1 /* $NetBSD: glxsb.c,v 1.19 2022/05/22 11:39:26 riastradh Exp $ */ 2 /* $OpenBSD: glxsb.c,v 1.7 2007/02/12 14:31:45 tom Exp $ */ 3 4 /* 5 * Copyright (c) 2006 Tom Cosgrove <tom (at) openbsd.org> 6 * Copyright (c) 2003, 2004 Theo de Raadt 7 * Copyright (c) 2003 Jason Wright 8 * 9 * Permission to use, copy, modify, and distribute this software for any 10 * purpose with or without fee is hereby granted, provided that the above 11 * copyright notice and this permission notice appear in all copies. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 20 */ 21 22 /* 23 * Driver for the security block on the AMD Geode LX processors 24 * http://www.amd.com/files/connectivitysolutions/geode/geode_lx/33234d_lx_ds.pdf 25 */ 26 27 #include <sys/cdefs.h> 28 __KERNEL_RCSID(0, "$NetBSD: glxsb.c,v 1.19 2022/05/22 11:39:26 riastradh Exp $"); 29 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/device.h> 33 #include <sys/malloc.h> 34 #include <sys/mbuf.h> 35 #include <sys/types.h> 36 #include <sys/callout.h> 37 #include <sys/bus.h> 38 #include <sys/cprng.h> 39 #include <sys/rndsource.h> 40 41 #include <machine/cpufunc.h> 42 43 #include <dev/pci/pcivar.h> 44 #include <dev/pci/pcidevs.h> 45 46 #include <opencrypto/cryptodev.h> 47 48 #define SB_GLD_MSR_CAP 0x58002000 /* RO - Capabilities */ 49 #define SB_GLD_MSR_CONFIG 0x58002001 /* RW - Master Config */ 50 #define SB_GLD_MSR_SMI 0x58002002 /* RW - SMI */ 51 #define SB_GLD_MSR_ERROR 0x58002003 /* RW - Error */ 52 #define SB_GLD_MSR_PM 0x58002004 /* RW - Power Mgmt */ 53 #define SB_GLD_MSR_DIAG 0x58002005 /* RW - Diagnostic */ 54 #define SB_GLD_MSR_CTRL 0x58002006 /* RW - Security Block Cntrl */ 55 56 /* For GLD_MSR_CTRL: */ 57 #define SB_GMC_DIV0 0x0000 /* AES update divisor values */ 58 #define SB_GMC_DIV1 0x0001 59 #define SB_GMC_DIV2 0x0002 60 #define SB_GMC_DIV3 0x0003 61 #define SB_GMC_DIV_MASK 0x0003 62 #define SB_GMC_SBI 0x0004 /* AES swap bits */ 63 #define SB_GMC_SBY 0x0008 /* AES swap bytes */ 64 #define SB_GMC_TW 0x0010 /* Time write (EEPROM) */ 65 #define SB_GMC_T_SEL0 0x0000 /* RNG post-proc: none */ 66 #define SB_GMC_T_SEL1 0x0100 /* RNG post-proc: LFSR */ 67 #define SB_GMC_T_SEL2 0x0200 /* RNG post-proc: whitener */ 68 #define SB_GMC_T_SEL3 0x0300 /* RNG LFSR+whitener */ 69 #define SB_GMC_T_SEL_MASK 0x0300 70 #define SB_GMC_T_NE 0x0400 /* Noise (generator) Enable */ 71 #define SB_GMC_T_TM 0x0800 /* RNG test mode */ 72 /* (deterministic) */ 73 74 /* Security Block configuration/control registers (offsets from base) */ 75 76 #define SB_CTL_A 0x0000 /* RW - SB Control A */ 77 #define SB_CTL_B 0x0004 /* RW - SB Control B */ 78 #define SB_AES_INT 0x0008 /* RW - SB AES Interrupt */ 79 #define SB_SOURCE_A 0x0010 /* RW - Source A */ 80 #define SB_DEST_A 0x0014 /* RW - Destination A */ 81 #define SB_LENGTH_A 0x0018 /* RW - Length A */ 82 #define SB_SOURCE_B 0x0020 /* RW - Source B */ 83 #define SB_DEST_B 0x0024 /* RW - Destination B */ 84 #define SB_LENGTH_B 0x0028 /* RW - Length B */ 85 #define SB_WKEY 0x0030 /* WO - Writable Key 0-3 */ 86 #define SB_WKEY_0 0x0030 /* WO - Writable Key 0 */ 87 #define SB_WKEY_1 0x0034 /* WO - Writable Key 1 */ 88 #define SB_WKEY_2 0x0038 /* WO - Writable Key 2 */ 89 #define SB_WKEY_3 0x003C /* WO - Writable Key 3 */ 90 #define SB_CBC_IV 0x0040 /* RW - CBC IV 0-3 */ 91 #define SB_CBC_IV_0 0x0040 /* RW - CBC IV 0 */ 92 #define SB_CBC_IV_1 0x0044 /* RW - CBC IV 1 */ 93 #define SB_CBC_IV_2 0x0048 /* RW - CBC IV 2 */ 94 #define SB_CBC_IV_3 0x004C /* RW - CBC IV 3 */ 95 #define SB_RANDOM_NUM 0x0050 /* RW - Random Number */ 96 #define SB_RANDOM_NUM_STATUS 0x0054 /* RW - Random Number Status */ 97 #define SB_EEPROM_COMM 0x0800 /* RW - EEPROM Command */ 98 #define SB_EEPROM_ADDR 0x0804 /* RW - EEPROM Address */ 99 #define SB_EEPROM_DATA 0x0808 /* RW - EEPROM Data */ 100 #define SB_EEPROM_SEC_STATE 0x080C /* RW - EEPROM Security State */ 101 102 /* For SB_CTL_A and _B */ 103 #define SB_CTL_ST 0x0001 /* Start operation (enc/dec) */ 104 #define SB_CTL_ENC 0x0002 /* Encrypt (0 is decrypt) */ 105 #define SB_CTL_DEC 0x0000 /* Decrypt */ 106 #define SB_CTL_WK 0x0004 /* Use writable key (we set) */ 107 #define SB_CTL_DC 0x0008 /* Destination coherent */ 108 #define SB_CTL_SC 0x0010 /* Source coherent */ 109 #define SB_CTL_CBC 0x0020 /* CBC (0 is ECB) */ 110 111 /* For SB_AES_INT */ 112 #define SB_AI_DISABLE_AES_A 0x0001 /* Disable AES A compl int */ 113 #define SB_AI_ENABLE_AES_A 0x0000 /* Enable AES A compl int */ 114 #define SB_AI_DISABLE_AES_B 0x0002 /* Disable AES B compl int */ 115 #define SB_AI_ENABLE_AES_B 0x0000 /* Enable AES B compl int */ 116 #define SB_AI_DISABLE_EEPROM 0x0004 /* Disable EEPROM op comp int */ 117 #define SB_AI_ENABLE_EEPROM 0x0000 /* Enable EEPROM op compl int */ 118 #define SB_AI_AES_A_COMPLETE 0x0100 /* AES A operation complete */ 119 #define SB_AI_AES_B_COMPLETE 0x0200 /* AES B operation complete */ 120 #define SB_AI_EEPROM_COMPLETE 0x0400 /* EEPROM operation complete */ 121 122 #define SB_RNS_TRNG_VALID 0x0001 /* in SB_RANDOM_NUM_STATUS */ 123 124 #define SB_MEM_SIZE 0x0810 /* Size of memory block */ 125 126 #define SB_AES_ALIGN 0x0010 /* Source and dest buffers */ 127 /* must be 16-byte aligned */ 128 #define SB_AES_BLOCK_SIZE 0x0010 129 130 /* 131 * The Geode LX security block AES acceleration doesn't perform scatter- 132 * gather: it just takes source and destination addresses. Therefore the 133 * plain- and ciphertexts need to be contiguous. To this end, we allocate 134 * a buffer for both, and accept the overhead of copying in and out. If 135 * the number of bytes in one operation is bigger than allowed for by the 136 * buffer (buffer is twice the size of the max length, as it has both input 137 * and output) then we have to perform multiple encryptions/decryptions. 138 */ 139 #define GLXSB_MAX_AES_LEN 16384 140 141 struct glxsb_dma_map { 142 bus_dmamap_t dma_map; 143 bus_dma_segment_t dma_seg; 144 int dma_nsegs; 145 int dma_size; 146 void * dma_vaddr; 147 uint32_t dma_paddr; 148 }; 149 struct glxsb_session { 150 uint32_t ses_key[4]; 151 int ses_klen; 152 int ses_used; 153 }; 154 155 struct glxsb_softc { 156 device_t sc_dev; 157 bus_space_tag_t sc_iot; 158 bus_space_handle_t sc_ioh; 159 struct callout sc_co; 160 161 bus_dma_tag_t sc_dmat; 162 struct glxsb_dma_map sc_dma; 163 int32_t sc_cid; 164 int sc_nsessions; 165 struct glxsb_session *sc_sessions; 166 167 krndsource_t sc_rnd_source; 168 }; 169 170 int glxsb_match(device_t, cfdata_t, void *); 171 void glxsb_attach(device_t, device_t, void *); 172 void glxsb_rnd(void *); 173 174 CFATTACH_DECL_NEW(glxsb, sizeof(struct glxsb_softc), 175 glxsb_match, glxsb_attach, NULL, NULL); 176 177 #define GLXSB_SESSION(sid) ((sid) & 0x0fffffff) 178 #define GLXSB_SID(crd,ses) (((crd) << 28) | ((ses) & 0x0fffffff)) 179 180 int glxsb_crypto_setup(struct glxsb_softc *); 181 int glxsb_crypto_newsession(void *, uint32_t *, struct cryptoini *); 182 int glxsb_crypto_process(void *, struct cryptop *, int); 183 void glxsb_crypto_freesession(void *, uint64_t); 184 static __inline void glxsb_aes(struct glxsb_softc *, uint32_t, uint32_t, 185 uint32_t, void *, int, void *); 186 187 int glxsb_dma_alloc(struct glxsb_softc *, int, struct glxsb_dma_map *); 188 void glxsb_dma_pre_op(struct glxsb_softc *, struct glxsb_dma_map *); 189 void glxsb_dma_post_op(struct glxsb_softc *, struct glxsb_dma_map *); 190 void glxsb_dma_free(struct glxsb_softc *, struct glxsb_dma_map *); 191 192 int 193 glxsb_match(device_t parent, cfdata_t match, void *aux) 194 { 195 struct pci_attach_args *pa = aux; 196 197 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AMD && 198 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AMD_GEODELX_AES) 199 return (1); 200 201 return (0); 202 } 203 204 void 205 glxsb_attach(device_t parent, device_t self, void *aux) 206 { 207 struct glxsb_softc *sc = device_private(self); 208 struct pci_attach_args *pa = aux; 209 bus_addr_t membase; 210 bus_size_t memsize; 211 uint64_t msr; 212 uint32_t intr; 213 214 msr = rdmsr(SB_GLD_MSR_CAP); 215 if ((msr & 0xFFFF00) != 0x130400) { 216 aprint_error(": unknown ID 0x%x\n", 217 (int)((msr & 0xFFFF00) >> 16)); 218 return; 219 } 220 221 /* printf(": revision %d", (int) (msr & 0xFF)); */ 222 223 /* Map in the security block configuration/control registers */ 224 if (pci_mapreg_map(pa, PCI_MAPREG_START, 225 PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT, 0, 226 &sc->sc_iot, &sc->sc_ioh, &membase, &memsize)) { 227 aprint_error(": can't find mem space\n"); 228 return; 229 } 230 231 sc->sc_dev = self; 232 233 /* 234 * Configure the Security Block. 235 * 236 * We want to enable the noise generator (T_NE), and enable the 237 * linear feedback shift register and whitener post-processing 238 * (T_SEL = 3). Also ensure that test mode (deterministic values) 239 * is disabled. 240 */ 241 msr = rdmsr(SB_GLD_MSR_CTRL); 242 msr &= ~(SB_GMC_T_TM | SB_GMC_T_SEL_MASK); 243 msr |= SB_GMC_T_NE | SB_GMC_T_SEL3; 244 #if 0 245 msr |= SB_GMC_SBI | SB_GMC_SBY; /* for AES, if necessary */ 246 #endif 247 wrmsr(SB_GLD_MSR_CTRL, msr); 248 249 rnd_attach_source(&sc->sc_rnd_source, device_xname(self), 250 RND_TYPE_RNG, RND_FLAG_COLLECT_VALUE); 251 252 /* Install a periodic collector for the "true" (AMD's word) RNG */ 253 callout_init(&sc->sc_co, 0); 254 callout_setfunc(&sc->sc_co, glxsb_rnd, sc); 255 glxsb_rnd(sc); 256 aprint_normal(": RNG"); 257 258 /* We don't have an interrupt handler, so disable completion INTs */ 259 intr = SB_AI_DISABLE_AES_A | SB_AI_DISABLE_AES_B | 260 SB_AI_DISABLE_EEPROM | SB_AI_AES_A_COMPLETE | 261 SB_AI_AES_B_COMPLETE | SB_AI_EEPROM_COMPLETE; 262 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_AES_INT, intr); 263 264 sc->sc_dmat = pa->pa_dmat; 265 266 if (glxsb_crypto_setup(sc)) 267 aprint_normal(" AES"); 268 269 aprint_normal("\n"); 270 } 271 272 void 273 glxsb_rnd(void *v) 274 { 275 struct glxsb_softc *sc = v; 276 uint32_t status, value; 277 extern int hz; 278 279 status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM_STATUS); 280 if (status & SB_RNS_TRNG_VALID) { 281 value = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_RANDOM_NUM); 282 rnd_add_data(&sc->sc_rnd_source, &value, sizeof(value), 283 sizeof(value) * NBBY); 284 } 285 286 callout_schedule(&sc->sc_co, (hz > 100) ? (hz / 100) : 1); 287 } 288 289 int 290 glxsb_crypto_setup(struct glxsb_softc *sc) 291 { 292 293 /* Allocate a contiguous DMA-able buffer to work in */ 294 if (glxsb_dma_alloc(sc, GLXSB_MAX_AES_LEN * 2, &sc->sc_dma) != 0) 295 return 0; 296 297 sc->sc_cid = crypto_get_driverid(0); 298 if (sc->sc_cid < 0) 299 return 0; 300 301 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0, 302 glxsb_crypto_newsession, glxsb_crypto_freesession, 303 glxsb_crypto_process, sc); 304 305 sc->sc_nsessions = 0; 306 307 return 1; 308 } 309 310 int 311 glxsb_crypto_newsession(void *aux, uint32_t *sidp, struct cryptoini *cri) 312 { 313 struct glxsb_softc *sc = aux; 314 struct glxsb_session *ses = NULL; 315 int sesn; 316 317 if (cri->cri_next != NULL || cri->cri_alg != CRYPTO_AES_CBC || 318 cri->cri_klen != 128) 319 return (EINVAL); 320 321 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) { 322 if (sc->sc_sessions[sesn].ses_used == 0) { 323 ses = &sc->sc_sessions[sesn]; 324 break; 325 } 326 } 327 328 if (ses == NULL) { 329 sesn = sc->sc_nsessions; 330 ses = malloc((sesn + 1) * sizeof(*ses), M_DEVBUF, M_NOWAIT); 331 if (ses == NULL) 332 return (ENOMEM); 333 if (sesn != 0) { 334 memcpy(ses, sc->sc_sessions, sesn * sizeof(*ses)); 335 memset(sc->sc_sessions, 0, sesn * sizeof(*ses)); 336 free(sc->sc_sessions, M_DEVBUF); 337 } 338 sc->sc_sessions = ses; 339 ses = &sc->sc_sessions[sesn]; 340 sc->sc_nsessions++; 341 } 342 343 memset(ses, 0, sizeof(*ses)); 344 ses->ses_used = 1; 345 346 ses->ses_klen = cri->cri_klen; 347 348 /* Copy the key (Geode LX wants the primary key only) */ 349 memcpy(ses->ses_key, cri->cri_key, sizeof(ses->ses_key)); 350 351 *sidp = GLXSB_SID(0, sesn); 352 return (0); 353 } 354 355 void 356 glxsb_crypto_freesession(void *aux, uint64_t tid) 357 { 358 struct glxsb_softc *sc = aux; 359 int sesn; 360 uint32_t sid = ((uint32_t)tid) & 0xffffffff; 361 362 sesn = GLXSB_SESSION(sid); 363 KASSERTMSG(sesn < sc->sc_nsessions, "sesn=%d nsessions=%d", 364 sesn, sc->sc_nsessions); 365 366 memset(&sc->sc_sessions[sesn], 0, sizeof(sc->sc_sessions[sesn])); 367 } 368 369 /* 370 * Must be called at splnet() or higher 371 */ 372 static __inline void 373 glxsb_aes(struct glxsb_softc *sc, uint32_t control, uint32_t psrc, 374 uint32_t pdst, void *key, int len, void *iv) 375 { 376 uint32_t status; 377 int i; 378 379 if (len & 0xF) { 380 printf("%s: len must be a multiple of 16 (not %d)\n", 381 device_xname(sc->sc_dev), len); 382 return; 383 } 384 385 /* Set the source */ 386 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_SOURCE_A, psrc); 387 388 /* Set the destination address */ 389 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_DEST_A, pdst); 390 391 /* Set the data length */ 392 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_LENGTH_A, len); 393 394 /* Set the IV */ 395 if (iv != NULL) { 396 bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, 397 SB_CBC_IV, iv, 4); 398 control |= SB_CTL_CBC; 399 } 400 401 /* Set the key */ 402 bus_space_write_region_4(sc->sc_iot, sc->sc_ioh, SB_WKEY, key, 4); 403 404 /* Ask the security block to do it */ 405 bus_space_write_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A, 406 control | SB_CTL_WK | SB_CTL_DC | SB_CTL_SC | SB_CTL_ST); 407 408 /* 409 * Now wait until it is done. 410 * 411 * We do a busy wait. Obviously the number of iterations of 412 * the loop required to perform the AES operation depends upon 413 * the number of bytes to process. 414 * 415 * On a 500 MHz Geode LX we see 416 * 417 * length (bytes) typical max iterations 418 * 16 12 419 * 64 22 420 * 256 59 421 * 1024 212 422 * 8192 1,537 423 * 424 * Since we have a maximum size of operation defined in 425 * GLXSB_MAX_AES_LEN, we use this constant to decide how long 426 * to wait. Allow an order of magnitude longer than it should 427 * really take, just in case. 428 */ 429 for (i = 0; i < GLXSB_MAX_AES_LEN * 10; i++) { 430 status = bus_space_read_4(sc->sc_iot, sc->sc_ioh, SB_CTL_A); 431 432 if ((status & SB_CTL_ST) == 0) /* Done */ 433 return; 434 } 435 436 aprint_error_dev(sc->sc_dev, "operation failed to complete\n"); 437 } 438 439 int 440 glxsb_crypto_process(void *aux, struct cryptop *crp, int hint) 441 { 442 struct glxsb_softc *sc = aux; 443 struct glxsb_session *ses; 444 struct cryptodesc *crd; 445 char *op_src, *op_dst; 446 uint32_t op_psrc, op_pdst; 447 uint8_t op_iv[SB_AES_BLOCK_SIZE]; 448 int sesn, err = 0; 449 int len, tlen, xlen; 450 int offset; 451 uint32_t control; 452 int s; 453 454 s = splnet(); 455 456 if (crp == NULL || crp->crp_callback == NULL) { 457 err = EINVAL; 458 goto out; 459 } 460 crd = crp->crp_desc; 461 if (crd == NULL || crd->crd_next != NULL || 462 crd->crd_alg != CRYPTO_AES_CBC || 463 (crd->crd_len % SB_AES_BLOCK_SIZE) != 0) { 464 err = EINVAL; 465 goto out; 466 } 467 468 sesn = GLXSB_SESSION(crp->crp_sid); 469 if (sesn >= sc->sc_nsessions) { 470 err = EINVAL; 471 goto out; 472 } 473 ses = &sc->sc_sessions[sesn]; 474 475 /* How much of our buffer will we need to use? */ 476 xlen = crd->crd_len > GLXSB_MAX_AES_LEN ? 477 GLXSB_MAX_AES_LEN : crd->crd_len; 478 479 /* 480 * XXX Check if we can have input == output on Geode LX. 481 * XXX In the meantime, use two separate (adjacent) buffers. 482 */ 483 op_src = sc->sc_dma.dma_vaddr; 484 op_dst = (char *)sc->sc_dma.dma_vaddr + xlen; 485 486 op_psrc = sc->sc_dma.dma_paddr; 487 op_pdst = sc->sc_dma.dma_paddr + xlen; 488 489 if (crd->crd_flags & CRD_F_ENCRYPT) { 490 control = SB_CTL_ENC; 491 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 492 memcpy(op_iv, crd->crd_iv, sizeof(op_iv)); 493 else 494 cprng_fast(op_iv, sizeof(op_iv)); 495 496 if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) { 497 if (crp->crp_flags & CRYPTO_F_IMBUF) 498 m_copyback((struct mbuf *)crp->crp_buf, 499 crd->crd_inject, sizeof(op_iv), op_iv); 500 else if (crp->crp_flags & CRYPTO_F_IOV) 501 cuio_copyback((struct uio *)crp->crp_buf, 502 crd->crd_inject, sizeof(op_iv), op_iv); 503 else 504 bcopy(op_iv, 505 (char *)crp->crp_buf + crd->crd_inject, 506 sizeof(op_iv)); 507 } 508 } else { 509 control = SB_CTL_DEC; 510 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 511 memcpy(op_iv, crd->crd_iv, sizeof(op_iv)); 512 else { 513 if (crp->crp_flags & CRYPTO_F_IMBUF) 514 m_copydata((struct mbuf *)crp->crp_buf, 515 crd->crd_inject, sizeof(op_iv), op_iv); 516 else if (crp->crp_flags & CRYPTO_F_IOV) 517 cuio_copydata((struct uio *)crp->crp_buf, 518 crd->crd_inject, sizeof(op_iv), op_iv); 519 else 520 bcopy((char *)crp->crp_buf + crd->crd_inject, 521 op_iv, sizeof(op_iv)); 522 } 523 } 524 525 offset = 0; 526 tlen = crd->crd_len; 527 528 /* Process the data in GLXSB_MAX_AES_LEN chunks */ 529 while (tlen > 0) { 530 len = (tlen > GLXSB_MAX_AES_LEN) ? GLXSB_MAX_AES_LEN : tlen; 531 532 if (crp->crp_flags & CRYPTO_F_IMBUF) 533 m_copydata((struct mbuf *)crp->crp_buf, 534 crd->crd_skip + offset, len, op_src); 535 else if (crp->crp_flags & CRYPTO_F_IOV) 536 cuio_copydata((struct uio *)crp->crp_buf, 537 crd->crd_skip + offset, len, op_src); 538 else 539 bcopy((char *)crp->crp_buf + crd->crd_skip + offset, 540 op_src, len); 541 542 glxsb_dma_pre_op(sc, &sc->sc_dma); 543 544 glxsb_aes(sc, control, op_psrc, op_pdst, ses->ses_key, 545 len, op_iv); 546 547 glxsb_dma_post_op(sc, &sc->sc_dma); 548 549 if (crp->crp_flags & CRYPTO_F_IMBUF) 550 m_copyback((struct mbuf *)crp->crp_buf, 551 crd->crd_skip + offset, len, op_dst); 552 else if (crp->crp_flags & CRYPTO_F_IOV) 553 cuio_copyback((struct uio *)crp->crp_buf, 554 crd->crd_skip + offset, len, op_dst); 555 else 556 memcpy((char *)crp->crp_buf + crd->crd_skip + offset, 557 op_dst, len); 558 559 offset += len; 560 tlen -= len; 561 562 if (crd->crd_flags & CRD_F_ENCRYPT) { 563 memcpy(op_iv, op_dst + len - sizeof(op_iv), 564 sizeof(op_iv)); 565 } else { 566 /* Decryption, only need this if another iteration */ 567 if (tlen > 0) { 568 memcpy(op_iv, op_src + len - sizeof(op_iv), 569 sizeof(op_iv)); 570 } 571 } 572 } 573 574 /* All AES processing has now been done. */ 575 576 memset(sc->sc_dma.dma_vaddr, 0, xlen * 2); 577 out: 578 crp->crp_etype = err; 579 crypto_done(crp); 580 splx(s); 581 return 0; 582 } 583 584 int 585 glxsb_dma_alloc(struct glxsb_softc *sc, int size, struct glxsb_dma_map *dma) 586 { 587 int rc; 588 589 dma->dma_nsegs = 1; 590 dma->dma_size = size; 591 592 rc = bus_dmamap_create(sc->sc_dmat, size, dma->dma_nsegs, size, 593 0, BUS_DMA_NOWAIT, &dma->dma_map); 594 if (rc != 0) { 595 aprint_error_dev(sc->sc_dev, 596 "couldn't create DMA map for %d bytes (%d)\n", size, rc); 597 598 goto fail0; 599 } 600 601 rc = bus_dmamem_alloc(sc->sc_dmat, size, SB_AES_ALIGN, 0, 602 &dma->dma_seg, dma->dma_nsegs, &dma->dma_nsegs, BUS_DMA_NOWAIT); 603 if (rc != 0) { 604 aprint_error_dev(sc->sc_dev, 605 "couldn't allocate DMA memory of %d bytes (%d)\n", 606 size, rc); 607 608 goto fail1; 609 } 610 611 rc = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, 1, size, 612 &dma->dma_vaddr, BUS_DMA_NOWAIT); 613 if (rc != 0) { 614 aprint_error_dev(sc->sc_dev, 615 "couldn't map DMA memory for %d bytes (%d)\n", size, rc); 616 617 goto fail2; 618 } 619 620 rc = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr, 621 size, NULL, BUS_DMA_NOWAIT); 622 if (rc != 0) { 623 aprint_error_dev(sc->sc_dev, 624 "couldn't load DMA memory for %d bytes (%d)\n", size, rc); 625 626 goto fail3; 627 } 628 629 dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr; 630 631 return 0; 632 633 fail3: 634 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size); 635 fail2: 636 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs); 637 fail1: 638 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); 639 fail0: 640 return rc; 641 } 642 643 void 644 glxsb_dma_pre_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma) 645 { 646 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size, 647 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 648 } 649 650 void 651 glxsb_dma_post_op(struct glxsb_softc *sc, struct glxsb_dma_map *dma) 652 { 653 bus_dmamap_sync(sc->sc_dmat, dma->dma_map, 0, dma->dma_size, 654 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 655 } 656 657 void 658 glxsb_dma_free(struct glxsb_softc *sc, struct glxsb_dma_map *dma) 659 { 660 bus_dmamap_unload(sc->sc_dmat, dma->dma_map); 661 bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_size); 662 bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nsegs); 663 bus_dmamap_destroy(sc->sc_dmat, dma->dma_map); 664 } 665