const struct rb_node *relative0, *relative;
   1190 
   1191 				relative0 = rb_tree_iterate_const(rbt,
   1192 				    self, other);
   1193 				KASSERT(relative0 != NULL);
   1194 				relative = rb_tree_iterate_const(rbt,
   1195 				    relative0, other);
   1196 				KASSERT(relative != NULL);
   1197 				KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
   1198 #if 0
   1199 				KASSERT(RB_RED_P(relative)
   1200 					|| RB_RED_P(relative->rb_left)
   1201 					|| RB_RED_P(relative->rb_right)
   1202 					|| RB_RED_P(RB_FATHER(relative)));
   1203 #endif
   1204 			}
   1205 		}
   1206 		/*
   1207 		 * A grandparent's children must be real nodes and not
   1208 		 * sentinels.  First check out grandparent.
   1209 		 */
   1210 		KASSERT(RB_ROOT_P(rbt, self)
   1211 			|| RB_ROOT_P(rbt, RB_FATHER(self))
   1212 			|| RB_TWOCHILDREN_P(RB_FATHER(RB_FATHER(self))));
   1213 		/*
   1214 		 * If we are have grandchildren on our left, then
   1215 		 * we must have a child on our right.
   1216 		 */
   1217 		KASSERT(RB_LEFT_SENTINEL_P(self)
   1218 			|| RB_CHILDLESS_P(self->rb_left)
   1219 			|| !RB_RIGHT_SENTINEL_P(self));
   1220 		/*
   1221 		 * If we are have grandchildren on our right, then
   1222 		 * we must have a child on our left.
   1223 		 */
   1224 		KASSERT(RB_RIGHT_SENTINEL_P(self)
   1225 			|| RB_CHILDLESS_P(self->rb_right)
   1226 			|| !RB_LEFT_SENTINEL_P(self));
   1227 
   1228 		/*
   1229 		 * If we have a child on the left and it doesn't have two
   1230 		 * children make sure we don't have great-great-grandchildren on
   1231 		 * the right.
   1232 		 */
   1233 		KASSERT(RB_TWOCHILDREN_P(self->rb_left)
   1234 			|| RB_CHILDLESS_P(self->rb_right)
   1235 			|| RB_CHILDLESS_P(self->rb_right->rb_left)
   1236 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
   1237 			|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
   1238 			|| RB_CHILDLESS_P(self->rb_right->rb_right)
   1239 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
   1240 			|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
   1241 
   1242 		/*
   1243 		 * If we have a child on the right and it doesn't have two
   1244 		 * children make sure we don't have great-great-grandchildren on
   1245 		 * the left.
   1246 		 */
   1247 		KASSERT(RB_TWOCHILDREN_P(self->rb_right)
   1248 			|| RB_CHILDLESS_P(self->rb_left)
   1249 			|| RB_CHILDLESS_P(self->rb_left->rb_left)
   1250 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
   1251 			|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
   1252 			|| RB_CHILDLESS_P(self->rb_left->rb_right)
   1253 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
   1254 			|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
   1255 
   1256 		/*
   1257 		 * If we are fully interior node, then our predecessors and
   1258 		 * successors must have no children in our direction.
   1259 		 */
   1260 		if (RB_TWOCHILDREN_P(self)) {
   1261 			const struct rb_node *prev0;
   1262 			const struct rb_node *next0;
   1263 
   1264 			prev0 = rb_tree_iterate_const(rbt, self, RB_DIR_LEFT);
   1265 			KASSERT(prev0 != NULL);
   1266 			KASSERT(RB_RIGHT_SENTINEL_P(prev0));
   1267 
   1268 			next0 = rb_tree_iterate_const(rbt, self, RB_DIR_RIGHT);
   1269 			KASSERT(next0 != NULL);
   1270 			KASSERT(RB_LEFT_SENTINEL_P(next0));
   1271 		}
   1272 	}
   1273 
   1274 	return true;
   1275 }
   1276 
   1277 void
   1278 rb_tree_check(const struct rb_tree *rbt, bool red_check)
   1279 {
   1280 	const struct rb_node *self;
   1281 	const struct rb_node *prev;
   1282 #ifdef RBSTATS
   1283 	unsigned int count = 0;
   1284 #endif
   1285 
   1286 	KASSERT(rbt->rbt_root != NULL);
   1287 	KASSERT(RB_LEFT_P(rbt->rbt_root));
   1288 
   1289 #if defined(RBSTATS) && !defined(RBSMALL)
   1290 	KASSERT(rbt->rbt_count > 1
   1291 	    || rbt->rbt_minmax[RB_DIR_LEFT] == rbt->rbt_minmax[RB_DIR_RIGHT]);
   1292 #endif
   1293 
   1294 	prev = NULL;
   1295 	TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
   1296 		rb_tree_check_node(rbt, self, prev, false);
   1297 #ifdef RBSTATS
   1298 		count++;
   1299 #endif
   1300 	}
   1301 #ifdef RBSTATS
   1302 	KASSERT(rbt->rbt_count == count);
   1303 #endif
   1304 	if (red_check) {
   1305 		KASSERT(RB_BLACK_P(rbt->rbt_root));
   1306 		KASSERT(RB_SENTINEL_P(rbt->rbt_root)
   1307 			|| rb_tree_count_black(rbt->rbt_root));
   1308 
   1309 		/*
   1310 		 * The root must be black.
   1311 		 * There can never be two adjacent red nodes.
   1312 		 */
   1313 		TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
   1314 			rb_tree_check_node(rbt, self, NULL, true);
   1315 		}
   1316 	}
   1317 }
   1318 #endif /* RBDEBUG */
   1319 
   1320 #ifdef RBSTATS
   1321 static void
   1322 rb_tree_mark_depth(const struct rb_tree *rbt, const struct rb_node *self,
   1323 	size_t *depths, size_t depth)
   1324 {
   1325 	if (RB_SENTINEL_P(self))
   1326 		return;
   1327 
   1328 	if (RB_TWOCHILDREN_P(self)) {
   1329 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
   1330 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
   1331 		return;
   1332 	}
   1333 	depths[depth]++;
   1334 	if (!RB_LEFT_SENTINEL_P(self)) {
   1335 		rb_tree_mark_depth(rbt, self->rb_left, depths, depth + 1);
   1336 	}
   1337 	if (!RB_RIGHT_SENTINEL_P(self)) {
   1338 		rb_tree_mark_depth(rbt, self->rb_right, depths, depth + 1);
   1339 	}
   1340 }
   1341 
   1342 void
   1343 rb_tree_depths(const struct rb_tree *rbt, size_t *depths)
   1344 {
   1345 	rb_tree_mark_depth(rbt, rbt->rbt_root, depths, 1);
   1346 }
   1347 #endif /* RBSTATS */
   1348